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Summary

Proteins fold through a series of intermediate states called a pathway. Protein

folding pathways have been modeled using either simulations or a heirarchy of
statistical models. Here we present a series of related statistical models that at-

tempt to predict early, middle and late intermediates along the folding pathway. I-

sites motifs are discrete models for folding initiation sites. HMMSTR is a model
for local structure patterns composed of I-sites motifs.  HMMSTR-CM is an ap-

proach toward assembling motifs and groups of motifs in a contact map represen-
tation, using heuristic rules to predict contact maps either with or without the use

of templates. We also discuss the I-sites/ROSETTA server, which is a folding
simulation algorithm that uses a fragment library as input. The results of blind

structure prediction experiments are discussed. Pathway-based predictions some-

times lead to an unambiguous prediction of the fold topology, even without using
templates.

1. Introduction: Darwin versus Boltzmann

All computational models that predict something have certain underlying as-

sumptions that constitute the physical basis for the model. In protein structure pre-
diction, there are two physical/biological processes that can be modeled: the proc-

ess of evolution, or the process of folding. We may give these two paradigms

names, Darwin and Boltzmann, after the scientists who defined the fundamental
principles of evolutionary biology and statistical thermodynamics, respectively.
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Most of the work in protein structure prediction is Darwin-based, using the
well-known premise that sequences that have a common ancestor have similar

folds, and they strive to extrapolate this principle to increasingly distant sequence
relationships. Methods that use multiple sequence alignment, structural alignment,

or "threading potentials" are implicitly searching for a common ancestor. Despite

the oft-used “energy-like” scoring functions, these methods do not address the
physical process of folding. Evolution happens on the time scale of millions of

years, folding on the time scale of fractions of a second.
Protein structure prediction of the Boltzmann kind is perceived to be a very dif-

ficult problem. Many have tried their hand at it over the last thirty years, and an

equal number have failed to improve upon Darwin-based methods. The problem
of predicting folding pathways may be perceived to be even harder, since it should

depend on first solving the protein folding problem. But this is not true, as we
shall see. Prediction of the protein folding pathway may be evaluated by looking

at the success in predicting sub-segments or substructures of proteins. If the com-
putational model has the right underlying assumptions about what comes first in

the pathway, and what comes next, and so on, then blind predictions, such as those

done as part of CASP, the Critical Assessment of Protein Structure Prediction bi-
annual worldwide experiment (Moult et al. 2001), may validate that model. And

the pathway model that eventually arises from this process will tell us more than
just final answer.

In this chapter we present a series of bioinformatics and simulation experiments
related to predicting protein structure by modeling the folding pathway.  We will

conclude that ab initio predictions can be done either by simulations or by a rule-

based fragment assembly method, and that it is possible to find folds that are not
present in the database of structures.  We will discuss issues of accuracy and

resolution and present some possible directions for the future.

1.1 Protein Folding Pathway History

The early work of Levinthal and Anfinsen established that a protein chain folds
spontaneously and reproducibly to a unique three dimensional structure when

placed in aqueous solution. Levinthal proved beyond the shadow of a doubt that

the folding process cannot occur by random diffusion. Anfinsen proposed that
proteins must form intermediate structures in a time-ordered sequence of events,

or "pathway" (Anfinsen and Scheraga 1975). The nature of the pathways, specifi-
cally whether they are restricted to partially native states or whether they might
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include non-specific interactions, such as an early collapse driven by the hydro-
phobic effect, was left unanswered.

Over the years, the theoretical models for folding have converged somewhat
(Baldwin 1995, Colon and Roder 1996, Oliveberg et al. 1998, Pande et al. 1998),

in part due to a better understanding of the structure of the so-called “unfolded

state" (Dyson and Wright 1996, Gillespie and Shortle 1997, Mok et al. 1999) and
to a more detailed description of kinetic and equilibrium folding intermediates

(Eaton et al. 1996, Gulotta et al. 2001, Houry et al. 1996). An image of the transi-
tion state of folding can now be mapped out by point mutations, or "phi-value

analysis" (Fersht et al. 1992, Grantcharova et al. 2000, Heidary and Jennings

2002, Mateu et al. 1999, Nolting et al. 1997). The "folding funnel" model (Chan et
al. 1995, Onuchic et al. 1997) has reconciled hydrophobic collapse with the alter-

native nucleation-condensation model (Nolting and Andert 2000) by envisioning a
distorted, funicular energy landscape (Laurents and Baldwin 1998) and a "mini-

mally frustrated" pathway (Nymeyer et al. 2000, Shoemaker and Wolynes 1999)
through this landscape. The view remains of a channeled, counter-entropic search

for the hole in the funnel as the predominant barrier to folding (Zwanzig 1997).

Simulations using various simplified representations of the protein chain, in-
cluding lattice models, have clarified the basic nature of folding pathways

(Kolinski and Skolnick 1997, Mirny and Shakhnovich 2001, Shakhnovich 1998,
Thirumalai and Klimov 1998). The topology of the fold plays a dominant role in

defining the critical positions that effect the folding rate (Ortiz and Skolnick 2000,
Shea and Brooks 2001). Models that represent the chain in atomistic detail show

that minimally frustrated, low-energy pathways may involve the propagation of

structure along the chain like a zipper (Alm and Baker 1999, Munoz et al. 1998).
All-atom, explicit solvent molecular dynamics simulations have reproduced the

experimentally determined conformations for short peptides (Cavalli et al. 2002,
Duan and Kollman 1998, Garcia and Sanbonmatsu 2001, Krueger and Kollman

2001, Shao and Bystroff 2003).  This large body of work is still inconclusive, but
clearly folding is best represented by an ensemble rather than a single pathway.

