
A Tighter Insertion-based Approximation

of the Crossing Number

Markus Chimani⋆1 and Petr Hliněný⋆⋆2

1 Algorithm Engineering, Friedrich-Schiller-University Jena, Germany
markus.chimani@uni-jena.de

2 Faculty of Informatics, Masaryk University Brno, Czech Republic
hlineny@fi.muni.cz

Abstract. Let G be a planar graph and F a set of additional edges not
yet in G. The multiple edge insertion problem (MEI) asks for a drawing
of G+F with the minimum number of pairwise edge crossings, such that
the subdrawing of G is plane. As an exact solution to MEI is NP-hard for
general F , we present the first approximation algorithm for MEI which
achieves an additive approximation factor (depending only on the size
of F and the maximum degree of G) in the case of connected G. Our
algorithm seems to be the first directly implementable one in that realm,
too, next to the single edge insertion.
It is also known that an (even approximate) solution to the MEI problem
would approximate the crossing number of the F -almost-planar graph

G+F , while computing the crossing number of G+F exactly is NP-hard
already when |F | = 1. Hence our algorithm induces new, improved ap-
proximation bounds for the crossing number problem of F -almost-planar
graphs, achieving constant-factor approximation for the large class of
such graphs of bounded degrees and bounded size of F .

1 Introduction

The crossing number cr(G) of a graph G is the minimum number of pairwise
edge crossings in a drawing of G in the plane. The crossing number problem has
been vividly investigated for over 60 years, and yet only little is known about
it. See [23] for an extensive bibliography. While the problem’s approximability is
still unknown, several approximation algorithms arose for special graph classes.

The best known polynomial algorithm for the crossing number of general
graphs with bounded degree [1,12] approximates, within a factor of log2 |V (G)|,
the quantity |V (G)| + cr(G), not directly cr(G). The known constant factor
approximations restrict themselves to graphs following one of two paradigms
(see also Section 4): they either assume that the graph is embeddable in some
higher surface [13, 18, 20], or they are based on the idea that only a small set
of graph elements has to be removed from G to make it planar: removing and

⋆ Markus Chimani was funded by a Carl-Zeiss-Foundation juniorprofessorship.
⋆⋆ Petr Hliněný has been supported by Eurocores grant GIG/11/E023 and Czech Sci-

ence Foundation grant P202/11/0196.

re-inserting them can give strong approximation bounds [3,8,19]. In this paper,
we follow the latter idea and first concentrate on the following problem:

Definition 1.1. Given a planar graph G and a set F of k edges (vertex pairs, in
fact) not yet in G. The multiple edge insertion problem MEI (G,F) is to find the
minimum number ins(G,F) of crossings necessary to draw G + F (G including
the edges F) such that the subdrawing restricted to G is planar. In other words,
we ask for some planar embedding of G such that we can insert the edges F into
this embedding making the least possible number of edge crossings.

For general k, the MEI problem is known to be NP-hard [24], based on
a reduction from fixed linear crossing number ; for fixed k > 1 the problem
complexity is open.

The case k = 1 of MEI is known as the (single) edge insertion problem and
can be solved in linear time [17], as we will briefly summarize in Section 2.2. Let e
be the edge to insert, then denote the resulting number of crossings by ins(G, e).
Let ∆(G) denote the maximum degree in G. It was shown [3, 19] that ins(G, e)
approximates the crossing number cr(G + e) —i.e., of the graph containing this
edge e—within a multiplicative factor of ⌊1

2
∆(G)⌋ achieved in [3], and this bound

is tight. Notice also that already computing cr(G + e) exactly is NP-hard [4].
Another special case of the MEI problem is when one adds a new node

together with its incident edges; this is also polynomially solvable [6] and ap-
proximates the crossing number of the resulting apex graph [8]. These are the
only two types of insertion problems which are currently known to be in P.

Nevertheless, it has been proven in [8] (see Section 4) that a solution (even
an approximate one) to MEI (G,F) would directly imply an approximation algo-
rithm for cr(G+F) with planar G. Just recently, Chuzhoy et al. [10] have shown
the first algorithm efficiently computing an approximate solution to the crossing
number problem on G + F with a help of a multiple edge insertion solution.
Precisely, Chuzhoy et al. [10] achieve a solution with the number of crossings

craprx(G + F) ≤ O
(

∆(G)3 · |F | · cr(G + F) + ∆(G)3 · |F |2
)

(1)

(without giving explicit constants). Though not mentioned explicitly in [10], it
seems that their results also give an approximation solution to MEI (G,F) with
the same ratio, at least in the case of 3-connected G+F . A further approximation
result, though not directly related to our topic, was given by Chuzhoy in [9].

In this paper, we present an alternative approach to the one proposed in [10]:
We directly give an efficient algorithm approximating a solution of MEI (G,F),
and then employ the aforementioned result of [8]. On the one hand, our approach
is algorithmically and implementationally simpler, virtually only building on top
of well-studied and experimentally evaluated sub-algorithms. On the other hand,
it gives stronger approximations, cf. (3), as well as better runtime bounds. Our
algorithm, in fact, seems to be the first directly implementable algorithm in this
area, next to the single edge insertion. We are going to show:

2

Theorem 1.2. Given a connected planar graph G and an edge set F , F ∩
E(G) = ∅, Algorithm 3.1 described below finds, in O(|F | · |V (G)| + |F |2) time,
a solution to the MEI (G,F) problem with insaprx(G,F) crossings such that

insaprx(G,F) ≤ ins(G,F) +
(

⌊1
2
∆(G)⌋ + 1

2

)

·
(

|F |2 − |F |
)

.(2)

Consequently, this gives an approximate solution to the crossing number problem

craprx(G + F) ≤ ⌊1
2
∆(G)⌋· 2|F |· cr(G + F) +

(

⌊1
2
∆(G)⌋ + 1

2

)(

|F |2 − |F |
)

.(3)

Notice the constant-factor approximation ratio when the degree of G and
the size of F are bounded. Further consequences of our main result will be
discussed below. We, moreover, remark that the assumption of connectivity of
G is necessary in the context of Algorithm 3.1 (if G were not connected, then
the approximation guarantee (2) of Algorithm 3.1 for insaprx(G,F) would be
just the same as for craprx(G + F) in line (3)).

2 Preliminaries

2.1 Decomposition trees

We consider multigraphs by default. Our algorithm will use suitable tree-structured
decompositions of the given planar graph, according to its connectivity.

