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He too concludes that all is well. This universe hence-
forth without a master seems to him neither sterile
nor futile. Each atom of that stone, each mineral
flake of that night filled mountain, in itself forms a
world. The struggle itself toward the heights is enough
to fill a man’s heart. Onemust imagine Sisyphus happy.

— Albert Camus, TheMyth of Sisyphus





ABSTRACT

Multiple modern applications, ranging from bioinformatics, through job sche-
duling, to software and hardware analysis rely on ability to decide satisfiability
of a given formula in a given logical theory.This decision problem is called sat-
isfiability modulo theories (smt). This thesis focuses on one particular theory,
which is of paramount importance in analysis of software and hardware: the
theory of fixed-size bit-vectors. In particular, this thesis focuses on both the-
oretical and practical aspects of deciding satisfiability of bit-vector formulas
that contain quantifiers.

In the first part of the thesis, we investigate the precise computational com-
plexity of satisfiability of quantified bit-vector formulas in which the values of
bit-widths are encoded in binary or decimal notation, which is often the case
in practice. Afterwards, we introduce an approach to deciding satisfiability of
quantified bit-vector formulas by using binary decision diagrams and abstrac-
tions of bit-vector operations.We also the extend known simplifications of for-
mulas that contain unconstrained variables, i.e., variables that occur only once
in the formula. The thesis further describes our implementation of state-of-
the-art smt solver called Q3B, which uses the approach of solving satisfiabil-
ity of quantified bit-vector formulas by binary decision diagrams and abstrac-
tions and also implements the simplifications using unconstrained variables.
Experimental evaluation shows that the implemented solver Q3B outperforms
other state-of-the-art solvers for quantified bit-vector formulas. Furthermore,
we also investigate the dependence of satisfiability of quantified bit-vector for-
mulas on the bit-widths of the used variables. We show that in most formulas
coming from practical applications, the satisfiability of the formula remains
the same even after reducing the bit-widths in the formula to very small val-
ues. Finally, we show how to use this observation to improve the performance
of quantified bit-vector smt solvers by using reductions of bit-widths in the
input formula.
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1INTRODUCTION

In themodern world, as computer software becomes still more ubiquitous and
complex, there is an increasing need to test it and formally verify its correct-
ness. Several approaches to software verification, such as symbolic execution
or bounded model checking, rely on the ability to decide whether a given first-
order formula in a suitable logical theory is satisfiable. To this end,many of the
tools for software verification use SatisfiabilityModuloTheories (smt) solvers,
which can solve precisely the task of checking satisfiability of a given first-order
formula in a given logical theory.The logical theory describes the set of objects
that can be assigned to variables and also describes the behaviour of operations
and relations. However, classical theories such as the theory of integers or real
numbers are not well suited for software verification. For example, consider
the following program.

int x = read();
int y = read();
int z = read();
if (x != 0 && y != 0)
{

print(z / (x * y));
}

The program contains division by zero precisely if the formula

𝑥 ≠ 0 ∧ 𝑦 ≠ 0 ∧ 𝑥 × 𝑦 = 0

is satisfiable. Although this formula is satisfiable neither for integers nor for
real numbers, the division by zero can indeed happen in the program. This
happens due to overflows, since the operations in the program are computed
modulo 232.

Therefore, for describing software, the natural choice of a logical theory is
the theory of fixed-size bit-vectors, in which the objects are vectors of bits and
its operations and relations precisely reflect computations performed by com-
puters. It is thus not surprising that quantifier-free bit-vector formulas are
used in tools for symbolic execution, bounded model checking, analysis of
hardware circuits, static analysis, or test generation [Cad+08; CDE08; Lei10;
CFM12; Gad+18]. There exist multiple smt solvers that can decide satisfiabil-
ity of quantifier-free bit-vector formulas: for example Beaver [JLS09], Boolec-
tor [Nie+18a], CVC4 [Bar+11], MathSAT5 [Cim+13], mcBV [ZWR16], Open-
SMT [Hyv+16], Sonolar [PVL11], Spear [Hut+07], stp [GD07], uclid [LS04],
Yices [Dut14], or Z3 [MB08].

However, for some applications, quantifier-free formulas are too restrictive
or not expressive enough. For example, the formulas with quantifiers naturally
arise in applications such as synthesis of invariants, ranking functions, or loop
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2 introduction

summaries, or in testing equality of two symbolically represented sets of states
of a program [GSV09; SGF10; Coo+13; KLW15; Mrá+16]. It is therefore not
surprising that recent years have seen several research advances in the field
of solving satisfiability of quantified bit-vector formulas and the field is still
under active development. Despite this, only a few solvers support quantified
bit-vector formulas: namely Boolector [PNB17], CVC4 [Nie+18b], Q3B [JS16],
Yices [Dut15], and Z3 [WHM13].

This thesis contributes both to the theory and to the practice of solving satis-
fiability of quantified bit-vector formulas. As the theory is concerned, the the-
sis provides the precise complexity of this problem given that bit-widths and
all numbers specified the formula are encoded in binary or decimal notation,
which is often the case in practice. The thesis thus answers the open problem
raised by Kovásznai et al. [KFB16]. We solve this problem by showing that the
satisfiability problem of quantified bit-vector formulas with binary-encoded
bit-widths is polynomially equivalent to the problem of solving satisfiability
of second-order propositional formulas. This problem is known to be com-
plete for the class of problems that can be solved by an alternating Turing ma-
chine that can use exponential time but only polynomially many alternations.
The thesis also introduces novel formula simplifications, which are based on
the known simplifications that leverage variables that occur only once in the
input formula. Furthermore, the thesis presents a novel approach to solving
quantified bit-vector formulas that is based on binary decision diagrams. This
approach is further extended by approximations and abstractions that can im-
prove its efficiency.

From the practical point of view, the introduced techniques have been im-
plemented in an smt solver Q3B and experimentally shown to outperform
other state-of-the-art smt solvers for quantified bit-vectors. Furthermore, the
thesis offers experimental insight into the behaviour of quantified bit-vector
formulas when the bit-widths of their variables are modified. The performed
experiments confirm the natural hypothesis that satisfiability of the vast num-
ber of the quantified bit-vector formulas mostly does not depend on the bit-
widths of the used variables. The thesis also introduces a technique that lever-
ages this insight to speed-up quantified bit-vector solvers by first solving the
input formula with smaller bit-width of variables and then verifying the ob-
tained model or countermodel against the original formula.

There are three high-level topics that are recurring throughout the thesis.

• The first of these is the influence of bit-widths of variables of the formula
on its satisfiability and the time that is necessary to solve the formula.
This topic is present in the first part of the thesis that describes the pre-
cise complexity of deciding satisfiability of quantified bit-vector formu-
las with binary encoded bit-widths. It is also present in our experimental
evaluation of the effect of reducing bit-widths of the formula’s variables
on its satisfiability. Furthermore, the topic of bit-widths is present in the
approach of underapproximations and overapproximations, which are
computed by reducing bit-widths of some of the variables, and in the
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approach of mixed approximations, which are computed by reducing
bit-widths of all of the variables in the formula.

• The second recurring topic, which is related to the first one, is the usage
of approximated formulas or abstract computation to improve the solv-
ing time of smt solvers for quantified bit-vector formulas. This topic
is present in the mentioned approximation approaches and in the ap-
proach that computes abstract and imprecise binary decision diagrams
(bdds) for the input formula, which represent only several bits of the
results of the arithmetic operations.

• The third topic concerns binary decision diagrams. These are present in
our approach to solving quantified bit-vector formulas and in the men-
tioned abstraction of results of bit-vector operations, which is described
and implemented in terms of bdds.

1.1 structure of the thesis

The thesis is structured as follows. Chapter 2 defines all the necessary con-
cepts and introduces the notation that is used throughout the thesis. Chapter 3
presents current state of the art in the area of satisfiability modulo the theory
of bit-vectors focused on the formulas with quantifiers.

The rest of the thesis exposes the topics that were described in the previous
section. Namely, Chapter 4 investigates the computational complexity of sat-
isfiability of quantified bit-vector formulas in which the values of bit-widths
are encoded in binary or decimal notation.

The following two Chapters 5 and 6 introduce an approach to deciding sat-
isfiability of quantified bit-vector formulas by using binary decision diagrams
and abstractions of bit-vector operations. Chapter 7 extends known simplifi-
cations of formulas that contain unconstrained variables, i.e., variables that
occur only once in the formula. The following Chapter 8 builds on the preced-
ing three chapters and describes the implementation of our state-of-the-art
smt solver called Q3B, which uses the techniques introduced in these three
chapters. Chapter 9 is devoted to experimental evaluation of Q3B: it provides
the comparisonwith other state-of-the-art solvers for quantified bit-vector for-
mulas and it also experimentally evaluates the effect of all the mentioned tech-
niques on the performance of Q3B.

The final two Chapters 10 and 11 investigate the dependence of satisfiabil-
ity of quantified bit-vector formulas on the bit-widths of the used variables.
The former of these two chapters experimentally shows that in most formulas
coming from practical applications, the satisfiability of the formula remains
the same even after reducing the bit-widths in the formula to very small val-
ues.The latter chapter presents our ongoing research that uses this observation.
Namely, the chapter introduces an approach that can speed up quantified bit-
vector smt solvers by using reductions of bit-widths in the input formula and
extensions of the obtained models and countermodels.
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1.2 author’s publications and contribution

1.2.1 Publications Related to the Thesis

Each of the Chapters 4 to 8 and 10 is based on the eponymous paper of which
I am the main author. All the papers were published in a journal or at an inter-
national conference. In the respective order of the chapters, the corresponding
papers are:

information processing letters 135 On the Complexity of the Quan-
tified Bit-Vector Arithmetic with Binary Encoding (M. Jonáš, J. Strej-
ček) [JS18c].

My contribution: I have proven all the results and written most of the
paper. 90%

sat 2016 Solving Quantified Bit-Vector Formulas using Binary Decision Di-
agrams (M. Jonáš, J. Strejček) [JS16].

My contribution: I have proposed most of the techniques used in the ap-
proach, written a larger part of the paper, implemented the tool, performed
all the experiments, and analyzed their results. 75%

ictac 2018 Abstraction of Bit-Vector Operations for bdd-Based smt Sol-
vers (M. Jonáš, J. Strejček) [JS18a].

My contribution: I have proposed most of the techniques used in the ap-
proach, written most of the paper, implemented the tool, performed all the
experiments, and analyzed their results. 90%

sat 2017 On Simplification of Formulas with Unconstrained Variables and
Quantifiers (M. Jonáš, J. Strejček) [JS17].

My contribution: I have proposed most of the ideas used in the paper,
written most of the paper, implemented the tool, performed all the exper-
iments, and analyzed their results. 85%

cav 2019 Q3B: An Efficient bdd-Based smt Solver for Quantified Bit-Vect-
ors (M. Jonáš, J. Strejček) [JS19].

My contribution: I have written most of the paper, implemented the tool,
performed all the experiments, analyzed their results, and prepared the
entire attached artifact, which was used during Artifact Evaluation. 90%

lpar 2018 Is Satisfiability of Quantified Bit-Vector Formulas Stable Under
Bit-Width Changes? (M. Jonáš, J. Strejček) [JS18b].

My contribution: I have implemented the tool, performed all the experi-
ments, analyzed their results, and written most of the paper. 95%

Although the chapters are based on the corresponding papers, some of the
material has been rewritten and some new material was added.
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• In addition to information processing letters 135, Chapter 4
contains a precise description of alternating Turing machines, more de-
tails on alternating complexity classes, and discusses in detail the poly-
nomiality of the proposed reduction.

• In contrast to sat 2016, Chapter 5 contains detailed description of bit-
width approximations and proofs of their correctness. Moreover, the
material has been updated to reflect the current implementation of the
approach in Q3B.

• In addition to sat 2017, Chapter 7 describes simplifications using goal
unconstrained terms, which were not present in the original paper.

Moreover, two chapters besides the obvious ones are not based on any cur-
rently published papers. First, Chapter 9 contains an experimental evaluation
of Q3B, which was performed anew for the thesis. Although the experimen-
tal evaluation of Q3B was contained in most of the papers [JS16; JS17; JS18a;
JS19], the new evaluation improves the completeness of the experiments and
strengthens their connection with the rest of the thesis. Second, Chapter 11
is based on the research that is currently ongoing and the chapter presents its
current state.We expect to finish the research after this thesis is submitted and
turn the chapter into a conference paper.

1.2.2 Other Publications

I have also co-authored three more publications. All three of them describe
tools that have competed in the Competition on Software Verification (sv-
comp) [Bey19]. However, the papers are unrelated to the thesis and my con-
tribution in them is only minor: about 5% in each of them.

tacas 2016 Symbiotic 3: New Slicer and Error-Witness Generation (Compe-
tition Contribution) (M. Chalupa, M. Jonáš, J. Slabý, J. Strejček, M. Vi-
tovská) [Cha+16]

tacas 2017 Symbiotic 4: Beyond Reachability (Competition Contribution)
(M. Chalupa, M. Vitovská, M. Jonáš, J. Slabý, J. Strejček) [Cha+17]

tacas 2017 Optimizing and Caching SMT Queries in SymDIVINE (Com-
petition Contribution) (J. Mrázek, M. Jonáš, V. Štill, H. Lauko, J. Bar-
nat) [Mrá+17]





2PRELIMINARIES

This chapter introducesmany-sorted first-order logic, togetherwith the detailed
description of the theory of fixed-size bit-vectors. Further, it introduces binary
decision diagrams, together with their ability to represent sets of bit-vectors.

2.1 mathematical conventions

We denote the set of non-negative integers asℕ and the set of positive integers
as ℕ+. If 𝑎 and 𝑏 are integers, we denote as [𝑎, 𝑏] the set of all integers 𝑥 such
that 𝑎 ≤ 𝑥 ≤ 𝑏. If not stated otherwise, all functions are considered as total. For
defining functions in-place, we sometimes use the standard lambda notation,
e.g., 𝜆𝑥𝜆𝑦. 2𝑥 + 𝑦 is a binary function that sums two times its first argument
𝑥 and its second argument 𝑦. We also sometimes write functions with a finite
domain extensionally, e.g., {1 ↦ 2, 3 ↦ 8} is a function with the domain {1, 3}
and the range {2, 8}, which assigns 2 to 1 and 8 to 3. If convenient, we workwith
functions as with sets of pairs. For example, the union of functions 𝑓∶ 𝐴 → 𝐵
and 𝑔∶ 𝐶 → 𝐷 where 𝐴 ∩ 𝐶 = ∅ is a function 𝑓 ∪ 𝑔∶ (𝐴 ∪ 𝐶) → (𝐵 ∪ 𝐷). If
𝑓 is a function, and 𝑥 and 𝑣 are arbitrary values, we denote as 𝑓[𝑥 ↦ 𝑣] the
function defined by 𝑓[𝑥 ↦ 𝑣](𝑥) = 𝑣 and 𝑓[𝑥 ↦ 𝑣](𝑦) = 𝑓(𝑦) for all 𝑦 ≠ 𝑥
in the domain of 𝑓. When convenient, we identify a nullary function with the
sole element in its range, e.g., for a nullary function 𝑐∶ () → 𝐴, we write only
𝑐 for the element 𝑐() ∈ 𝐴.

For a set 𝐴 and an 𝑛 ∈ ℕ, the set of all vectors of 𝑛 elements over the set
𝐴 is denoted as 𝐴𝑛. Vectors from 𝐴𝑛 are written as lists of their elements; for
example (𝑎, 𝑐, 𝑏, 𝑐) is a vector in {𝑎, 𝑏, 𝑐}4. For 𝑣 ∈ 𝐴𝑛 and 0 ≤ 𝑖 < 𝑛, we denote
as 𝑣𝑖 the element of 𝑣 on the position 𝑖. For example, if 𝑣 = (𝑎, 𝑐, 𝑏, 𝑐), then
𝑣0 = 𝑎 and 𝑣1 = 𝑐.