2. Knowledge-based Models for Folding Pathways

The approach that began with I-sites is an attempt to build a hierarchical series

of models mirroring the hierarchy of folding events, from initiation to nucleation
to propagation and condensation.  The hierarchy can be roughly described as “lo-
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cal to global.” Each model builds on the model before it. At each point the results
are an ensemble of conformational states.

"Local structure" is a generic term for the conformations of short pieces of the
protein chain, usually 3-20 residue pieces. Local structure motifs include the two

common forms (alpha helix and beta strand) along with a few dozen turns, half-
turns, caps, bulges and coils. The role of local structure motifs with regard to the

initiation of folding has been discussed by Baldwin, Rooman and others (Baldwin

and Rose 1999, Efimov 1993, Rooman et al. 1990).

2.1. I-sites: A Library of Folding Initiation Site Motifs

I-sites is a library of 262 sequence patterns that map to local structures. A se-
quence pattern is expressed as a position-specific scoring matrix (PSSM). Recur-

rent sequence patterns had been previously used for prediction of structural motifs,
including the Schellman motif (Schellman 1980), the hydrophobic staple (Munoz

et al. 1995), and various types of coiled coil (Woolfson and Alber 1995).  Recur-

rent sequence patterns of various lengths were found by exhaustively clustering
short segments of sequence profiles for proteins in a non-redundant database of

known structures (Bystroff et al. 1996, Han and Baker 1996, 1995, Han et al.
1997). Bystroff and Baker mapped recurrent sequence patterns to their predomi-

nant structural motifs and used reinforcement learning to optimize the sequence-
structure correlation (Bystroff and Baker 1998). The resulting I-sites Library (Fig.

1) has been used in various prediction experiments (Bystroff and Baker 1997, By-

stroff and Shao 2002) and has inspired numerous experimental studies since its

Fig. 1.  a. I-sites profile for alpha-alpha corner motif. Boxes are shaded lighter in propor-
tion to the log-likelihood ratio of each amino acid at each position relative to the start of
the motif. b. Stereo image of the alpha-alpha corner motif.
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publication (Jacchieri 2000, Mendes et al. 2002, Northey et al. 2002b, Skolnick

and Kolinski 2002, Steward and Thornton 2002). I-sites motifs have been linked

to local structure stability in both NMR studies (Blanco et al. 1994, Munoz et al.
1995, Viguera and Serrano 1995, Yi et al. 1998) and molecular dynamics simula-

tions (Bystroff and Garde 2003, Gnanakaran and Garcia 2002, Krueger and Koll-
man 2001). Mutations in high-confidence I-sites motif regions are found to have

dramatic effects on folding (Mok et al. 2001, Northey et al. 2002a). About one-
third of all residues in all proteins are found in high-confidence (>70%) I-sites

motif regions and these sites are predicted to be conformationally stable and early-

folding.

2.2. HMMSTR: A Hidden Markov Model for Grammatical Structure

The I-sites library was condensed to a single, non-linear hidden Markov model
(HMM), called HMMSTR ("hamster"). This model, trained on a large database of

protein structures and multiple sequence alignments, removes the fragment length
dependence of I-sites motif predictions, models the adjacencies of motifs in pro-

teins, and puts all of the motifs on the same probability scale. Unlike profile

HMMs (Eddy 1996, Gough and Chothia 2002, Karplus et al. 1998), HMMSTR
has a highly branched and cyclic connectivity, containing for example a 7-residue

cycle of helix states representing the amphipathic helix heptad repeat motif. By
modeling the adjacencies of motifs, HMMSTR is a model for the ways that local

structure can be arranged along the sequence, similar to the ways that words can

Fig. 2.  HMMSTR represented as a directed graph. The symbol shape represents the secon-
dary structure type; circles: helix; rectangles: beta sheet; diamonds: other motifs. Shading
represents the amino acid preference; dark grey: non-polar; grey: polar; light-grey: proline;
lightest grey: glycine; white: no preference. Only high-probability transitions are shown.
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be arranged in a sentence. This is, in a simple way, a model for the grammatical
structure of protein sequences, from words to phrases.

The result of a HMMSTR prediction is like that of any HMM, an ensemble of
Markov state strings. Each string of states, one state for each position in the se-

quence, represents a probable arrangement of mutually-compatible local structure

motifs. A single prediction may be obtained from the ensemble by either selecting
the most probable state string, or better, by a voting procedure over the whole en-

semble (Bystroff et al. 2000). HMMSTR improved the overall accuracy in local
structure prediction over the I-sites method from 43% to 60% for 8-residue frag-

ments with RMSD < 1.4Å (Bystroff et al. 2000). HMMSTR has been used for lo-

cal and secondary structure prediction (Bystroff et al. 2000, Rost 2001), inter-
residue contact prediction (Zaki et al. 2000), and as the source of a fragment li-

brary for Rosetta simulations (Bystroff and Shao 2002). Previous HMMs have
modeled proteins globally, not as fragments (Eddy 1996, Gough and Chothia

2002, Karplus et al. 1998).

3. ROSETTA:  Folding Simulations Using a Fragment
Library

The ROSETTA folding simulation algorithm uses Monte Carlo Fragment In-
sertion (MCFI) to predict the 3D structures of small proteins or protein fragments

without the use of structural templates (Bonneau and Baker 2001, Bonneau et al.
2001, Simons et al. 1999a, Simons et al. 1997, Simons et al. 1999b). MCFI is a

mostly downhill search in a knowledge-based energy landscape. Each MCFI move

consists of replacing the backbone angles of segments of the chain with fragments
in a library. ROSETTA  has been successful in prediction experiments (CASP

(Moult et al. 2001)) either using fragments from the database, from HMMSTR, or
from the I-sites motif library.

