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The following lecture briefly overviews selected topics from the general domain of ”func-
tional genomics” (with one deviation to SBH - sequencing by hybridization). Functional
Genomics is at the front line of todays computational biology, dealing with the understand-
ing of biological systems when the DNA sequence is already known.

Computational biology (or bioinformatics) emerged as a critical component in the scien-
tific machinery assembled to reconstruct large genomes DNA sequences. In the post-genomic
era, when the complete DNA sequence of many organisms is available, we begin using com-
putational techniques to answer the most fundamental questions of biology : what is the
function of each and any gene and gene product in the cell, how does these factors react to
different conditions and how do they interact to process information and create a biological
system.

In what follows we shall overview some techniques and describe some of the important
problems we study today. We begin by an introduction to DNA chips which are part of the
technological revolution enabling post-genomic high throughput biology. We then turn to one
of the basic problems in analyzing DNA chips experiments, clustering gene expression data,
provide some terminology and notion and describe CLICK, a clustering algorithm developed
for gene expression analysis. Following are some examples on applications of clustering to
study concrete biological questions.

In the last part of this lecture we introduce gene networks and overview the difficulties
and possibilities in the computational study of biological systems as a whole. We primarily
outline the problems and present the more promising directions in contemporary research.

11.1 Introduction

11.1.1 Functional Genomics

Having (almost) reached the end of Human Genome Project, the question that needs to be
asked is: “What’s next?”. The complete sequencing of the Human Genome is an immense
task, which is now declared as being completed (and is actually nearing completion). While
much work remains to be done even there, the existence of the full DNA sequence of an
organism represents only the beginning of a long journey toward the understanding of living
organisms. “functional genomics” is the study of the functionality of specific genes, their

1Based on a scribe by Ronny Morad and Tal Moran, Fall 2000.
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relations to diseases, their associated proteins and their participation in biological processes.
Our current knowledge on gene function is extremely limited, with most of the genes com-
pletely uncharacterized and only very few with exact known function. Most of the knowledge
gained so far in this area is the result of painstaking research of specific genes and proteins,
based on complex biological experiments and homologies to known genes in other species.
This “Reductionist” approach to functional genomics is hypothesis driven - we proceed by
suggesting a hypothesis and designing an experiment to check its correctness. However,
the complexity of living organisms make the challenge of fully understand complex biology
unachievable using these methods, and a new paradigm, holistic and high throughput is
emerging instead.

High throughput biology is based on our ability to collect large amount of information
on the cell such that we can use the information to generate hypotheses and not only to test
them. The technological revolution making this possible is combining robotics, computing
and material sciences. We can, today, use DNA chips to measure the mRNA levels of
an entire genome at a single experiment, or apply protein chips to do similar studies with
proteins. We can perform assays to capture thousands of interactions among proteins recre-
ating, in a single experiment, the work for which a whole laboratory would work for only
five years ago. Having the ability to collect much information still does not imply we can
actually use it, and the methodology of biological data analysis, hypothesis generation and
testing is at the core of the computational functional genomics domain.

11.1.2 Gene Expression

The first successful high-throughput biological experimentation method is enabling the mea-
surement of gene expression. Using one of several methods we can measure the mRNA level
of each gene present in a cell in a given condition. This information is very valuable since
we know that one of the most important regulatory mechanisms in the cell is transcription
control, which modifies the expression (transcription) rate of each gene to perform complex
coordinated tasks and adapt protein concentrations to a changing environment.

Biologically speaking, we can identify a large group of genes involved in a specific process
(e.g., heat shock) by performing a high throughput experiment in which a cell line (or cell
colony) is transformed into this condition (e.g., changed temperature) and we measure the
mRNA levels of all genes in the following few hours. Having measured transcription in the
entire genome, we should now have the complete list of genes whose transcription level is
being regulated by our specific condition.

Being the first successful high throughput method (apart from sequencing) we should note
that gene expression is biologically important but by no means tells the whole story, since
many other mechanisms regulate biological activity and are not visible in the transcription
level (post translational regulation is an important class of such mechanisms). However,
using transcription profiling, biologists have already expanded greatly our understanding
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of important biological processes (including cell cycle [19], cancer [3], metabolism [10] and
more).

11.2 DNA Chips/Microarrays

11.2.1 What is Hybridization?

As we have already seen, under normal conditions, the DNA molecule is composed of two
strands. These two strands are connected by hydrogen bonds, and together form the well-
known double helix structure.

When a solution containing DNA is heated, these hydrogen bonds disappear, and the two
strands drift apart. This single-stranded DNA is called denatured DNA (or single-stranded
DNA). When the solution is cooled, hydrogen bonds form between matching bases in the
strands. These bonds are formed in places where a match (or at least a partial match)
exists. If these bonds begin to form in corresponding parts of two strands, they will quickly
completely join and the double-helix will reappear. However, this is not guaranteed to
happen. Bonds can form even between strands of different DNA molecules or strands of
different length.

