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Abstract

An important combinatorial problem, motivated by DNA sequencing in
molecular biology, is the reconstruction of a sequence over a small �nite alpha-
bet from the collection of its probes (the sequence spectrum), obtained by sliding
a �xed sampling pattern over the sequence. Such construction is required for
Sequencing-by-Hybridization (SBH), a novel DNA sequencing technique based
on an array (SBH chip) of short nucleotide sequences (probes). Once the se-
quence spectrum is biochemically obtained, a combinatorial method is used to
reconstruct the DNA sequence from its spectrum.

Since technology limits the number of probes on the SBH chip, a challenging
combinatorial question is the design of a smallest set of probes that can sequence
an arbitrary DNA string of a given length. We present in this work a novel
probe design, crucially based on the use of universal bases (bases that bind
to any nucleotide [LB94]) that drastically improves the performance of the
SBH process and asymptotically approaches the information-theoretic bound
up to a constant factor. Furthermore, the sequencing algorithm we propose is
substantially simpler than the Eulerian path method used in previous solutions
of this problem.
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1 Introduction

The reconstruction of a sequence over a �nite alphabet from the set of its subse-
quences, sampled according to a �xed pattern, is a challenging combinatorial prob-
lem, which has received considerable attention in recent years. A pattern can be
de�ned as a binary sequence beginning and ending with a 1, which can be used as
a \template" to sample a given sequence, called the target sequence. Speci�cally,
the samples (probes) are obtained by sliding the pattern in all positions of complete
overlap with the target sequence, and generating from each position the subsequence
corresponding to the 1-symbols of the pattern. The resulting collection of probes is
called the spectrum of the sequence, and the reconstruction task consists of deciding
if there is a unique sequence consistent with a spectrum and, if so, to construct it.

Although interesting on a purely information-theoretic level, the motivation for
this problem comes from molecular biology, speci�cally from the sequencing of DNA.
In recent times a radically new technique, called Sequencing by Hybridization, has
been proposed as an alternative to the traditional sequencing by gel electrophoresis
[BS91, L+88, D+89]. Sequencing-by-hybridization is based on the use of a chip,
fabricated with photolithographic techniques. The active area of the chip is structured
as a matrix, each region of which (technically called a feature) is assigned to a speci�c
oligonucleotide (or to a set of oligonucleotides), biochemically attached to the chip
surface. When a solution of suitably labeled target DNA is applied to the chip,
a copy of the target DNA will bind to an oligonucleotide if the latter is Watson-
Crick complementary to one of its subsequences. The labeling of the target allows
visualization of the binding chip features, thereby yielding the spectrum of the target
sequence.

For a �xed cost, expressed by the number of features of the chip (or equivalently
by the number k of speci�ed nucleotides of the probes), a challenging combinatorial
problem is the design of a most eÆcient probing scheme, that would yield the max-
imum length of the sequences for which faithful reconstruction is guaranteed with a
given level of con�dence.

Pioneering work on this topic [BS91, L+88, D+89] focused on probing schemes
based on k-grams (strings of k symbols), which we shall refer to as \classical" probing
schemes. To reconstruct the target sequence from its k-grams, original approaches
dealt with a subgraph G of the order-k shift-register diagram (De Bruijn graph), so
that a consistent reconstruction is identi�ed with a Hamiltonian path in G. Sub-
stantial progress was made by Pevzner [P89], who characterized a consistent recon-
struction with an Eulerian path in a subgraph G0 of the order-(k � 1) shift-register
diagram, such that an arc from (k � 1)-gram u to (k � 1)-gram v exists if and only
if u and v are respectively pre�x and suÆx of a spectrum k-gram. This insight both
simpli�ed and characterized the reconstruction problem for k-gram probes.
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However, the e�ectiveness of the methods was unsatisfactory. In the model where
the target sequences are generated by a memoryless source with identical symbol
probabilities (all symbols independent and uniformly distributed), it was observed
[P+91] (and a tight bound of the same order was established [DFS94, A+96]) that
the expected length of unambiguously reconstructible sequences with k-gram probes
was O(2k). By contrast, an information-theoretic argument yields an upper bound
�(4k).

