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Abstract

In a recent paper [PFU99] we have introduced
a novel probing scheme for DNA sequencing
by hybridization (SBH). The new gapped-probe
scheme combines natural and universal bases in
a well de�ned periodic pattern. It was shown in
[PFU99] that the performance of the gapped-
probe scheme (in terms of the length of a se-
quence that can be uniquely reconstructed us-
ing a given library size of probes) is signi�-
cantly better than the standard scheme based
on oligomer probes.

In this paper we present and analyze a new,
more powerful, sequencing algorithm for the
gapped-probe scheme. We prove that the new
algorithm exploits the full potential of the SBH
technology with high-con�dence performance,
that comes within a small constant factor (about
2) of the information-theory bound. Moreover,
this performance is achieved while maintain-
ing running time linear in the target sequence
length.

1 Introduction

Sequencing by hybridization [BS91, L+88, D+89,
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P89, PL94, W95] is a novel DNA sequencing
technique in which an array (SBH chip) of short
sequences of nucleotides (probes) is brought in
contact with a solution of (replicas of) the tar-
get DNA sequence. A biochemical method de-
termines the subset of probes that bind to the
target sequence (the spectrum of the sequence),
and a combinatorial method is used to recon-
struct the DNA sequence from the spectrum.
Since technology limits the number of probes
on the SBH chip, a challenging combinatorial
question is the design of a smallest set of probes
that can sequence an arbitrary DNA string of
a given length.

Current implementations of SBH use "classi-
cal" probing schemes, i.e., chips accommodat-
ing all 4k k-mer oligonucleotide ("solid" probes
with no gaps), the symbols being the well-known
DNA bases f A,C,G,T g and k being a technology-
dependent integer parameter. Pevzner
et al. [P+91, PL94, W95] observed that the ex-
pected length of unambiguously reconstructible
sequences with solid length-k probes is O(2k)
and a tight bound of the same order has been
proven in [DFS94]. These results were con-
�rmed by extensive simulations. Note, how-
ever, that an information-theoretic argument
yields an upper bound O(4k).

In a recent paper [PFU99] we have intro-
duced a novel probing scheme for DNA sequencing-
by-hybridization. This method, which uses prob-
ing patterns with a well-de�ned periodic gap
structures (and rests on the deployment of uni-
versal bases for the realization of the gaps) over-



comes the well-known shortcomings of tradi-
tional SBH based on oligomer probes, which
had raised a negative prognosis for the com-
petitiveness of the approach. We had shown
that a simple algorithm, which reconstructs the
target sequence from its spectrum symbol-by
symbol and halts the process (declares failure)
when more that one extension is con�rmed by
a chosen number of probes, dramatically im-
proves over the oligomer method and, with a
high level of con�dence, can correctly recon-
struct sequences whose length m is "asymp-
totically" optimal ( for example, for 8 speci-
�ed nucleotides and con�dence 0.95, the sim-
ple algorithm achieves m � 2000, against the
information-theoretic bound of 32768).

The asymptotic result, however, despite its
inherent signi�cance for a problem that has been
the focus of considerable research interest for
a decade, did not fully reveal the potential of
the approach. In this paper we present a novel,
more powerful algorithm, that provably exploits
the potential of the probing scheme. In addi-
tion, we present a combinatorially subtle proba-
bilistic analysis, based on the hypothesis of tar-
get sequences generated by a maximum-entropy
memoryless source, and show that the high-
con�dence performance comes within a
constant factor (about 2) of the information-
theory bound. Our analysis is, of course, con-
�ned to sequences generated by the above ran-
dom process, as has been the practice in pre-
vious analogous analyses. Unfortunately, very
little is known about a corresponding probabil-
ity model for natural sequences, but extensive
simulations with sequences of known genomes
(Haemophilus inuenzae, Escherichia coli) show,
despite an expected minor degradation due to
the constrained randomness of natural DNA,
analogous behavior.