Consider a heated solution of some target DNA molecule. Let us take short single-
stranded chains of nucleotides, called oligonucleotides (or oligos for short), that we have
synthesized and add them to the solution. Each oligo is a known nucleotide sequence be-
tween 10 and 12 bases long. Now, when the solution is cooled, the oligos will stick to parts
of the target that contain a DNA sequence complementary to that of the oligo. The re-
sulting composition is called hybrid DNA. Each oligo thus probes for the presence of its
complementary sequence, and indeed oligos are called probes

Many biological techniques are based on hybridization. For instance, consider the follow-
ing situation: Given human DNA and oligos obtained from coding regions of mouse DNA
(each one several hundred bases long). We can now create a hybrid of the two. Since homol-
ogy between these DNAs exists mostly in the coding regions, we can use the hybridization
to infer where human coding regions are. If the oligos are tagged, either with fluorescent
dye or radioactive label, one can detect where the oligos hybridized with the DNA, and thus
infer what the coding regions are (or at least, which regions deserve further study).

11.2.2 DNA Chips

Hybridization experiments were traditionally performed using page-sized filters, with each
filter having about 10 bands displaying whether hybridization occurred or not. With the
development of miniaturization, small chips, containing an array of 100 micron dots are able
to perform simultaneously thousands of hybridization experiments. This can be done using
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Figure 11.1: Source: [1]. A typical experiment with an oligonucleotide chip. Labeled RNA
molecules are applied to the probes on the chip, creating a fluorescent spot where hybridiza-
tion has occurred.

several methods.

Oligonucleotide Arrays

The basic idea in these chips, developed (and patented) by a company named Affymetrix,
is to generate probes that would capture each coding region as specifically as possible. The
length of the oligos used depends on the application, but they are usually no longer than 25
bases. Since the oligos are short, the density of these chips is very high, for instance, a chip
that of 1cm by 1cm can easily contain 100,000 oligos.

The chip is designed as a matrix of hybridization sites, each composed of a selection of
coding oligos and control oligos. Coding oligos corresponds to perfect matches of known
targets, controls probes are almost perfect matches, with one perturbed base. When read-
ing the chip, hybridization levels at controls is subtracted from the level of match probes
providing means to overcome false positives. Actual chip designs uses 10 matches and 10
mismatches probes for each target (gene). This method is very successful, and Affymetrix
manufactures today chips for the entire human or yeast genomes.

Figure 11.1 shows a schematic description of an hybridization experiment using oligo
chips.
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Figure 11.2: Source: [1]. Creating DNA chips. 1 and 2: The light removes the terminator
from the chains not covered by the mask, creating hydrogen bonds instead. 3: Bonds are
formed with a nucleotide base. 4 through 6: The process is repeated with a different base.

Manufacturing Oligonucleotide Arrays

Oligonucleotide arrays are produced in a way that is similar to the way computer chips are.
We start with a matrix created over a glass substrate. Each cell in the matrix contains
a “chain” with appropriate chemical properties, and ending with a terminator, a chemical
gadget that prevents chain extension.

We cover this substrate with a mask, covering some of the cells, but not others. We
can then illuminate the substrate. Covered cells are unaffected. In cells that are hit by the
light, the bond with the terminator is severed. If we now expose the substrate to a solution
containing a nucleotide base, it will form bonds with the non-terminated chains. Thus, some
of the cells will now contain this nucleotide.

The process can then be repeated with different masks, and for different nucleotides. This
way we can insert a specific nucleotide to each cell of the matrix. Figure 11.2 demonstrates
the production process.

cDNA Microarrays

In this approach, developed at Brown lab in Stanford, we use, instead of short oligos, a
cDNA clone representing some gene. Since cDNA clones are much longer than oligos (can be
thousands of nucleotides long), a successful hybridization with a clone is an almost certain
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match for the gene. However, due to the different structure of each clone and the fact
that unknown amount of cDNA is printed at each probe, we cannot associate directly the
hybridization level with transcription level and so cDNA chips experiments are limited to
comparisons of a reference pool and a target pool. To perform a cDNA array experiment,
we label green the reference pool, representing the standard level of expression in our model
system, and label red the target culture of cells which were transformed to some condition
of interest. We hybridize the mixture of reference and target pools and read a green signal
in case our condition reduced expression level and red signal in case our condition increased
expression level.

Oligo-Fingerprinting

This type of chips was the first to be used, and is, in a sense, the opposite to Affymetrix
approach. The chips consist of a matrix, with each cell of the matrix containing target DNA.
The chip is exposed to a solution containing many identical oligos, and hybridization occurs
between matching DNA and oligos. Again, if the oligos are tagged, either with fluorescent
dye or radioactive label, we can then see at each point of the matrix whether the hybridization
occurred (i.e., which of the DNAs hybridized to the oligo we tested).