In the version of ROSETTA that runs as a public server
(www.bioinfo.rpi.edu), the fragment library is derived from I-sites fragment pre-

dictions, and the highest confidence I-sites were restrained to their predicted back-

bone angles to increase efficiency. Fragment insertion was allowed in the re-
strained regions, but moves were constrained to deviate by more then 60° from the

I-sites prediction. Also, long sequences were simulated as overlapping short frag-
ments of approximately 50 residues each, again for efficiency. The resulting pre-

dictions are spliced together at the end, using a genetic algorithm in conjunction

with the ROSETTA knowledge-based energy function. Detailed descriptions of
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each of the algorithms have been previously published (Bystroff and Shao 2002,
Simons et al. 1997, Simons et al. 1999b).

3.1 Results of Fully Automated I-SITES/ROSETTA Simulations

3.1.1 Summary

A web server was used to predict 31 protein structures in the CASP4 experi-
ment (2000) and 44 in the CASP5 experiment (2002). The successes and failures

of the server may be summarized in a few broad statements.  The statistics and
conclusions presented here refer to bona fide blind predictions sent automatically

to the CAFASP site as part of their “Fully-Automated” satellite experiment
(Fischer et al. 2001). A more detailed analysis of this and other methods can be

obtained from the associated publications (Bystroff and Shao 2002, Shao and By-

stroff 2003).
Over the 75 targets, 64% of the residues were found in "topologically correct"

large fragments, defined as fragments of 30 residues or more with RMSD < 6Å.
At 6A RMSD, the correct overall chain trace has been reproduced, but not the

finer details of structure. Occasionally beta strand may be out of order in a sheet,
and strands may be substituted for helices.

A smaller percentage of all 30-residue fragments, 44%, were predicted with a

5Å RMSD.  At 5Å precision, secondary structure is occasionally mispredicted,
loop structures may be wrong in detail, and axial rotations of secondary structure

units are possible. However, much or most of the non-local packing interactions
are faithfully though roughly reproduced at this level of accuracy, and strand mis-

pairing is not observed.

In practice, the details of the local structure are often correctly predicted when a
fragment was globally correct, but the RMSD measure is insensitive to this.

Therefore, another measure is used to evaluate the local accuracy of the predic-
tions. The maximum deviation in backbone angles (mda) over a window of 8 resi-

dues is usually ~180° or small, and serves as a strictly local measure of correct-
ness. 8-residue peptides that have mda < 90° and obey all of the stereochemical

constraints of a polypeptide, have an RMSD of 1.4Å at most (Bystroff and Baker

1998). Unfortunately, when mda is plotted alongside RMSD, it is immediately ob-
vious that the good local structure predictions do not always coincide with the

good, large fragment predictions.
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3.1.2 Topologically correct large fragment predictions are found

Figure 3 shows a 97-residue fragment prediction with 5.9Å RMSD. At this

level of precision, the residues found in the core are correct and their 3D arrange-
ment is roughly correct.  In fragments that contained helices, the N and C capping

residues were usually but not always correctly located, and the direction of the
chain coming off of the helix was generally correct. The orientation of parallel

sheets to helices was reproduced to within about 60°, and the axial orientation of

the helices with respect to strands was almost always correct, even though rolling
the helix would not greatly effect the RMSD value.

Some characteristics of even the "correct" fragment predictions suggested ways
in which the algorithm could be improved. The most obvious of these is the dis-

tortion of alpha helices. True native helices retain very straight helix axes despite

Fig. 3.  ROSETTA-predicted (dark grey) and true (light grey) structure of tryptophan
synthase alpha subunit from P. furiosus, (PDB code 1GEQ) residues 57-153.
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variability in the backbone angles. Helices in the predictions, however, were often
distorted, sometimes bending the axis by 90° over its length. A combination of

factors produces these errors. ROSETTA has no energy penalty for helix distor-
tion, while it gives a large energetic bonus for packing hydrophobic residues in the

core and for maintaining a low radius of gyration. Bent helices are found to re-

place helix kinks and alpha-alpha corners. Adding a penalty for helix distortion
might fix this problem.

Topological correctness is a weak criterion for usefulness, since it means that
only the handedness of the chain reversals and most of the secondary structure are

right. However, these fragmentary predictions may narrow the search space for a

structural analog or remote homolog, and may therefore be useful in combination
with other methods. The I-sites Server correctly identified the overall anti-parallel

β topology of one of the CASP5 targets, F-actin capping protein (PDB code

1IZN), a new fold at the time.

3.1.3. Good local structure correlates weakly with good tertiary
structure

 If the ROSETTA simulations followed a "local structure first" pathway, then
we would expect to see good super-secondary structure predictions coinciding

with good local structure predictions. However, this is not always the case. Fre-
quently, the topologically correct large fragments have the wrong local structure.

This is true despite the fact that at least 90% of the target sequences are covered
by at least one fragment with the correct local structure in the fragment library.

Three-state secondary structure (SS) predictions were made using a version of

HMMSTR that was trained on a large dataset of proteins of known structure with
SS states assigned using DSSP (Kabsch and Sander 1983). The accuracy of these

predictions over the 31 targets was 73.3%, only slightly lower than the state of the
art in SS prediction (Jones 1998). SS predictions based on tertiary structure (TS)

predictions from ROSETTA had the potential of benefiting from the added TS in-
formation, however this did not improve the prediction accuracy.