Definition 2.1 (BC-tree). Let G be a connected graph. The BC-tree B =
B(G) of G is a tree that satisfies the following properties:

i. B has two different node types: B- and C-nodes.
ii. For every cut vertex in G, B contains a unique corresponding C-node.
iii. For every maximal two-connected subgraph (block) in G, B contains a unique

corresponding B-node.
iv. No two B-, and no two C-nodes are adjacent. A B-node is adjacent to a

C-node iff the corresponding block contains the corresponding cut vertex.

To further decompose the blocks, we consider SPQR-trees for each non-trivial
B-node (i.e., the block containing more than a single edge). This decomposition
was first defined in [11], based on prior work of [2,22]. Even though more compli-
cated than the BC-tree, it requires also only linear size and can be constructed in
linear time [15,21]. We are mainly interested in the property that an SPQR-tree
can be used to efficiently represent and enumerate all (potentially exponentially
many) planar embeddings of its underlying graph. For conciseness, we call our
tree SPR-tree, as we do not require nodes of type Q.

Definition 2.2 (SPR-tree, cf. [5]). Let H be a biconnected graph with at
least three vertices. The SPR-tree T = T(H) of H is the (unique) smallest tree
satisfying the following properties:

i. Each node ν in T holds a specific (small) graph Sν = (Vν , Eν), Vν ⊆ V (H),
called a skeleton. Each edge f of Eν is either a real edge f ∈ E(H), or a
virtual edge f = {u, v} where {u, v} forms a 2-cut (a split pair) in G.

3

ii. T has only three different node types with the following skeleton structures:
S: The skeleton Sν is a simple cycle—it represents a serial component.
P: The skeleton Sν consists of two vertices and multiple edges between them—

it represents a parallel component.
R: The skeleton Sν is a simple triconnected graph.

iii. For every edge {ν, µ} in T the following holds: Sν contains a specific virtual
edge eµ which “represents” Sµ. Vice versa, eν ∈ E(Sµ) represents Sν . Both
edges eµ and eν connect the same vertices.

iv. The original graph H can be obtained by recursively applying the following
operation: For the edge {ν, µ} ∈ E(T), let eµ, eν be the virtual edges as in
(iii.) connecting the same vertices u, v. A merged graph (Sν ∪ Sµ)− eµ − eν

is obtained by gluing the skeletons together at u, v and removing eµ, eν .

We remark that SPQR-trees have also been used in the aforementioned [10],
though with a different approach. For our purpose, we are particularly interested
in the amalgamated version of both above trees, chiefly denoted by con-tree:

Definition 2.3 (Con-tree). Given a connected, planar graph G, let the con-
tree C = C(G) be formed of the BC-tree B(G) which holds SPR-trees T(H) for
all non-trivial blocks H of G.

Clearly, the linear-sized con-tree C can be obtained from G in linear time.
Observe that, for each cut vertex x (of G) incident with a block H ⊆ G,

the nodes with skeletons containing x induce a subtree TH,x ⊆ T(H). In fur-
ther considerations it will be useful to imagine that the C-node of x in B(G)
is adjacent to these corresponding nodes V (TH,x) (over all blocks H incident
with x) within C. We will loosely call this view of C the extended con-tree, while
understanding that it is not really a tree.

2.2 Single edge insertion with variable embedding

As noted before, Gutwenger et al. [17] presented an exact linear-time algorithm
to solve the single edge insertion problem. Herein, we will only outline some
central concepts of this approach. Consider a planar graph G and let v1, v2 be
the vertices we want to connect by a new edge.

First consider G embedded such that we can deal with its dual graph G∗.
We define an insertion path to be a path in G∗ connecting a face incident to
v1 with a face incident to v2. The length of this path is then the number of
edge crossings necessary to insert the edge {v1, v2} into embedded G along this
path. For a fixed embedding, we can compute the shortest insertion path via a
breath-first search (BFS). Now consider G without a fixed embedding. If v1, v2

are in two separate connected components, then we can insert the edge {v1, v2}
without any crossings, by choosing sub-embeddings of these components where
v1, v2 lie on their respective outer faces.

Hence assume G to be connected and compute (in linear time) its con-tree
C(G). Let L be the unique shortest path in B(G) from a B-node containing v1

to a B-node containing v2. The optimal insertion path for {v1, v2} in G can be

4

obtained by concatenating the optimal insertion paths within the (non-trivial)
blocks on this path L; as we can always “flip” (cf. Definition 3.4, C-nodes) the
two incident blocks at the common cut vertex to avoid additional crossings. For
a block H represented by a B-node on L, let vH

i , i = 1, 2, denote vi if vi ∈ V (H),
or the cut vertex in H closest to vi otherwise. An insertion path within H then
connects any face incident to vH

1 with any face incident to vH
2 .

To find the optimal insertion path within such a block H ⊆ G, let QH be
the unique shortest path in T(H) from a skeleton containing vH

1 to a skeleton
containing vH

2 . It was shown [17] that only the embeddings of the skeletons
within QH matter. Roughly speaking, the algorithm walks along these skeletons
and fixes a suitable embedding one after another. Finally, an optimal embedding
is found and fixed, and one can use a simple BFS algorithm on the dual graph
to insert the edge {vH

1 , vH
2 } optimally.

Definition 2.4 (Con-chain). Considering the previous notation, we call a con-
chain of the edge {v1, v2} the (unique) path Q = QG({v1, v2}) resulting from L
by expanding each B-node b ∈ V (L) into the path QH where H is the block of G
represented by b.

Proposition 2.5. Let e1, e2 be two insertion edges to the same graph G. Then
their con-chains QG(e1) and QG(e2) are either disjoint, or they intersect (within
the extended con-tree of G in which they lie) in one subpath.

3 MEI Approximation Algorithm

We can now describe the main algorithm for our Theorem 1.2 (2). In the follow-
ing, we will always consider the multiple edge insertion problem MEI (G,F) for
a planar graph G = (V,E) and an edge set F , F ∩E = ∅, with k := |F | > 1. Let
∆ := ∆(G) be the maximum degree in G. We will present an algorithm giving a
solution to MEI (G,F) that approximates the optimum ins(G,F) within an ad-
ditive factor (depending only on k,∆). Afterwards, in Section 4, we will discuss
how to obtain an approximation algorithm for cr(G + F) based on this result.

On a high level, our algorithm proceeds as follows:

Algorithm 3.1. Computing an approximate solution to the multiple edge in-
sertion problem MEI (G,F) for connected planar G.

(1) Build the con-tree C = C(G).
(2) Using C, compute single-edge insertions (including the con-chains QG(e) of

Definition 2.4) for each edge e ∈ F independently, and centrally store their
embedding preferences (Definition 3.4).