The chip can then be heated, separating the oligos from the DNA, and the experiment
can be repeated with a different type of oligo.

Finally, we get a matrix M , with each row representing a specific target DNA from the
matrix, and each column representing an oligo.

11.3 Clustering Gene Expression Data

The outcome of high throughput gene expression experiments is a matrix associating for
each gene (row) and condition (column) the expression level. Expression levels can be ab-
solute (as in Affymetrix oligo arrays) or relative (as in Brown’s cDNA array). We wish
identify biological meaningful phenomena from the expression matrix, which is often very
large (thousands of genes and hundreds of conditions). The most popular and natural first
step in this analysis is clustering of the genes or experiments. Clustering techniques are
used to identify subsets of genes that behave similarly under the set of tested conditions.
By clustering the data, the biologist is viewing the data in a concise way and can try to
interpret it more easily. Using additional sources of information (known genes annotations
or conditions details), one can try and associate each cluster with some biological semantics.

In what follow we shall describe CLICK, a clustering algorithm developed for the analysis
of large gene expression data sets. We shall then discuss the problem of analyzing clustering
performance and review CLICK’s performance vs. other clustering approaches.
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11.3.1 The CLICK Algorithm

CLICK (CLuster Identification via Connectivity Kernels) is clustering algorithm developed
by Sharan and Shamir [16]. The input for CLICK is the gene expression matrix. Each
row of this matrix is an “expression fingerprint” for a single gene. The columns are specific
conditions under which gene expression is measured. A more formal definition is as follows:

Let N = {e1, . . . , en} be a set of elements. Let M be an input real-valued matrix of order
n×p, where Mij is the j-th attribute of ei. The i-th row-vector in M is the fingerprint of ej.
For a set of elements K ⊆ N , we define the fingerprint of K to be the mean vector of the
fingerprints of the members of K. One seeks to partition N into clusters (subsets), assuming
some real partition exists. In such a partition, elements in the same cluster are called mates.

The CLICK algorithm attempts to find a partition of N into clusters, so that two criteria
are satisfied: Homogeneity - elements inside a cluster are highly similar to each other; and
separation - elements not inside the same cluster have low similarity to each other.

Probabilistic Assumptions

The CLICK algorithm makes the following assumptions:

1. Similarity values between mates are normally distributed with mean µT and vari-
ance σ2

T .

2. Similarity values between non-mates are normally distributed with mean µF and vari-
ance σ2

F .

3. µT > µF

These assumptions are justified both empirically and theoretically in some cases by the
Central Limit Theorem.

The Basic CLICK Algorithm

The CLICK algorithm represents the input data as a weighted similarity graph G = (V, E).
In this graph vertices correspond to elements and edge weights are derived from the similarity
values. The weight wij of an edge (i, j) reflects the probability that i and j are mates, and
is set to be

wij = log
pmatesf(Sij|i,j are mates)

(1− pmates)f(Sij|i,j are non-mates)

where f(Sij|i,j are mates) = f(Sij|µT , σT ) is the value of the probability density function
for mates at Sij:

f(Sij|i,j are mates) =
1√

2πσT

e
−

(Sij−µT )2

2σ2
T
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Basic-CLICK(G(V, E))
if (V (G) = {v}) then

move v to the singleton set R

elseif (G is a kernel) then

Output V (G)
else

(H,H̄, cut) ← MinWeightCut(G)
Basic-CLICK(H)
Basic-CLICK(H̄)

end if

end

Figure 11.3: The Basic-CLICK algorithm

Similarly, f(Sij|i,j are non-mates) is the value of the probability density function for non-
mates.

The basic CLICK algorithm is defined in figure 11.3.
The idea behind the algorithm the following: given a connected graph G, we would like

to decide whether V (G) is a subset of some true cluster, or V (G) contains elements from at
least two true clusters. In the first case we say that G is pure. In order to make this decision
we test for each cut C in G the following two hypotheses:

• HC
0 : C contains only edges between non-mates.

• HC
1 : C contains only edges between mates.

G is declared a kernel if H1 is more probable for all cuts. Using the following lemma (11.1),
we can simply calculate the minimum weighted cut to determine whether G is a kernel.

Lemma 11.1 G is a kernel iff the Minimum Weight Cut of G is positive.