Therefore, the new algorithm improves by
a substantial constant factor over the one of
[PFU99]. This fact, despite its minor signif-
icance in asymptotic analysis, may have enor-
mous practical repercussions. We also note that
the superior performance is achieved while main-

taining O(m) running time, under the criterion
to adopt the smallest feasible k for the givenm.
In Figure 1 we display the diagrams of the prob-
abilities of success (for random sequences) of
the basic and of the advanced algorithms: The
success probability is on the vertical axis, while
the other two axes display sequence length and
the parameter r. To validate the analysis, in
the Appendix we display for comparison corre-
sponding analytical and experimental diagrams
for (4; 4)-probes.

Figure 1: Probability of successful sequence re-
construction for the new algorithm compared to
the basic algorithm (shaded graph), as a func-
tion of target sequence length (< 13; 000) for
and all possible choices of (s; r) with k = 8.

2 Review of the probing scheme

A Sequencing by Hybridization (SBH) chip con-
sists of a �xed number of features. Each feature
can accommodate one probe. A probe is a string
of symbols (nucleotides) from the alphabet

A = f A,C,G,T,*g;



where A,C,G, and T denote the standard DNA
bases and � denotes the \don't care " symbol
(\blank"), implemented using a universal base
[LB94].

The spectrum of a target sequence is the set
of probes that are Watson/Crick-complementary
to a subsequence of the target. A sequencing
algorithm is an algorithm that, given a set of
probes and a spectrum, decides if the spectrum
de�nes a unique DNA sequence, and, if so, re-
constructs that sequence.

A gapped-probe scheme [PFU99] uses a fam-
ily of probes with a well de�ned periodic pat-
tern of gaps ((s; r)-probes). We denote by ap

the p-fold repetition of a string a, and if u is
a binary string, �u is its complementary binary
string.

De�nition 1 For integers r � 0 and s � 1,
a probing pattern is the concatenations usvr of
two periodic strings us and vr, where u and v
are two binary strings related as follows:

u = 1; v = �us�1u; or v = 1; u = v�vr�1

referred to, respectively, as direct and reverse
patterns.

Considering direct patterns, the correspond-
ing probes have the form Xs(�s�1X)r, for inte-
ger parameters s and r, where X ranges over
the alphabet and � is blank. For example, a
(4; 3)-probe has the form

XXXX � � �X � � �X � � �X:

Formally, it is convenient to view an (s; r)-probe
as having s(r + 1) symbols over the extended
alphabet A [ f�g. Of these s(r + 1) symbols
r(s � 1) are blanks, and, since in each probe
there are s+ r positions with an X symbol, the
set of (s; r)-probes has exactly jAjr+s = jAjk
members. Note that the classical scheme is a
very special case since it uses (k; 0)-probes.

For given s and r, the collection of all the
probes of a target sequence a is called the (s; r)�
spectrum of a, or, briey, its spectrum. These

probes are collected by placing the leftmost po-
sition of the probing pattern to correspond to
the i-th position of a, for

i = 1; 2; : : : ; jaj � s(r + 1) + 1;

and extracting the sampled subsequence.
The sequence reconstruction task is a the

symbol-by-symbol construction from the spec-
trum of a putative sequence b, intended to be
identical to the target sequence that originated
the spectrum. Reconstruction succeeds if and
only if sequence b coincides with sequence a.

Given a sequence b (the current putative se-
quence), bi denotes its i-th symbol and b(i;j) =
bibi+1 : : : bj. The fundamental primitive oper-
ation of sequence reconstruction is extension,
i.e., the addition of one extra symbol to the
current putative sequence. The following al-
gorithm extends a pre�x b(1;`) of the putative
sequence to its right, possibly to its rightmost
end. Obviously ` � (r + 1)s.

Algorithm sequence(S; b(1;`))
The algorithm uses as a subroutine a function
extend(S; q), for some probe q, which returns
a pair (b; w), in which b is a nonempty string
(normally, a single symbol), or a set of symbols,
or the empty symbol �, and, correspondingly,
the parameterw is "continue", or "ambiguous",
or "complete".