(3) Fix an embedding Γ of G by suitably (see Algorithm 3.8) combining the
embedding preferences from step (2).

(4) Independently compute insertion paths for each edge e ∈ F into the fixed
embedding Γ .

(5) Realize all the insertion paths computed in the prior step.
(5)a) If some insertion paths cross multiple times, exchange subpaths, such
that in the end all inserted edges cross each other at most once.

5

Observe that, by minimality of the paths computed in step (4), the lengths
of the paths cannot change by applying step (5)a. In fact, by suitably breaking
ties in the BFS algorithms of step (4), the situation of (5)a will never occur.
Furthermore, by simple iterative insertion in step (4), even explicit tie-breaking
becomes superfluous, cf. Section 5. Hence, in the following we can always consider
the paths obtained in step (4) to be free of multi-crossings between any pair of
insertion paths.

By using the aforementioned algorithms for building the decomposition tree
and the single edge insertions as black boxes, we can directly perform the steps
(1), (2), (4), and (5). We will discuss step (3) in Section 3.2. Yet, we can already
informally describe the core idea of why the value insAlg(G,F) of the outcome
of Algorithm 3.1 approximates ins(G,F).

Clearly, insΣ(G,F) :=
∑

e∈F ins(G, e) —the sum of the individual insertions
without considering interdependencies—is a lower bound for ins(G,F). More-
over, we can compute insΣ(G,F) exactly in step (2). Hence to give an approxi-
mation guarantee for Algorithm 3.1, it is enough to bound insAlg(G,F) in terms
of insΣ(G,F) and a function of k,∆.

Let e ∈ F be an inserted edge with the computed con-chain QG(e), and
ν ∈ V (QG(e)) be a C-,P-, or R-node of C along it. An embedding preference of
e at ν —actually respecting its neighborhood and generally denoted by a node
tuple cν , as formally explained in Definition 3.5—specifies what the embedding of
G should locally “look like at ν” to achieve the (independent) optimum ins(G, e).
Roughly, we call such a pair (cν , e) a dirty pass if, in the embedding Γ of step (3),
the embedding preferences at ν and its neighbors has been fixed incompatibly
from those individually chosen by e in the previous step (2), cf. Section 3.1 for
details.

Theorem 3.2. Consider a run of Algorithm 3.1 on G and F , with a particular
embedding Γ fixed at step (3). Let k = |F |, ∆ = ∆(G). If r is the total number of
dirty passes (over all e ∈ F) determined by this Γ , then the number of crossings
in the outcome of the algorithm is

insAlg(G,F) ≤ insΣ(G,F) +

⌊

∆

2

⌋

· r +

(

k

2

)

.

A full proof will be given in Section 3.1. Here we outline its core idea: As
every node of C with an embedding preference is associated with a 1- or 2-cut
in G, any wrongly fixed preference (a dirty pass) can be “repaired” by rerouting
the inserted edge close to this cut, crossing at most ⌊∆/2⌋ edges incident with a
vertex in the cut. Summing over all dirty passes caused by Γ and taking possible
crossings between edges of F into account, we get the bound.

It is a fact that the embedding preferences for Γ can be naturally fixed
such that, at every node ν of C, not all con-chains of inserted edges disagree
with Γ . Consequently, one can give an easy upper bound on r in terms of k as
follows: For every dirty pass (cν , e) caused by Γ , there is another f ∈ F such
that ν belongs to the con-chain of f and, for a suitable tuple c

′
ν , (c′ν , f) is not

dirty. So, in particular, the con-chains QG(e) and QG(f) are not routed through

6

the completely same neighborhood of ν (informally, they “split/merge” at ν), cf.
Lemma 3.10 for the concise statement. Since any two con-chains can split/merge
at most twice, a coarse bound of r = O(k2) on the total number of disagreements
with Γ easily follows.

Stated formally, the above arguments lead to the following conclusion—
overall stronger than (1) of [10], with full details in Section 3.2 and 3.3:

Theorem 3.3 (Theorem 1.2 (2)). Algorithm 3.1 computes a solution to the
MEI (G,F) problem for connected planar G with insAlg(G,F) crossings such that

insAlg(G,F) ≤ insΣ(G,F) +

(

2

⌊

∆

2

⌋

+ 1

)

·

(

k

2

)

where k = |F |, ∆ = ∆(G), and (also computed thereby) insΣ(G,F) ≤ ins(G,F)
is a lower bound on the optimal solution.

3.1 Embedding preferences and estimating additional crossings via
dirty passes

In order to discuss how to obtain an embedding Γ suitable for all edge insertions,
we first have to concisely define embedding preferences that record the desired
local embeddings of G from each independent single edge insertion in step (2).

Definition 3.4 (Embedding preference). Consider a single edge insertion
of an edge e ∈ F into G. As argued in Section 2.2, the required embedding of G
is fixed only for con-tree nodes along the con-chain Q = QG(e). This requirement
is encoded into the C-, P- and R-nodes along Q; for every such node ν we may
store its embedding preference πe(ν):

R-nodes: The skeleton Sν of an R-node ν allows only a unique planar embed-
ding and its mirror. We declare one of these two embeddings as the de-
fault one. The insertion algorithm then either sets πe(ν) := default or
πe(ν) := mirror, depending on which embedding it requires.

P-nodes: The skeleton of a P-node ν with p edges allows (p − 1)! planar em-
beddings given by different cyclic orderings of its edges around one of its
nodes. When the con-chain Q passes through a P-node such that one of
its neighbors is a C-node, the order of the edges is irrelevant, denoted by
πe(ν) = irrelevant. Otherwise, the insertion path leaves one of the vir-
tual edges of the skeleton Sν and enters another one. Hence, these two edges
should be neighbors in cyclic order, and the embedding preference is stored as
a pair πe(ν) := (e1, e2) which means the skeleton edge e1 is to occur clockwise
directly before e2.

C-nodes: Let B1, B2 ⊆ G be the two blocks neighboring a C-node ν on Q. The
required embedding places (already embedded) B2 into a face φ1 of B1, and
vice versa B1 into a face φ2 of B2. Unfortunately, those faces φ1, φ2 do
not have standalone definitions within G. Let µ1, µ2 be the nodes adjacent
to ν along Q, and let x be the cut vertex of G which is represented by ν.
The insertion path within the skeleton Sµi

, i = 1, 2, connects x to some

7

other element (i.e., a vertex or a virtual edge) ai. So, we set the embedding
preference to πe(ν) := {a1, a2}. This means that we will be able to deduce the
faces φ1, φ2 (by looking at the canonically computed local insertion subpaths)
whenever Sµ1

, Sµ2
get fixed, and then embed these two faces into each other.

