Information and materials to the lecture (sylabus v IS).
ASSIGNMENTS: An important component of the lecture are home exercises - for the first 10 lectures. They will be posted always the day before the lecture, that is on TUESDAYS, at 18.00. Conditions for submiting and evaluation of exercices, as well as for exams and "zapocet". More points one gets from exercises more easy will be final exam.TUTORIALS: For the course IV054 there will be held regularly also not obligatory tutorials/seminars.
The goal of tutorials/seminars will be to make more clear topics discussed during the lecture as well as some of its (especially mathematical) requirements.
First of tutorials will be in Czech with Bc. Michal Ajdarów. First of them will be on Wendesday September 21 at ??.00 in B204.
Second tutorial will be in English and again with Mgrr. Ludek Matyska First of them will be on Wednesday, September 21 at 16.00-18.00 in B204.
Appendix!!!!!: The materials to the course contains
in addition to slides of the lectures also an Appendix. It is much recomended to all registered
for the course to look first, before lectures start, to the
Appendix for a review of some basic concepts and facts from algebra and discrete
mathematics that will be used in the course. This is of importance
especially for those who do not feel very good in these areas.
Contacts: gruska@fi.muni.cz
Teaching hours: streda 10:00-11:40, 2016, D2
Office hours: J. Gruska, Wednesday 13-14, B402,
L. Matyska Utorok, 12-14, C516 and/or by
arrangements through email. M. Adjarow, Juedi, 17.00-18.00 computers hall;
Exams: 19.12.2016, 12.00 B411; 4.1.2017 o 12.00 v A219; 11.1 12.00 ,
o 12.00 v A219; 25.1.2017 o 12.00 v A219
Thanks: The current web papge of the course was created for the benefit of all involved by Peter Boros, a former student of IV054
Slides for future lectures accessible bellow and denoted as old are from the course given in 2015. Modified and/or updated version of the slides will be usualy posted the day before the lecture and also after the lecture.
Perhaps the most effective way to deal with the course is to print new slides just before the lecture, to read them, and then, during the lecture to write into the printed version of the slides various comments and/or explanations. Concerning exercises of interest and usefulness for you be "Exercise-book" that contains about 100 exercises from previous years and their solutions. Excercise book can be uploaded from http://www.fi.muni.cz/~xbohac/crypto/exercise-book.pdf
Contents | Contents of the lecture | |||
---|---|---|---|---|
Literature | List of literature | |||
Lecture 1 | Basics of coding - new | Slides | 2×2 handouts | Exercises - new |
Lecture 2 | Linear codes- new | Slides | 2×&2 handouts | Exercises - new |
Lecture 3 | Cyclic codes and channel codes - new | Slides | 2×r&;2 handouts | Exercises - new |
Lecture 4 | Secret key cryptography- new | Slides | 2×2 handouts | Exercises - new |
Lecture 5 | Public key cryptography: key exchange, knapsack, RSA - new | Slides | 2×2 handouts | Exercises - new |
Lecture 6 | Other public-key cryptosystems and basic cryptographic primitives - new | Slides | 2×2 handouts | Exercises - new |
Lecture 7 | Digital signatures - new | Slides | 2×2 handouts | Exercises - new |
Lecture 8 | Cryptography of eliptic curves and factorization-new | Slides | 2×2 handouts | Exercises - new |
Lecture 9 | Authentication, identification, secret sharing and e-busines - new | Slides | 2×2 handouts | Exercises - new |
Lecture 10 | Protocols doing seemingly impossible - new | Slides | 2×2 handouts | Exercises - new - last one |
Lecture 11 | Steganography and Watermarking - new | Slides | 2×2 handouts | |
Lecture 12 | Quantum cryptography - new | Slides | 2×2 handouts | |
Appendix | Algebra and number theory introduction | Appendix |