2.2 many-sorted first-order logic

In this section, we define syntax and semantics of the many-sorted first-order
logic. The definitions used are based on the smt-lib standard [BFT17], Hand-
book of Satisfiability [Bar+09], and the chapter on themany-sorted logic from
the corresponding chapter of H. B. Enderton’s monography [End01].

2.2.1 Syntax

signature Let 𝒮 be a countable set of sort symbols that contains a distin-
guished sort symbol Bool. For each sort 𝜎 ∈ 𝒮, we have a countably infinite
set of variables vars𝜍 = {𝑥𝜍1 , 𝑥𝜍2 , …} such that all such sets are pairwise disjoint.
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8 preliminaries

We denote the union of all vars𝜍 as vars. A signature Σ is a triple (Σ𝑠, Σ𝑓, 𝜏)
consisting of

• a set of sort symbols Σ𝑠 ⊆ 𝒮 that contains the sort Bool,

• a set Σ𝑓 of function symbols,

• a sort mapping 𝜏, which to each function symbol 𝑓 ∈ Σ𝑓 assigns its sort
𝜏(𝑓) = (𝜎1, 𝜎2, … , 𝜎𝑛, 𝜎) for some 𝑛 ≥ 0 and 𝜎, 𝜎1, 𝜎2, … , 𝜎𝑛 ∈ Σ𝑠.

The number 𝑛 in the previous definition is called the arity of the correspond-
ing function symbol. Function symbols with arity 0 are called constants. In the
rest of this section, fix an arbitrary signature Σ = (Σ𝑠, Σ𝑓, 𝜏).

terms and formulas The sets ofΣ-terms of sort𝜎 are defined inductively,
simultaneously for all 𝜎 ∈ Σ𝑠:

1. for all 𝜎 ∈ Σ𝑠, each 𝑥𝜍𝑖 ∈ vars𝜍 is a Σ-term of the sort 𝜎,

2. if 𝑓 ∈ Σ𝑓 is a function symbol of sort (𝜎1, 𝜎2, … , 𝜎𝑛, 𝜎) and 𝑡1, 𝑡2, … , 𝑡𝑛 are
Σ-terms of sorts 𝜎1, 𝜎2, … , 𝜎𝑛, respectively, then 𝑓(𝑡1, 𝑡2, … , 𝑡𝑛) is a Σ-term
of the sort 𝜎,

3. ⊤ and ⊥ are Σ-terms of the sort Bool,

4. if 𝜑1 and 𝜑2 are Σ-terms of the sort Bool, then also ¬𝜑1, 𝜑1 ∧ 𝜑2, and
𝜑1 ∨ 𝜑2 are Σ-terms of the sort Bool,

5. if 𝜑 is a Σ-term of the sort Bool and 𝑥𝜍𝑖 ∈ vars, then ∀𝑥𝜍𝑖 𝜑 and ∃𝑥𝜍𝑖 𝜑 are
also Σ-terms of sort Bool,

6. if 𝜑 is a Σ-term of the sort Bool and 𝑡1, 𝑡2 are Σ-terms of a sort 𝜎, then
also ite𝜍(𝜑, 𝑡1, 𝑡2) is a term of the sort 𝜎.

Note that in contrast to the standard treatment of the single-sorted first-order
logic, which differentiates between Σ-formulas and Σ-terms, in the many-sort-
ed case, both of these are Σ-terms, albeit of the different sorts. Therefore, to
make the distinction explicit, we call all Σ-terms of the sort Bool Σ-formulas
and denote them by the lowercase Greek letters 𝜑, 𝜓, 𝜌, etc. Additionally, Σ-
formulas that have no proper subterms of the sort Bool as called atomic Σ-
formulas. We say that an occurrence of a Σ-formula 𝜓 in the Σ-formula 𝜑 has
the positive polarity if the occurrence is under an even number of negations
and that it has the negative polarity otherwise.

If 𝑡 is a Σ-term, we denote the set free variables that occur in 𝑡 as vars(𝑡).

formula manipulations If 𝜑 is a Σ-formula and 𝑡, 𝑠 are Σ-terms of the
same sort, we use 𝜑[𝑡 ← 𝑠] to denote the results of substituting every occur-
rence of 𝑡 in 𝜑 by 𝑠. More generally, for Σ-terms 𝑡1, 𝑠1, 𝑡2, 𝑠2, …, 𝑡𝑛, 𝑠𝑛, where
each two Σ-terms 𝑡𝑖 and 𝑠𝑖 have the same sort, we denote as 𝜑[𝑡1 ← 𝑠1, 𝑡2 ←
𝑠2, … , 𝑡𝑛 ← 𝑠𝑛] the result of simultaneous substitution of each occurrence of 𝑡𝑖
in 𝜑 by 𝑠𝑖. In particular, if 𝑥 is a variable, then 𝜑[𝑥 ← 𝑡] is the result of substi-
tuting the variable 𝑥 by the Σ-term 𝑡.
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2.2.2 Semantics

structures A Σ-structureℳ is a pair (𝜈, (_)ℳ), where

• 𝜈 is a function that assigns to each sort 𝜎 ∈ Σ𝑠 a non-empty set 𝜈(𝜎),
which is called its domain.The function has to assign disjoint sets 𝜈(𝜎)∩
𝜈(𝜎′) = ∅ to all sorts 𝜎 ≠ 𝜎′ and to the sort Bool, it has to assign the two-
element set 𝜈(Bool) = {1, 0};

• (_)ℳ is a function that assigns to each function symbol 𝑓 ∈ Σ𝑓 of a sort
𝜏(𝑓) = (𝜎1, 𝜎2, … , 𝜎𝑛, 𝜎) a function 𝑓ℳ ∶ 𝜈(𝜎1)×𝜈(𝜎2)×…×𝜈(𝜎𝑛) → 𝜈(𝜎).

The elements of 𝜈(𝜎) for some sort 𝜎 ≠ Bool are called objects of the given
Σ-structure.

evaluation Let ℳ = (𝜈, (_)ℳ) be a Σ-structure and 𝜇 be a compatible
mapping, which assigns a value 𝜇(𝑥𝜍𝑖 ) ∈ 𝜈(𝜎) to each variable 𝑥𝜍𝑖 ∈ vars, 𝜎 ∈
Σ𝑠. We define an evaluation function J_Kℳ𝜇 , which assigns a value J𝑡Kℳ𝜇 ∈ 𝜈(𝜎)
to each Σ-term of a sort 𝜎.This function is defined recursively on the structure
of the Σ-term:

1. For variables J𝑥𝜍𝑖 Kℳ𝜇 = 𝜇(𝑥𝜍𝑖 ).

2. For applications of function symbols,

J𝑓(𝑡1, … , 𝑡𝑛)Kℳ𝜇 = 𝑓ℳ(J𝑡1Kℳ𝜇 , … , J𝑡𝑛Kℳ𝜇 ).
3. For Boolean constants, J⊤Kℳ𝜇 = 1 and J⊥Kℳ𝜇 = 0.

4. For Boolean connectives:
a) J¬𝜑1Kℳ𝜇 = 1 if J𝜑1Kℳ𝜇 = 0; it is 0 otherwise.
b) J𝜑1 ∧ 𝜑2Kℳ𝜇 = 1 if J𝜑1Kℳ𝜇 = 1 and J𝜑2Kℳ𝜇 = 1; it is 0 otherwise.
c) J𝜑1 ∨ 𝜑2Kℳ𝜇 = 1 if J𝜑1Kℳ𝜇 = 1 or J𝜑2Kℳ𝜇 = 1; it is 0 otherwise.

5. For quantifiers:
a) J∀𝑥𝜍𝑖 𝜑Kℳ𝜇 = 1 if J𝜑Kℳ𝜇[𝑥𝜍𝑖 ↦𝑣] = 1 for all values 𝑣 ∈ 𝜈(𝜎); it is 0

otherwise.
b) J∃𝑥𝜍𝑖 𝜑Kℳ𝜇 = 1 if there is a value 𝑣 ∈ 𝜈(𝜎) such that J𝜑Kℳ𝜇[𝑥𝜍𝑖 ↦𝑣] = 1;

it is 0 otherwise.

6. For if-then-else function, Jite𝜍(𝜑, 𝑡1, 𝑡2)Kℳ𝜇 = J𝑡1Kℳ𝜇 if J𝜑Kℳ𝜇 = 1; it isJ𝑡2Kℳ𝜇 otherwise.

interpretations A Σ-interpretation is a pair (ℳ, 𝜇) of a Σ-structure and
a compatiblemapping 𝜇 that to each variable assigns a value of the correspond-
ing sort. A Σ-interpretation (ℳ, 𝜇) is said to satisfy a Σ-formula 𝜑 if J𝜑Kℳ𝜇 = 1.
We denote this fact as (ℳ, 𝜇) ⊧ 𝜑 and call such a Σ-interpretation (ℳ, 𝜇) a
model of the Σ-formula 𝜑.
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theories A theory is a pair 𝒯 = (Σ, 𝐼), where Σ is a signature and 𝐼 is a
non-empty class of Σ-interpretations, which are called 𝒯-models or models of
the theory 𝒯. A Σ-interpretation from 𝐼 that is a model of a Σ-formula 𝜑 is
called a 𝒯-model of the Σ-formula 𝜑. A Σ-formula is called 𝒯-satisfiable or sat-
isfiablemodulo𝒯 if it has a𝒯-model; it is called𝒯-unsatisfiable or unsatisfiable
modulo 𝒯 otherwise.

Two Σ-formulas 𝜑 and 𝜓 are called 𝒯-equivalent if the equality J𝜑Kℳ𝜇 =J𝜓Kℳ𝜇 holds for each 𝒯-model (ℳ, 𝜇). Two Σ-formulas 𝜑 and 𝜓 are called 𝒯-
equisatisfiable if they are both 𝒯-satisfiable or both 𝒯-unsatisfiable. If 𝜑 is a
Σ-formula and Γ is a set of Σ-formulas, we say that Γ entails 𝜑 in 𝒯, written
Γ ⊧𝒯 𝜑, if every Σ-interpretation in 𝐼 that satisfies all Σ-formulas in Γ also sat-
isfies 𝜑. If∅ ⊧𝒯 𝜑, the formula 𝜑 is called𝒯-valid or a theory lemma. Note that
this means that 𝜑 is satisfied by all Σ-interpretations in 𝐼.

2.3 theory of fixed-size bit-vectors

This thesis is focused on one particular theory, the theory of fixed-size bit-
vectors (or bit-vector theory for short). Intuitively, the objects of models of this
theory are vectors of bits, i.e. words from {0, 1}+, and the functions correspond
to bit-wise operations on the individual bits and to arithmetic operations on
the binary numbers that are represented by these bits. Bit-vectors are divided
according to their length, or bit-width; for each possible bit-width the theory
contains the respective sort.We now define syntax and semantics of the theory
of fixed-size bit-vectors precisely.

2.3.1 Syntax

We denote the sort of bit-vectors of the bit-width 𝑛 as [𝑛]. The signature of the
bit-vector theory is then Σ𝐵𝑉 = (Σ𝑠𝐵𝑉 , Σ

𝑓
𝐵𝑉 , 𝜏𝐵𝑉), where the set of sort symbols

is

Σ𝑠𝐵𝑉 = {Bool} ∪ {[𝑛] ∣ 𝑛 ∈ ℕ+} ,

the set of function symbols is Σ𝑓𝐵𝑉 = 𝐹 ∪ 𝑃 with the set 𝐹 defined as

𝐹 = ⋃
𝑛∈ℕ+

{0[𝑛], 1[𝑛], … , (2𝑛 − 1)[𝑛]} ∪

∪ ⋃
𝑛∈ℕ+

{−[𝑛], +[𝑛], ×[𝑛], /[𝑛]ᵆ , %[𝑛]
ᵆ , /[𝑛]𝑠 , %[𝑛]

𝑠 } ∪

∪ ⋃
𝑛∈ℕ+

{∼[𝑛], &[𝑛], ∣[𝑛],≪[𝑛],≫ᵆ
[𝑛],≫𝑠

[𝑛]} ∪

∪ {concat[𝑚,𝑛] ∣ 𝑚, 𝑛 ∈ ℕ+} ∪

∪ ⋃
𝑚,𝑛∈ℕ+

{signExtend[𝑛]𝑚 , zeroExtend[𝑛]𝑚 } ∪

∪ {extract[𝑛]𝑗,𝑖 ∣ 𝑛, 𝑖, 𝑗 ∈ ℕ+, 𝑖 ≤ 𝑗 < 𝑛} ,
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Symbol 𝑓 Sort 𝜏𝐵𝑉(𝑓) Intended meaning

0[𝑛], 1[𝑛], … [𝑛] natural number constants
∼[𝑛] [𝑛] → [𝑛] bit-wise negation
&[𝑛], ∣[𝑛] [𝑛] × [𝑛] → [𝑛] bit-wise and, or
≪[𝑛],≫ᵆ

[𝑛] [𝑛] × [𝑛] → [𝑛] logical shift left and right
≫𝑠

[𝑛] [𝑛] × [𝑛] → [𝑛] arithmetic shift right
−[𝑛] [𝑛] → [𝑛] arithmetic negation
+[𝑛], ×[𝑛] [𝑛] × [𝑛] → [𝑛] addition, multiplication
/[𝑛]ᵆ , %[𝑛]

ᵆ [𝑛] × [𝑛] → [𝑛] unsigned division, remainder
/[𝑛]𝑠 , %[𝑛]

𝑠 [𝑛] × [𝑛] → [𝑛] signed division, remainder
concat[𝑚,𝑛] [𝑚] × [𝑛] → [𝑚 + 𝑛] concatenation
zeroExtend[𝑛]𝑚 [𝑛] → [𝑚 + 𝑛] zero extension
signExtend[𝑛]𝑚 [𝑛] → [𝑚 + 𝑛] sign extension
extract[𝑛]𝑗,𝑖 [𝑛] → [𝑗 − 𝑖 + 1] extraction from 𝑖-th to 𝑗-th bit

=[𝑛] [𝑛] × [𝑛] → Bool equality
≤[𝑛]
ᵆ , <[𝑛]

ᵆ [𝑛] × [𝑛] → Bool unsigned less or equal, less than
≤[𝑛]
𝑠 , <[𝑛]

𝑠 [𝑛] × [𝑛] → Bool signed less or equal, less than

Table 2.1: Function and predicate symbols of the bit-vector logic.

the set 𝑃 defined as

𝑃 = ⋃
𝑛∈ℕ+

{=[𝑛], ≤[𝑛]
ᵆ , <[𝑛]

ᵆ , ≤[𝑛]
𝑠 , <[𝑛]

𝑠 } ,

and the sort mapping 𝜏𝐵𝑉 for each of these symbols is given by Table 2.1. This
table also describes an intended meaning for each of the symbols. We call the
symbols from 𝐹 as bit-vector function symbols and the symbols from 𝑃 as bit-
vector predicate symbols. The numbers 𝑛, 𝑚, 𝑖, and 𝑗 in the sort [𝑛] and in all
the defined symbols are called scalars.

Note that most all of the symbols are defined for each individual bit-width:
for example, the signature contains a function symbol +[4], which is used to
add the numeric value of two bit-vectors of bit-width 4, and it also contains the
analogous function symbol +[5] for the addition of bit-vectors of bit-width 5.