For all C-, P-, and R-nodes not on the con-chain Q, we do not store any
embedding preference. Recall (e.g., from [11, 17]) that S-nodes—representing
simple cycles—do not add additional embedding possibilities, and hence the
above information is sufficient to determine an embedding of G which allows to
insert the edge e with the minimum number of crossings.

When we say we flip an embedding of some node ν ∈ V (C), then: if ν is an
R-node, we switch from π(ν) = default to π(ν) := mirror and vice versa; if ν
is a non-irrelevant P-node, we set π(ν) := (e, f) for π(ν) = (f, e); in all other
cases, we do not change the encoding. Analogously, the function flipped(π(ν))
gives the so flipped preference of the given preference π(ν).

Observe that a solution of the single edge insertion problem never has a
unique embedding—we can always choose the mirror of the identified embed-
ding (i.e, flip all nodes along the corresponding con-chain) and insert the edge
analogously, with the same number of crossings.

Before we can discuss how to obtain a fixed embedding Γ “close” to the
individually preferred embeddings of the edges F , we have to introduce some
more formalisms, leading to a lengthy but central definition.

In the following, we will assume some implicit, fixed orientation (i.e., di-
rection) of every considered con-chain Q. These orientations are arbitrary and
mutually independent; they are needed mainly to consistently speak about pre-
ceding and succeeding nodes on a con-chain, and to break ties in the descriptions.

To simplify notation, we call two nodes µ, ν on a con-chain Q non-S-neighbors
if none of them is an S-node, and µ, ν are either ordinary neighbors on Q or there
is an S-node on Q which is a common neighbor of µ, ν. Let πΓ be embedding
preferences corresponding to a complete embedding Γ , and πe preferences from
an insertion edge e ∈ F . We say that πΓ and πe agree on an embedding of a
node ν, denoted by πΓ (ν) ≃ πe(ν), iff
– ν is an R- or C-node and πΓ (ν) = πe(ν), or
– ν is a P-node and either πe(ν) = irrelevant or the edge pair πe appears

consecutively in clockwise order in πΓ .

They disagree (6≃) otherwise. We say that a pair of nodes (λ, λ′) on a con-chain
is switching if πΓ (λ) ≃ πe(λ) and πΓ (λ′) ≃ flipped(πe(λ

′)), or vice versa. A
triple (λ, λ′, λ′′) is switching if both (λ, λ′) and (λ′, λ′′) are switching.

Definition 3.5 (Dirty pass). Assume a fixed embedding Γ of G, inducing full
embedding preferences πΓ on all nodes of the con-tree C(G); for P-nodes, let πΓ

give a complete clockwise cyclic ordering of its edges. Let Q = QG(e) be the
con-chain of an edge e ∈ F , and πe the corresponding embedding preferences
computed in step (2) of the algorithm.

We say, with respect to the embedding preferences πΓ (or shortly w.r.t. Γ)
and the implicit direction of Q, that a pair (c, e) is a dirty pass (or that c is dirty
for e) iff one of the following situations happens:

8

i. c = ν is a C-node on Q such that πΓ (ν) 6≃ πe(ν).
ii. c = ν is a P-node on Q such that πe(ν) 6= irrelevant, πΓ (ν) 6≃ πe(ν), and

πΓ (ν) 6≃ flipped(πe(ν)).
iii. c = (ν′, ν) is a switching pair of R-nodes that are non-S-neighbors (of each

other) on Q.
iv. c = (µ′, ν, µ) is a switching triple of nodes such that µ 6= µ′ are both non-S-

neighbors of ν on Q, ν is a P-node, and µ, µ′ are P- or R-nodes.
v. c = (µ, ν) is a switching pair of P- or R-nodes that are non-S-neighbors on

Q, not both of µ, ν are R-nodes (cf. iii.), and no switching triple as in (iv.)
contains both µ, ν.

X. We, furthermore, impose the following exclusion rule onto the situations
defined above: No two valid switching triples in (iv.) may share two common
nodes. More precisely, we greedily pack (in the implicit direction on Q) the
maximal collection of triples (iv.) on Q, valid according to this exclusion rule.

Definition 3.5 is essential in the following core claim which shows that dirty
passes precisely pinpoint the places where the insertion path(s) need additional
crossings.

Lemma 3.6. Consider a connected graph G with a plane embedding Γ and max-
imum degree ∆, and an edge e to insert. If there are altogether re dirty passes
on the con-chain of e w.r.t. Γ , then e can be inserted into Γ with at most
ins(G, e) + re · ⌊∆/2⌋ crossings.

Proof. Let Q = QG(e) be the con-chain of e in C(G), and denote by Γ0 an
embedding of G which allows to insert e with ins(G, e) crossings. As discussed
in Section 2.2, embedding preferences for nodes not on Q do not matter for e,
and hence Γ0 can be chosen such that it has identical embedding preferences
as Γ for all nodes of C(G) not on Q. Our overall goal is to (locally) modify Γ0

in the remaining nodes to match given Γ , in a way that creates not many new
crossings for e.

For the nodes on Q, we first recall all the mutually exclusive ordered con-
stellations (i.)–(v.) of nodes of Q such that each one of them, according to
Definition 3.5, leads to precisely one dirty pass on Q.

We process the nodes λ along Q hierarchically; first considering the subpaths
induced by the non-C-nodes in successive order (as implicitly fixed above), and
then processing the remaining C-nodes. Our aim is to show the following: If Γ
and Γ0 do not agree on the embedding of the skeleton Sλ, then either we can
preserve the insertion path of e without additional crossings, or we identify one
of the constellations (i.)–(v.). In the latter case, the insertion path of e can then
be rerouted w.r.t Γ ’s embedding of Sλ with at most ⌊∆/2⌋ additional crossings.

For each non-S-node λ to be processed (recall that an S-node has a unique
embedding), we denote by λ′ the preceding non-S-neighbor of λ on Q; but if we
are at the beginning of Q or λ′ would be a C-node, then let λ′ := undefined. Let
analogously λ′′ be the preceding non-S-neighbor of λ′ on Q, or λ′′ := undefined.