Proof: Using Bayes Theorem, it can be shown that

W (C) = log
Pr(HC

1 |C)

Pr(HC
0 |C)

Obviously, W (C) > 0 iff Pr(HC
1 |C) > Pr(HC

0 |C). If the minimum cut is positive, then
obviously so are all the cuts. Conversely, if the minimum cut is non-positive, then for that
cut Pr(HC

1 |C) ≤ Pr(HC
0 |C), therefore G is not a kernel.
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Refinements

The Basic-CLICK algorithm will divide the graph into kernels and singletons. To use the
algorithm for solving clustering problems, we must introduce a number of refinements:

• Removing Negative Edges: The MINCUT problem for a weighted graph with both
positive and negative edges is NP-Complete. In order to use the efficient MINCUT
algorithms we must remove the negative edges. Applying CLICK to the modified graph
approximate the original problem.

• Adoption Step: In practice, “true” clusters are usually larger than just the kernel.
To accommodate this, in the refined algorithm, kernels “adopt” singletons to create
larger clusters. This is done by searching for a singleton v and a kernel K, whose
pairwise fingerprint similarity is maximum among all pairs of singletons and kernels.
The refined algorithm iteratively applies the adoption step and then the Basic-CLICK
algorithm on the remaining singletons, stopping when there are no more changes.

• Merge Step: In this step we merge clusters whose fingerprints are similar (the justifi-
cation for this is that, in practice, clusters can contain multiple kernels). The merging
is done iteratively, each time merging two clusters whose fingerprint similarity is the
highest (provided that the similarity exceeds a predefined threshold).

11.3.2 Assessing Clustering Quality

A measure for the quality of a solution given the true clustering is an important tool for
evaluating clustering algorithms performance. Let T be the “true” solution and S the solu-
tion we wish to measure. Denote by n11 the number of pairs of elements that are in the same
cluster in both S and T . Denote by n01 the number of pairs that are in the same cluster
only in S, and by n10 the number of pairs that are in the same cluster only in T . We define
the Minkowski Score to be:

DM(T, S) =

√

n01 + n10

n11 + n10

In this case the optimum score is 0, with lower scores being “better”.
An alternative is the Jaccard Score:

DJ(T, S) =
n11

n11 + n10 + n01

Here the optimum score is 1, with greater scores being “better”.
We shall use these scores to compare CLICK’s performance with other clustering algo-

rithms.
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Program #Clusters Homogeneity Separation
HAve HMin SAve SMax

CLICK 30 0.8 -0.19 -0.07 0.65
GENECLUSTER 30 0.74 -0.88 -0.02 0.97

Table 11.1: A comparison between CLICK and GENECLUSTER [20] on the yeast cell-cycle
dataset [5]. Expression levels of 6,218 S. cerevisiae genes, measured at 17 time points over
two cell cycles.

Program #Clusters #Singletons Minkowski Jaccard Time(min)

CLICK 31 46 0.57 0.7 0.8
HCS 16 206 0.71 0.55 43

Table 11.2: Source: [16]. A comparison between CLICK and HCS on the blood monocytes
cDNA dataset [8]. 2,329 cDNAs purified from peripheral blood monocytes, fingerprinted
with 139 oligos. Correct clustering known from back hybridization with long oligos.

11.3.3 Algorithm Performance Comparisons

This section contains examples of comparisons between CLICK and other clustering algo-
rithms. Analysis of the comparison summary (table 11.6) shows that CLICK outperforms
all the compared algorithms in terms of quality. In addition, CLICK is very fast, allowing
clustering of thousands of elements in minutes, and over 100,000 elements in a couple of
hours on a regular workstation. Figure 11.7 shows the result of a comparison in which the
authors of each algorithm were allowed to run the test on their own. The graph shows a
tradeoff between the homogeneity and separation scores; The further the algorithm is from
the origin the “better” its overall performance.

11.3.4 Application of Clustering - Tissue classification

An important application of gene expression analysis is the identification of clinical markers in
the expression levels, enabling the identification of new clinical sub-categories with prognostic

Program #Clusters #Singletons Minkowski Jaccard Time(min)

CLICK 2,952 1,295 0.59 0.69 32.5
K-Means 3,486 2,473 0.79 0.4 –

Table 11.3: Source: [16]. A comparison between CLICK and K-Means [9] on the sea urchin
cDNA dataset. 20,275 cDNAs purified from sea urchin eggs, and fingerprinted with 217
oligos. Correct clustering of 1,811 cDNAs known from back hybridizations.
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Figure 11.4: Source: [16]. CLICK’s clustering of the yeast cell-cycle data [5]. x-axis: time
points 0-80, 100-160 at 10-minute intervals. y-axis: normalized expression levels. The solid
line in each sub-figure plots the average pattern for that cluster. Error bars display the
measured standard deviation. The cluster size is printed above each plot.

Figure 11.5: Source: [16]. Yeast Cell Cycle: late G1 Cluster (cluster 3 from figure 11.4).
The cluster found by CLICK contains 91% of the late G1-peaking genes. In contrast, in
GeneCluster 87% are contained in 3 clusters.
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Program #Clusters Homogeneity Separation
HAve HMin SAve SMax

CLICK 10 0.88 0.13 -0.34 0.65
Hierarchical 10 0.87 -0.75 -0.13 0.9

Table 11.4: Source: [16]. A comparison between CLICK and Hierarchical [6] clustering on
the dataset of response of human fibroblasts to serum [11]. Human fibroblast cells starved
for 48 hours, then stimulated by serum. Expression levels of 8,613 genes measured at 13
time points.