Probe structures alternative to the classical one have also been been proposed.
One such design, not analyzed in any detail, introduces one gap of \don't care""
symbols (or universal bases), separating a string of speci�ed symbols and a single
speci�ed symbol. Today, there is technological justi�cation for truly universal bases,
that {if used in short runs { stack correctly without binding.

Under the same statistical model of a memoryless maximum-entropy sequence
generator, in this paper we show that the use of "don't care"s is essential to the
attainment of asymptotically optimal eÆciencies. Speci�cally. we exhibit a class of
novel probe designs, with a well de�ned periodic pattern of gaps of "don't care"s,
which for any k uses 4k probes to sequence a target sequence of length �(4k). Our
approach does not involve the construction of an Euler path. This apparent paradox
(with respect to Pevzner's characterization) is resolved by the observation that our
proposed gap structure trivializes the Euler path identi�cation problem, guaranteeing
with extremely high probability, in the chosen statistical model, that the Euler path
reduces to a simple path in a virtual De Bruijn graph of order-�(k2). In other
words, the full potential of sequencing by hybridization is predicated on the reliable
deployment of universal bases.

Although our considerations are applicable to any �nite symbol alphabet A, due
to the central relevance of our scheme to biological applications, in the rest of the
paper we shall normally assume that jAj =4.

2 Preliminaries and the (s; r)-gapped probes

A Sequencing by Hybridization (SBH) chip consists of a �xed number of features. Each
feature can accommodate one probe. A probe is a string of symbols (nucleotides) from
the alphabet A = f A,C,G,T,*g, where A,C,G, and T denote the standard DNA bases
and � denotes the \don't care " symbol, implemented using a universal base [LB94].

When the SBH chip is brought in contact with a solution of the target DNA
string, a probe binds to the target string if and only if there is a substring of the
target that is Watson-Crick complementary to the probe (where, conventionally, any
of the four bases A,C,G,T is Watson-Crick complementary to a universal base. With
this convention, a probe is viewed as a string, rather than a subsequence). Biochemical
labeling permits the identi�cation of the set of probes ( called the string's spectrum)
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that bind to the target string.
A sequencing algorithm is an algorithm that, given a set of probes and a spectrum,

decides if the spectrum de�nes a unique DNA sequence, and, if so, reconstructs that
sequence.

Since the number of features on an SBH chip is limited by the technology, we
are interested in the design of a smallest set of probes adequate for sequencing an
arbitrary string of a given length.

The following simple observation gives an information-theoretic lower bound for
the size of such a set:

Theorem 1 The number of probes required for unambiguous reconstruction of an
arbitrary string of length m is 
(m).

Proof: The spectrum based on t probes is a binary vector with t components. There
are 2t such vectors, and each can de�ne no more than one possible sequence. Thus,
4m � 2t, or t � 2m. 2

This theorem also implies that, in the important case t = 4k, we have m � 4k�1=2.
Past research [P+91, DFS94, A+96] analyzed the performance of SBH chips in the
context of random strings of length m, drawn uniformly at random from the set Am.
A similar lower bound holds in that model:

Theorem 2 For any �xed probability P > 0, the number of probes required for un-
ambiguous reconstruction with probability P of a random string of length m is 
(m).

Proof: Since the algorithm must unambiguously reconstruct P4m sequences, the
number of probes t must satisfy P4m � 2t, or t = 
(m). 2

In this paper we focus on a special pattern of probes which we name (s; r)-gapped
probes and denote GP (s; r).

De�nition 1 For �xed parameters s and r the set GP (s; r) of (s; r; )-gapped probes
consists of all probes of the form Xs(U s�1X)r where X ranges over the 4 standard
DNA bases (A,C,G, and T) and U is the universal base.

Since there are s + r locations with an X symbol in each probe in GP (r; s), the
set of probes GP (s; r) consists of exactly 4r+s individual probes.