Using SS assignments derived from the TS predictions using DSSP or STRIDE

(Frishman and Argos 1995), the prediction accuracy was low (50-60% Q3) be-
cause these programs depend on precise positioning of the hydrogen-bonding resi-

dues in assigning the strand state (E). Instead, the SS predictions were derived
from the fragments in the fragment library, using SS assignments from their native

proteins. Using this method, the overall Q3 score improved to 72.4%, but this is
still no better than the SS predictions that use sequence alone without running a

simulation.
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If the simulation were reproducing the folding process, one might expect that
the correctly-predicted tertiary interactions would add information to the secon-

dary structure prediction. One explanation for the lack of improvement in secon-
dary structure, despite some success in tertiary packing, is that topologically cor-

rect tertiary structures are possible even when the wrong local structure is used to

build it.

3.1.4. Average contact order is too low.

Relative contact order (Plaxco et al. 1998) is calculated from the coordinates as

follows:

CO
L N

Sij

N

=
• ∑1 ∆ , (1)

where ∆Sij
 is the sequence separation |i-j| ≥ 5, for residues, ij,  that are in contact

(Cα-Cα distance < 8Å). N is the number of contacts, and L is the length of the se-

quence. The overall average CO in the targets was 0.252, while the CO for the 32

predictions was 0.119.  The lower CO is mostly the result of an increased number
of beta hairpins. Contacts that are local, such as those in beta hairpins, are easier to

find in a conformational search, and thus may represent kinetic intermediates,
trapped at the end of the simulation.  Kinetic trapping may be exacerbated by the

more computationally efficient server protocol. A possible solution is to do more

replicates and rely on cluster analysis to identify the global energy minimum.
Practical limitations currently stand in the way of implementing this.

Alternatively, the predominance of beta hairpins may reflect an error in the en-
ergy function with regard to the backbone angles. Positive φ angles, favored only

in glycine residues and usually required for turns, are found in the same proportion
in the targets (8%) and in the predictions (7%), but in the targets, 44% of these

turn residues are glycines, while in the prediction only 16% are glycines. This

suggests that a larger energetic penalty for positive φ angles in non-glycine resi-

dues might correct the overabundance of hairpin turns.

3.1.5 How could Automated ROSETTA be improved?

Our results suggest that a combination of improvements in efficiency may in-
crease the potential of the ROSETTA algorithm as a high-throughput engine for

tertiary structure prediction at the 30-100 residues length scale. We suggest that a
combination of structure comparison metrics be used for the evaluation of correct-
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ness; a low RMSD in the context of low backbone angle deviations is shown to
identify predictions that were "correct for the right reasons".

Secondary structure assignments were not improved by the use of tertiary
structure predictions, partly because it was possible to obtain a globally correct

tertiary structure prediction by inserting fragments of the wrong local structure.

An overall low contact order was observed in the predictions relative to the true
structures. This is at least partly due to the absence of an energetic penalty for un-

favorable backbone torsion angles. These may also represent kinetically trapped
intermediate structures from a simulation that was too short.

4. HMMSTR-CM: Folding Pathways Using Contact Maps

HMMSTR-CM is a pathway-based method for predicting protein structure us-

ing contact maps. Contact maps are square symmetrical Boolean matrices that rep-
resent protein tertiary structures in a two-dimensional format. The 2D format has

simplified the process of developing a rule-based algorithm for folding pathways.
Contact maps may be projected into three-dimensions using existing methods

(Aszodi et al. 1997, Brunger et al. 1986, Crippen 1988, Vendruscolo et al. 1997).
Two-dimensional flat images are more readily discernable to the eye and more

memorable than complex, rotating three-dimensional images. With only a little

training, a student can learn to quickly distinguish a contact map for an α/β barrel

from a 3-layer α/β fold, different topologies which are very similar in their secon-

dary structures. Similarities between distant homologs or analogs of α/β and all β
folds can be seen easily in contact maps, even when the 3D structures superimpose

poorly. It makes sense that if our eyes can recognize protein folds from 2D pat-

terns, we should be able to program a computer to do so, and thereby create a new
tool for learning the rules of folding.

Previous contact map prediction methods have used neural nets (Fariselli and
Casadio 1999, Pollastri and Baldi 2002), correlated mutations (Olmea and Valen-

cia 1997, Ortiz et al. 1998, Singer et al. 2002), and association rules (Hu et al.
2002, Zaki et al. 2000). Neural net based predictions had an average accuracy of

about 21% overall (Fariselli et al. 2001), while higher accuracies were reported for

local contacts (Pollastri and Baldi 2002), but the accuracy is lower for all-α pro-

teins.

Our earlier work (Zaki et al. 2000) led us to believe that two important factors
were missing in contact map predictions. First, typical predicted contact maps

were structurally ambiguous or physically impossible, representing either multiple
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or zero possible folds when projected into three dimensions. Second, the order of
appearance of contacts (i.e. the pathway) was not considered, even though much is

known about the general character of folding pathways (Baldwin 1995, Fersht
1995, Galzitskaya et al. 2001, Nolting and Andert 2000). In the new approach we

tried to enforce “physicality” and protein-like characteristics by using protein
templates and simple rules. The rules consist of common sense facts for the pack-

ing of secondary structures (Table 1).  Rules for the order of appearance were de-

rived from the general assumptions of a nucleation/propagation pathway (Nolting
and Andert 2000).