2.3.2 Semantics

As was stated in the introduction of this section, objects in the bit-vector the-
ory are vectors of bits. In particular, the set of objects corresponding to the
sort [𝑛] with 𝑛 > 0 is 𝜈𝐵𝑉([𝑛]) = {0, 1}𝑛 and the set of objects corresponding
to the sort Bool has to be 𝜈𝐵𝑉(Bool) = {0, 1}. For a more succinct notation, we
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sometimes write bit-vectors only as sequences of zeroes and ones, e.g., instead
of writing 𝑏 = (1, 1, 0, 1), we write 𝑏 = 1011. Note that the least significant bit
𝑏0 is on the right.

To formally define the interpretation of the function and predicate symbols,
we need to define the standard function that assigns a natural number from
the interval [0, 2𝑛−1] to each bit-vector of bit-width 𝑛. Intuitively, the function
assigns to each bit-vector a number that it represents in the binary notation.
Formally, we define the function: nat𝑛 ∶ {0, 1}𝑛 → [0, 2𝑛 − 1] as

nat𝑛(𝑏) = ∑
0≤𝑖<𝑛

2𝑖𝑏𝑖.

The function nat𝑛 is for each 𝑛 > 0 obviously a bijection and thus has the
unique inverse. We denote the inverse of the function nat𝑛 as bv𝑛. For exam-
ple, the result of nat4(1101) = 13 and bv4(7) = 0111. Similarly, we define the
function int𝑛 that assigns to each bit-vector of bit-width 𝑛 the correspond-
ing integer in the two’s complement representation from [−2𝑛−1, 2𝑛−1 − 1]. In
this representation, the sign of the number is encoded in the bit 𝑏𝑛−1 of the
bit-vector 𝑏: the negative numbers are expressed by setting 𝑏𝑛−1 to 1. If the
encoded number is positive, the rest of the bits encodes the value of the repre-
sented number; if the encoded number is negative, the rest of the bits encodes
its difference from the least possible representable negative value −2𝑛−1. For-
mally, the function int𝑛 ∶ {0, 1}𝑛 → [−2𝑛−1, 2𝑛−1 − 1] is defined as

int𝑛(𝑏) = −2𝑛−1𝑏𝑛−1 + nat𝑛−1((𝑏𝑖)0≤𝑖<𝑛−1).

For example,

int4(0000) = 0, int4(1111) = −1,
int4(0001) = 1, int4(1110) = −2,
int4(0111) = 7, int4(1000) = −8.

The function int𝑛 is also a bijection for each 𝑛 > 0; we denote its inverse as sbv𝑛.
In the further text, we denote the bit-vector bv𝑛(2𝑛 − 1) as unsignedMax[𝑛],
the bit-vector sbv𝑛(−2𝑛−1) as signedMin[𝑛], and the bit-vector sbv𝑛(2𝑛−1 − 1)
as signedMax[𝑛].

Using these functions, Table 2.2 defines the function (_)𝐵𝑉 that assigns a
function to each bit-vector function and predicate symbol. We denote the re-Note that the

smt-lib standard
defines results for

division by 0 and its
remainder. The

standard mimics the
behaviour of the
hardware circuits.

sulting Σ-structure (𝜈𝐵𝑉 , (_)𝐵𝑉) as ℳ𝐵𝑉 . The models of the bit-vector theory
are all Σ𝐵𝑉-interpretations in which the Σ𝐵𝑉-structure is precisely ℳ𝐵𝑉 . For-
mally, the bit-vector theory is the pair

𝒯𝐵𝑉 = (Σ𝐵𝑉 , {(ℳ𝐵𝑉 , 𝜇) ∣ (ℳ𝐵𝑉 , 𝜇) is a Σ𝐵𝑉-interpretation}) .

Intuitively, the meaning of all function and predicate symbols is fixed in all
models of the bit-vector theory; the models differ only in the values assigned
to the variables.



2.3 theory of fixed-size bit-vectors 13

Symbol 𝑓 Semantics 𝑓ℬ𝒱

𝑐[𝑛] bv𝑛(𝑐)

∼[𝑛] 𝜆𝑥. (1 − 𝑥𝑖)0≤𝑖<𝑛
&[𝑛] 𝜆𝑥𝜆𝑦. (min(𝑥𝑖, 𝑦𝑖))0≤𝑖<𝑛
∣[𝑛] 𝜆𝑥𝜆𝑦. (max(𝑥𝑖, 𝑦𝑖))0≤𝑖<𝑛
≪[𝑛] 𝜆𝑥𝜆𝑦. bv𝑛((nat𝑛(𝑥) ⋅ 2nat𝑛(𝑦)) mod 2𝑛)

≫ᵆ
[𝑛] 𝜆𝑥𝜆𝑦. bv𝑛(⌊nat𝑛(𝑥)/2nat𝑛(𝑦)⌋)

≫𝑠
[𝑛] 𝜆𝑥𝜆𝑦. sbv𝑛(⌊int𝑛(𝑥)/2nat𝑛(𝑦)⌋)

−[𝑛] 𝜆𝑥. bv𝑛((2𝑛 − nat𝑛(𝑥)) mod 2𝑛)

+[𝑛] 𝜆𝑥𝜆𝑦. bv𝑛((nat𝑛(𝑥) + nat𝑛(𝑦)) mod 2𝑛)

×[𝑛] 𝜆𝑥𝜆𝑦. bv𝑛((nat𝑛(𝑥) ⋅ nat𝑛(𝑦)) mod 2𝑛)

/[𝑛]ᵆ 𝜆𝑥𝜆𝑦. if nat𝑛(𝑦) = 0 then (1)0≤𝑖<𝑛 else bv𝑛(⌊nat𝑛(𝑥)/nat𝑛(𝑦)⌋)

%[𝑛]
ᵆ 𝜆𝑥𝜆𝑦. if nat𝑛(𝑦) = 0 then 𝑥 else bv𝑛(nat𝑛(𝑥) mod nat𝑛(𝑦))

/[𝑛]𝑠 𝜆𝑥𝜆𝑦. if int𝑛(𝑦) = 0 ∧ int𝑛(𝑥) ≥ 0 then (1)0≤𝑖<𝑛
else if int𝑛(𝑦) = 0 ∧ int𝑛(𝑥) < 0 then sbv𝑛(1)
else sbv𝑛(⌊int𝑛(𝑥)/int𝑛(𝑦)⌋)

%[𝑛]
𝑠 𝜆𝑥𝜆𝑦. if int𝑛(𝑦) = 0 then 𝑥 else sbv𝑛(int𝑛(𝑥) mod int𝑛(𝑦))

concat[𝑚,𝑛] 𝜆𝑥𝜆𝑦. bv𝑚+𝑛(2𝑛 ⋅ nat𝑚(𝑥) + nat𝑛(𝑦))

zeroExtend[𝑛]𝑚 𝜆𝑥. bv𝑚+𝑛(nat𝑛(𝑥))

signExtend[𝑛]𝑚 𝜆𝑥. sbv𝑚+𝑛(int𝑛(𝑥))

extract[𝑛]𝑗,𝑖 𝜆𝑥. (𝑥𝑖+𝑘)0≤𝑘<𝑗−𝑖+1

=[𝑛] 𝜆𝑥𝜆𝑦. if nat𝑛(𝑥) = nat𝑛(𝑦) then 1 else 0

≤[𝑛]
ᵆ , 𝜆𝑥𝜆𝑦. if nat𝑛(𝑥) ≤ nat𝑛(𝑦) then 1 else 0

<[𝑛]
ᵆ 𝜆𝑥𝜆𝑦. if nat𝑛(𝑥) < nat𝑛(𝑦) then 1 else 0

≤[𝑛]
𝑠 𝜆𝑥𝜆𝑦. if int𝑛(𝑥) ≤ int𝑛(𝑦) then 1 else 0

<[𝑛]
𝑠 𝜆𝑥𝜆𝑦. if int𝑛(𝑥) < int𝑛(𝑦) then 1 else 0

Table 2.2: Semantics of function and predicate symbols of the bit-vector logic.
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2.3.3 Examples

In this section, we show several examples of both syntax and semantics of the
bit-vector theory. The set of terms in this theory includes for example terms

• 𝑥1[8] of sort [8],

• 𝑥1[8]+[8]𝑥2[8] of sort [8],

• concat[8,2](𝑥1[8], 𝑥3[2]) of sort [10],

• extract[8]4,1(𝑥1[8]) of sort [4], and

• ite[8]((𝑥1[8]≤ᵆ
[8]𝑥2[8]), 𝑥1[8], 𝑥2[8]) of sort [8].

Further, it contains also for example the following formulas, i.e., terms of sort
Bool:

• 𝑥1[8] ≤ᵆ
[8] (𝑥1[8]+[8]𝑥2[8]),

• ∃𝑥1[8]∀𝑥2[8]((𝑥1[8]×[8]𝑥2[8]) =[8] 0[8]).

Suppose that 𝜇 is an arbitrary assignment such that 𝜇(𝑥1[8]) = 00000111,
𝜇(𝑥2[8]) = 00000001, and 𝜇(𝑥3[2]) = 01. Then

• J𝑥1[8]Kℳ𝐵𝑉
𝜇 = 00000111,

• J𝑥1[8]+[8]𝑥2[8]Kℳ𝐵𝑉
𝜇 = 00001000,

• Jconcat[8,2](𝑥1[8], 𝑥3[2])Kℳ𝐵𝑉
𝜇 = 0000011101,

• Jextract[8]4,1(𝑥1[8])Kℳ𝐵𝑉
𝜇 = 0011,

• Jite[8]((𝑥1[8]≤ᵆ
[8]𝑥2[8]), 𝑥1[8], 𝑥2[8])Kℳ𝐵𝑉

𝜇 = 00000001,

• J𝑥1[8] ≤ᵆ
[8] (𝑥1[8]+[8]𝑥2[8])Kℳ𝐵𝑉

𝜇 = 1, and

• J∃𝑥1[8]∀𝑥2[8]((𝑥1[8]×[8]𝑥2[8]) =[8] 0[8])Kℳ𝐵𝑉
𝜇 = 1.

Therefore, the formula 𝑥1[8]≤ᵆ
[8](𝑥1[8]+[8]𝑥2[8]) is𝒯𝐵𝑉-satisfiable, since it is sat-

isfied by theΣ𝐵𝑉-interpretation (ℳ𝐵𝑉 , 𝜇) ∈ 𝒯𝐵𝑉 .This formula is not𝒯𝐵𝑉-valid,
since it is not satisfied by an arbitrary Σ𝐵𝑉-interpretation (ℳ𝐵𝑉 , 𝜇′) ∈ 𝒯𝐵𝑉 in
which 𝜇′(𝑥1[8]) = 11111111 and 𝜇′(𝑥2[8]) = 00000001, because

255 = nat8(11111111) > (nat8(11111111)+nat8(00000001)) mod 256 = 0.

The formula ∃𝑥1[8]∀𝑥2[8]((𝑥1[8]×[8]𝑥2[8]) =[8] 0[32]) is both 𝒯𝐵𝑉-satisfiable and
𝒯𝐵𝑉-valid, as its value does not depend on the function 𝜇 in the interpretation,
because it does not contain any free variables.
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2.3.4 Theory of Fixed-Size Bit-Vectors with Uninterpreted Functions

A theory of fixed-size bit-vectors with uninterpreted functions has the same
objects as the bit-vector theory, interprets all the bit-vector function and predi-
cate symbols exactly as the bit-vector theory, but may contain additional func-
tion symbols, whose interpretation may be arbitrary. I.e., a theory of fixed-size
bit-vectors with uninterpreted functions is every theory

(ΣUBV, 𝐼) = ((Σ𝑠BV, Σ
𝑓
UBV, 𝜏UBV), 𝐼),

where Σ𝑓𝐵𝑉 ⊆ Σ𝑓UBV, for each 𝑓 ∈ Σ𝑓𝐵𝑉 we have 𝜏BV(𝑓) = 𝜏UBV(𝑓), and

𝐼 = {(ℳ, 𝜇) ∣ (ℳ, 𝜇) is a ΣUBV-interpretation andℳ agrees withℳ𝐵𝑉

on each symbol from Σ𝐵𝑉}.

For example, let 𝑓 be a function symbol of sort [32] × [32] → [32]. Then the
formula

(𝑥[32] + 𝑓(𝑥[32], 𝑦[32]) = 𝑦[32]) ∧ (𝑓(𝑥[32], 𝑦[32]) >ᵆ 0[32])

is satisfiable modulo the theory of bit-vectors with uninterpreted functions,
because it is for example satisfied by each ΣUBV-structure (ℳ, 𝜇), in which
𝜇(𝑥[32]) = bv32(0), 𝜇(𝑦[32]) = bv32(1), and 𝑓ℳ(𝑥, 𝑦) = bv32(1).

On the other hand, the formula

𝑓(𝑥[32], 𝑦[32]) >ᵆ 0 ∧ (𝑥[32] = 𝑧[32]) ∧ 𝑓(𝑧[32], 𝑦[32]) = 0

over the same signature is not satisfiable in this theory.

2.3.5 Notational conventions

Since the rest of the thesis is mostly concerned with the bit-vector theory, we
drop the 𝒯𝐵𝑉- prefix from terms such as 𝒯𝐵𝑉-term, 𝒯𝐵𝑉-formula, 𝒯𝐵𝑉-model,
𝒯𝐵𝑉-satisfiability,𝒯𝐵𝑉-validity, and use only term, formula,model, satisfiability
and validity instead.

We also omit bit-widths from all variables, numerals, function symbols and
predicate symbols, if their bit-width can be inferred from the context. If the bit-
width is not given and cannot be inferred from the context, it is supposed to
be arbitrary. Therefore, the 32-bit versions of the formulas from the preceding
subsection could be written as

• 𝑥1[32] ≤ᵆ (𝑥1[32] + 𝑥2[32]),

• ∃𝑥1[32]∀𝑥2[32] ((𝑥1[32] × 𝑥2[32]) = 0).

If convenient, we also write the bit-vector numerals in binary instead in deci-
mal notation. E.g., we write 0101 instead of the terms nat4(0101)

[4] or 5[4].
In the following text, we also use variable names 𝑥, 𝑦, 𝑧, … instead of 𝑥1[𝑛],

𝑥2[𝑛], 𝑥3[𝑛] etc. Since all interpretations (ℳ𝐵𝑉 , 𝜇) of the bit-vector theory share
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the same structure ℳ𝐵𝑉 , we usually do not mention the structure explicitly
and only write that a formula is satisfied by an assignment 𝜇. Moreover, as the
value of a term depends only on the variables that occur in it, we usually do not
write the values for the other variables when defining an assignment of values
to variables. For example, we write that the formula 𝜑 ≡ 𝑥[8] + 𝑦[8] = 0[8] is
satisfied by an assignment 𝜇 = {𝑥[8] ↦ 00000000, 𝑦[8] ↦ 00000000} and thatJ𝜑K𝜇 = 1. Note that each such partial assignment corresponds to at least one
complete assignment because each sort is interpreted by a non-empty set.

Some of the function symbols also have a standard shorter syntax. For ex-
ample, instead of writing extract𝑗,𝑖(𝑡) it is traditional to write 𝑡[𝑗∶𝑖]. Similarly,
instead of writing concat(𝑡1, 𝑡2), we write only 𝑡1 ⋅ 𝑡2.

We also use the following traditional shortcuts for additional logical con-
nectives:

• 𝜑 → 𝜓 ≡ (¬𝜑 ∨ 𝜓),

• 𝜑 ↔ 𝜓 ≡ (𝜑 ∧ 𝜓) ∨ (¬𝜑 ∧ ¬𝜓).

It can be shown that each formula that uses these additional logical connec-
tives can be converted to an equivalent formula that uses only ∧, ∨, and ¬ in
polynomial time [Har16]. However, this conversion is more complicated than
mere substitution of → and ↔ by their definitions because this could lead to
an exponentially larger formula.