Figure 11.6: Source: [16]. CLICK’s clustering of the fibroblasts serum response data [11].
x-axis: 1-12: synchronized time-points. 13: unsynchronized point. y-axis: normalized
expression levels. The solid line in each sub-figure plots the average pattern for that cluster.
Error bars display the measured standard deviation. The cluster size is printed above each
plot.

Program #Clusters #Singletons Homogeneity Separation Time(min)

CLICK 9,429 17,119 0.24 0.03 126.3
SYSTERS 10,891 28,300 0.14 0.03 –

Table 11.5: Source: [16]. A comparison between CLICK and SYSTERS on a dataset of
117,835 proteins [13]. Measures based on similarity when no correct solution is known: For a
fixed threshold t, homogeneity is the fraction of mates with similarity above t, and separation
is the fraction of non-mates with similarity above t.
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Elements Problem Compared to Improvement Time(min)

517 Gene Expression Fibroblasts Cluster [6] Yes 0.5
826 Gene Expression Yeast cell cycle GeneCluster [20] Yes 0.2

2,329 cDNA OFP Blood Monocytes HCS [8] Yes 0.8
20,275 cDNA OFP Sea urchin eggs K-Means [9] Yes 32.5
72,623 Protein similarity ProtoMap [22] Minor 53
117,835 Protein similarity SYSTERS [13] Yes 126.3

Table 11.6: Source: [16]. A Summary of the time performance of CLICK on the above
mentioned datasets. CLICK was executed on an SGI ORIGIN200 machine utilizing one
IP27 processor. The time does not include preprocessing time. The “Improvement” col-
umn describes whether the solution of the CLICK algorithm was better than the compared
algorithm.

Figure 11.7: Source: [17]. Comparison of clustering algorithms using homogeneity and
separation criteria. The data consisted of 698 genes, 71 conditions [19]. Each algorithm was
run by its authors in a “blind” test.



14 Algorithms for Molecular Biology c©Tel Aviv Univ.

implications. Given a human tissue, we would like to devise a computational method allowing
us to determine weather this person is having some kind of cancer (for example) base solely
on the expression levels in a sample from some relevant tissue. In this approach we cluster
tissues rather than genes, and analyze the subsets of tissues to find clinically important
groups.

We exemplify on the usage of such methods based on [17]. In this study, two data sets
were analyzed: Alon et al. [4] provide data from 40 tumors and 22 normal colon tissues,
Golub et al [7] provide data from two luekemia types (25 AML, 47 ALL).

Applying CLICK to the data and analyzing the correspondence between clusters and the
know classification resulted in very good match. To asses the performance of clustering, a
leave one out cross validation (LOOCV) techniques was applied. In this method, we hide
one of the tissue classification and try to predict its class by the known class of tissues in
the cluster it belongs to. Results are summarized in table 11.7.

To improve classification accuracy, feature selection may be applied. In this approach
the genes are sorted by the ratio of their between-sum-of-squares and within-sum-of-squares
values. This leads to a set of genes which are informative for the classification. Table 11.8
shows that improved performance is achieved by applying clustering after feature selection.

DataSet Method Correct Incorrect Unclassified
Colon Click 85.5 9.7 4.8

CAST 88.7 11.3 0.0
Leukemia Click 90.3 4.2 5.5

CAST 87.5 12.5 0.0

Table 11.7: Results of LOOCV analysis for human cancer classification using Click and
CAST.

DataSet Size Correct Incorrect Unclassified
Colon 2000 85.5 9.7 4.8

50 90.3 9.7 0.0
Leukemia 2000 90.3 4.2 5.5

50 98.6 1.4 0.0

Table 11.8: The effectiveness of feature selection for tissue classification.
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11.4 Sequencing by Hybridization

Standard oligo chips can, at least theoretically, be used for sequencing. Let us prepare an
oligo chip that contains all possible sequences of length k. These sequences are called k-mers.
Practical values of k are 8-10. If we expose this chip to a solution containing some target
DNA, the results will show which k-mers occur in the target sequence.

Definition The k-spectrum of sequence T is the multi-set of all its substrings of length k.

Note, that the k-spectrum is a multi-set. We assume that if a k-mer appears more
than once, in the target DNA, the hybridization experiment will report the number of its
occurrences. To date, this requirement is impractical.

Problem 11.1 Reconstructing a sequence from hybridization data
INPUT: A multi-set S of k-mers
QUESTION: Does exist a sequence T such that S is the k-spectrum T ? If yes, find T .