Notationally, let a(1;m) = a1; ::::; am be the target string, and for any 1 � i < j � m

let a(i;j) = ai; ::::; aj. Given a(i;j) and i < h < j, a(i;h) and a(h;j) are respectively the
(h� i+1)-pre�x and the (j � h+1)-suÆx of a(i;j). Hereafter we assume that the set
of probes GP (s; r) was used to obtain a spectrum of the string a(1;m).

3



3 The sequencing procedure

We describe a simple procedure for sequencing the string a using the spectrum in-
formation obtained from the (s; r)-gapped probes. To simplify the presentation we
assume that we are given the s(r + 1)-pre�x of the target string. (Section 6 explains
how to remove this assumption.)

The procedure produces a putative sequence b which represents the reconstruction
of the sequence a. It starts with the pre�x b(1;s(r+1)) = a(1;s(r+1)). At each iteration
the procedure tries to extend a current putative sequence b(1;`�1) = b1; :::; b`�1, `�1 �
s(r + 1) with a new symbol b`.

To take full advantage of theGP (s; r) probes, we use each probe in up to r di�erent
possible alignments with the current sequence.

The extension is attempted as follows. We �nd the set M0 of all probes in the
spectrum such that the (s(r+1)� 1)-pre�x of each of the probes matches the (s(r+
1) � 1)-suÆx b(`�s(r+1)+1;`�1) of the putative sequence, with the stated convention
about don't care symbols. If M0 is empty, then no extension exists and the algorithm
terminates. Otherwise, if jM0j = 1 a single extension is de�ned and the corresponding
symbol is appended to the putative sequence. The case jM0j > 1 is problematic since
it suggests an ambiguous extension. Here we use the power of the GP (s; r) probes,
since an ambiguous extension is detected only if con�rmed by r+1 spectrum probes,
as discussed below. If these probes con�rm the ambiguous extension, either they occur
scattered along the target sequence (and are referred to briey as \fooling probes") or
they originate from a single substring (of adequate length). Intuitively, our approach
rests on the facts that (r + 1) con�rmatory fooling probes are very improbable, and
that even more improbable is their arising from a single substring.

When M0 is not a singleton, let B0 be the set of the possible extensions. The
veri�cation is executed as follows. We construct the set M1 of all probes in the
spectrum such that their common (sr � 1)-pre�x matches b(`�sr+1;`�1), and their
(s+1)-suÆx agrees 1 with the probes in M0. Let B1 be the set of symbols appearing
in the sr-th position of the probes in M0. If B0 \ B1 is a singleton, then we have
a unique extension to the string. Otherwise we continue by constructing the set
M2 of the spectrum probes whose (s(r � 1) � 1)-pre�x matches b(`�s(r�1)+1;`�1) and
(2s+1)-suÆx agrees with the probes inM1. FromM2 we construct the corresponding
set B2 of extensions. Again, if B0 \ B1 \ B2 is a singleton we are done, else we
proceed by considering shorter pre�xes of lengths s(r � 2); s(r � 3); s(r � 4); ::::; s of
the spectrum probes. If j \i

j=1 Bj j = 1 for some i � r, then we have an unambiguous
extension. Otherwise, in the basic scheme we halt and report the current sequence.
More sophisticated algorithms, not discussed in this paper, may explore all branches
of an ambiguous extension, in the expectation that after a small number of extensions

1Agreement is obviously restricted to the speci�ed positions, appropriately shifted.

4



only one branch will be supported by the spectrum.
The success of the above algorithm stems from the fact that up to r probes,

appropriately aligned along the current sequence, are used to con�rm the uniqueness
of a one-symbol extension. One could try to extend the \power" of any set of probes
by using various alignments with the current string. The advantage of the set GP (s; r)
is that the probability of ambiguous extension in each of the alignments, with respect
to a randomly generated sequence, is almost independent of the other patterns. This
property is central to the analysis presented in the next section.

4 Analysis of the sequencing procedure

We present in this section a relatively simple analysis of the performance of the
algorithm described in the previous section when applied to a spectrum obtained
using GP (s; r) probes. We will show that the performance of this scheme approaches
the information-theoretic lower bound of Theorem 2. To simplify the presentation
we assume again that together with the spectrum the algorithm is provided with the
s(r+1)-pre�x of the target sequence. We will show in section 6 that this assumption
can be removed without altering the performance of the sequencing scheme.