1:u continue
2:while (u = continue) do

3: q  b(`�s(r+1)+2;`)�
4: (b; w) extend(S; q)
5: if (w = continue)
6: then

7: b(1;`+jbj)  b(1;`)b
8: ` `+ jbj
9: u w
10:return (b(1;`); w)

The"while"-loop 2-9 normally extends the pu-
tative sequence one symbol at a time. In line
3 a query probe is prepared as the ((r + 1)s �



1)-suÆx of the current putative sequence ex-
tended with a single "blank" (intended to sam-
ple the extension symbol). This query is used
by the function extend (line 4) to interrogate
the spectrum (see next section), and will ob-
tain the set of all the probes matching the query
in their speci�ed positions. If this probe set is
a singleton, then the extension is unique, and
function extend immediately returns a symbol
b, with a certi�cate w = continue. Other-
wise it will interrogate the spectrum for ad-
ditional evidence, and will ultimately return a
pair (b; w) of the forms (b; continue) (b a sym-
bol), (�; complete) (� the empty symbols), or
(B; ambiguous) (B a set of symbols, jBj > 1).
Extension is implemented in line 7. The se-
mantics of the designations f continue, com-
plete, ambiguousg is straightforward. Speci�-
cally, "ambiguous" means that the algorithm is
unable to return a unique extension, and there-
fore the process of complete reconstruction fails
(only a proper pre�x of the target sequence has
been produced).

3 An optimal SBH algorithm and its performance

analysis

Clearly, the crucial component of the method is
the implementation of the function extend(S; q).
In [PFU99] we proposed an implementation, re-
ferred to here as the \basic algorithm", with the
following failure mechanism.

When the interrogation of the spectrum re-
turns a set M0 consisting of more than one
probe (i.e., a potential ambiguous extension),
let B0 be the set of the possible extensions.
The veri�cation is executed as follows. We con-
struct the set M1 of all probes in the spectrum
such that their common (sr�1)-pre�x matches
b(`�sr+1;a`�1), and their (s+1)-suÆxes agree, in
appropriate shifts, with the probes in M0. Let
B1 be the set of symbols appearing in the sr-th
position of the probes in M0. If B0 \ B1 is a
singleton, then we have a unique extension to
the string. Otherwise we continue by construct-
ing the set M2 of the spectrum probes whose

(s(r�1)�1)-pre�x matches b(`�s(r�1)+1;`�1) and
(2s + 1)-suÆx agrees with the probes in M1.
From M2 we construct the corresponding set
B2 of extensions. Again, if B0 \ B1 \ B2 is a
singleton we are done, else we proceed by con-
sidering shorter pre�xes of lengths s(r�2); s(r�
3); s(r � 4); ::::; s of the spectrum probes. If
j \ij=1 Bjj = 1 for some i � r, then we have
an unambiguous extension. Otherwise, in the
basic scheme we halt and report the current se-
quence.

We now present, and discuss in detail, a more
sophisticated technique, referred to as the \ad-
vanced algorithm", which we show to fully ex-
ploit the power of the probing scheme (i.e., to
achieve non-asymptotically the information the-
ory bound).

Advanced algorithm

The next-symbol extension is �rst attempted
using the basic algorithm. Upon detection of
an ambiguous branching (i.e., the event causing
failure of the basic algorithm), the advanced al-
gorithm attempts the extension (based on the
spectrum), up to some maximum length H (a
design parameter) beyond the branching, of all
paths issuing from such branching, and of those
spawned by them, in a breadth-�rst fashion.
Beyond the ambiguous branching each path is
extended on the basis of a single probe: the ab-
sence of any such extending probe causes ter-
mination of the path. This construction stops
either if there remains only one (the correct)
path, or upon reaching the threshold H oth-
erwise. In either case, the algorithm extends
the putative sequence with the longest common
pre�x of all surviving paths, and fails only when
such pre�x is empty. (We show in the next sec-
tion that the threshold H must be chosen ade-
quately larger than rs + 1).

To analyze the performance of the outlined
advanced algorithm, we note that the success
of our approach (for both the basic and the ad-
vanced algorithms) is based on the fact that the
probability of the simultaneous occurrence of a



large number of fooling probes is adequately
small.

We begin by showing the following property
of paths beyond an ambiguous branching.

Lemma 1 After an ambiguous branching with
two or more paths, only one of which is legiti-
mate, both the legitimate path and the spurious
paths are deterministically extended rs times
(so that both diverging paths achieve length rs+
1 beyond the branching).