As is usual, we denote the formula ¬(𝑡1 = 𝑡2) as 𝑡1 ≠ 𝑡2.

2.3.6 Normal Forms

This subsection briefly introduces three normal forms of first-order formulas
that are used throughout the thesis. For more details, see for example the Har-
ris’s monography on computational logic [Har09].

negation normal form A formula 𝜑 is in the negation normal form
(nnf) if all negations in the formula are applied to atomic subformulas andThe reason for the

second restriction is
that ite can by used
to implement ¬𝜑 as

ite(𝜑,⊥,⊤).

for each subformula of form ite(𝜓, 𝑡1, 𝑡2), the formula 𝜓 is an atomic formula.
Each formula can be converted to an equivalent formula in nnf in polyno-

mial time. First, consider each occurence of a subformula ite(𝜓, 𝑡1, 𝑡2), where
𝜓 is not an atomic formula and the smallest subformula 𝜌 that contains the
subterm ite(𝜓, 𝑡1, 𝑡2). The subformula 𝜌 can be rewritten to

∃𝑝 (𝜌[𝜓 ← 𝑝] ∧ (𝑝 ↔ 𝜓)) ,

where 𝑝 is a fresh variable of sort Bool. All the introduced bi-implications can
be removed in polynomial time [Har16]. Finally, all negations can be pushed
towards atomic subformulas using De Morgan laws in linear time.

prenex normal form A formula 𝜑 is in the prenex normal form (pnf)
if it has form 𝑄1𝑥1𝑄2𝑥2…𝑄𝑛𝑥𝑛 (𝜓), where 𝑄𝑖 ∈ {∃, ∀} for all 1 ≤ 𝑖 ≤ 𝑛 and 𝜓
does not contain quantifiers.
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Each formula can also be converted to an equivalent formula in the pnf in
polynomial time. First, the formula is converted to the nnf and all its quanti-
fied variable names are in polynomial time renamed to be unique, if necessary.
The quantifiers can then be pushed to the beginning of the formula in linear
time by using the transformations

(∃𝑥 (𝜌1)) ∨ 𝜌2 ⇝ ∃𝑥 (𝜌1 ∨ 𝜌2), (∃𝑥 (𝜌1)) ∧ 𝜌2 ⇝ ∃𝑥 (𝜌1 ∧ 𝜌2)

and the analogous ones for the universal quantifier.

skolem normal form A formula 𝜑 is in the Skolem normal form (snf)
if it has form ∀𝑥1∀𝑥2…∀𝑥𝑛 (𝜓), where 𝜓 does not contain quantifiers.

Each formula can be converted to an equsatisfiable formula in the snf in
polynomial time by first converting the formula to pnf and by performing
Skolemization on the result. Skolemization is a process that for each formula Because of the new

function symbols, the
result is in general not
equivalent to the
original formula.

𝜌 produces an equisatisfiable formula skolemize(𝜌). The formula skolemize(𝜌)
is obtained by first replacing each occurrence of each existentially quantified
variable 𝑥 in 𝜌 by a fresh function symbol 𝑓𝑥, whose arguments are all vari-
ables that are universally quantified before 𝑥, and then removing the existen-
tial quantifier for 𝑥.

2.4 binary decision diagrams

A binary decision diagram (bdd) is a data structure that can succinctly repre-
sent Boolean functions, i.e., functions from {0, 1}𝑛 to {0, 1} for some 𝑛 ∈ ℕ+.
Formally, a bdd is a rooted binary directed acyclic graph that has at most two
leaves, labelled by 0 and 1, and inner nodes labelled by the names of the for-
mal arguments of the represented Boolean function. Each inner node has two
children, called a high child and a low child, which intuitively represent the
result of setting the corresponding formal argument of the function to 1 and
0, respectively. For example, Figure 2.1 shows a bdd 𝑏 that represents a binary
function 𝑓(𝑥, 𝑦) = (𝑥 xor 𝑦). According to the traditional notation, the high
children are marked by solid edges, the low children are marked by dotted
edges. Given a bdd that represents a Boolean function 𝑓 and an assignment
of values to the arguments of the function, the value of 𝑓 can be computed
by traversing the bdd as follows: start in the root node; if the value of the
argument corresponding to the current node is 1, continue to the high child,
otherwise continue to the low child; continue with the traversal until reaching
a leaf node and return its label. Given a bdd 𝑏 and an assignment 𝜇, we denote
the result of the function represented by 𝑏 as J𝑏K𝜇 . For example, the result of
evaluating bdd 𝑏 from Figure 2.1 under an assignment 𝜇 = {𝑥 ↦ 0, 𝑦 ↦ 1}
is J𝑏K𝜇 = 1. The trivial bdds 0 and 1 represent constant functions false (0)
and true (1), respectively.

Alternatively, binary decision diagrams can be used to represent a set of In other words, the
bdd represents the
characteristic
function of the set of
models.

satisfying assignments (also calledmodels) of a Boolean formula𝜑. Such a bdd
represents a function that has Boolean variables of the formula 𝜑 as formal
arguments and that evaluates to 1 in a given assignment iff the assignment is
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𝑥

𝑦 𝑦

0 1

Figure 2.1: bdd for (𝑥 xor 𝑦)

𝑥

𝑧 𝑦

𝑦 𝑦 𝑧 𝑧

0 1
(a) Non-ordered bdd.

𝑥

𝑦 𝑦

𝑧 𝑧 𝑧 𝑧

0 1
(b) Ordered bdd.

𝑥

𝑦

𝑧

0 1
(c) Reduced and

ordered bdd

Figure 2.2: bdds for the formula (𝑥 ∧ 𝑦 ∧ 𝑧).

a model of the formula 𝜑. For example, the bdd of Figure 2.1 also represents
the set of assignments satisfying the Boolean formula (𝑥 ∧ ¬𝑦) ∨ (¬𝑥 ∧ 𝑦).

In the rest of the thesis, we suppose that all binary decision diagrams are
reduced and ordered. A bdd is ordered if, for all pairs of paths in the bdd, the
order of common variables is the same. A bdd is reduced if it does not contain
multiple copies of an identical induced subgraph and does not contain any
inner node with the same high and low child. For example, the bdd in Fig-
ure 2.2a is not ordered, because the order of variables on the leftmost path is
𝑥, 𝑧, 𝑦 and on the rightmost path it is 𝑥, 𝑦, 𝑧. The bdd in Figure 2.2b is ordered,
but it is not reduced, because for example the leftmost node labelled by 𝑧 has
the same low and the high child, i.e., the node 0 . This is also the case for two
other nodes labelled by 𝑧. Therefore, all these nodes can be removed and their
incoming edges can be rerouted to their successor. The resulting bdd would
still not be reduced, as the leftmost node labelled by 𝑦 would have the node
0 as both the low and the high child. Its removal yields the reduced and or-
dered bdd, which is shown in the Figure 2.2c. It has been shown that reduced
and ordered bdds are canonical – given a variable order, there is exactly one
reduced and ordered bdd for each given function [Bry86].

Binary decision diagrams can be also used to represent an arbitrary bit-
vector function, i.e., a function of type {0, 1}𝑛 → {0, 1}𝑘 that assigns a bit-vector
value to each assignment of Boolean variables. Such a function of a bit-width 𝑘
(i.e., the produced bit-vectors have the bit-width 𝑘) can be represented by a vec-
tor 𝑏 = (𝑏𝑖)0≤𝑖<𝑘 of 𝑘 bdds. The result of this function for a given assignment
𝜇 is then the bit-vector J𝑏K𝜇 = (J𝑏𝑖K𝜇)0≤𝑖<𝑘. For example, Figure 2.3 shows
a vector of bdds representing addition 𝑥2𝑥1𝑥0 + 𝑦2𝑦1𝑦0 of two bit-vectors of
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𝑥0
𝑦0

𝑥1 𝑥1
𝑦1

𝑥2 𝑥2

𝑦2 𝑦2
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𝑥0
𝑦0

𝑥1 𝑥1

𝑦1 𝑦1

10

𝑥0
𝑦0 𝑦0

10

Figure 2.3: Vector of bdds representing the addition 𝑥2𝑥1𝑥0+𝑦2𝑦1𝑦0 of two bit-vectors
of size 3. The least-significant bit of the result is on the right.

size 3, where each of the bit-vectors is represented by three Boolean variables.
For example, for the assignment

{𝑥2 ↦ 0, 𝑥1 ↦ 0, 𝑥0 ↦ 1, 𝑦2 ↦ 0, 𝑦1 ↦ 0, 𝑦0 ↦ 1},

the result J𝑏K𝜇 is the bit-vector 010. In the following text, we denote the set
of all bdds as BDD and the set of all vectors of bdds as BDDvec. We use the
overlined symbols for both vectors of bdds and bit-vectors.

2.4.1 Operations on Binary Decision Diagrams

It has been shown by Bryant [Bry86] that given a pair of bdds for Boolean
functions 𝑓 and 𝑔, one can compute a bdd for an arbitrary Boolean connective
by a recursive procedure called Apply in polynomial time. In particular, it is
possible to compute bdds for the functions 𝜆𝑥. 𝑓(𝑥)∧𝑔(𝑥) and 𝜆𝑥. 𝑓(𝑥)∨𝑔(𝑥).
A bdd for negation can be obtained by exchanging leaf nodes 0 and 1. We
denote the functions for computing conjunction, disjunction, and negation of
bdds by the infix notations &, |, and !, respectively. Using these operations, a
bdd for an arbitrary Boolean formula can be constructed by computing the
corresponding bdds for all subformulas recursively from the smallest ones.
The procedure Apply can be also used to easily compute functions represent-
ing equivalence and exclusive or of two bdds with the infix notations ↔ and
xor, respectively. We also define the if-then-else function that gets three bdds
𝑎, 𝑏, 𝑐 and returns the bdd ite(𝑎, 𝑏, 𝑐) equivalent to (𝑎 & 𝑏) | (!𝑎 & 𝑐).

Bryant has also described a recursive function Restrict, which modifies
a given bdd by setting selected variables to given values. Using this function
and the functions for logical connectives, it is possible to eliminate variable 𝑥
from a given bdd representing the function 𝜆𝑥𝜆𝑦. 𝑓(𝑥, 𝑦) existentially or uni-
versally by computing the bdds for 𝜆𝑦. 𝑓(0, 𝑦) ∨ 𝑓(1, 𝑦) or 𝜆𝑦. 𝑓(0, 𝑦) ∧ 𝑓(1, 𝑦),
respectively. Therefore, it is possible to compute a bdd corresponding to an
arbitrary quantified Boolean formula.
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bvec_add(𝑎, 𝑏)
{

result ← ( 0 , 0 ,… , 0 ) with the bit -width 𝑘;
carry ← 0 ;
for 𝑖 from 0 to 𝑘 - 1 {

result𝑖 ← 𝑎𝑖 xor 𝑏𝑖 xor carry;
carry ← (𝑎𝑖 & 𝑏𝑖) ∣ (carry & (𝑎𝑖 ∣ 𝑏𝑖));

}

return result;
}

bvec_mul(𝑎, 𝑏)
{

result ← ( 0 , 0 ,… , 0 ) with the bit -width 𝑘;
for 𝑖 from 0 to 𝑘 - 1 {

added ← bvec_add(result, 𝑎);
for 𝑗 from 𝑖 to 𝑘 − 1 {

result𝑗 ← ite(𝑏𝑖, added𝑗, result𝑗);
}
𝑎 ← bvec_shl(𝑎, 1);

}

return result;
}

Listing 2.1: Functions bvec_add and bvec_mul implementing addition (+) and
multiplication (⋅) on vectors 𝑎 = (𝑎𝑖)0≤𝑖<𝑘 and 𝑏 = (𝑏𝑖)0≤𝑖<𝑘 of bdds.

Further, given two vectors of bdds that represent bit-vector functions 𝑓
and 𝑔 of the same bit-width, a vector of bdds for the function 𝜆𝑥. 𝑓(𝑥) + 𝑔(𝑥),
where+ is the arithmetic addition of two bit-vectors representing binary num-
bers, can also be computed by using the basic logical operations on bdds rep-
resenting the individual bits. Listing 2.1 shows an algorithm for this computa-
tion, which is implemented for example in the bdd package BuDDy1. The list-
ing also shows the algorithm for the arithmetic multiplication. This algorithm
takes as the input two vectors 𝑎 and 𝑏 of bdds. Intuitively, the algorithm starts
with the result set to 0 and, for each bit 𝑏𝑖 of the second argument 𝑏, the result
stays the same if 𝑏𝑖 is 0 and 2𝑖 ⋅ 𝑎 is added to the result if 𝑏𝑖 is 1. Note that the
inner for-cycle responsible for this addition ignores the 𝑖 least significant bits
as 2𝑖 ⋅ 𝑎 has 0 in these bits. The computation of 2𝑖 ⋅ 𝑎 is performed by iteratively
shifting 𝑎 left by one bit using the function bvec_shl, which shifts the vector of
bdds in its first argument by the number of bits given by the second argument.
The remaining functions such as unsigned division or unsigned remainder can
also be computed in a similar way.

Finally, given two vectors of bdds that represent bit-vector functions 𝑓 and
𝑔 of the same bit-width, it is also possible to compute the bdd for the Boolean
function that represents their equality 𝜆𝑥. 𝑓(𝑥) = 𝑔(𝑥), the bdd for their un-
signed inequality 𝜆𝑥. 𝑓(𝑥) ≤ᵆ 𝑔(𝑥), and the bdd for their signed inequality

1 http://sourceforge.net/projects/buddy

http://sourceforge.net/projects/buddy
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bvec_eq(𝑎, 𝑏)
{

result ← 1 ;
for 𝑖 from 0 to 𝑘 - 1 {

result ← result & (𝑎𝑖 ↔ 𝑏𝑖);
}
return result;

}

bvec_leq(𝑎, 𝑏)
{

result ← 1 ;
for 𝑖 from 0 to 𝑘 - 1 {

result ← (!𝑎𝑖 & 𝑏𝑖) ∣ (result & (𝑎𝑖 ↔ 𝑏𝑖))
}
return result;

}

Listing 2.2: Functions bvec_eq and bvec_leq implementing equality (=) andunsigned
inequality (≤ᵆ) of vectors 𝑎 = (𝑎𝑖)0≤𝑖<𝑘 and 𝑏 = (𝑏𝑖)0≤𝑖<𝑘 of bdds.

𝑥2

1 0

𝑥1

1 0

𝑥0

1 0
1 0 1

Figure 2.4: Vectors of bdds representing 3-bit variable 𝑥2𝑥1𝑥0 (left) and numeral
5[3] = 101 (right).

𝜆𝑥. 𝑓(𝑥) ≤𝑠 𝑔(𝑥). Listing 2.2 shows algorithms for equality and unsigned in-
equality, which again correspond to the implementation in BuDDy. The algo-
rithm for signed inequality is similar

Starting with the trivial construction of vectors of bdds for variables and
numerals shown on Figure 2.4 and applying the algorithms mentioned above,
one can easily implement the function t2BDDvec, which converts a bit-vector
term of the sort [𝑛] to the vector of 𝑛 bdds representing the function com-
puted by the term. Consequently, it is possible to define a function f2BDD,
which converts a bit-vector formula to the corresponding bdd representing
all assignments satisfying the formula. The function f2BDD hence provides a
straightforward satisfiability check: a formula 𝜓 is satisfiable if and only if the
result of f2BDD(𝜓) is a bdd where the leaf 1 is reachable from the root. For
ordered and reduced bdds, this is always the case unless the bdd is 0 .





3QUANTIFIED BIT-VECTOR SATISFIABILITY: STATE OF THE
ART

This chapter summarizes the state of the art in solving satisfiability of quanti-
fied bit-vector formulas.