Theorem 3 For constants 1 <  = O(logm) and � = o(logm), such that r and s

are integers, let:

r =
1


log4m+ �

s = log4m+ 1 +  � r:

Let E be the event: The algorithm fails to sequence a random string of length m using
a GP (s; r) spectrum of the string. Then:

Pr(E) � 4�(1+�):

Proof:

Let t = ft; t0; t1; : : : ; trg; denote a vector of r + 2 positions in the target string,
and let A(t) denote the event: there are substrings in the target sequence a(1;m) that
satisfy the following relations:

a(t0+1;t0+s�1) = a(t+1;t+s�1) B0(t)
at0+is = at+is 1 � i � r: C0(t)
at0+(r+1)s 6= at+(r+1)s D0(t)

For 1 � j � r

a(tj+1;tj+s�1) = a(t+js+1;t+(j+1)s�1) Bj(t)
atj+is = atj�1+(i+1)s 1 � i � r: Cj(t)
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We focus �rst on the success of the algorithm in sequencing all but the last rs
symbols of the target sequence.

Claim 1 The algorithm fails to sequence the m� rs pre�x of the target string if and
only if 9t such that A(t) occurs.

Proof: Assume that the algorithm is trying to extend the current sequence a(1;`�1)
with the next symbol a`. Let t = `� s(r+1). If jB0j > 1 is not a singleton then there
is a probe in the spectrum that matches a(t+1;`�1) but its rightmost symbol b 6= a`.
Denoting by a(t0+1;t0+s(r+1)) the substring of the target string that binds with that
probe, conditions B0 ,C0 and D0 hold.

If \r
j=0Bj is not a singleton, then it contains both a` and b. Thus, for each j there

is a probe in the spectrum, and a corresponding substring a(tj+1;tj+(r+1)s) in the target
sequence, such that the s-pre�x of that substring matches a(t+js+1;t+(j+1)s), and the
locations tj+is of the substring, for 2 � i � r match the corresponding locations (with
a shift of s positions) of the substring a(tj�1+1;tj�1+(r+1)s) as formulated in conditions
Bj and Cj.

2

Let T denote the set of all possible vectors t, so that�
m� 2(r + 1)s

r + 2

�
(r + 2)! � jT j �

�
m

r + 2

�
(r + 2)! < mr+2: (1)

Suppose tj1 < tj2 < : : : < tjr+2 , where (j1; j2; : : : ; jr+2) is a permutation of
(�1; 0; 1; : : : ; r), t � t�1. If tju � tju�1 � s(r + 1), then all regions of de�nition of
a(tj+1;tj+(r+1)s) are disjoint and the 2(r+1) B and C events are trivially independent.

Suppose now that, for some p and q, tp � tq < s(r + 1). The corresponding B
events are still independent among themselves and of the C events, since although
their regions overlap, they constrain disjoint regions (symbols) of a(t+1;t+(r+1)s). The
C events, however, are independent only if tp 6= tq mod s, since in this case their
regions are disjoint; if tp = tq mod s, then their regions overlap and they constrain
overlapping regions of a(t+1;t+(r+1)s): in such case, as few as r + 1 symbols are con-
strained rather than 2(r+1). However, this happens only if tp occurs in one of (r+1)
evenly spaced positions in the range [tq + 1; tq + (r + 1)s]. In such case, we say that
the C event of tp is dependent.