Proof: Let p(1;`) denote the segment of the cor-
rect (legitimate) path such that the ambigu-
ous extension occurs at position t = (r + 1)s.
Also, let w denote the probing pattern and let
w(i) = w \ p(i;i+t�1), i.e., the probe correspond-
ing to (its leftmost symbol in) position i of
segment p(1;`). Note that w(i) is a string of
t � 1 symbols with "don't care" � in the po-
sitions where the probing pattern has univer-
sal bases. Since we have an ambiguous ex-
tension at position t, the spectrum contains at
least one complete set of (r+ 1) fooling probes
q(1); q(2); : : : ; q(r+1) supporting the (incorrect)
extension symbol a1 6= pt. These fooling probes
are q(1) = w(1)a1 with a1 6= pt, and q(i) =
w
(s+1)
(1;s�1)q

(i�1)
(s;t�s)(�s�1ai), with arbitrary ai. For all

positions in the range [t+ 1; 2t� s]� I, where
I = t+ is; i = 1; 2; : : : ; r, the (existing) probe
that extends the correct path also extends the
spurious path since it does not overlap with any
of the symbols a1; a2; : : : ; ar. Extension in po-
sition t+ is 2 I, i = 1; 2; : : : ; r, of the spurious
path is provided by fooling probe q(i).

2

This result shows that we must select H >
rs + 1 and a quantitative criterion will be for-
mulated on the basis of Theorem 1. Assuming
conventionally as position 1 the position of the
ambiguous branching, beyond position rs + 1
the correct path is deterministically extended,
but spurious paths must be supported by fool-
ing probes present in the spectrum.

Whereas in the basic algorithm [PFU99],
which halts upon detection of an ambiguous

branching, there is a single event that charac-
terizes the algorithm's failure (the presence in
the spectrum of r + 1 fooling probes support-
ing a spurious extension), we shall see that the
advanced algorithm being analyzed has a more
complex failure mechanism.

We begin with a technical lemma. With ref-
erence to a segment a(t+1;t+2(r+1)s�1) of the tar-
get sequence, de�ne probe tj, j = 0; : : : ; r, as a
subsequence such that for i = 2; : : : ; r + 1

a(tj+1;tj+s) = a(t+js+1;t+(j+1)s);

atj+is = at+(j+i)s:

The span of a probe is the interval between its
�rst and last designated symbol.

Lemma 2 The probability

Prob((t1; : : : ; tr)jt0)
of t = (t1; : : : ; tr) occurring, conditional on
t0, in a target sequence of length m is bounded
above by
�
m

4k
+

1

3 � 4s�1

�r

=
�m
4k

�r �
1 +

4r+1

3m

�r

Proof: Given two distinct probes ti and tj,
ti < tj, whose spans are not disjoint (i.e., tj �
ti < (r + 1)s), we note that only for tj = ti
mod s they intersect in more than one symbol.
In all other cases their intersection is exactly
one symbols, but since they constrain di�erent
symbols of the correct segment, it is as if their
spans were disjoint. When tj = ti + hs; h =
1; : : : ; r probe tj constrains s � 1 + h rather
than k symbols. In such case we say that the
two probes technically overlap.

To describe probe overlap, with each vector
t we associate a vector �(t) = (�1; : : : ; �r) over
the integer labels f0; 1; : : : ; rg, where �i = �j if
ti and tj overlap and the leftmost occurrences
of each value form the sequence 0; 1; 2; : : : . The
probability of vector t is determined by the
number of its \sites" (distinct values of the com-
ponents of �(t)) and by the amounts of over-
lap between consecutive probes occurring at the



same site. Speci�cally, if pj�1 is the probabil-
ity of the j-pre�x of �(t), then pj = pj�1qj,
and qj is the total probability of the following
set of events: either tj de�nes a new site (with
probability� m=4k) or tj overlaps with a previ-
ously de�ned site ( with probability 1=4s�1+hi ,
where hi = j � i, i < j, and �i is the rightmost
probe at that site). It follows that qj is at most
m=4k +(1=4s�1)

Pj

i=1 1=4
hi < m=4k +1=3:4s�1.

By a straightforward induction the lemma fol-
lows.