All the approaches for deciding satisfiability of quantified bit-vector formu-
las build on the ability to decide satisfiability of quantifier-free bit-vector for-
mulas. This is traditionally done by converting the input bit-vector formula
either eagerly or lazily [Had+14] to the equisatisfiable propositional formula
by a process called bit-blasting [KS08] and solving it by an off-the-shelf sat
solver. During bit-blasting, a propositional variable is introduced for each bit
of each bit-vector variable in the input formula and the bit-vector operations
are modeled using propositional connectives in a way that mimics the hard-
ware circuits for these operations. We do not explain the solving of quantifier-
free formulas inmore detail and instead turn to quantified formulas, which are
the main topic of the thesis.

3.1 model-based quantifier instantiation

Solving of quantified bit-vector formulas was first supported by the solver Z3
in 2013 [WHM13] and for a limited set of exists/forall formulas with only a
single quantifier alternation by Yices in 2015 [Dut15]. Both of these solvers de-
cide quantified formulas by quantifier instantiation, in which the universally
quantified variables in the Skolemized input formula are repeatedly instanti-
ated by quantifier-free terms until the resulting quantifier-free formula is ei-
ther unsatisfiable or a model of the original formula is found. Note that for
general formulas, the solver for quantifier-free formulas has to be able to han-
dle uninterpreted symbols, since Skolemization introduces new uninterpreted
function symbols if the formula contains at least one existential quantifier in
scope of a universal quantifier. To obtain terms that represent values of Skolem
functions in the model, Z3 uses template-based model finding, where several
templates for these functions are provided. For example, these may include
templates for linear functions, affine functions, etc.

After performing Skolemization, the input formula is of the form

𝜑 ∧ ∀𝑥1∀𝑥2…∀𝑥𝑛 (𝜓),

where 𝜑 and 𝜓 are quantifier-free formulas that may contain uninterpreted
function symbols. First, the solver for quantifier-free formulas is invoked to
check the satisfiability of the formula 𝜑. If 𝜑 is unsatisfiable, then the entire
formula is unsatisfiable. If 𝜑 is satisfiable, the solver for quantifier-free formu-
las returns its model ℳ and another call to the solver is made to determine
whether ℳ is also a model of ∀𝑥1∀𝑥2…∀𝑥𝑛 (𝜓). This is achieved by asking

23
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the solver whether the quantifier-free formula ¬𝜓 is satisfiable, where 𝜓 is the
formula 𝜓 with free variables and uninterpreted function symbols replaced by
their corresponding values inℳ. If¬𝜓 is not satisfiable, then the structureℳ is
indeed a model of the formula ∀𝑥1∀𝑥2…∀𝑥𝑛 (𝜓), therefore the entire formula
is satisfiable and ℳ is its model. If ¬𝜓 is satisfiable, we get bit-vector values
𝑣1, … , 𝑣𝑛 such that ¬𝜓[𝑥1 ← 𝑣1, … , 𝑥𝑛 ← 𝑣𝑛] holds. To rule out ℳ as a model,
the instance 𝜓[𝑥1 ← 𝑣1, … , 𝑥𝑛 ← 𝑣𝑛] of the quantified formula is added to the
quantifier-free part of the formula; i.e. the formula 𝜑 is modified to

𝜑′ ≡ 𝜑 ∧ 𝜓[𝑥1 ← 𝑣1, … , 𝑥𝑛 ← 𝑣𝑛],

and the procedure is repeated.

Example 3.1. Consider the formula 3 <ᵆ 𝑥 ∧ ∀𝑦 (𝑥 ≠ 2×𝑦), where all variables
have bit-width 32. The subformula 3 <ᵆ 𝑥 is satisfiable and {𝑥 ↦ bv32(4)} is its
model. However, it is not amodel of the formula∀𝑥 (𝑥 ≠ 2×𝑦), since the solver for
quantifier-free formulas called on the formula 4 ≠ 2×𝑦 returns {𝑦 ↦ bv32(2)} as
a model.The next step is to decide the satisfiability of the formula 3 <ᵆ 𝑥 ∧ (𝑥 ≠
2 × 2). This formula is satisfiable and {𝑥 ↦ bv32(5)} is its model. Moreover, it is
also a model of ∀𝑦 (𝑥 ≠ 2 × 𝑦) as the formula 5 = 2 × 𝑦 is unsatisfiable. Hence,
the input formula is satisfiable and {𝑥 ↦ bv32(5)} is its model.

This algorithm is trivially terminating, since there is only a finite number
of distinct models ℳ of 𝜑. However, in some cases, exponentially many such
models have to be ruled out before the solver is able to find a correct model
or decide unsatisfiability of the whole formula. To overcome this issue, Z3
does not use only instances of the form 𝜓[𝑥1 ← 𝑣1, … , 𝑥𝑛 ← 𝑣𝑛], but employs
heuristics such as E-matching [DNS05; MB07] or symbolic quantifier instan-
tiation [WHM13], which try to instantiate variables 𝑥1, … , 𝑥𝑛 not only by bit-
vector values but also by more complex terms that can potentially rule out
more spurious models and thus significantly reduce the number of iterations
of the algorithm. In practice, suitable ground terms substituted for quantified
variables are selected only from subterms of the input formula. This strategy
unfortunately brings also some drawbacks. For example, the formula

(𝑥 = 16 × 𝑦 + 16 × 𝑧) ∧ ∀𝑣 (𝑥 ≠ 16 × 𝑣)

with all variables of bit-width 32 is unsatisfiable as the subformula ∀𝑣 (𝑥 ≠
16 × 𝑣) is satisfied precisely for values of 𝑥 that are not multiples of 16, while
𝑥 = 16 × 𝑦 + 16 × 𝑧 implies that 𝑥 is a multiple of 16. The general quantifier
instantiation could prove the unsatisfiability of this formula easily by using
the instance 𝜓[𝑣 ← 𝑦 + 𝑧] of 𝜓 ≡ (𝑥 ≠ 16 × 𝑣). However, neither Z3 nor Yices
consider this instance as 𝑦 + 𝑧 is not a subterm of the formula. As the result,
these tools cannot decide satisfiability of this formula within a reasonable time
limits.
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3.2 counter-example guided model synthesis

Next solver that was able to solve quantified bit-vector formulas was Q3B in
2016. However, the approach of Q3B is discussed in detail in later chapters of
this thesis and we therefore do not describe it here.

After Q3B, the following solver that was able to solve quantified bit-vector
formulas was Boolector in 2017, using also an approach based on quantifier in-
stantiation [PNB17]. Unlike Z3, in which the terms representing Skolem func-
tions are obtained based on predefined templates, Boolector uses a counterex-
ample-guided model synthesis (cegms) approach, in which the terms repre-
senting Skolem functions are synthesized from the predefined grammar. The
synthesis of the suitable term from this grammar that satisfies given condi-
tions is then implemented by enumerative learning [Udu+13]. Generally, the
synthesis of the term can be implemented by using any syntax-guided synthe-
sis approach [Alu+15].

Moreover, Boolector also employs a dual solver, which tries to prove that
the input formula is unsatisfiable by proving that its negation with all added
implicit existential quantifiers is satisfiable. Effectively, the dual solver tries to
synthesize terms whose substitution for universally quantified variables in the
formula makes it unsatisfiable. In Boolector, the standard and dual solver are
run in parallel. The following example illustrates the dual solver.

Example 3.2. Consider the formula

(𝑥 = 16 × 𝑦 + 16 × 𝑧) ∧ ∀𝑣 (𝑥 ≠ 16 × 𝑣)

from the previous section. After adding all implicit existential quantifiers, negat-
ing the formula and converting it to the Skolem normal form, one obtains the
formula

𝜑𝑛 ≡ ∀𝑥∀𝑦∀𝑧 ((𝑥 ≠ 16 × 𝑦 + 16 × 𝑧) ∨ (𝑥 = 16 × 𝑓𝑣(𝑥, 𝑦, 𝑧))).

The cegms performs quantifier instantiation and after few iterations comes up
with a potential model, which to the Skolem function 𝑓𝑣(𝑥, 𝑦, 𝑧) assigns the bit-
vector term 𝑦+𝑧. Similarly as in the previous section, thismodel is then verified by
substituting it to the formula 𝜑𝑛 and using a solver for quantifier-free bit-vectors
on the negation of the resulting formula. The formula 𝜑𝑛 is satisfiable, and the
original formula 𝜑 is hence unsatisfiable.

3.3 quantifier instantiation based on invertibility conditions

More recently, in 2018, support of quantified bit-vector formulas has also been
implemented into the smt solver CVC4 [Nie+18b]. The approach of CVC4 is
also based on quantifier instantiation, but instead of synthesizing terms from
the defined grammar as Boolector, CVC4 uses predetermined rules based on
invertibility conditions, which directly give terms that may prune all spurious
models without using the potentially expensive counterexample-guided syn-
thesis.
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Invertibility conditions give the sufficient and necessary conditions under
which a formula has a solution for a given variable 𝑥. For example, given arbi-
trary terms 𝑡, 𝑠 of bit-width 𝑛 that do not contain 𝑡:

• The invertibility condition for 𝑥 in 𝑥 + 𝑡 = 𝑠 is ⊤, because 𝑥 can always
be set to the value of 𝑠 − 𝑡.

• The invertibility condition for 𝑥 in 𝑥 × 𝑠 ≠ 𝑡 is 𝑠 ≠ 0 ∨ 𝑡 ≠ 0, because
unless 𝑠 = 0, the expression 𝑥 × 𝑠 can be evaluated to at least two values,
one of which must be distinct from 𝑡; if on the other hand 𝑠 = 0, the
formula has a solution if and only if 𝑡 ≠ 0.

• The invertibility condition for 𝑥 in 𝑥×𝑠 = 𝑡 is (−𝑠 ∣ 𝑠)&𝑡 = 𝑡, because for
each bit-vector 𝑠, the result of −𝑠 ∣ 𝑠 has as many least significant 0 bits
as 𝑠 and all its other bits set to 1. The condition (−𝑠 ∣ 𝑠) & 𝑡 = 𝑡 therefore
holds if and only if the result of 𝑡 has at least as many least significant
zeroes as the result of 𝑠.

Example 3.3. Consider the formula 3 <ᵆ 𝑥 ∧ ∀𝑦 (𝑥 ≠ 2 × 𝑦) from Exam-
ple 3.1 and the moment in this example where 𝜑′ ≡ 3 <ᵆ 𝑥 and its model
{𝑥 ↦ bv32(4)} was identified not to be a model of ∀𝑦 (𝑥 ≠ 2 × 𝑦) because the
assignment {𝑦 ↦ bv32(2)} satisfies the formula 4 = 2 × 𝑦. Instead of adding the
precise instance 𝑥 ≠ 2 × 2, which prohibits only the value 𝑥 = bv32(4) as in
the model-based quantifier instantiation, the quantifier instantiation based on
invertibility conditions prohibits all values of 𝑥 with the same problem.
Observe that the subformula ∀𝑦 (𝑥 ≠ 2 × 𝑦) prohibits all the values of 𝑥 for

which there is 𝑦 such that 𝑥 = 2 × 𝑦. Based on the invertibility condition for 𝑦,
this is precisely if (−2 ∣ 2)&𝑥 = 𝑥, which is satisfied precisely for the even values
of 𝑥. Therefore, the formula 𝜑′ is modified to

𝜑″ = 3 <ᵆ 𝑥 ∧ ¬((−2 ∣ 2) & 𝑥 = 𝑥)

and in the following iteration, the actual model {𝑥 ↦ bv32(5)} is found. Observe
that thanks to invertibility conditions, all even values of 𝑥 were prohibited in one
step.

Thegeneral approach is more complicated than the previous example, because
it needs to handle cases where the quantified variable 𝑥 occurs multiple times
in the input formula or even in its single atomic subformula. We do not de-
scribe the complete approach here, since it is not necessary for the rest of the
thesis.

3.4 timeline

To put the mentioned techniques in context, Figure 3.1 shows the timeline of
the described techniques together with our techniques described in Chapters 5
and 6.
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Figure 3.1: Timeline of smt techniques for quantified bit-vectors with the correspond-
ing solvers.





4ON THE COMPLEXITY OF THE QUANTIFIED BIT-VECTOR
ARITHMETIC WITH BINARY ENCODING

The computational complexity of the satisfiability problem for quantified bit-
vector formulas has been shown to be PSPACE-complete and to become even
NEXPTIME-complete when uninterpreted functions are allowed in addition
to quantifiers [WHM13].

However, these results suppose that all scalars in the formula are represented
in the unary encoding, which is not the case in practice, because in most
of real-world applications, bit-widths and numerals are encoded logarithmi-
cally. For example, the format smt-lib [BFT17], which is an input format for
most of the state-of-the-art smt solvers, represents all scalar values as deci-
mal numbers. Such representation can be exponentially more succinct than
the representation using unary-encoded scalars. The satisfiability problem for
bit-vector formulaswith binary-encoded scalars has been recently investigated
by Kovásznai et al. [KFB16]. They have shown that the satisfiability of quanti-
fied bit-vector formulas with binary-encoded scalars and with uninterpreted
functions is complete for the class 2−NEXPTIME. The situation for the same
problem without uninterpreted functions was not so clear: deciding satisfia-
bility of quantified bit-vector formulas with binary-encoded scalars and with-
out uninterpreted functions (we denote this problem as BV2 satisfiability) had
been known to be in EXPSPACE and to be NEXPTIME-hard, but its precise
complexity had remained unknown [KFB16].

In this chapter, we present our solution of this open problem by identifying
the complexity class forwhichBV2 satisfiability is complete.We use the notion
of an alternating Turing machine introduced by Chandra et al. [CKS81] and
show that the BV2 satisfiability problem is complete for the class AEXP(poly)
of problems solvable by an alternating Turingmachine using exponential time,
but only a polynomial number of alternations.

4.1 encodings of scalars

There are more ways to encode scalars occurring in the bit-vector formula: in
the unary encoding or in a logarithmic encoding. For example, the bit-widths
in the formula 𝑥[64]+𝑦[64] may be considered of size 64 if they are represented
in unary, of size 7 if they are represented in binary as 1000000, or of size 2
if they are represented in decimal as 64. Note that the operation + may be
regarded as having the size 1 because its sort is completely determined by the
sorts of its arguments. In this chapter, we focus only on formulas using the
binary encoding. This covers all logarithmic encodings including the decimal,
since all of them are polynomially reducible to each other.

29
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Expression Size

Numeral |𝑐[𝑛]| 𝐿(𝑐) + 𝐿(𝑛)
Variable |𝑥[𝑛]| 1 + 𝐿(𝑛)
Operation |𝑜(𝑡1, … , 𝑡𝑘, 𝑖1, … , 𝑖𝑝)| 1 +∑1≤𝑖≤𝑘 |𝑡𝑖| + ∑1≤𝑗≤𝑝 𝐿(𝑖𝑗)
Quantifier |𝑄𝑥[𝑛]𝜑| |𝑥[𝑛]| + |𝜑|

Table 4.1: Recursive definition of the formula size. Operations include logical connec-
tives, function symbols, and predicate symbols. Each 𝑡𝑖 denotes a subterm
or a subformula, each 𝑖𝑗 denotes a scalar argument of an operation, and
𝑄 ∈ {∃, ∀} [KFB16].