For instance, for k = 3:

T = ATGCAGGTCCAG

S = {ATG, AGG, CAG, GCA, GGT, GTC, TCC, TGC, CCA, CAG}

The naive approach

Let us define a directed graph G‘ = (V ‘, E‘), where V ‘ = {existing k-mers} and an edge
E‘ = (v1, v2) exists iff the last k − 1 characters of v1 match the first k − 1 characters of v2

(i.e., it is possible that v2’s index in T , is the successor of v1’s index.
The problem is now to find a Hamiltonian path in the directed graph G. However, it is

a common knowledge that the Hamiltonian path problem is NP-Complete. Therefore, this
solution cannot be used for large input sets.

The polynomial solution

Luckily, a polynomial solution for this problem exists, due to Pevzner [15]. Define another
directed graph G = (V, E). This time the vertices will be (k − 1)-mers. An edge e = (v1, v2)
is introduced if the first k− 2 characters of v1 match the last k− 2 characters of v2, and the
concatenation of the first character of v1, with the k − 2 common characters and the last
character of v2 form a k-mer that was reported present in the sequence. This graph is called
the de-Bruijn graph of the sequence. See Figure 11.8 for an example.

It should be noted that for this construction, it is very important to know whether a
given k-mer occurs more than once in the target sequence. For instance, if ACA occurs two
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Figure 11.8: The (k−1)-mer graph of S = {AAA, AAC, ACA, CAC, CAA, ACG, CGC, GCA, ACT, CTT, TTA, TAA}.
The mathematical problem here is to find an Eulerian path, that is a path that uses each
edge once, and only once, as seen in the figure (T=ACAAACGCACTTAA).
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times in S, then there should be two edges between AC and CA. Otherwise, our solution
will not be correct.

While this solution is mathematically elegant, there are several problems with using it in
true biological context:

1. For some graph configurations, there is more than one Eulerian path. In such cases
we will not be able to reconstruct the sequence. For an example of such a graph,
see figure 11.8. Figure 11.9 shows the probability that a random string S cannot
be uniquely reconstructed from its k-spectrum. Some other chip designs achieve a
somewhat better result, but these designs are only theoretical. They are usually very
difficult or impossible to manufacture, and cannot be used in true biological context.

2. As in all biological experiments, the spectrum we measure contains a large proportion
of errors. This solution is not robust enough to handle them.

3. A related problem is that of edge multiplicity. We can consider ourselves lucky to know
with certainty whether a certain k-mer occurs in our sequence. In most cases we have
no way of knowing exactly how many times it occurs.

Sadly, then, sequencing based on hybridization is not a real alternative to standard
sequencing.
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Figure 11.9: P (N, k) is the probability that for a random string S of length N there exists
a sequence S0, whose k-spectrum equals that of S.
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11.5 Biological Networks

The computational study of biological systems is characterized by being focused on the
relations among biological factors rather than on the factors themselves. The biological
function is derived from an extremely complex, redundant and robust network of interacting
molecules, which together process information, perform sophisticated decision making and
survive in a dynamic environment. There are many types of important biological interactions,
all of the are combined to create the functioning cell.

The first type of interaction is denoted as transcription control and involve relation
between proteins and genes. Each cell contain a full copy of the organism’s DNA, but not
all genes are always required or needs to be produced at the same rate. To control the
rate of transcription, specialized protein called transcription factors can bind the DNA at
different proximity to the gene start (50 to 20000 bp) and catalyzes the reaction that initiate
transcription. Since these proteins are themselves genes products, and are thus subject to
transcription control, we can model this system as a mathematical network of genes affecting
the transcription of each other in a dynamic way (mathematically speaking, we have some
kind of a dynamical system).

A second archi-type of interaction is the interaction between proteins. Protein can modify
other protein post-translationally and completely change their ability to catalyze important
reactions. For example, protein kinases can phosphorilate target protein thus Changing their
conformation and activating them. Other proteins cooperatively bind partners to disable
their activity or create a hetrodimer with specialized features. The reaction among proteins
can also be regarded as a network. For example, a typical Signaling Cascade involve a
membrane protein which change its conformation in response to the binding of an external
signaling molecule. The conformation change can activate the membrane protein as a kinase
for a second protein which in turn may also be activate to phosphorilate a third protein and
so on (this is called a MAPK cascade). In the final step of this example protein network,
we would usually have a transcription factor whose activity is regulated post- translationally
(say by the final kinase of the cascade). This way information from the signaling cascade
can find its way into the genetic network and change transcription.

