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Abstract. In this article we approximate the clean speech spectral magnitude as 
well as noise spectral magnitude with a mixture of Gaussians pdfs using the 
Expectation-Maximization algorithm (EM). Subsequently, we apply the 
Bayesian inference framework to the degraded spectral coefficients and by 
employing Minimum Mean Square Error Estimation (MMSE), we derive a 
closed form solution for the spectral magnitude estimation task adapted to the 
spectral characteristics and noise variance of each band. We evaluate our 
algorithm using true, coloured, slowly and quickly varying noise types (Factory 
and aircraft noise) and demonstrate its robustness at very low SNRs. 

1 Introduction 

In spite of key contributions on the subject of Short-Time Spectral Attenuation 
algorithms (STSA) as applied to speech enhancement [1], [2], [3], there is still need 
for further work primarily on the problem of balancing the trade-off between noise 
reduction and speech distortion. The STSA family of algorithms attempts to uncover 
the underlying spectral magnitude of speech by applying a gain function to the 
observed, noisy short-time spectra, where the gain function is related to the noise 
power spectrum. 

In this work we propose a novel STSA algorithm that incorporates into a Bayesian 
formulation the long term pdf of each spectral band of an ensemble of clean 
recordings resulting in a better treatment of low energy spectral regions, while the 
spectral magnitude of noise is modelled by a mixture of Gaussians that allows for 
compensating the effect of time-varying noise types. A mixture of Gaussians is 
employed to account for the representation of the the magnitude of each spectral band 
of an ensemble of high quality speech (three minutes of phonetically balanced speech 
from speakers of both genders were found sufficient). The descriptive parameters of 
each mixture are derived from the observed spectral bands of the clean data by 
employing the EM algorithm. Assuming the availability of noisy data, we incorporate 
a Gaussian mixture model for the background noise and derive the descriptive 
statistics of the mixtures using the EM algorithm. 

Objective (SNR and Itakura-Saito (IS) measures) as well as subjective 
evaluation of signals degraded with additive Factory noise, and DC-3 aircraft noise at 
low SNRs ranging from -10 to 10 dB confirm the benefit of our approach. 



2 Description of the algorithm  

Let s(m) denote the clean time-domain signal corrupted by noise n(m) where (m) is 
the discrete-time index. The observed signal x(m) is given by: x(m)=s(m)+n(m) and 
is subjected to Short Time Fourier Transform (STFT). Based on the generalized 
spectral subtraction framework [3], we can derive a linear-spectral representation of a 
clean speech signal corrupted by additive noise using a 2N point FFT as: 

xακ,l=sακ,l+nακ,l    κ=0,…,Ν. (1) 

{xκ} denotes the spectral magnitude of the degraded sub-band {κ}, {nκ} the noise 
spectral magnitude, {l} the frame index and 1≤α≤2. Prior knowledge about the time 
frequency distribution of {sκ} is provided by a mixture of Gaussians that model the 
undegraded spectral bands of the available clean speech corpora (Eq. 2). Practically, 
2-3 minutes of clean speech, unrelated to the signals to be enhanced, were found 
sufficient to tune the free parameters of the algorithm. 

For notational convenience we set x=xα, s=sα, n=nα and we drop subscript {κ}, {l} 
implying that the subsequent analysis holds for every time-trajectory of spectral sub-
band {κ} independently, in the linear spectral domain. We have found that setting 
α=3/2 optimises performance, though, the subsequent analysis holds for every {α}. 
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The pdf of the spectral magnitude of noise is modeled by a mixture of Gaussian as: 
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where, {M} is the total number of mixture components, pm, µm and σm are the prior 
probability, mean and standard deviation of the mth Gaussian speech mixture, while 
pκ, µκ and σκ are the prior probability, mean and standard deviation of the κth 
Gaussian noise mixture. The descriptive statistics of the Gaussian mixture i.e pm, µm, 
σm, pκ, µκ and σκ are computed by the EM algorithm. Means are initialized uniformly 
over the interval of each spectral band magnitude, while weights are set to equal 
values and variance is lower-bounded to avoid picking narrow spectral peaks. 
Subsequently we proceed in deriving the MMSE estimation of the underlying spectral 
coefficients {s} as SMMSE=E{s|x}=∫sf(s|x)ds. The pdf of {s} given the observation {x} 
is derived by the Bayesian formula f(s|x)=f(x|s)f(s)/f(x). Combining f(s|x) and SMMSE 