In the binary encoding, 𝐿(𝑛) bits are needed to express the number 𝑛, where
𝐿(0) = 1 and 𝐿(𝑛) = ⌊log2 𝑛⌋ + 1 for all 𝑛 > 0. The entire formula is encoded
in the following way: each numeral 𝑐[𝑛] has both its value 𝑐 and bit-width 𝑛 en-
coded in binary, each variable 𝑥[𝑛] has its bit-width 𝑛 encoded in binary, and all
scalar arguments of functions, such as the bounds of the extract function, are
encoded in binary. The size of the formula 𝜑 is denoted |𝜑|. The recursive defi-
nition of |𝜑| is given in Table 4.1. For quantified formulas with binary-encoded
scalars, we define the corresponding satisfiability problem:

Definition 4.1 (BV2 satisfiability problem [KFB16]). The BV2 satisfiability
problem is to decide satisfiability of a given closed quantified bit-vector formula
with all scalars encoded in binary.

4.2 alternation complexity

In this section, we define the concept of an alternating Turing machine (atm)
introduced by Chandra, Kozen, and Stockmeyer [CKS81] and briefly recall
properties of complexity classes defined by atms. We assume basic familiarity
with nondeterministic Turing machines and basic concepts from the complex-
ity theory, which can be found for example in Kozen [Koz06].

Definition 4.2 (Alternating TuringMachine). An alternating Turingmachine
𝑀 is an 8-tuple

𝑀 = (𝑄, Σ, Γ, ⊔,▷, 𝛿, 𝑞0, type),

where

• 𝑄 is a finite set of states,

• Σ is a finite input alphabet,

• Γ is a finite tape alphabet such that Σ ⊆ Γ,

• ⊔ ∈ Γ ⧵ Σ is the blank symbol,
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• ▷ ∈ Γ ⧵ Σ is the left endmarker,

• 𝛿∶ 𝑄 × Γ → 2𝑄×Γ×{𝐿,𝑅} is the transition function,

• 𝑞0 ∈ 𝑄 is the initial state,

• type∶ 𝑄 → {∃, ∀} is the state type mapping

and the transition function satisfies for every 𝑞 ∈ 𝑄 that all elements of 𝛿(𝑞,▷)
are of form (𝑞′,▷, 𝑅) for some 𝑞′ ∈ 𝑄.

All states 𝑞 with type(𝑞) = ∃ are called existential, all states with type(𝑞) = ∀
are called universal. We now describe the semantics of the atms by first defin-
ing a configuration of an atm, then a relation that describes possible compu-
tation steps between two configurations and finally a predicate that describes
whether a configuration is accepting or not. In the following definitions, sup-
pose that we have an arbitrary atm𝑀 = (𝑄, Σ, Γ, ⊔,▷, 𝛿, 𝑞0, type).

Definition 4.3 (Configuration). A configuration of the alternating Turing ma-
chine 𝑀 is a triple (𝑞, 𝑖, 𝑢) ∈ 𝑄 × ℕ × Γ𝜔, where 𝑞 is the current state, 𝑖 is the For a set 𝐴, 𝐴𝜔

denotes the set of all
infinite words over
the alphabet 𝐴.

current position of the head, and 𝑢 is the content of the tape.

Definition 4.4 (Computation step relation). A computation step relation ⊢ of
the alternating Turing machine𝑀 is the binary relation between two configura-
tions of𝑀 defined by

(𝑞, 𝑖, 𝑢𝑥𝑣) ⊢ (𝑞′, 𝑖′, 𝑢𝑥′𝑣) ⟺ {𝑖
′ = 𝑖 − 1 and (𝑞′, 𝑥′, 𝐿) ∈ 𝛿(𝑞, 𝑥), or

𝑖′ = 𝑖 + 1 and (𝑞′, 𝑥′, 𝑅) ∈ 𝛿(𝑞, 𝑥)

for all 𝑞, 𝑞′ ∈ 𝑄, 𝑖, 𝑖′ ∈ ℕ, 𝑢 ∈ Γ𝑖, 𝑥 ∈ Γ, 𝑣 ∈ Γ𝜔.

Definition 4.5 (Acceptance). A configuration 𝑐 = (𝑞, 𝑖, 𝑢) of the Turing ma-
chine𝑀 is called accepting if one of the following is true:

• the state 𝑞 is an existential state and there exists at least one accepting Special accepting and
rejecting states arec
not needed: each
universal state with
no successors is
accepting; each
existential state with
no successors is
rejecting.

configuration 𝑐′ such that 𝑐 ⊢ 𝑐′,

• the state 𝑞 is a universal state and all configurations 𝑐′ such that 𝑐 ⊢ 𝑐′ are
accepting.

The alternating Turing machine 𝑀 accepts the input 𝑤 ∈ Σ∗ if and only if the
initial configuration (𝑞0, 0,▷ ⋅ 𝑤 ⋅ ⊔𝜔) is accepting.

Intuitively, existential states behave like states of a nondeterministic Turing
machine: a run passing through an existential state continues to one of the
possible successors. In contrast to this, a run entering a universal state forks
and continues to all possible successors.

An atm defines for each input a computation tree, in which the vertices are
all the reachable configurations, the root vertex is the initial configuration, and
there is an edge between each pair of configurations 𝑐 and 𝑐′ such that 𝑐 ⊢ 𝑐′.
In order for this to really define a tree rather than a general graph, repeated
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occurrences of each configuration 𝑐 have to be regarded as separate vertices in
the configuration tree. If the configuration 𝑐 is of form 𝑐 = ▷ ⋅ 𝑢 ⋅ ⊔𝜔 for some
𝑢 ∈ Γ𝑘, we say that the configuration 𝑐 uses 𝑘 units of space.

We now define several complexity classes related to alternating Turing ma-
chines. Computations in such complexity classes are bounded not only by
time and space, but also by the number of alternations between existential and
universal states during the computation. Although we need only complexity
classes related to atms that are bounded in time and the number of alterna-
tions in this thesis, we define for completeness also the complexity classes that
bound space and the number of alternations. Therefore, the following defini-
tion introduces two families of complexity classes.

Definition 4.6. Let 𝑓, 𝑔∶ ℕ → ℕ be functions such that 𝑔(𝑛) ≥ 1. We define
the complexity class ATIME(𝑓, 𝑔) as the class of all problems 𝐴 for which there
is an alternating Turing machine that decides 𝐴 and, for each input of length 𝑛,
its computation tree has depth at most 𝑓(𝑛) and every branch contains at most
𝑔(𝑛) − 1 alternations between existential and universal states.
Similarly, the complexity classASPACE(𝑓, 𝑔) is the class of all problems𝐴 for

which there is an alternating Turing machine that decides 𝐴 and, for each input
of length 𝑛, all vertices in the computation tree use at most 𝑓(𝑛) units of space
and its every branch contains at most 𝑔(𝑛) − 1 alternations.
If 𝐹 and 𝐺 are classes of functions, let

ATIME(𝐹, 𝐺) = ⋃
𝑓∈𝐹,𝑔∈𝐺

ATIME(𝑓, 𝑔) and

ASPACE(𝐹, 𝐺) = ⋃
𝑓∈𝐹,𝑔∈𝐺

ASPACE(𝑓, 𝑔).

If any of the parameters in the previous definitions should be unbounded,
wewrite ∗ in its stead. For example,ATIME(𝒪(𝑛), ∗) is the class of all problems
solvable by an atm using linear time and arbitrarily many alternations. Note
that ATIME(𝐹, ∗) is always equal to ATIME(𝐹, 𝐹), as the atm cannot make
more alternations than computation steps.

Chandra et al. have observed several relationships between classical com-
plexity classes related only to time or space and the complexity classes defined
by atms [CKS81]. We recall some of these relationships:Recall that 𝑛𝒪(1) is

the class of all
polynomial functions
and 2𝑛𝒪(1) is the class

of all (single)
exponential functions.

P = ASPACE(𝒪(log𝑛), ∗),
PSPACE = ATIME(𝑛𝒪(1), ∗),

EXPTIME = ASPACE(𝑛𝒪(1), ∗),
EXPSPACE = ATIME(2𝑛𝒪(1) , ∗).

Relationships of some of the alternating complexity classes and the classes
NEXPTIME and EXPSPACE are particularly important for this chapter. It
can easily be seen that the classNEXPTIME corresponds to all problems solv-
able by an alternating Turingmachine that starts in an existential state and can
use exponential time and no alternations: this yields the inclusion

NEXPTIME ⊆ ATIME(2𝑛𝒪(𝑛) , 1).
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On the other hand, results of Chandra et al. imply that the class EXPSPACE
is precisely the complexity class ATIME(2𝑛𝒪(1) , 2𝑛𝒪(1)) of problems solvable in
exponential time and with exponential number of alternations. An interest-
ing class that lies in between those two complexity classes can be obtained by
bounding the number of steps exponentially and the number of alternations
polynomially. This class is called AEXP(poly).

Definition 4.7. AEXP(poly) = ATIME(2𝑛𝒪(1) , 𝑛𝒪(1)).

The following inclusions immediately follow from the mentioned results.
However, it is unknown whether any of the inclusions is strict:

NEXPTIME ⊆ AEXP(poly) ⊆ EXPSPACE.

4.3 complexity of BV2 satisfiability

In this section, we show that the BV2 satisfiability problem is AEXP(poly)-
complete. First, we prove that the problem is in the class AEXP(poly).

Theorem 4.1. The BV2 satisfiability problem is in AEXP(poly).

Proof. We describe the alternating Turing machine solving the problem. For
a given BV2 formula 𝜑, the machine first converts the formula to the prenex
normal form, which can be done in polynomial while introducing only poly-
nomially many new bit-vector variables (see Section 2.3.6). The machine then
assigns values to all bits of all existentially quantified variables using existential
states and to all bits of all universally quantified variables using universal states.
Although this requires exponential time, as there are exponentially many bits
whose value has to be assigned, only a polynomial number of alternations is
required, because the formula 𝜑 can contain only polynomially many quanti-
fiers.

Finally, themachine uses the assignment to evaluate the quantifier-free part
of the formula. If the result of the evaluation is true, the machine accepts; it re-
jects otherwise. The evaluation takes exponential time and no quantifier alter-
nations: the machine replaces all variables by exponentially many previously
assigned bits and computes results of all operations from the bottomof the syn-
tactic tree of the formula up. The computation of each of the operations takes
time polynomial in the number of bits of its arguments, which is exponential
in the size of the input formula.

In the rest of this section, we show that the BV2 satisfiability problem is
also hard for AEXP(poly). In particular, we present a reduction of a known
AEXP(poly)-hard second-order Boolean formula satisfiability problem [Loh12;
Lüc16] to the BV2 satisfiability.

Intuitively, the second-order Boolean logic (SO2) can be obtained from a
quantified Boolean logic by adding function symbols and quantification over
such symbols. Alternatively, the SO2 logic corresponds to the second-order
predicate logic restricted to the domain {0, 1}. Lohrey and Lück have inde-
pendently shown that by bounding the number of quantifier alternations in
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second-order Boolean formulas, problems complete for all levels of the expo-
nential hierarchy can be obtained. Moreover, if the number of quantifier al-Exponential

hierarchy is
analogous to the

polynomial hierarchy;
the only difference is
that the time bound
on the alternating

machine is
exponential.

ternations is unbounded, the problem of deciding satisfiability of quantified
second-order Boolean formulas is AEXP(poly)-complete [Loh12; Lüc16].

Wenow introduce theSO2 logicmore formally.Thedefinitions of the syntax
and semantics of SO2 used in this chapter are due to Hannula et al. [Han+16].

Definition 4.8 (SO2 syntax [Han+16]). Let ℱ be a countable set of function
symbols, where each symbol 𝑓 ∈ ℱ is given an arity ar(𝑓) ∈ ℕ. The set SO2(ℱ)
of quantified Boolean second-order formulas is defined inductively as

𝜑 ∶∶= 𝜑 ∧ 𝜑 ∣ ¬𝜑 ∣ ∃𝑓𝜑 ∣ ∀𝑓𝜑 ∣ 𝑓( 𝜑, … , 𝜑⏟⎵⏟⎵⏟
ar(𝑓) times

),

where 𝑓 ∈ ℱ.

Definition 4.9 (SO2 semantics [Han+16]). An ℱ-interpretation is a function
ℐ that assigns to each symbol 𝑓 ∈ ℱ a Boolean function of the corresponding
arity, i.e. ℐ(𝑓)∶ {0, 1}ar(𝑓) → {0, 1} for each 𝑓 ∈ ℱ. We define the valuation of a
formula 𝜑 ∈ SO2(ℱ) in ℐ, written J𝜑Kℐ , which is a number from {0, 1} computed
recursively as

J𝜑 ∧ 𝜓Kℐ = J𝜑Kℐ ⋅ J𝜓Kℐ ,J¬𝜑Kℐ = 1 − J𝜑Kℐ ,J𝑓(𝜑1, … , 𝜑𝑛)Kℐ = ℐ(𝑓)(J𝜑1Kℐ , … , J𝜑𝑛Kℐ),J∃𝑓𝜑Kℐ = max {J𝜑Kℐ[𝑓↦𝐹] ∣ 𝐹 ∶ {0, 1}ar(𝑓) → {0, 1}} ,J∀𝑓𝜑Kℐ = min {J𝜑Kℐ[𝑓↦𝐹] ∣ 𝐹 ∶ {0, 1}ar(𝑓) → {0, 1}} .

An SO2 formula 𝜑 is satisfiable if J𝜑Kℐ = 1 for some ℐ.

We call function symbols of arity 0 propositions and all the other function
symbols proper functions. An SO2 formula 𝜑 is in the prenex normal form if
it has the form 𝑄𝜓, where 𝑄 = 𝑄1𝑓1𝑄2𝑓2…𝑄𝑛𝑓𝑛 is a sequence of quantifiers
and variables called a quantifier prefix, 𝜓 is a quantifier-free formula called a
matrix, and all proper functions are quantified before all propositions. In the
following, we fix an arbitrary countable set of function symbolsℱ and instead
of SO2(ℱ), we write only SO2.

Definition 4.10 (SO2 satisfiability problem). The SO2 satisfiability problem
is to decide whether a given closed SO2 formula in the prenex normal form is
satisfiable.

Theorem 4.2 ([Loh12; Lüc16]). The SO2 satisfiability problem is AEXP(poly)-
complete.

We now show a polynomial time reduction of SO2 satisfiability to BV2 sat-
isfiability and thus finish the main claim of this chapter, which states that the
BV2 satisfiability problem is AEXP(poly)-complete.
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In this reduction, we use an indexing bit-vector operation, which is a special
case of the extraction operation that produces only a single bit. In particular,
for a bit-vector term 𝑡[𝑛] and a number 0 ≤ 𝑖 < 𝑛, the indexing operation 𝑡[𝑛][𝑖]
is defined as extract𝑖,𝑖(𝑡[𝑛]). Recall that bits of bit-vectors are indexed from the
least significant. For example, given a bit-vector variable 𝑥[6] = 𝑥5𝑥4𝑥3𝑥2𝑥1𝑥0,
the value of 𝑥[6][1] refers to 𝑥1. Although this operation was also used in re-
ductions of Kovásznai et al. [KFB16], we need a more general version of the
indexing operation, in which the index can be an arbitrary bit-vector term,
not only a fixed scalar. This operation can be defined by using the indexing
operation and the bit-shift operation with only a constant increase in the size
of the term:

𝑡[𝑛][𝑠[𝑛]] ≡ (𝑡[𝑛] ≫ 𝑠[𝑛])[0] ≡ extract0,0(𝑡[𝑛] ≫ 𝑠[𝑛]).

Moreover, the constant does not depend on the arguments of the indexing
operation.

Theorem 4.3. The BV2 satisfiability problem is AEXP(poly)-hard.