2

By the same argument, we establish that
de�ning as tj, j = r + 1; : : : ; k � 1, the subse-
quence

a(tj+1;tj+s) = a(t+rs+j;t+(r+1)s+j�1);

atj+is = at+j+(r+i)si;

for i = 2; : : : ; r + 1, we obtain

Corollary 1 The probability

Prob((tr+1; : : : ; tk�1)jtr)

of t = (tr+1; : : : ; tk�1) occurring, conditional on
tr, in a target sequence of length m is bounded
above by

�
m

4k
+

1

3 � 4r
�s�1

=
�m
4k

�s�1
�
1 +

4s

3m

�s�1

We now prove the main result of this paper.

Theorem 1 The probability that the advanced
algorithm fails to reconstruct a (maximum-entropy)
random DNA m-mer is bounded above by

3m
��

m

4k

�k �
1 + 4r+1

3m

�r �
1 + 4s

3m

�s�1
+ 4k

4k�m

m

4(r+1)s

�
(1)

Proof: With the previous notation, extension
beyond position rs+ 1 occurs supported either
by fooling probes (probabilistically) or by a seg-
ment of the target sequence (deterministically).

We consider the �rst case, denoted here Event
E1.

1. Event E1. A spurious path, starting at po-
sition 1 (deterministically extended up to posi-
tion rs+1 by Lemma 1) is extended up to posi-
tion H. Extension between positions rs+2 and
H must be supported by fooling probes. Let fp
be the probability of extension up to position
rs + p. Clearly, f1 = 1. Extension to posi-
tion rs+ p+1 occurs either if the current fool-
ing probe is isolated and therefore constrains all
but its last symbol (with probability m=4k�1),
or if it overlaps with a subset of the preceding
(r+1)s�1 fooling probes. Arguing as in Lemma
2, we only need consider the closest among the
overlapping probes: therefore, arguing in terms
of constrained symbols, we conclude that

fp+1 < fp

�
m

4k�1
+

4

3
(
1

4r
+

1

4s�1
)

�

=

�
m

4k�1
(1 +

4s�1 + 4r

3m
)

�p

It is immediate that the above quantity van-
ishes exponentially with p, so that, assuming
that an appropriate (small) value of p is adopted,
Event E1 will be neglected henceforth.

When the path extension is deterministically
supported by a sequence segment, the latter ei-
ther does not contain (Event E2) or does contain
(Event E3) the ambiguous-branching position.
We now examine these two cases.

1. Event E2. In this case, the spectrum pro-
vides evidence of two segments au2 and bu2
with ju2j = (r + 1)s � 1, jaj = jbj = 1 and
a 6= b: Extension of both paths proceeds deter-
ministically and the algorithm fails. The target
sequence contains the (correct) segment u1au2
(with ju1j = (r + 1)s � 1) while u1bu2 is (nor-
mally) emulated by fooling probes. With the
only simplifying assumption that u1au2 and the
fooling probes are disjoint, we remark: The
position of u1au2 can be chosen in (approxi-
mately) m ways, symbol b can be chosen in 3



ways, and the probability that u1bu2 be emu-
lated by fooling probes is Prob(t0; t1; : : : ; tk�1).
Using Lemma 2, Corollary 1, and the fact that
the probability of probe t0 is (3m=4k), we ob-
tain that the probability of event E1 is bounded
above by

m
3m

4k

�m
4k

�r �
1 +

4r+1

3m

�r �m
4k

�s�1
�
1 +

4s

3m

�s�1

= 3m
�m
4k

�k�
1 +

4r+1

3m

�r�
1 +

4s

3m

�s�1

2. Event E3. The target sequence contains an
actual branching point, i.e., it contains the (cor-
rect) string u1v1au2v2 (with ju1v1j = ju2v2j =
(r + 1)s � 1,jaj = 1, jv1au2j = (r + 1)s, and
0 � jv1j < (r+1)s) and a (fooling) string v1bu2
with b 6= a. In addition, depending upon the
length ju1j there are at most (k � 1) fooling
probes emulating the subsequence u1v1b. The
probability of the occurrence of v1bu2 is approx-
imately m=4(r+1)s, and the probability of the
emulated subsequence u1v1b is easily shown to
be bounded above by 4k=(4k � m). It follows
that the probability of event E2 is at most