The preceding discussion indicates that the crucial feature of a vector t is the
number �(t) of its dependent C events, which ranges between 0 and r+ 1. Therefore
we de�ne the following sets which partition T :

Ti = ft 2 T : �(t) = ig:

We �rst bound from above the probability of a given event A(t). If t 2 T0 then
the r + 1 probes in the de�nition of A(t) are associated with disjoint regions of the
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string a(1;m), and thus the 2(r + 1) B and C events are independent. Since a B event
constrains s � 1 symbols, a C event constrains r symbols, and one more symbol is
selectable in three ways by D0(t), t 2 T0 fully constrains (r + s� 1)(r + 1) symbols
of a, so that

Pr(A(t)) = 3�

�
1

4

�(r+1)s+r2

t 2 T0 (2)

If t 2 Ti, then i of the C events are dependent and

Pr(A(t)) � 3�

�
1

4

�(r+1)s+r2�ir

t 2 Ti (3)

We now estimate the size of Ti. For i > 0, i of t's components are restricted to
(r+1) speci�ed positions within the (r+1)s-neighborhood of other r+2 components.
Thus

jTij � jT j

�
r + 1

i

��
(r + 1)(r + 2)

m� (r + 1)s

�i

�

�
r + 1

i

�
mr+2

�
(r + 1)(r + 2)

m� (r + 1)s

�i

:

So,
r+1X
i=1

jTij � jT j

r+1X
i=1

�
r + 1

i

��
(r + 1)(r + 2)

m� (r + 1)s

�i

� jT j(1 + o(1))
(r + 1)(r + 2)

m
= o(jT j): (4)

We can now bound the probability of an event A(t) for t 2 Ti, i � 1:

Pr(9t 62 T0 : A(t)) �

r+1X
i=1

�
r + 1

i

��
(r + 1)(r + 2)

m� (r + 1)s

�i

mr+23

�
1

4

�(r+1)s+r2�ir

= 3
m2

4(+1)r+s

r+1X
i=1

�
r + 1

i

��
(r + 1)(r + 2)4r

m

�i

= o(1):

(This bound makes use of the condition � = o(logm) to get 4rr2 � m.)
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Let I(t) be a binary variable such that I(t) = 1 if and only if event A(t) occurs,
and let Z =

P
t2T0

I(t). Then

Pr(9t 2 T0 : A(t)) � E[Z]:

Using (1), (2) and (4) we get

E(Z) = (1 + o(1))

�
m

r + 2

�
(r + 2)!� 3 �

�
1

4

�(r+1)s+r2

= (1 + o(1))
3m2

4s

� m

4s+r

�r

= (1 + o(1))
3m2

4s+(1+)r

= (1 + o(1))3 � 4�(1+(1+�)):

Thus, the probability that the algorithm fails to sequence all but the last rs

symbols of the sequence is bounded from above by

Pr(9t 62 T0 : A(t)) + Pr(9t 2 T0 : A(t))

� o(1) + (1 + o(1))3 � 4�(�++1) � 4�(�+1):

Finally, if for all m � 2(r + 1)s < t � m � (r + 1)s we do not have the event
B0(t) \ C0(t) \ D0(t) the last (r + 1)s symbols are uniquely determined. But

Pr
� m�(r+1)s[
t=m�2(r+1)s+1

(B0(t) \ C0(t) \ D0(t)
�
� 3rs4�(r+s) = o(1):

2

At this point one might wish to try to prove that the limiting distribution of Z is
Poisson with mean 3� 4�(�++1). We did try to use the Stein-Chen method, see for
example [AGG89]. It seems however that Z does not satisfy the requisite conditions
and we leave it as an open problem to determine the limiting distribution.

The procedure described and analyzed above, which involves (r+1) fooling probes
shifted at regular intervals of s positions, will be briey referred to as forward sequenc-
ing. We shall now show that the GS(s; r) spectrum, used in forward sequencing, can
also be used for sequencing in reverse.

Let � denote a string over the alphabet fX;Ug. By FSu(�) we denote the sequence
reconstruction process based on probes of type �, whose con�rmatory probes are
shifted forward at regular intervals of u positions. By RSu(�) we denote the analogous
notion for sequencing in reverse. Two sequencing processes are equivalent (�) if their
respective events of the typeA(t), de�ned in the proof of Theorem 3, are characterized
by the same parameters and occur with the same probabilities. Starting from the
standard pattern Xs(U s�1X)r, we shall establish:
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1. RS1(Xs(U s�1X)r) �FS1((XU s�1)rXs).