Let λ be an R-node. Firstly, consider πΓ (λ) ≃ πe(λ). No local change of Γ0

at λ is necessary. If, moreover, πΓ (λ′) ≃ πe(λ
′) or λ′ = undefined or πe(λ

′) =

9

irrelevant, then also the insertion path of e is locally preserved. If a P-node
λ′ was as in constellation (ii.) for ν = λ′, then the insertion path has been
properly adjusted for Γ already at λ′ (see below). Otherwise, λ′ is a P- or R-
node, πΓ (λ′) ≃ flipped(πe(λ

′)), and so (λ′, λ) is switching.

Suppose now that λ′ is a P-node. Since πe(λ
′) 6= irrelevant, also λ′′ is

defined. In either case—of a switching triple (λ′′, λ′, λ) as in constellation (iv.)
or switching (λ′, λ) as in (v.)—we do the following: Let s′, t′ denote the two
vertices of the P-skeleton Sλ′ , and eλ′′ , eλ its virtual edges gluing (possibly via
intermediate S-nodes) Sλ′′ and Sλ to it. The insertion path of e in Γ0 emanates
from eλ′′ straight into eλ. In Γ , on the other hand, the position of eλ′′ , eλ is
flipped (i.e., they are on the “wrong side” of each other). The remedy for Γ is
to bring the insertion path close to s′ (or t′), and then revolve around s′ to the
appropriate face of Sλ′ by crossing over at most ⌊∆/2⌋ edges incident with s′

in G.

Next suppose that λ′ is an R-node, i.e. (λ′, λ) is as in constellation (iii.).
Let eλ′ = {s, t} be the virtual edge of the skeleton Sλ gluing (possibly via an
intermediate S-node) Sλ′ to it. As πΓ (λ′) ≃ flipped(πe(λ

′)), the insertion path
emanates from eλ′ in Sλ on the wrong side, but it can be brought to the other
side again by revolving around s (or t) at the cost of ≤ ⌊∆/2⌋ crossings.

Secondly, consider πΓ (λ) ≃ flipped(πe(λ)). We alter Γ0 by replacing the
embedding of the skeleton Sλ with its mirror image (while no other skele-
ton is touched!). Analogically to the first case, if λ′ = undefined, πe(λ

′) =
irrelevant, or λ′ as in (ii.), then the insertion path of e is locally adapted for
Γ with no additional crossings. If πΓ (λ′) ≃ flipped(πe(λ

′)), then the relative
position of Sλ′ and Sλ remains the same in Γ as it was in Γ0, and so no extra
crossing is needed either.

In the remaining cases when (λ′, λ) is switching, the analysis is analogous to
the arguments (seen “in a mirror”) of the first case, leading again to ≤ ⌊∆/2⌋
additional crossings in each of the constellations (iii.)–(v.).

Let λ be an P-node. Unless already the same, we modify the embedding by
rearranging the order of the virtual edges of the P-skeleton Sλ in Γ0 to match
that of Γ . If πe(λ) = irrelevant, then no more steps are necessary regarding
the insertion path of e at λ. Else, if πΓ (λ) 6≃ πe(λ) and πΓ (λ) 6≃ flipped(πe(λ)),
we are in constellation (ii.), and the insertion path emanating from some virtual
edge of Sλ can be rerouted to any other face of Sλ in Γ at the cost of ≤ ⌊∆/2⌋
crossings in Γ , as above.

In the remaining cases, λ′ is a P- or R-node. If (λ′, λ) is not switching, then
the relative position of Sλ′ and Sλ remains the same in Γ as it was in Γ0, and so
no extra crossing is needed on the insertion path. If λ′ is an R-node and (λ′, λ) is
switching, then we either are in constellation (v.), or constellation (iv.) will occur
right in the next step. In the latter case we do nothing for now (as everything
will be taken care of next); in the former case we reroute the insertion path at
the cost of ≤ ⌊∆/2⌋ crossings in Γ analogously to the above arguments.

Hence it remains to consider λ′ a P-node and (λ′, λ) switching. Again, since
πe(λ

′) 6= irrelevant, also λ′′ is defined. This is the only place where the exclu-

10

sion principle (X.) for constellations as in (iv.) comes into play: It might happen
that neither (v.) with (λ′, λ), nor (iv.) with (λ′′, λ′, λ) (due to (X.)), are valid
constellations. In such a case, however, constellation (iv.) will surely occur in
the next step, and the insertion path will be properly rerouted then. Otherwise,
for constellations (v.) with (λ′, λ), or (iv.) with (λ′′, λ′, λ), we apply the above
arguments (since for our rerouting it does not matter whether λ is a P- or an
R-node).

Let λ be a C-node. In Γ0, the face in which the insertion path from one
adjacent block B1 ends, matches the face where the insertion path for the other
adjacent block B2 starts. If constellation (i.) occurs for λ, then those faces may
be different in Γ , yet incident to a common cut vertex x ∈ B1 ∩ B2. Again, we
can always locally revolve the insertion path of e around x, thereby crossing at
most ⌊∆/2⌋ edges.

Since the con-tree C(G) captures all embedding possibilities for G, the re-
sulting embedding (of the above process) is equivalent to Γ , and the number of
crossings on e has risen (since Γ0) by at most re · ⌊∆/2⌋. ⊓⊔

Theorem 3.2 now immediately follows from repeated application of Lemma 3.6
to each e ∈ F , and the fact that Algorithm 3.1 computes optimal individual in-
sertion paths within fixed Γ .

3.2 Combining all embedding preferences

We now want to find an embedding Γ that satisfies at least one preference per
node of C and has the property that any pair of con-chains disagrees on at
most two dirty passes. For each node in C, we will store a picked embedding
preference πpick. In the end, these picked embedding preferences will be realized,
to subsequently obtain the fixed embedding Γ of Algorithm 3.1, step (3).

Consider a chosen processing order 〈e1, e2, . . . , ek〉 of the edges of F : Initially,
we set πpick(ν) = ∅ for all nodes ν ∈ V (C). We consider the edges one by one,
setting πpick(ν) for all nodes ν along the corresponding con-chain of the edge,
and probably alter other embedding preferences along the previously considered
con-chains (see below for details). After the insertion of the i-th edge, we have
the property that each node ν along any con-chain of an edge ei′ with i′ ≤ i has
a well-defined πpick(ν) 6= ∅.

Let N<i ⊆ V (C) denote the nodes of C that have embedding preferences from
the first i−1 inserted edges (1 ≤ i ≤ k+1). The individual trees within the forest

induced by any N<i give rise to a node partition ˙⋃ ℓ
j=1N

<i
j = N with ℓ < i. We

call any partition set N<i
j an embedding part. Generalizing on the flipping of a

single con-chain we can observe:

Proposition 3.7. Let N<i
j be any embedding part with the embedding prefer-

ences πpick. When all the nodes of N<i
j are flipped, we obtain new embedding

preferences π′
pick. Then, an embedding realizing π′

pick allows an insertion of the
first i−1 insertion edges with the same number of crossings as for πpick. In fact,
these insertion paths are identical to the former ones up to mirroring.