Proof. We present a polynomial time reduction of the SO2 satisfiability prob-
lem to theBV2 satisfiability problem. Let𝜑 be anSO2 formulawith a quantifier
prefix 𝑄 and a matrix 𝜓, i.e. 𝜑 = 𝑄𝜓 where 𝜓 is a quantifier-free formula. We
construct a bit-vector formula 𝜑𝐵𝑉 such that 𝜑 is satisfiable iff the formula 𝜑𝐵𝑉
is satisfiable.

In the formula 𝜑𝐵𝑉 , each function symbol 𝑓 of the formula 𝜑 will be repre-
sented by a bit-vector variable 𝑥𝑓 of bit-width 2ar(𝑓). Intuitively, the individual
bits of the variable 𝑥𝑓 will encode values 𝑓(𝑏𝑛−1, … , 𝑏0) for all possible inputs
𝑏0, … , 𝑏𝑛−1 ∈ {0, 1}. In particular, the value 𝑓(𝑏𝑛−1, … , 𝑏0) is represented as
the bit on the index ∑𝑛−1

𝑖=0 (2𝑖𝑏𝑖) in the bit-vector 𝑥𝑓. Equivalently, this index
can be expressed as the numerical value of the bit-vector 𝑏𝑛−1𝑏𝑛−2…𝑏0. For
example, for a ternary function symbol 𝑓, bits of the bit-vector value 𝑥𝑓 =
𝑥7𝑥6𝑥5𝑥4𝑥3𝑥2𝑥1𝑥0 will represent values 𝑓(1, 1, 1), 𝑓(1, 1, 0), 𝑓(1, 0, 1), 𝑓(1, 0, 0),
𝑓(0, 1, 1), 𝑓(0, 1, 0), 𝑓(0, 0, 1), and 𝑓(0, 0, 0), respectively.

The reduction proceeds in two steps. First, we inductively construct a bit-
vector term 𝜓𝐵𝑉 of bit-width 1, which corresponds to the formula 𝜓:

• If 𝜓 ≡ 𝜌1 ∧ 𝜌2, we set 𝜓𝐵𝑉 ≡ 𝜌𝐵𝑉1 & 𝜌𝐵𝑉2 .

• If 𝜓 ≡ ¬𝜌, we set 𝜓𝐵𝑉 ≡ ∼𝜌𝐵𝑉 .

• If 𝜓 ≡ 𝑓() (i.e., 𝑓 is a proposition), we set 𝜓𝐵𝑉 ≡ 𝑥[1]𝑓 .

• If 𝜓 ≡ 𝑓(𝜌𝑛−1, … , 𝜌0) where 𝑛 = ar(𝑓), we set

𝜓𝐵𝑉 ≡ 𝑥[2
𝑛]

𝑓 [0[2𝑛−𝑛] ⋅ 𝜌𝐵𝑉𝑛−1 ⋅ 𝜌𝐵𝑉𝑛−2 ⋅ … ⋅ 𝜌𝐵𝑉0 ] .

Note that because both arguments of the indexing operation have to be
of the same sort, 2𝑛 − 𝑛 zero bits have to be added to the index term to
get a term of the same bit-width as the term 𝑥[2

𝑛]
𝑓 .
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In the second step, we replace each quantifier 𝑄𝑖𝑓𝑖 in the quantifier prefix 𝑄
by a bit-vector quantifier 𝑄𝑖𝑥[2

𝑛]
𝑓𝑖 , where 𝑛 = ar(𝑓𝑖), and thus obtain a sequence

of bit-vector quantifiers 𝑄
𝐵𝑉

. The final formula 𝜑𝐵𝑉 is then 𝑄
𝐵𝑉
(𝜓𝐵𝑉 = 1[1]).

Due to the binary representation of the bit-widths, the size of the formula
𝜑𝐵𝑉 is polynomial in the size of the formula 𝜑. Indeed, the input formula 𝜑
contains only polynomially many occurrences of function symbols and the
size of the input formula is increased

• by 𝐿(2𝑛) = 𝑛+1 for each quantified variable of arity 𝑛 due to converting
𝑄𝑖𝑓𝑖 to 𝑄𝑖𝑥[2

𝑛]
𝑓𝑖 ,

• by 𝐿(1) = 1 for each occurrence of a proposition in the matrix due to
converting 𝑓() to 𝑥[1]𝑓 ,

• by 𝐿(2𝑛) + 𝐿(2𝑛 − 𝑛) + 𝐿(0) + 𝑛 = (⌊log2(2𝑛)⌋ + 1) + (⌊log2(2𝑛 − 𝑛)⌋ +
1) + 1 + 𝑛 ≤ 3𝑛 + 3 for each occurrence of a proper function symbol 𝑓
of the arity 𝑛 in the matrix due to converting 𝑓 to 𝑥[2

𝑛]
𝑓 and adding the

numeral 0[2𝑛−𝑛] and 𝑛 concatenation operations,

• by a constant for each occurrence of a proper function symbol due to
using the generalized indexing operation, and

• by 1 + 1 + 𝐿(1) = 3 due to modifying 𝜓𝐵𝑉 to 𝜓𝐵𝑉 = 1[1].

Example 4.1. Consider an SO2 formula

∃𝑓∀𝑝∀𝑞 . ¬𝑓(𝑝, 𝑞, 𝑝) ∧ 𝑓(𝑝, 𝑞 ∧ ¬𝑞, ¬𝑝),

where 𝑓 is a ternary function symbol and 𝑝, 𝑞 are propositions. Then the result
of the described reduction is the formula

∃𝑥[8]𝑓 ∀𝑥[1]𝑝 ∀𝑥[1]𝑞 (

(∼𝑥[8]𝑓 [0[5] ⋅ 𝑥[1]𝑝 ⋅ 𝑥[1]𝑞 ⋅ 𝑥[1]𝑝 ] & 𝑥[8]𝑓 [0[5] ⋅ 𝑥[1]𝑝 ⋅ (𝑥[1]𝑞 & ∼𝑥[1]𝑞 ) ⋅ ∼𝑥[1]𝑝 ])

= 1[1]).

Note that the resulting formula is satisfiable and the witness to its satisfiability
is the assignment 𝜇(𝑥𝑓) = 00010010. In the original formula, this assignment
corresponds to the following function 𝑓:

𝑓(0, 0, 0) = 𝜇(𝑥𝑓)0 = 0, 𝑓(0, 0, 1) = 𝜇(𝑥𝑓)1 = 1,
𝑓(0, 1, 0) = 𝜇(𝑥𝑓)2 = 0, 𝑓(0, 1, 1) = 𝜇(𝑥𝑓)3 = 0,
𝑓(1, 0, 0) = 𝜇(𝑥𝑓)4 = 1, 𝑓(1, 0, 1) = 𝜇(𝑥𝑓)5 = 0,
𝑓(1, 1, 0) = 𝜇(𝑥𝑓)6 = 0, 𝑓(1, 1, 1) = 𝜇(𝑥𝑓)7 = 0.

Observe that the function thus defined is indeed a witness of satisfiability of the
original formula.

Corollary 4.1. The BV2 satisfiability problem is AEXP(poly)-complete.
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Quantifiers

No Yes

Uninterpreted functions Uninterpreted functions
Encoding No Yes No Yes

Unary NP NP PSPACE NEXPTIME
Binary NEXPTIME NEXPTIME AEXP(poly) 2−NEXPTIME

Table 4.2: Completeness results for various bit-vector logics and encodings.This is the
table presented by Fröhlich et al. [FKB13] extended by the result proved in
this chapter.

4.4 conclusions

We have identified the precise complexity class of deciding satisfiability of
quantified bit-vector formulas with binary-encoded bit-widths. This chapter
shows that the problem is complete for the complexity class AEXP(poly); i.e.,
the class of all problems solvable by an alternating Turing machine that can
use exponential time and a polynomial number of alternations. This result
had settled the open question raised by Kovásznai et al. [KFB16]. Known com-
pleteness results for various bit-vector logics including the result proven in this
chapter are summarized in Table 4.2.





5SOLVING QUANTIFIED BIT-VECTOR FORMULAS BY BINARY
DECISION DIAGRAMS

This chapter presents an algorithm for solving satisfiability of quantified bit-
vector formulas that is based on binary decision diagrams. Although binary de-
cision diagrams have been previously used to implement satisfiability decision
procedures for the propositional logic, state-of-the-art solvers based on the
Conflict Driven Clause Learning algorithm (cdcl) [MSS99] usually achieve
much better performance. The main disadvantage of bdds is low scalability:
the size of a bdd corresponding to a propositional formula can be exponential
in the number of propositional variables, and when a bdd becomes too large,
some operations are very slow. Employment of bdds in smt solving makes
more sense when formulas with quantifiers are considered: quantification usu-
ally reduces size of a bdd as it decreases the number of bdd variables. This
can be documented by Figure 5.1, which compares the bdd sizes for formulas
before and after existential or universal quantification on a subset of formulas
from the smt-lib benchmark repository.

As a relatedwork for using bdds for formulas with quantifiers, there already
exist some bdd-based tools deciding validity of quantified Boolean formulas
with the performance similar to state-of-the-art solvers for this problem [OE11;
AS04].

Themain idea of using bdds for solving satisfiability of quantified bit-vector
formulas is simple: the formula is satisfiable if and only if the corresponding
bdd is not 0 . Even this approach without any improvements can solve some
formulas that cannot be solved by the state-of-the-art smt solver Z3, which
uses model-based quantified-instantiation approach, explained in Section 3.1.
In particular, consider the unsatisfiable formula

𝜑 ≡ (𝑥[32] = (16[32]× 𝑦[32]) + (16[32]× 𝑧[32])) ∧
∀𝑣[32] (𝑥[32] ≠ 16[32]× 𝑣[32]) ,

which was discussed in Section 3.1. The bdd for the subformula ∀𝑣[32] (𝑥[32] ≠
16[32] × 𝑣[32]) can be easily computed by the function f2BDD and is shown in
Figure 5.2. The bdd shows that the subformula is satisfiable if and only if one
of the four least significant bits of 𝑥 is 1. After computing the bdd for the entire
formula 𝜑, one gets the bdd 0 , and hence the formula 𝜑 can be decided as
unsatisfiable.

Our bdd-based algorithm for satisfiability of the bit-vector formulas con-
sists of threemain components, thanks to which the described approach scales
well for more complex formulas:

• Formula simplifications, which reduce the number of variables in the
formula and push quantifiers downwards in the syntax tree of the for-
mula (which later helps to keep intermediate bdds smaller as they are
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Figure 5.1: Comparison of sizes (measured by the number of bdd nodes) of bdds
corresponding to all quantified subformulas in quantified bit-vector bench-
marks from the familywintersteiger in the smt-lib benchmark repository,
before and after quantification.
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Figure 5.2: A bdd for ∀𝑣[32] (¬(𝑥[32] = 24[32]× 𝑣[32])).

built in the bottom-up manner). Formula simplifications can reduce
some formulas to⊤ or⊥ and thus immediately decide their satisfiability.

• Construction of a bdd using a specific variable ordering. The ordering
has a significant influence on the bdd size.

• Formula approximations, which represent some bit-vector variables in
the formula by a smaller number of bits and thus lead to smaller bdds.
Unsatisfiability of an overapproximation of a formula implies unsatis-
fiability of the original formula and, dually, satisfiability of a formula
underapproximation implies satisfiability of the original formula.

We present a minor contribution in each component. The main contribution
of our approach is the fact that the algorithm based on the three parts can
compete with leading smt solvers for the bit-vector theory, namely Boolec-
tor, CVC4, and Z3. This claim is supported by the experimental evaluation in
Chapter 9.

This chapter introduces the main components step by step. Section 5.1 de-
scribes the simplifications, Section 5.2 describes how to compute the ordering
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of bdd variables, and Section 5.3 describes formula approximations. Finally,
Section 5.4 presents our complete algorithm.

5.1 formula simplifications

As in most of the modern smt solvers, the first step of deciding satisfiability is
simplification of the input formula. Besides trivial simplifications (e.g., 𝜑 ∧ 𝜑
reduces to 𝜑), we apply the following simplification rules.

miniscoping. Miniscoping [Har09] is a technique for reducing scopes of
universal quantifiers by: (i) distributing universal quantifiers over conjunc-
tions and (ii) quantifying only one of the disjuncts, if the other disjunct does
has no free occurences of the quantified variable. Existential quantifiers are
handled analogously. The simplification rules are as follows:

∀𝑥 (𝜑 ∧ 𝜓) ⇝ (∀𝑥 𝜑) ∧ (∀𝑥 𝜓),
∃𝑥 (𝜑 ∨ 𝜓) ⇝ (∃𝑥 𝜑) ∨ (∃𝑥 𝜓),

and for formulas 𝜓 with no free occurrences of the variable 𝑥:

∀𝑥 (𝜑 ∨ 𝜓) ⇝ (∀𝑥 𝜑) ∨ 𝜓,
∃𝑥 (𝜑 ∧ 𝜓) ⇝ (∃𝑥 𝜑) ∧ 𝜓.

The miniscoping technique is beneficial for bdd-based smt solvers because
the earlier application of the quantification potentially allows earlier reduction
of the bdd size.

destructive equality resolution. Destructive equality resolution
(der) [WHM13] eliminates a universally quantified variable 𝑥 in a formula of
form ∀𝑥 (𝑥 ≠ 𝑡 ∨ 𝜑), where 𝑡 is a term that does not contain the variable 𝑥.
The formula is equivalent to ∀𝑥 (𝑥 = 𝑡 → 𝜑) and hence also to 𝜑[𝑥 ← 𝑡]. The
simplification rule is formulated as follows:

∀𝑥 (𝑥 ≠ 𝑡 ∨ 𝜑) ⇝ 𝜑[𝑥 ← 𝑡].

constructive equality resolution. Constructive equality resoluti-
on (cer) is a dual version of der. As far as we know, it was not considered After we introduced

cer, it was adopted
also by
Boolector [Pre17].

before as solvers for quantified formulas typically work with formulas after
Skolemization and thuswithout any existential quantifiers. Constructive equal-
ity resolution can be formulated as the following simplification rule, where 𝑡
has the same meaning as above:

∃𝑥 (𝑥 = 𝑡 ∧ 𝜑) ⇝ 𝜑[𝑥 ← 𝑡].

Both der and cer also tend to produce smaller bdds because they eliminate
one bit-vector variable and, in turn, also eliminate several bdd variables.
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pure literal elimination Pure literal elimination eliminates Boolean
variables that occur in the formula only with one polarity. Namely, if an exis-
tentially quantified Boolean variable occurs only positively, it can be replaced
by ⊤; if it occurs only negatively, it can be replaced by ⊥. The treatment is
dual for universally quantified variables. This gives the following simplifica-
tion rules:

∃𝑥Bool 𝜑 ⇝ 𝜑[𝑥Bool ← ⊤],
∀𝑥Bool 𝜑 ⇝ 𝜑[𝑥Bool ← ⊥],

if all the occurrences of 𝑥Bool in 𝜑 have the positive polarity and

∃𝑥Bool 𝜑 ⇝ 𝜑[𝑥Bool ← ⊥],
∀𝑥Bool 𝜑 ⇝ 𝜑[𝑥Bool ← ⊤],

if all the occurrences of 𝑥Bool in 𝜑 have the negative polarity.

theory-related simplifications. We also perform several simplifica-
tions related to the interpretation of the function and predicate symbols in the
bit-vector theory. Examples of such simplifications are reductions

𝑡[𝑛] + (−𝑡[𝑛]) ⇝ 0[𝑛],
𝑡[𝑛] × 0[𝑛] ⇝ 0[𝑛],
𝑡[𝑡] & 0[𝑛] ⇝ 0[𝑛] , or

extract𝑗,𝑖(0[𝑛]) ⇝ 0[𝑗−𝑖+1].

Note that all the mentioned simplification rules have no effect on models of
the formula and thus they have no direct effect on the resulting bdd. However,
simplified formulas tend to have simpler subformulas and thus the intermedi-
ate bdds are often smaller and the resulting bdd can be computed faster.