results in: 
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Substituting Eq. 2 and Eq. 3 into Eq. 4 and by carrying out some simple algebra, 
we derive the underlying spectral magnitude in terms of an integral which is 
expressed in closed form through parabolic cylinder functions. (See Appendix for 
details in the definition and evaluation of the integrals I1, I2). Based on the Gaussian 



assumption for the spectral magnitude pdf of noise the MMSE estimation of the 
underlying clean spectral magnitude is 
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(5) 

Based on the fact that the information of the speech signal is encoded in the 
frequency domain and that human hearing is relatively insensitive to phase 
information, we focus on the short-time amplitude of the speech signal leaving the 
noisy phase unprocessed. After the enhancement procedure has been applied, noisy 
phase is added back and the time-domain signal is subsequently reconstructed using 
inverse FFT and the weighted overlap and add method. 

3 Simulation and results 

We performed speech enhancement experiments using real factory noise taken 
from the NOISEX-92 database as well as aircraft noise. Each noise type was added to 
10 clean speech files of 5 sec. mean duration so that the corrupted waveform ranges 
from –10 to 10 SNRdB. The number of Gaussian mixtures is set to nine for noise and 
six for speech as the objective measures indicated marginal gain by augmenting the 
number of mixtures. The SNR and the IS measures of the enhancement obtained by 
our technique are shown in Fig. 1a and Fig. 1b respectively. The IS distortion measure 
is based on the spectral distance between AR coefficient sets of the clean and 
enhanced speech waveforms over synchronous frames of 15ms duration and is 
heavily influenced due to mismatch in formant locations. As indicated in Figs. 1a, 1b, 
our method consistently effected a strong enhancement over all SNRs while the low 
energy parts of the spectrum are preserved even at 0 dB SNR. We attribute this fact to 
the a-priori modelling of clean spectral bands and to the mixture modelling of noise 
that permits a variable weighting for the generalized magnitude of noise for each 
spectral band and each frame. Parallel listening tests are well correlated with the 
objective measures and indicate that periodic components are strongly suppressed.  
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Fig. 1: a) SNR measurements, b) Itakura-Saito AR-distance measurements. Noise is 
Factory noise (NOISEX-92) and of an approaching DC-3 aircraft noise. 



4 Conclusions 

The application of SNR and Itakura-Saito (IS) measures confirmed the benefit of 
modeling clean spectral bands and the spectral bands of noise with a mixture of 
Gaussians. The key idea of independent modeling of the multimodal, heavy tail pdf of 
the magnitude of spectral bands with a mixture of Gaussians combined with MMSE 
formulation, can supply an efficient solution to a series of spectral estimation 
problems. We demonstrated the benefit of this enhancement technique at very low 
SNRs with true, slowly and quickly varying noise types. We suggest that the 
incorporation of the long term pdf of each band as a-priori information leads to 
estimators adapted to the spectral characteristics and noise variance of each band 
leading to better treatment of low energy time-frequency regions. Future work focuses 
on the incorporation of different techniques for the adaptive estimation of the variance 
of noise and the adaptive estimation of the descriptive statistics of the Gaussian 
mixture of noise as well as combining soft decision rules for estimating speech 
presence uncertainty.  

Appendix 

)
2b

c
()D

8b

cΓ(ν)exp())(2bdexp()dsd-scsbexp(sI
m

m
ν

m

m
2

2

ν

mmmm
2

m0

1ν
ν −

−∞+ − −=−−= ∫  
 

 

Dν+1-zDν(z)+νDν-1(z)=0, (Eq. 3.462, [4])  
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