11

We are now ready to give the following method to obtain a merged embedding
Γ . Let πi be the embedding preferences along the con-chain Qi = QG(ei) stored
in step (2) of Algorithm 3.1.

Algorithm 3.8. Combining all embedding preferences to obtain Γ .

A. Let πpick(ν) = ∅, ∀ν ∈ V (C).
B. For all 1 ≤ i ≤ k:

(a) Traverse the con-chain Qi of ei along some arbitrary, fixed orientation;
let ν ∈ Qi be the first node. The traversal direction naturally defines
preceding and succeeding nodes along Qi.

(b) If πpick(ν) = ∅, then choose πpick(ν) := πi(ν).
(c) Let µ be the closest non-S-node preceding ν. Skip this step if µ does not

exist or ν is a C-node. Otherwise:
Check if a flip can improve the embedding: The preference πpick is im-
provable if ν can be the last element of a tuple c such that (c, ei) is
in a dirty pass w.r.t. Γ , while this tuple would not be dirty after flip-
ping πpick(ν) (which is equivalent to flipping ν’s predecessors).
If the embedding is improvable, let Q′ ⊂ V (Qi) be the consecutive nodes
of Qi starting from the start node up to (and including) µ. Furthermore,
let N ′ be all embedding parts of N<i that contain at least one node of
Q′. Flip πpick for all nodes Q′ ∪ N ′.

(d) If πpick(ν) has been newly set in (b), let ν′ := ν. Otherwise let N<i
j , for

some j, be the embedding part to which ν belonged, and set ν′ to the
last non-S-node in N<i

j that is traversed by Q.
Set ν to be the closest non-S-node succeeding ν′; if it exists, continue
with step (b), otherwise proceed with the next i in step B.

C. Choose a random embedding preference for any node ν with πpick = ∅, and
randomly complete the embedding preference of any P-node to a complete
cyclic ordering. Realize all the preferences πpick to obtain Γ .

Consider the dirty passes that arise from Algorithm 3.8. Thanks to Proposi-
tion 3.7 it is easy to see that it is easy to see:

Observation 3.9. Let πi
pick, 1 ≤ i ≤ k, be the picked embedding preference after

the insertion of edge ei in Algorithm 3.8. Let (c, ej), 1 ≤ j ≤ k, be a dirty pass
w.r.t. the embedding preferences πℓ

pick of some ℓ ≥ j. Then, the pass is dirty for
all the preferences πm

pick with j ≤ m ≤ k.

the decision whether a pass (c, ej) would be dirty in the final solution is made
by the algorithm exactly at the step when merging πj into the then current
πpick. Note that, due to the tree-property of C (cf. Proposition 2.5), any two
con-chains Q,Q′ can have at most one common (connected) sub-chain q. The
two non-S-nodes closest to either end of q are the two split nodes of (Q,Q′). We
say a tuple (ν, j, i), j < i, is a splitter (w.r.t. i) if ν is a split node w.r.t. (Qj , Qi).
Observe that multiple splitters may induce the split node property of the same
node in C. Our key conclusion here reads:

12

Lemma 3.10. The above Algorithm 3.8 guarantees that there is at most one
dirty pass for each splitter (over all pairs of con-chains); this dirty pass then
also contains the corresponding split node. — Hence, the overall sum of dirty
passes in the embedding Γ (obtained by Algorithm 3.8) is at most 2

(

k
2

)

.

Lemma 3.11 (cf. Lemma 3.10). The above Algorithm 3.8 guarantees that
there is at most one dirty pass for each splitter (over all pairs of con-chains);
this dirty pass then also contains the corresponding split node.

Proof. This can be shown via induction over the following claim, building upon
Observation 3.9:

Claim. Let πo := πi−1
pick be the intermediate solution of the algorithm after

merging the preferences of the first i−1 edges. Now, the algorithm computes
a new preference πn := πi

pick taking the preferences πi for the con-chain Qi of
the edge ei into account. Thereby new dirty passes (only ones containing ei)
will arise.
(a) Each arising dirty pass contains at least one split node w.r.t. some
(Qi, Qj), j < i.
(b) There is an assignment αi of splitters w.r.t. i to dirty passes w.r.t. ei,
such that (i) a splitter is only assigned to a pair in which its split node is
contained, (ii) each dirty pass has an assigned splitter, and (iii) each splitter
is assigned to at most one dirty pass.

This claim trivially holds for i = 1. Let i > 1, we prove by contradiction.
(a) Assume there would be a dirty pass (c, ei) such that c neither is nor

contains a split node. Let µ′ (µ) be the preceding (succeeding) non-S-neighbor
of c on Qi. Since c contains no split node, any other con-chain Qj′ (j′ < i)
containing c also traverses through µ′, µ. Let Qj (if it exists) be the con-chain
with the smallest index j, containing c.

If Qj does not exist, then all nodes of c are set according to πi. Furthermore,
the algorithm performs no flip in step (c) when considering the elements of c,
except probably for the first one. Hence, c is not dirty w.r.t. ei.

Assume Qj exists. By induction, neither c nor subsets thereof are dirty for Qj .
Due to the common neighbors µ′, µ, the same routing subproblems for the nodes
of c are (deterministically) solved for both Qj , Qi (but resulting in probably
flipped preferences). Hence c cannot be a single P- or C-node, but has to be a
tuple of two or three nodes. But then, these nodes would not be switching, which
is a requirement for any tuple to be part of a dirty pass.

(b) Obtaining such an assignment αi is trivial for dirty passes (c, ei) where
c = ν is a single node, or when at least one node of c is a split node only involved
in this single dirty pass.

We can hence restrict ourselves to sequences of incident node tuples (i.e.,
tuples having a node in common) along Qi that are all dirty w.r.t. ei; the nodes
along this sequence that are not contained in two dirty passes are no split nodes.

Recall that no tuples can have more than one node in common, and hence any
node is contained in at most two dirty passes. Assume some node ν is involved

13

in two dirty passes but is also contained in at least two splitters; then we could
assign one splitter to each of the two passes, and establish αi for these.

Hence, in order to show that there exists an assignment αi, it is sufficient to
show that there cannot be a sequence D of non-S-neighboring R- and P-nodes,
such that the sequence is covered by incident dirty passes, and each split node
is contained in two dirty passes but only one splitter.