2. FS1((XU s�1)rXs) �FSr+1(Xr+1(U rX)s�1).

Statement 1 is immediate, since it simply corresponds to exchanging right-to-left
shifts with left-to-right shifts. Statement 2 is established as follows. We represent a
probing pattern by a 0� 1 polynomial in the indeterminate x, where a term xj corre-
sponds to an X-symbol in the (j +1)-st position (from the left). [Thus, (XU s�1)rXs

corresponds to the polynomial p(x) =
Pr�1

j=0 x
js + xrs

Ps�1
i=0 x

i.] If we now subject the
pattern to a "shu�e" rearrangement, denoted �, of its positions:

�(i) = i(r + 1) mod ((r + 1)s� 1); 0 � i � (r + 1)s� 2
�((r + 1)s� 1) = (r + 1)s� 1:

we transform p(x) ( mod x(r+1)s�1) to

r�1X
j=0

(xr+1)js + (xr+1)rs
s�2X
i=0

(xr+1)i =
r�1X
j=0

xj + xr
s�2X
i=0

x(r+1)i:

The corresponding probe pattern is Xr+1(U rX)s�1, appearing in Statement 2. In
addition, a 1-position right-shift of the pattern (XU s�1)rXs corresponds to an (r+1)-
position right-shift of the pattern Xr+1(U rX)s�1. Since only a rearrangement of
positions has been executed, the two processes are equivalent.

We now observe that Xr+1(U rX)s�1 is a standard probing pattern used in a for-
ward sequencing process. Thus, Theorem 3 fully applies, with the simple modi�cation
of interchanging parameters r and s� 1, and we conclude:

Theorem 4 For constant 1 <  = O(logm) and � = o(logm), such that r and s are
positive integers, let:

s = 1 +
1


log4m+ �

r = log4m+ 1 +  � s:

The algorithm fails to sequence in reverse a random string of length m using the
GP (s; r) spectrum of the string with probability at most 4�(1+�).

5 Removing the pre�x requirements

The sequencing procedure outlined above requires a \seed" of length s(r + 1) =
O((logm)2) symbols to \bootstrap" the process. We o�er three solutions, two bio-
chemical and one algorithmic, to remove this requirement. The two biochemical
methods may be more practical.
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If the SBH process is used to sequence one string of length m, the simplest solution
is to synthesize a short \primer' (a string of length O((logm)2) ) and attach it to the
beginning of the string, thus providing the required pre�x of the target string.

In most applications, however, one needs to sequence a string that is substantially
longer than can be handled by SBH chips, even using our novel scheme. The stan-
dard solution is to fragment the target sequence to produce a collection of overlapping
substrings of sizes that can be handled by the SBH method. Once each of the sub-
strings is sequenced, standard techniques [W95] reconstruct the entire string. Since
the substrings overlap, it is not necessary to sequence the beginning and the end of
each substring. We still, however, need to provide the algorithm with a seed sequence
of length O((logm)2) for each substring of length m. This could be achieved by the
following three steps: (1) Isolate a short, O((logm)2), piece of the target sequence
and sequence it using O(4 log logm) solid (no gaps) probes (traditional method). (2)
Use GP (s; r) probes for the forward sequencing of the portion of the target from the
isolated piece to (almost) the end of the sequence. (3) Use the same set of GP (s; r)
probes for the reverse sequencing of the portion from the isolated piece to the begin-
ning of the sequence.

Finally, we mention a purely combinatorial/algorithmic approach to remove the
pre�x requirement. A probe is selected at random from the spectrum and its unspec-
i�ed positions (corresponding to the \don't care" gaps) are "�lled" consistently with
the spectrum. This results in a number of strings of length s(r+1)+s�1 = s(r+2)�1,
a subset of which correspond to actual substrings of the target sequence. Only these
legitimate substrings are expected to be extensible by forward sequencing. Reverse
sequencing of the terms that have been successfully extended in the forward direction,
will complete the process.

Acknowledgement: We thank Iddo Lev for carefully reading a draft of the paper
and providing several helpful remarks.
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