4.1 A knowledge-based potential for motif-motif interactions

The first step in predicting a contact map is to assign an energy to each poten-

tial contact. The energy in this case is the database-derived likelihood of contact
between any two local structure motifs. This implies that local structure forms

first, then these sub-structures condense to form larger units, subject to a free en-

ergy of interaction, similar to a binding energy. But like its predecessors I-sites
and HMMSTR, HMMSTR-CM is a Bayesian ensemble approach; each residue is

represented as a probability distribution of motifs, rather than as a single motif.

Table 1. Physicality and Propagation Rules

1. Maximum neighbor rule: One residue can have at the most 12 contacts.

2. Maximum mutual contact rule: If residue i and j are in contact, there are at

the most 6 residues in contact with both i and j.

3. Beta pairing rule: A beta strand can be in contact with at the most 2 other beta

strands.

4. Beta sheet rule: any two pairing strands are either parallel or antiparallel.

5. Helix mutual contact rule: No residue can be in contact at the same time with

the residues on the opposite sides of a helix.

6. Helix rule: Only the contacts between residues i and i+4 is allowed in a helix.

7. Beta rule: No contacts (|j-i|>3) are allowed within any strand

8. Right-hand crossover rule: Crossovers  between parallel strands of the same

sheet (paired or not) are right-handed. especially if the crossover contains a helix.

9. Helix crowding rule: If a helix can go to either side of a sheet, it picks the side

with fewer crossovers.

10. Strand burial rule: If a strand can pair with either of two other strands, it

chooses the one that is more non-polar.

11. Propagation rule: A contact cannot be assigned between i and j if there are

more than 8 residues in the intervening sequence that have no assigned contacts.
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Thus, each contact potential models a pair of flickering local structures, interact-
ing  in proportion to their structural content.

 The energetic interaction potential of two motifs is modeled as the statistical
interaction potential between two corresponding Markov states of the HMMSTR

model. Knowledge-based Markov state “pair potentials” were summed from the

CATH database of protein domains. Each domain was first preprocessed into
Markov state probability distributions using the Forward/Backward algorithm

(Rabiner 1989) to get the position-dependent Markov state probability distribution
γ (Eq. 2).

γ i q P q i, ( | )( ) = (2)

The pairwise contact potential between any two HMMSTR states p and q

(G(p,q,s)) was calculated as the log of the mutual probability of these two states in
contacting residues (Cα -Cα distance < 8Å), for proteins in the PDBselect data-

base (Hobohm and Sander 1994) (Eq. 3).

G p q s

i p i s q

i p i s q

i D ÅPDBSelect

iPDBSelect

i i s( , , ) log

( , ) * ( , )

( , ) * ( , )

,= −
+

+

∋ <+

∑∑

∑∑

γ γ

γ γ

8  (3)

The sensitivity of discriminating contacts from non-contacts improved greatly by

calculating G as a function of the sequence separation s=|j-i| (4 ≤ s ≤ 20. For se-
quence separations greater than 20, s=20 was used.) The total number of potential

functions G was 1037153, one for every pair of 247 Markov states in HMMSTR

and every separation distance from 4 to 20. G may be viewed as the knowledge-
based energy of contacts between local structure motifs.

The target contact potential map E (Eq. 4) is the matrix of contact potentials
between every two residues in the target sequence. The contact potential between

residues i and j (E(i,j)) in the target was calculated as the probability-weighted
sum of the pairwise potential functions G.

E i j i p j q G p q s
qp

( , ) ( , ) * ( , ) * ( , , )= ∑∑ γ γ , (4)

where s = |i-j|. In general, the contact potential map readily identifies possible
contacts between β strands, and also finds super-secondary structure motifs such

as the right-handed parallel βαβ motif and the αα -corner.
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4.2. Fold recognition using contact potential maps

The flowchart in Fig. 4 summarizes the steps in a contact map prediction using

HMMSTR-CM. Target sequences were aligned to database sequences using PSI-

BLAST (Altschul et al. 1997). The resulting multiple sequence alignment was
converted to an amino acid probability distribution or sequence profile, as de-

scribed previously (Bystroff and Baker 1998).  The target sequence profile and

Fig. 4.  Flowchart for HMMST-CM contact map prediction. Rectangles represent algo-
rithms, ovals are data, and rounded rectangles are models. Dashed lines apply to training
set data (templates) and solid lines apply to both templates and targets. Light gray items
are describe in referenced material  Dark gray items are described in this text as follows:
HMMSTR, section 2.2; Gamma matrices, Eq. 2;  SumGamma, Gpqs, Eq. 3; SumEmap, E
map, Eq. 4; Rules,, Pathway folding, section 4.4, Table 1; BayesAligner, Target/template
alignments, section 4.2, Eq. 5, Fig. 5a; Heuristics, Eq. 6; CijALI, section 4.2, Eq. 7; Heu-
ristics, consensus, section 4.3, Fig. 6.
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1239 template profiles from the PDBselect database (Hobohm and Sander 1994)
were converted to HMMSTR γ-matrices (Eq. 2), and γtarget was aligned against

each γtemplate using Bayesian adaptive alignment (Zhu et al. 1998). The alignment

matrix in this case was the sum over all joint probabilities of Markov states (Eq.
5). The alignments were evaluated using contact potential maps to choose the best

template.

Aij = γ γiq
t et

jq
template

q

arg∑ (5)

Candidate target contact maps were generated for each alignment, and each was

evaluated by the contact free energy (CFE), as described below, and other meas-

ures.  The BayesAligner produced a single score and any number of alignments.
Templates with low alignment scores were rejected. Otherwise, 100 alignments

were selected at random for further evaluation.