A third class of interaction is the interactions of metabolites and proteins, since proteins
act as enzymes for all of the important biochemical reactions in the cell, we can view the
different metabolites and the metabolic pathways constructed by them as part of the larger
biological network. The rate of metabolic activity is regulated by the level of enzymes
available for each metabolic reaction, enzymes activity is itself subject to regulation by
levels of certain metabolites.
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Figure 11.10: Source: MIPS website (mips.gsf.de). A signal transduction cascade is trans-
mitting signals from outside the cell via post translational modifications of a series of proteins
(primary reaction) and later activating a transcription factor post translationaly to initiate
secondary reactions via the gene network of transcription control. The biological system is a
composition of signaling pathways, transcription control networks and metabolic pathways
which are functioning together in an amazingly complex set of relations.



Biological Networks 21

11.5.1 The Vision

The ultimate goal of computational biological network analysis is to be able to use high
throughput experimental information to construct a predictive model of the activity of the
entire set of factors in a cell, much like the physics ideal of a state equation but for an amaz-
ingly large collection of variables. Such a goal is very non realistic with today’s capabilities,
but even modest intermediate steps in our way to it would be priceless in any attempt to
understand biology, disease and drugs effect on the cell. Our early steps in this domain are
using gene expression data to construct models of transcription control.

11.5.2 Experimental Complexity

We define Experimental Complexity as the number of experiments we must perform
to reconstruct a network (in the worst case). Some prior knowledge on possible network
topologies and logic change the experimental complexity of the resulted network class (more
constraint will reduce experimental complexity). In what follow we shall use a simple math-
ematical model for gene networks to gain insights on the potential problems arising when
attempting reconstruction of a network from expression data. Our model will be Boolean
and we will assume each gene is a node assigned with a Boolean function defining its state
at time t as a function of other genes at time t − 1. An example of a Boolean network is
given in Figure 11.11. We will model an expression experiment as a vector of Boolean values
over the genes and will analyze the relations between the size and topology of networks to
the number of examples needed to reconstruct a network in the worst case. To construct
our set of examples we shall use perturbations of the network, each time fixing the values
of a selected set of perturbed genes and measuring the values of all others. The biological
motivation to this is our ability to perform directed mutations in model organisms and study
the resulted phenotype (this is called a knockout experiment, and have a counterpart called
overexpression in which a plasmid with a target gene is inserted to the cell and activated
at a specific timing to produce large amounts of the proteins). The result of a collection of
perturbation experiments can be summarized in a table as shown in Figure 11.12.

The theory in this section is taken from [2], the general theory of Boolean genetic network
is rooted in the works of Stuart Kauffman (see [12] for much more on the motivation and
consequences of such networks).

General topologies

We began by assuming no limitations on the topology of the genetic network. This is a
very artificial case since we know from biology that the mechanism of regulation limits the
number of genes or proteins that can interact with a single gene. We first show that an
exponential number of experiments are required in the worst case.
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Figure 11.11: Source: [18]. Sample Boolean network

Figure 11.12: Source: [18]. An example expression matrix

Proposition 11.2 At least 2n−1 experiments must be performed in order to identify a gen-
eral gene regulatory network in the worst case.

Proof: A counting argument. Consider a Boolean function of (n−1) variables f(x1, x2, .., xn−1)
which is assigned to the node xn. There are 22n−1

possible Boolean functions of (n − 1)
variables. Hence we can identify this function by examining 2n−1 assignments and less ex-
aminations without suffice (we get one output bit per experiment).

Proposition 11.3 n2n−1 experiments always suffice in order to identify a gene regulatory
network.

Proof: We can always reconstruct a network by perturbation all n− 1 sets of nodes to all
possible assignments. We read the Boolean functions entries one at a time.

Theorem 11.4 An exponential number of experiments are necessary and sufficient for the
identification of a general Boolean network from perturbations.

Bounded In-degree Case With Bounded Cost

As said above, general topologies are not of any practical interest. The topological structure
of the genetic network is constraint in many ways, the most direct of those is the limit on
incoming degree. Indegree limitations are not only a known biological fact but also provide
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the organism with evolutionary robustness as noted by [12]. Kauffman’s simulation of
random networks showed that general topologies network behave chaotically, but indegree
limitation forces order on the network space and enable evolution to proceed and construct
beneficial building blocks without destroying the organism after each minor change. In what
follow we shall assume the in degree is bounded by a constant D. First, we consider the case
D = 2.

Proposition 11.5 Ω(n2) experiments are necessary for network reconstruction even if the
maximum in degree is 2 and all nodes are AND nodes, if we assume that each experiment
can perturb a bounded number of experiments.

Proof: Denote by C the maximal number of perturbation per experiment (the experiment
cost). First, consider the case of C = 2. Assume that ¬x ∧ ¬y → z is assigned to z and
the other nodes have in degree 0. Among all experiments only (¬x,¬y) can activate z.
Therefore, we must test Ω(n2) pairs of nodes in order to find (x, y).
Next, we consider a case of C = 3 with the same function ¬x ∧ ¬y → z. If we disrupt
or overexpress u, v, w such that x 6∈ {u, v, w} or y 6∈ {u, v, w} , we can only learn that
(u, v), (u, w), (v, w) are different from (x, y). Since there are Θ(n3) triplets and only Θ(n)
triplets can include {x, y}, at least Θ(n2) triplets must be examined in the worst case (each
experiment removes at most a constant number of pairs out of the Θ(n2) possible ones).
For C > 3, similar arguments work.