The algorithm could have avoided any dirty pass along D by flipping (step (c))
when processing the second (or third) node of a any dirty tuple c. Since no such
flips were performed, there have to have been other con-chains before considering
Qi which already put the nodes into a common embedding part.

For notational simplicity, let 〈ν2, ν3, ..., νd−1〉 denote the nodes of D, in traver-
sal order, that are contained in two dirty passes. Let ν1 and νd are the first and
last node of D, respectively (both are no split nodes). If νi′ , νi′+1 belong to the
same dirty pass defined on a P-node triple, let νi′.5 denote the center node (which
is no split node). Then, let Q′

i′ , 1 ≤ i < d, be the con-chain putting νi′ and νi′+1

(and νi′.5, if it exists) into a common embedding part for the first time during
the algorithm. (Note that two such con-chains Q′

i′ , Q
′
i′′ are not necessarily dis-

tinct for i′ 6= i′′.) We will inductively (for increasing i′) show that Q′
i′ contains

all nodes ν1, . . . , νi′+1, and that νi′+1 is a split node w.r.t. (Q′
i′ , Qi).

Base case. Consider Q′
1, the con-chain first putting ν1 and ν2 into a common

embedding part. Since ν1 is not a split node (and neither is ν1.5 if it exists), Q′
1

also includes ν1’s non-S-neighbor ν0 preceding D. If Q′
1 would not be the con-

chain establishing that ν2 is a split node, then Q′
1 would also have to include ν3

(and ν2.5 if it exists). But then, the subproblems at the skeletons of ν1, (ν1.5,)
ν2 would have been identical for Q′

1 and Qi. As Q′
1 established their embedding

preferences, these nodes would not be in a common dirty pass w.r.t. ei.

Induction. Consider Q′
i′ , be the con-chain first putting νi′ and νi′+1 into a

common embedding part. Since νi′′ , 1 ≤ i′′ ≤ i′ cannot be split nodes w.r.t.
(Q′

i′ , Qi) by induction, they are all contained in Q′
i′ . If Q′

i′ would not be the
con-chain establishing that νi′+1 is a split node, then Q′

i′ would also have to
include νi′+2. But then, the subproblems at the skeletons of νi′ , (νi′.5,) νi′+1

would have been identical for Q′
i′ and Qi. As Q′

i′ established their embedding
preferences, these nodes would not be in a common dirty pass w.r.t. ei.

Contradiction. Applying the induction for i′ = d − 1 would require νd to be
a split node, which is a contradiction.

Having shown that the central claim holds, the lemma’s result follows from
trivial induction. ⊓⊔

As we have already established, any two con-chains give rise to at most 2
splitters, and hence we can conclude:

Corollary 3.12 (cf. Lemma 3.10). The overall sum of dirty passes in the
embedding Γ (obtained by Algorithm 3.8) is at most 2

(

k
2

)

.

14

3.3 Runtime analysis of Algorithm 3.1

As mentioned in Section 2, we can build the con-tree in linear time O(|V |),
based on the linear-time decomposition algorithm [21]. In step (2), we call the
O(|V |) insertion algorithm k times. Later, we discuss how to implement the
merge algorithm (Algorithm 3.8, called in step (3) of the main algorithm) so
that it takes at most O(k|V |) time. In step (4), we then run k BFS algorithms,
requiring O(|V |) time each. By using suitable tie-breaking, step (5)a) will not
be necessary, and since each edge has at most O(|V | + k) crossings in the end,
the realization may require up to O(k|V (G)| + k2) time, which therefore also
constitutes the overall runtime bound of the algorithm.

Runtime of Algorithm 3.8. First, observe that checking improvability in
step (c) requires only constant time, as the number of cases when a node (node
tuple) becomes dirty is constant (and identified P-node triples can be marked,
to follow the definition’s exclusion rule).

Yet, a näıve implementation would not result in the aforementioned running
time as the number of described node flips can easily exceed this bound. There-
fore, add two bits to each node in the con-tree: one stores whether a node’s
embedding preference has to be considered flipped, the other one is called flip-
mark. For each iteration of the main loop (i.e., for each edge ei) these bits are set
to false. Whenever we should flip the nodes Q′ ∪N ′, we only set the flipmark at
the node µ instead. At the end of the iteration i, we perform a BFS starting from
the last node of Qi (say ν∗), only considering nodes of Qi and N<i. During this
BFS, we flip all visited nodes (by flipping the flipped bit), if there has been an
odd number of set flipmark bits along the path from ν∗. Hence, this operation
only requires O(|V |) many operations per iteration i. Realizing all embeddings
at step C can then be done in O(|V |) time. Hence, Algorithm 3.8 requires at
most O(k|V |) time.

4 Crossing Number Approximations

Our main concept of interest is the crossing number of the graph G+F . We can
combine our above result with a result of [8], connecting the optimal crossing
number with the problem of multiple edge insertion.

Theorem 4.1 (Chimani et al. [8]). Consider a planar graph G and an edge
set F , F ∩E(G) = ∅. The value ins(G,F) of an optimal solution to MEI (G,F)
satisfies

ins(G,F) ≤ 2|F | ·

⌊

∆(G)

2

⌋

· cr(G + F) +

(

|F |

2

)

where cr(G+F) denotes the (optimal) crossing number of the graph G including

the edges F , and
(

|F |
2

)

thereby accounts for crossings between the edges of F .

Notice that, when considering the crossing number problem of G + F , we
may assume G to be connected—otherwise we could “shift” some edges of F
to G). Let k = |F |, ∆ = ∆(G). Plugging the estimate of Theorem 4.1 into the

15

place of insΣ(G,F) ≤ ins(G,F) in Theorem 3.3, and realizing that the
(

k
2

)

term
in both estimates stands for the same set of crossings, we immediately obtain

insAlg(G,F) ≤ 2k ·

⌊

∆

2

⌋

· cr(G + F) +

(

k

2

)

+ 2

⌊

∆

2

⌋

·

(

k

2

)

= ⌊∆/2⌋ · 2k · cr(G + F) +
(

⌊∆/2⌋ + 1/2
)

(k2 − k).

Hence we can give the outcome of Algorithm 3.1 as an approximate solution to
the crossing number problem on G + F , proving:

Theorem 4.2 (Theorem 1.2 (3)). Given a planar graph G and an edge set
F , F ∩ E(G) = ∅, Algorithm 3.1 computes, in O(|F | · |V (G)| + |F |2) time, a
solution to the cr(G + F) problem with the following number of crossings

craprx(G + F) ≤ ⌊∆(G)/2⌋· 2|F |· cr(G + F) +
(

⌊∆(G)/2⌋ + 1
2

)(

|F |2 − |F |
)

.