BayesAligner produces a probability distribution over all possible alignments
with no more than k gaps (k depends on the sequence lengths). The quality of the

alignment distribution (see Fig. 5a) was a strong indicator of the quality of the

template. Templates and/or alignments were removed from this set if they were
highly fragmented. This was assessed using a "compactness score" which is sim-

ply the length of the longest contiguously aligned region, ignoring small gaps ( ≤ 3
residues). The template distance at the ends of the aligned blocks was enforced to

be physically possible values (Eq. 6) by trimming the aligned blocks if necessary.

D Å i ji j' ' .≤ × −3 8 (6)

Candidate contact maps (C) were generated using the alignments and the con-
tact maps of each of the templates that had the top 10 compactness scores was

scored using the "contact free energy" (CFE, Eq. 7). CFE was calculated by sum-
ming the relative contact potential E over all contacts, C. Contacts with sequence

separations |j-i| less than 4 were ignored.

CFE E i j E
i j C j iij

= −
∋ = ∩ > +

∑ ( , )
, ( ( ))1 3

, (7)

where <E> is the mean contact potential for the target. For each template, we cal-

culated the CFE for all contact map candidates and chose the one with the best en-

ergy as the best alignment to that template.
After we carried out the above procedure for every template in our dataset, we

usually accumulated several hundred target contact map predictions. How to
evaluate them and choose one as the final prediction became a problem itself. The
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decision was made by considering four parameters: CFE, the BayesAligner score,
the compactness score and the similarity between sequence lengths of the target

and the template. The primary parameter was the CFE since it represented the free
energy of the sequence when folded to the template structure. But we observed

that better alignments and similar lengths improved the perceived prediction qual-

ity.
The automated selection of templates was sometimes overridden by our ab ini-

tio analysis, described below. If the propagation rules favored one topology over
another and a template of the favored topology was present in our list of top scor-

ers, we would select that template over a higher scoring one.

4.3. Consensus and composite contact map predictions

Often several of the top-scoring templates contained the same fold or substruc-

ture. Consensus was considered a strong indicator, especially if the fold was un-
common. Multiple candidates were sometimes used to construct a single compos-

ite map. In practice, consensus similarity between many structures is difficult to
see in a 3D multiple superposition, but is easy to see in superimposed contact

maps.
This prediction can be done in different ways when the top scoring templates

share a similar fold. When they disagree on some contacts, the consensus contacts

(not necessarily those from the best scoring template) are used; when some tem-
plates aligned well in one region and other templates aligned well in another re-

gion, the predictions from these templates were spliced to maximize the coverage.
For some recurrent contact patterns, e.g. the parallel βαβ motif, the parallel β
contacts or the helix contacts were sometimes incomplete because of misalign-

ment of the template. By combining the top scoring predictions, we could “grow”
the incomplete pattern into a complete one.

Simply combining the contact maps introduces “noise” – contacts that make the
prediction non-physical. (A “non-physical” contact map cannot be projected into

3-dimensions.) Manual post-processing, including pathway-based editing (dis-
cussed next) was needed to enforce the physicality of the final contact map.

4.4. Ab initio rule-based pathway predictions

The fold-recognition methods described above have their roots in evolution, but

contact maps as a representation of protein structures were chosen not with the
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intention of building a Darwin-based prediction strategy, but with the intention of
modeling the folding pathway. Contact maps simplify the conformational search.

However, as we have pointed out, not all contact maps represent physically-
possible three-dimensional objects. Therefore, external information about proteins

must be included. A set of aligned templates is one source of external information.

Here we present a set of fundamental rules (Table 1) and energies (Eq. 4) that
serve the same purpose – to restrict the conformational search to contact maps that

are physically possible and protein-like.
 A rule-based structure propagation model was used either in conjunction with

templates or ab initio (without templates). In CASP5, ab initio predictions were

sometimes done on targets found later to be remote homologs by CASP5 asses-
sors, but because our alignment method was not always able to recognize remote

homology, we treated them as potential new folds. The procedure is as follows.
Starting from a contact potential map, E, we kept the contacts that were better

than a cutoff value. The cutoff value was chosen such that blocks of contacts were
found between most secondary structural units, especially between β strands. As a

result, the initial contact map was often characterized by dense blocks of contacts

between β strands and sparse contacts to helices and between helices.

If we kept all of these contacts, clearly the map would be physically impossible.

For example, a β strand element cannot be paired with more than two other β
strands.  A set of common-sense rules were compiled to weed out the possible

contacts from the impossible or unlikely, and to enforce protein-like characteris-

tics, such as right-handed crossovers and exposed reverse turns (Table 1). These
rules were enforced as the prediction was propagated.

The folding pathway consisted of  “assigning” or “erasing” contacts. Contacts
were assigned if the energy E(i,j) passed a threshold and the corresponding contact

Cij = 1 did not violate any of the rules, otherwise they were erased. Blocks of po-
tential contacts were considered together, and the order in which blocks were con-

sidered depended on their proximity to previously assigned blocks of contacts

(Table 1, Rule 11), following the principles of the nucleation/condensation folding
mechanism.

To start the folding pathway, we selected one or more local regions with high
confidence contacts as the “nucleation site(s)". We then propagated the prediction

in both directions by assigning or erasing blocks of contacts around and between
the nucleation site(s), subject to our set of rules. TOPS diagrams (Sternberg and

Thornton 1976) were drawn for the growing structure as a visual aid, since some

rules applied to the topology. The pathway, and the prediction, was complete
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b.

c.

a.

when all of the remaining contacts were rejected. The method is best described

using examples, as in the next section.