If C is not bounded, the above proposition does not hold. It is possible to identify the

above pair (x, y) by O(log(n)) experiments of maximum cost n, using a strategy based on
binary search. Although this strategy might be generalized for other cases, it is not practical
since large number of simultaneous perturbation is not realistic. (The cells simply die if they
are heavily mutated.)

Next, we consider the upper bound.

Proposition 11.6 O(n4) experiments with maximum cost 4 are sufficient for reconstruction
if the maximum in degree is 2.

Proof: We assume (w.l.o.g) that all nodes are of in degree 2 since identification of nodes
of in degree of 1 or 0 is easier. Let c be any node of V . We examine all assignments to all
quadruplets {a, b, x, y} with c 6∈ {a, b, x, y}. The Boolean function g(a, b) is assigned to c

(i.e., fc ≡ g) if and only if there exists a Boolean function g(a, b) such that c ≡ g(a, b) for
any assignment to {a, b, x, y}, where c ≡ g(a, b) means that the state of c equals to g(a, b).
The ’only if’ part is trivial, let us prove the ’if’ part. Suppose that g(a, b) is not assigned to
c i.e. fc = h(a, b) and h(a, b) 6= g(a, b). Clearly, c ≡ g(a, b) does not hold. Next, consider
a case where h(p, q) is assigned to c where h may be equal to g and {p, q} ∩ {a, b} = ∅.
In this case, c takes both 1 and 0 by changing assignments to {p, q} even if assignment
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to {a, b} is fixed. Therefore, c ≡ g(a, b) does not hold. In case of {p, q} ∩ {a, b} 6= ∅,
suppose fc ≡ h(p, b) and a 6= p. Then there is a value of b so that h(0, b) 6= h(1, b), but then
fc(a, b, p = 0, y) 6= fc(a, b, p = 1, y) and c ≡ g(a, b) does not hold again. Since all assignments
to all quadruplets are examined, in total 0(n4) experiments are sufficient.

This is easily generalized to general D, and can actually be improved to O(nD+1) (left as
exercises).

Theorem 11.7 O(n2D) experiments with maximal cost 2D are sufficient for the identifi-
cation of a gene regulatory network of bounded in degree D. On the other hand, Ω(nD)
experiments are necessarily in the worst case if cost of each experiment is bounded by a
constant.

Other types of topology and logic restriction may further improve experimental complex-
ity of the resulting reconstruction problem, this is summarized in Table 11.9.

Constraints Lower
bounds

Upper
bounds

None Ω(2n−1) O(2n−1)

In-degree ≤ D Ω(nD) O(n2D)

In-degree ≤ D

All genes are AND-nodes (OR-nodes)
Ω(nD) O(nD+1)

In-degree ≤ D

Acyclic
Ω(nD) O(nD)

In-degree ≤ 2
All genes are AND-nodes

(OR-nodes). No inactivation edges.

Ω(n2) O(n2)

Table 11.9: Bounds on number of experiments needed for reconstruction (n - number of genes,
D - maximum in degree). As seen from the table, forcing more constraints on the possible
network topologies can improve experimental complexity significantly. The cases of acyclic
topologies and restricted monotone logic (AND/OR gates only) are simpler mathematically
but unfortunately have no good biological support.
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11.5.3 Practical Approaches

Top down

Using a Bayesian network approach Pe’er et al. [14] constructed a framework for identifying
significant subnetworks from expression data. The framework first learn a large number of
Bayesian network topologies over the genes using each time a slightly randomized expression
matrix (this is called bootstrapping). The collection of networks is analyzed to find edges
of high significance (those which appear in many of the learned networks). Finally, dense
subgraphs are being searched in the graph of significance edges and the resulted subgraphs are
used as the output. The approach was proved to generate biologically meaningful results and
is an example of hybrid techniques that analyze the entire network and search for significant
patterns (a data mining approach).

Bottom Up

A complementary approach to the Top-Down method described above is given in [21]. In
this framework, we start by modeling a known submodel and search for a best fit expansion
of it using expression or other types of information. Using a known submodel as a start-
ing point, we are facing reduced experimental complexity and enable the biologist to ask
directed questions about a subsystem of interest (the biologist uses any knowledge to guide
the reconstruction process and can use the system to test and generate new hypotheses).
The method’s first implementation proved to generate biologically meaningful results and
is guaranteed to generate better and better results as the number of conditions in public
databases increase.
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