3m
4k

4k �m

m

4(r+1)s

Since only Events E2 and E3 are signi�cant
for the failure of the algorithm, the theorem is
proved. 2

Remark. For a reasonably small value of p,
choosing H = rs+1+ p guarantees that Event
E1 can be neglected. Referring to Expression
(1), the second term is dominant for small and
large values of r, but it becomes negligible for
the most eÆcient choices of r, i.e., for r � s �
1. Therefore, for r � s � 1 � k=2, we obtain
(1 + 4r+1

3m ) � (1 + 4s

3m) � 1 and

Prob(failure) � 3m
�m
4k

�k

so Prob(failure) < �, for a conveniently small
�, leads to

m < 4k�1� 1
k+1 log2

p
4
3�

i.e., for any �xed con�dence value, the length of
the unambiguously reconstructible sequence is
within a small constant factor of the information-
theoretic bound 4k�

1
2 for very small values of k

(for example, for � = 0:05,k = 9, the exponent
is � 9� 1:23).

4 Running time of the algorithm

Since the algorithm performs a type of \bounded
breadth-�rst-search" of all possible sequence re-
constructions from the given spectrum, it is im-
portant to verify that the running time of the
algorithm is not signi�cantly degraded by this
search. In this section we give a high-con�dence
bound on the execution time. The time perfor-
mance is expressed in terms of number of ac-
cesses to the spectrum, each assumed doable in
O(1) average time by standard hashing tech-
niques.

In our analysis, we assume that the algo-
rithm operates at its best performance for a
given con�dence level, i.e., that m and k are
related by m = 4k�1��, for some � > 0.

Theorem 2 The total number of sequence po-
sitions (one-base extensions) associated with am-
biguous branchings is w.h.p. o(m= logm).

Sketch of proof: We bound the number of
ambiguous branchings on the target sequence.
Arguing as in Lemma 2, we conclude that their
expected number is

� =
3m

4

� m

4k�1

�r+1�
1 +

4r+1

m

�r

Since, m = 4k�1��, and r � (1=4) log2m, we
conclude that � = m1� �

2 , which is strictly sub-
linear in m. Paths issuing from an ambigu-
ous branching are explored only up to length
H = O(rs) = O((logm)2). The probability of



a branch on any path issuing from an ambigu-
ous branching is bounded by

�H
3H

4

� m

4k�1

�r+1�
1 +

4r

m

�r

= o(1)

Thus, we can prove that the total number of
accesses associated with the ambiguous branch-
ings is w.h.p. �H = O(m1� �

2 log2m) = o(m= logm).
2

Theorem 3 The running time of the advanced
algorithm is w.h.p. O(m).

Sketch of proof: The maximumwork at a one
base extension is O(r) = O(logm). Since there
are o(m= logm) extensions associated with spu-
rious paths we can restrict our discussion to the
work on the remainingm0 = �(m) ordinary ex-
tensions of the target sequence.

Arguing as in Lemma 2, the probability that
at least h � r accesses are performed at a spe-
ci�c position is given by

Zh =
3

4

� m

4k�1

�h�
1 +

4r+1

3m

�h�1

and the expected total amount of work done at
ordinary positions is bounded above as follows:

m0

rX
h=1

Zh =
3m0

4

�
1 +

4r+1

3m

�r�1 rX
h=1

� m

4k�1

�h
�

3m0

4

�
1 +

4r+1

3m

�r�1 rX
h=1

�
1

4�

�h

= O(m0) = O(m):

To obtain a high probability bound we ob-
serve that Z =

Pr

h=1 Zh counts the sum of
m(r+1) random binary random variables, and
that the r+1 variables associated with location
t are independent of variables associated with
locations that are at least s(r + 1) positions
away from location t.

Thus, we can partition the sum Z into s(r+
1)2 sums, such that the binary variables in each
sum are independent. Using the Cherno� bound
we show that with high probability the sum Z
is O(m). 2

We close this section by observing, that when
we consider the actual running time of the al-
gorithm for a �xed k and m � 4k�1��, the work
due to the processing of the ambiguous branch-
ing becomes the dominant factor for large val-
ues of m, so that for m 2 [4k�1��=2; 4k�1�� ] the
number of accesses is proportional toO(m log2m).
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