4.5. Selected Results of HMMSTR-CM Blind Structure Predictions

HMMSTR-CM was used to predict contact maps as part of the CASP5 experi-

ment. Targets in the FR (fold recognition) and NF (new fold) categories were pre-
dicted using the three methods described above: threading, consensus and ab ini-

tio, collectively called HMMSTR-CM. In all these three methods, the overall
accuracy of the contact map prediction depends on the accuracy of the secondary

structure prediction, which was done using HMMSTR.

4.5.1. A prediction using templates and a pathway

YqgF, a hypothetical protein from E. coli, was successfully predicted using the

template-based approach in conjunction with a pathway prediction. All visible

secondary structure units are correctly predicted (note that the 17 residues from
102 to 118 are missing in the crystal structure), and all of the true contacts have

better-than-average E(i,j) score. After aligning the contact potential matrix, E, to

Fig. 5. a . BayesAligner summary of most probable alignments between YqgF (X-axis)
and 1HJR (Y-axis). b. Contact potential map for YqgF; darker is lower energy E(i,j). Pre-
dicted contacts are outlined in white. c. Contact map from crystal structure of YqgF, hy-
pothetical protein from E. coli.
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each of the 1258 templates, a consensus contact map was plotted using the top-
scoring six templates. This map was used to construct a folding pathway. Nucle-

ating the pathway at β4α2β5 and propagating produced a TOPS diagram that

agreed with only one of the templates, 1HJR, and this template was therefore cho-
sen to construct the consensus contact map. 1HJR had the third highest CFE score.

In the prediction based on 1HJR, the N-terminal 3-strand β meander is slightly

under-predicted, and a contact between helices 1 and 2 is slightly over-predicted.

Nonetheless, the topology is correct throughout (Fig. 5b). The two higher-scoring
templates that were not chosen had very different, and incorrect, topologies.

4.5.2. A prediction using several templates

Ycdx, another hypothetical protein from E. coli, was successfully predicted
using multiple templates. The threading approach found 4 templates that had high

CFE scores and also shared common structural components. Three of those tem-

plates were 8-stranded α/β barrels and the other consisted of two parallel α/β do-

mains. Ycdx turned out to be an αβ  barrel with 7 parallel β strands (PDB code

1M65).  Templates with good CFE scores existed but none of them predicted all
of the first five helices and the parallel β strand contacts correctly. However, by

combining the results from the top scoring templates, we made a consensus pre-

diction that was better than any of the contact maps made from the single tem-
plates.  In particular, we correctly found parallel contacts between the first 6 β
strands (Fig. 6).

The sixth helix and the contacts between the sixth and the seventh strands were

predicted but misaligned. Our method mispredicted the C-terminus to be a parallel

βαβ motif, as in a standard 8-stranded TIM barrel, but the true structure is three

short helices connected by loops. Visual inspection of the templates confirmed

that they share the same topology, and a consensus fold prediction would have
been obvious given this result. But finding structural similarity and combining

structures is more easily automated in the 2D contact map format than in 3D coor-
dinate space.  Consensus in contact maps provides a way to merge and  “grow” the

incomplete contact maps of different targets into a more complete contact map.

Ycdx  also revealed a weakness of the method. HMMSTR, which is trained to
recognize recurrent super-secondary motifs, does not recognize the unusual sub-

structure at the C-terminus of this protein, 3 short helices instead of the usual βαβ
motif. The consensus method, as we have defined it, tends to bias the prediction

toward the more common folds.  In fact, this is a problem with any template-based
method.
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4.5.3. Correct prediction using only the folding pathway

Hypothetical protein HI0073 from H. influenzae is an example of a successful

ab initio prediction. It has 116 residues arranged in a three-layer all-parallel α/β
sandwich. The contact potential map (Fig. 7a) shows that most of the true contacts

are assigned favorable (darker) contact potentials. However, many other favorable
regions are also correctly predicted as non-contacts. Depending on the choice of

nucleation sites, there was more than one way to derive a physically possible and

high scoring topology. In this case, the nucleation site was selected to be β2α2β3.

Contacts were assigned or erased in 4 steps, as follows:
(1) Parallel β contacts were assigned between β2 and β3.

(2) Anti-parallel β contacts were assigned to β1 and β2. All other β contacts to β2 were

erased.

(3) There were two ways to make a right-handed crossover from β3 to β4, as shown in

figure 3 (c) and (d).  Since β1 was more hydrophobic and β3 more polar, we paired

β1 and β4. All other β contacts to β1 and contacts between α2 and α3 were erased.

Fig. 6.  Summary of strand-strand (arrows) contacts and helix predictions for four tem-
plates aligned to Ycdx (T0147). Shaded symbols represent contacts that were correctly
predicted using the template specified in the margin. The last line shows contacts that
were correctly predicted after combining the four templates and using the consensus set.
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a. b.

c. d.

 (4) α1 must be on the opposite side of the sheet from α3, since α3 extends across the

sheet. Therefore, contacts were assigned between α1 and α2 and erased between α1

and α3.

The completed TOPS diagram and contact map accurately match the true

structure (Fig. 7b). The contact map prediction has 42% contact coverage and 29%

accuracy. However, accuracy and coverage are not good measures of the quality
of a contact map prediction, since near-contacts and gross errors are counted

equally. Most of the false positive contacts in the HI0073 prediction are adjacent
to true contacts. If we count near misses (±1 residue), then the coverage is 75%

and the accuracy is 57%. Note that the long range contacts between the β1 and β4

Fig. 7.  a. Upper triangle: contact potential map for HI0073 showing predicted contacts as
white outlines. Darker means lower energy, E(i,j). Lower triangle: true contacts. b.
Molscript drawing of the crystal structure of HI0073, a hypothetical protein from haemo-
philus influenzae. c.  Correct TOPS diagram showing non-polar strand (dashed) buried. d.
Incorrect TOPS diagram, consistent with all rules except strand burial rule.
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were correctly predicted, which speaks to the power of rule-based methods over
raw statistics.