In [18], furthermore, an algorithm is presented to approximate the crossing
number of graphs embeddable in any fixed higher orientable surface. This algo-
rithm lists the technical requirement that G has a “sufficiently dense” embedding
on the surface. Yet, as noted in [18], a result like Theorem 4.2 allows to drop
this requirement: If the embedding density is small, then the removal of the of-
fending small set(s) of edges is sufficient to reduce the graph genus, while the
removed edges can be later inserted into an intermediate planar subgraph of the
algorithm.

5 A Note on the Planarization Heuristic

The currently practically strongest heuristic [16] for the crossing number problem
is the planarization heuristic which starts with a maximal planar subgraph of the
given non-planar graph, and then iteratively performs single edge insertions. The
crossings of such an insertion are then replaced by dummy nodes such that each
edge is inserted into a planar graph. Due to its practical superior performance,
often giving the optimal solution [5,14], it was an open question if this approach
unknowingly guarantees some approximation ratio.

By investigating our strategy and proofs, it becomes clear that this approach
as such cannot directly give an approximation guarantee: by routing an edge
(in an R-node) through another virtual edge (representing a subgraph S) and
replacing the crossings with dummy nodes, you essentially fix (most of) the
embedding of S. This fix might result in O(n) embedding restrictions for further
edge insertions, without having an edge that requires this embedding. Therefore
the number of dirty passes can no longer be bounded by a function in k. Yet,
an implementation realizing the planarization heuristic already contains all the
ingredients to obtain our approximation; one “only” has to compute all insertion
paths and fix an accordingly merged embedding (Algorithm 3.8), before running
the fixed-embedding edge insertion subalgorithm for all inserted edges.

16

6 Conclusions

We have presented a new approximation algorithm for the multi-edge insertion
problem which is faster and simpler that the only formerly known one [10],
while at the same time giving better bounds; in fact, in contrast to the former
multiplicative approximation, it is the first one with an additive bound. Our
algorithm directly leads also to improved approximations (even constant ratio
ones over a large class of inputs) for the crossing number problem of graphs in
which a given set of edges can be removed in order to obtain a planar subgraph,
and for graphs that can be embedded on a surface of some fixed genus.

We conclude with an interesting open problem. We know that multi-edge
insertion is NP-hard when the number of inserted edges is part of the input, and
it is linear time solvable for the special case of inserting a single edge. What is
the complexity of optimally inserting a constant number of edges?

References

1. S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and
graph partitioning. J. ACM, 56:5:1–5:37, April 2009.

2. D. Bienstock and C. L. Monma. On the complexity of embedding planar graphs
to minimize certain distance measures. Algorithmica, 5(1):93–109, 1990.

3. S. Cabello and B. Mohar. Crossing and weighted crossing number of near planar
graphs. In Proc. GD ’08, volume 5417 of LNCS, pages 38–49. Springer, 2008.

4. S. Cabello and B. Mohar. Adding one edge to planar graphs makes crossing number
hard. In Proc. SoCG ’10, pages 68–76. ACM, 2010.

5. M. Chimani. Computing Crossing Numbers. PhD thesis, TU Dort-
mund, Germany, 2008. http://www.ae.uni-jena.de/alenmedia/dokumente/

ComputingCrossingNumbers_PhDthesis_Chimani_pdf.pdf.
6. M. Chimani, C. Gutwenger, P. Mutzel, and C. Wolf. Inserting a vertex into a

planar graph. In Proc. SODA ’09, pages 375–383, 2009.
7. M. Chimani and P. Hliněný. A tighter insertion-based approximation of the cross-

ing number. Full version. ArXiv, 2011.
8. M. Chimani, P. Hliněný, and P. Mutzel. Approximating the crossing number of

apex graphs. submitted. A preliminary version appeared as a poster at GD ’08,
LNCS 5417, pp. 432–434, 2009.

9. J. Chuzhoy. An algorithm for the graph crossing number problem. In Proc.

STOC ’11, to appear, 2011.
10. J. Chuzhoy, Y. Makarychev, and A. Sidiropoulos. On graph crossing number and

edge planarization. In Proc. SODA ’11, pages 1050–1069. ACM Press, 2011.
11. G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on

Computing, 25:956–997, 1996.
12. G. Even, S. Guha, and B. Schieber. Improved approximations of crossings in graph

drawings and vlsi layout areas. SIAM J. Comput., 32(1):231–252, 2002.
13. I. Gitler, P. Hliněný, J. Leanos, and G. Salazar. The crossing number of a projective

graph is quadratic in the face-width. Electronic Notes in Discrete Mathematics,
29:219–223, 2007.

14. C. Gutwenger. Application of SPQR-Trees in the Planarization Approach for Draw-

ing Graphs. PhD thesis, TU Dortmund, Germany, 2010.

17

15. C. Gutwenger and P. Mutzel. A linear time implementation of SPQR trees. In
Proc. GD ’00, volume 1984 of LNCS, pages 77–90. Springer, 2001.

16. C. Gutwenger and P. Mutzel. An experimental study of crossing minimization
heuristics. In Proc. GD ’03, volume 2912 of LNCS, pages 13–24. Springer, 2004.

17. C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar
graph. Algorithmica, 41(4):289–308, 2005.

18. P. Hliněný and M. Chimani. Approximating the crossing number of graphs em-
beddable in any orientable surface. In Proc. SODA ’10, pages 918–927, 2010.

19. P. Hliněný and G. Salazar. On the crossing number of almost planar graphs. In
Proc. GD ’05, volume 4372 of LNCS, pages 162–173. Springer, 2006.

20. P. Hliněný and G. Salazar. Approximating the crossing number of toroidal graphs.
In Proc. ISAAC ’07, volume 4835 of LNCS, pages 148–159. Springer, 2007.

21. J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components.
SIAM Journal on Computing, 2(3):135–158, 1973.

22. W. T. Tutte. Connectivity in graphs, volume 15 of Mathematical Expositions.
University of Toronto Press, 1966.

23. I. Vrt’o. Crossing numbers of graphs: A bibliography. ftp://ftp.ifi.savba.sk/

pub/imrich/crobib.pdf, 2011.
24. T. Ziegler. Crossing Minimization in Automatic Graph Drawing. PhD thesis,

Saarland University, Germany, 2001.

18