Identification of the folding nucleation site is the critical step in this approach.
Once the nucleation site is chosen, the subsequent contact assignments are often

unambiguous. After assigning secondary structures and choosing β2α2β3 as the nu-

cleation site, only one folding pathway was possible, and it leads to the correct
structure (Fig. 7c). It is interesting to note that this pathway also predicts a possi-

ble misfolded state (Fig. 7d). At step (3) in the pathway, a critical decision is made
that depends on the sequences of strands 1 and 3. If strand 1 was more polar and

strand 3 more hydrophobic, then the alternative structure would be predicted. A

simple mutation experiment might tell us whether our model is on the right track.
 The choice of the nucleation site in HI0073 was relatively easy. Only one of

the three potential βαβ units had a high score. The hairpin between β1 and β2

would also be a correct choice, but the selection of β2α1β3 eliminated more of the

potential incorrect folding pathways.

4.5.4. False prediction using the folding pathway. What went wrong?

The KaiA N-terminal domain from S. elongatus (PDB code 1M2E) is an exam-

ple where we chose the wrong nucleation site. KaiA is 135 residues long and has

five β and five α  units. From its contact potential, two possible nucleation sites

could be identified, β2α2β3, or β3α3β4. We chose β2α2β3 as the nucleation site in-

stead of the correct, and higher scoring, β3α3β4 unit in order to favor a region of

non-local high confidence contacts between β1 and β3 and between β1 and β4. Our

mistake was in assigning non-local contacts before assigning local ones. If we had

chosen the correct nucleation site, β3α3β4, there would be an unambiguous choice

of the N-terminal βαβαβ segment. This sequence of five secondary structures is

most commonly found in a three stranded parallel sheet, and since in this case β2

is polar and β3 already pairs with another strand, only β1 could be placed in the

middle of the sheet. This would have given the correct 2134 strand order (Fig. 8a),

and the helices would have been correctly placed according to our propagation
rules (particularly the Right-handed Crossover Rule). Our erroneous choice of the

nucleation site leads to the incorrect strand order 2314 (Fig. 8b), instead of 2134.
For the record, here is the correct pathway for KaiA using HMMSTR-CM:

(1) Nucleation site at β3α3β4

(2) The N-terminal parallel βαβαβ unit must have β1 in the middle, since β2 is polar

and β3 cannot be in the middle. To satisfy right-handed crossover rule, α2 must be

on the same side of the sheet as α3.
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(3) β5 must pair with β4 since cannot pair with β2, due to crossovers on both sides of

the sheet.

4) α5 must go on the same side of the sheet as α1, due to helix crowding on the other

side.

For other targets, pathway construction and CFE score alignment methods

failed if the secondary structure prediction was inaccurate. In several targets, in-
cluding HIP1R N-terminal domain from rat, an all-helix protein, secondary struc-

ture prediction by HMMSTR significantly under-predicted the helices. The wrong
secondary structure pattern led to the wrong assignment of contact potentials, and

therefore the wrong assumption of possible topologies. Under-prediction of heli-

ces was identified as a problem in HMMSTR.

4.6. Future Directions for HMMTR-CM

By gaining insight about how different parts of the protein pack together, we
can improve the accuracy of the ab initio method. This will be necessary to make

the whole prediction process automatic. The rule-based pathway approach de-
pends on the correct assignment of the fold class of the target (all-α, α/β, α+β or

all β (Zhou 1998)), since the rules of propagation depend on choices of the final

topology. Generally this assignment is not difficult. So far, it has been applied
only to the α/β class, but a different set of rules may be envisioned for the packing

of helices and all β proteins.

The difficulty of choosing the correct nucleation site increases with protein

size, since there are more to choose from. For larger proteins, more than one cor-

Fig. 8.  a.  Correct TOPS diagram for KaiA, generated using the pathway described in the
text using the shaded βαβ unit as the nucleation site. b.  Incorrect TOPS diagram, similar
to the actual prediction, generated using a similar pathway but starting with the wrong nu-
cleation site (shaded).



24      Christopher Bystroff, Yu Shao

rect choice may be required. One possible approach could be a recursive algorithm
to exhaust all the possible topologies by starting with each potential nucleation

site, and then evaluate the topologies using the contact potential.
Another improvement might be to attempt to make the contact map prediction

more protein like. Our predictions have many false contacts adjacent to true con-

tacts, e.g. a “fat” β-hairpin prediction – even though it is predicted at the right po-

sition. Rules to prune this type of false contacts – in other words, to beautify the

predicted contact blocks – would increase the accuracy of our prediction. This will
require better secondary structure predictions.

5. Conclusions

We have developed methods for calculating an inter-residue contact potential

map for a protein sequence, for aligning that map to templates, and for pruning
that map using a folding pathway model.  Results on CASP5 targets reveal that the

folding pathways for some α/β proteins are unambiguous given the correct choice

of the folding nucleation site. Pathway predictions improved the selection of a re-

mote homolog for one threading target. Consensus contact maps are more com-
plete than maps from single templates. The contact map representation of protein

structure is a useful intermediate-level of detail that facilitates rule-based algo-

rithm development.
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