5.2 bit variable ordering

When constructing a bdd, one has to specify an ordering of bdd variables,
which in our case precisely correspond to bit variables of the input formula.
Although there are algorithms for changing the ordering of the variables dur-
ing the computation, the reordering can be costly and therefore choosing the
right variable upfront is crucial. The ordering of variables has a significant ef-
fect on the bdd size and the time that is necessary to compute it. In some cases,
the size of a bdd for a formula is linear with respect to the number of bits in
the formula with one variable ordering, but exponential with another one.

For example, consider the formula𝜑1 ≡ (𝑥[𝑛] = 𝑦[𝑛]) for an arbitrary 𝑛 ∈ ℕ+

and let 𝑥0, 𝑥1, … , 𝑥𝑛−1 be the bits of 𝑥 and 𝑦0, 𝑦1, … , 𝑦𝑛−1 be the bits of 𝑦. We
define two orderings:
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Figure 5.3: Examples of bdds representing the bit-vector formula 𝑥[2] = 𝑦[2] with dif-
ferent variable orderings.

≤1 All bit variables are ordered according to their significance (from the least
to the most significant) and variables with the same significance are or-
dered by the order of the first occurrence of the corresponding bit-vector
variables in the formula. For the considered formula 𝜑1, we get:

𝑥0 ≤1 𝑦0 ≤1 𝑥1 ≤1 𝑦1 ≤1 … ≤1 𝑥𝑛−1 ≤1 𝑦𝑛−1.

≤2 Bit variables are ordered by the order of the first occurrence of the cor-
responding bit-vector variable in the formula and bit variables corre-
sponding to the same bit-vector variable are ordered according to their
significance (from the least to the most significant). For the considered
formula, we get:

𝑥0 ≤2 𝑥1 ≤2 … ≤2 𝑥𝑛−1 ≤2 𝑦0 ≤2 𝑦1 ≤2 … ≤2 𝑦𝑛−1.

It can be seen that the bdd for 𝜑1 using the ordering≤1 has 3𝑛+2 nodes, while
the bdd for the same formula and≤2 has 3 ⋅2𝑛−1 nodes. Figures 5.3a and 5.3b
show these bdds for 𝑛 = 2 and orderings ≤1 and ≤2, respectively.

However, these orderings can lead to opposite results with other formulas.
For example, the size of the bdd for the formula

𝜑2 ≡ (𝑥1[2] = (𝑥2[2] ≫ᵆ 1[2])) ∧
(𝑥3[2] = (𝑥4[2] ≫ᵆ 1[2])) ∧
… ∧
(𝑥2𝑛−1[2] = (𝑥2𝑛[2] ≫ᵆ 1[2]))

using the ordering ≤1 is 2𝑛+2 − 1, while it is only 4𝑛 + 2 for ≤2. In the follow-
ing, we introduce an ordering ≤3, which in most cases combines advantages
of both≤1 and≤2. However, we cannot hope that the introduced ordering will
be optimal for all the cases as it is well known that choosing the optimal bdd
variable ordering is an NP-complete problem [BW96].

Let vars(𝜑) be the set of bit-vector variables that appear in the input for-
mula 𝜑. We call the variables 𝑥, 𝑦 ∈ vars(𝜑) potentially dependent, written
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𝑥 ∼ 𝑦, if they both appear in the same atomic subformula of 𝜑. Let ≃ be the
equivalence on vars(𝜑) defined as the transitive closure of∼. Every 𝑣 ∈ vars(𝜑)
then defines an equivalence class [𝑣]≃ of transitively dependent variables. For
example, in the formula 𝜑2, the relation ≃ partitions the set vars(𝜑) to the
equivalence classes

{{𝑥1[2], 𝑥2[2]}, {𝑥3[2], 𝑥4[2]}, … , {𝑥2𝑛−1[2], 𝑥2𝑛[2]}}.

Using the relation ≃, we define the following ordering ≤3. Its idea is to have all
potentially dependent variables near to each other, which can reduce the size
of the bdd.

≤3 Equivalence classes of ≃ are first ordered by the first occurrences of the
bit-vector variables in 𝜑. In particular for 𝑢 ≄ 𝑣, 𝑢𝑖 ≤3 𝑣𝑗 if there is a bit-
vector variable in [𝑢]≃ that occurs in 𝜑 before all bit-vector variables of
[𝑣]≃. Within the individual equivalence classes, bit variables are ordered
according to ≤1.

Note that for both formulas 𝜑1 and 𝜑2 mentioned above, ≤3 coincides with the
better of the orderings ≤1 and ≤2.

In addition to the initial variable ordering, there are several techniques that
dynamically reorder the bdd variables to reduce the bdd size. We use sift-
ing [Rud93] as usually the most successful one [Knu09].

5.3 approximations

For some bit-vector formulas, e.g., formulas containing non-linear multipli-
cation, the size of the bdd representation is exponential with respect to the
number of bits for every possible variable ordering [Bry91]. This is the case
even for simple formulas such as 𝑥[32] = 𝑦[32] × 𝑧[32]. Fortunately, satisfiability
of these formulas can be often decided using their overapproximations or un-
derapproximations. Given a formula 𝜑, its underapproximation is any formula
𝜑 that logically entails 𝜑, and its overapproximation is any formula 𝜑 logically
entailed by 𝜑. I.e.,

𝜑 ⊧ 𝜑 ⊧ 𝜑.

Clearly, every model of 𝜑 is also a model of 𝜑 and if an underapproximation
𝜑 is satisfiable, so is the formula 𝜑. Similarly, if an overapproximation 𝜑 is un-
satisfiable, so is 𝜑.

Example 5.1. The model-based quantifier instantiation presented in Section 3.1
can be also seen as a technique based on an iterative overapproximation refine-
ment: the formulas 𝜑, 𝜑 ∧ 𝜓[𝑥 ← 𝑡1], 𝜑 ∧ 𝜓[𝑥 ← 𝑡1] ∧ 𝜓[𝑥 ← 𝑡2], etc. are
overapproximations of the formula 𝜑 ∧ ∀𝑥 (𝜓).

Different approximations can be found in smt solvers for quantifier-free bit-
vector formulas. For example, the smt solver uclid overapproximates a for-
mula in the negation normal form by replacing some subformulas with fresh
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variables [Bry+07]. Both the underapproximations and overapproximations
that are used in our algorithm are inspired by yet another approximation tech-
nique, which is used in smt solvers uclid and Boolector for quantifier-free
bit-vector formulas. These solvers underapproximate a formula by restricting
values of some bits of the chosen bit-vector variables while leaving the remain-
ing bits unchanged [Bry+07; BB09]. The number of bit variables used to repre-
sent the bit-vector variable is called its effective bit-width. This technique can
be seen in Example 5.2; in this example, 30most significant bits of the variables
𝑥[32], 𝑦[32], and 𝑧[32] are restricted to the value 0 and only two effective bits are
used to represent their two least significant bits.

Example 5.2. Consider the formula 𝜑 ≡ 𝑥[32] = 𝑦[32] × 𝑧[32]. One of its
underapproximations is the formula

𝜑 ≡ (𝑥[32][31∶2] = 0[30]) ∧
(𝑦[32][31∶2] = 0[30]) ∧
(𝑧[32][31∶2] = 0[30]) ∧
(𝑥[32] = 𝑦[32] × 𝑧[32]).

Although the bdd for this formula is not exponential, it is infeasible to be com-
puted directly since the bdd for the subformula 𝑥[32] = 𝑦[32]×𝑧[32] is exponential.
However, the formula 𝜑 is equivalent to the following formula 𝜑′ for which the
computation is feasible:

𝜑′ ≡ (𝑥[32][31∶2] = 0[30]) ∧
(𝑦[32][31∶2] = 0[30]) ∧
(𝑧[32][31∶2] = 0[30]) ∧
((3[32] & 𝑥[32]) = (3[32] & 𝑦[32]) × (3[32] & 𝑧[32])).

To see the equivalence of𝜑 and𝜑′, observe that the condition (𝑥[32][31∶2] = 0[30])
implies that 30 most significant bits of 𝑥[32] are 0 and that the term (3[32] &𝑥[32])
yields the value of 𝑥[32] after setting its 30 most significant bits to 0.
Because the bdd for the formula 𝜑′ is not 0 , the original formula 𝜑 is con-

cluded to be satisfiable.

However, there are multiple choices both for the bits that are represented by
the effective bit-width and for the value to which all other bits are restricted.
We now explore several of these possibilities, which are called extensions in the
original uclid and Boolector publications.

5.3.1 Extensions

Let 𝑥[𝑛] be a bit-vector variable of bit-width 𝑛 and 𝑒 ∈ ℕ+ be its desired effec-
tive bit-width. If 𝑒 ≥ 𝑛, the variable 𝑥[𝑛] can be left unchanged. Otherwise, the
variable 𝑥[𝑛] has to be represented by a smaller number of effective bits. All
extensions that we discuss are illustrated in Figure 5.4. The first two possible
extensions come from uclid and Boolector:
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zero-extension uses the effective bit-width to represent the 𝑒 least signif-
icant bits and sets the 𝑛 − 𝑒 most significant bits to 0.

sign-extension also uses the effective bit-width to represent the 𝑒 least sig-
nificant bits, but sets the 𝑛 − 𝑒 most significant bits to the value of the
𝑒-th least significant bit.In English sentences,

bits are indexed from
1, i.e., the least

significant bit is the
1st least significant.

As opposed to the zero-extension, the sign-extension allows also representing
negative numbers with small absolute value expressed in two’s complement
notation such as sbv4(−1) = 1111 or sbv4(−2) = 1110. Another extensions are
suggested in [BB09], e.g., the one-extension defined analogously to the zero-
extension. However, we do not consider the one-extension here because it pro-
duces only few zero bits, which are desired as they tend to reduce the size of
bdds for multiplication.

Although the zero-extension and the sign-extension already cover interest-
ing corner cases, they require large effective bit-widths to cover corner case
values as 10000000 or 01000000, which are often interesting due to overflows.
To cover such values, we introduce the following right variants of the above-
mentioned extensions, which use the effective bit-width to represent the most
significant bits of the variable:

right zero-extension uses the effective bit-width to represent the 𝑒most
significant bits and sets the 𝑛 − 𝑒 least significant bits to 0.

right sign-extension also uses the effective bit-width to represent the 𝑒
most significant bits, but sets the 𝑛 − 𝑒 least significant bits to the value
of the 𝑒-th most significant bit.

We also propose a combination of left- and right- extensions, which we call
middle extensions.These use one half of the effective bit-width to represent the
most significant bits and the other half of the effective bit-width to represent
the least significant bits. Middle extensions can represent both the small val-In our original

algorithm, this was
achieved by iterating

between left- and
right- extensions

instead of using the
simpler method of
middle extensions.

ues of the given variable and the mentioned corner cases such as 10000000 or
01000000. Moreover, they can represent values such as 01000010. On the other
hand, middle extensions need the effective bit-width equal to the original bit-
width to represent values such as 00010000.

0 0 𝑥3 𝑥2 𝑥1 𝑥0 𝑥3 𝑥3 𝑥3 𝑥2 𝑥1 𝑥0
zero-extension sign-extension

𝑥5 𝑥4 𝑥3 𝑥2 0 0 𝑥5 𝑥4 𝑥3 𝑥2 𝑥2 𝑥2
right zero-extension right sign-extension

𝑥5 𝑥4 0 0 𝑥1 𝑥0 𝑥5 𝑥4 𝑥1 𝑥1 𝑥1 𝑥0
middle zero-extension middle sign-extension

Figure 5.4: Reductions of 𝑥[6] = 𝑥5𝑥4𝑥3𝑥2𝑥1𝑥0 to 4 effective bits.
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middle zero-extension uses the effective bit-width to represent the ⌊𝑒/2⌋
most significant bits and ⌈𝑒/2⌉ least significant bits, and sets the 𝑛 − 𝑒
middle bits to 0.

middle sign-extension also uses the effective bit-width to represent the
⌊𝑒/2⌋most significant bits and ⌈𝑒/2⌉ least significant bits, but sets the 𝑛−𝑒
middle bits to the value of the (⌈𝑒/2⌉)-th least significant bit.

Similarly to Example 5.2, reduction of the effective bit-width of a variable
in a quantifier-free formula using any of the described extensions is simple to
implement. The input formula can be conjoined with a suitable formula that
restricts the values of the chosen bits. Let 𝑥[𝑛] be a variable whose bit-width
should be reduced and 1 ≤ 𝑒 < 𝑛 the desired effective bit.We describe for each
extension a formula 𝜌𝑒𝑥[𝑛] such that 𝜑 = 𝜌𝑒𝑥[𝑛] ∧ 𝜑 is the desired underapproxi-
mation of the input formula 𝜑.

• For the (left) zero-extension, 𝜌𝑒𝑥[𝑛] is

𝑥[𝑛][𝑛 − 1∶𝑒] = 0[𝑛−𝑒].

• For the (left) sign-extension, 𝜌𝑒𝑥[𝑛] is Recall that 𝑡[𝑖] was
defined as 𝑡[𝑖∶𝑖].

𝑥[𝑛][𝑛 − 1∶𝑒] = signExtend𝑛−𝑒−1(𝑥[𝑛][𝑒 − 1]).

• For the right zero-extension, 𝜌𝑒𝑥[𝑛] is

𝑥[𝑛][𝑛 − 𝑒 − 1∶0] = 0[𝑛−𝑒].

• For the right sign-extension, 𝜌𝑒𝑥[𝑛] is

𝑥[𝑛][𝑛 − 𝑒 − 1∶0] = signExtend𝑛−𝑒−1(𝑥[𝑛][𝑛 − 𝑒]).

• For the middle zero-extension, 𝜌𝑒𝑥[𝑛] is

𝑥[𝑛][(𝑛 − ⌊𝑒/2⌋ − 1)∶⌈𝑒/2⌉] = 0[𝑛−𝑒].

• For the middle sign-extension, 𝜌𝑒𝑥[𝑛] is

𝑥[𝑛][(𝑛 − ⌊𝑒/2⌋ − 1)∶⌈𝑒/2⌉] = signExtend𝑛−𝑒−1(𝑥[𝑛][⌈𝑒/2⌉ − 1]).

Aswas discussed in Example 5.2, if this approach should be beneficial for bdd-
based smt solvers, each original occurrence of a variable 𝑥[𝑛] in the formula 𝜑
must also be modified to reflect the restricted values of its bits. For example,
if the zero-extension was performed, 𝑛 − 𝑒 most significant bits of the vari-
able 𝑥[𝑛] have to be fixed to 0; if the sign-extension was performed, 𝑛 − 𝑒 most
significant bits of the variable 𝑥[𝑛] have to be fixed to the most significant ef-
fective bit of 𝑥[𝑛]. Such modifications simplify the computations that depend
on the restricted value of 𝑥[𝑛]. We will, however, not consider these modifica-
tions during proofs of the correctness of the approach, because the result of
these modifications is the formula that is equivalent to the formula 𝜑, albeit it
is potentially simpler to compute.
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5.3.2 Approximations of quantified formulas

The reduction of effective bit-width can be performed also in quantified for-
mulas.Moreover, in quantified formulas, both underapproximations and over-
approximations of the input formula can be obtained by reducing effective bit-
widths of a suitable subset of variables. In the following, we fix one of the six
introduced extension methods and refer to it only as the chosen extension. We
also suppose that the input formula is in the negation normal form and does
not contain free variables.

To obtain an underapproximation of a formula, we reduce the effective bit-
width of all its existentially quantified variables. Given a formula 𝜑 and 𝑒 ∈ ℕ+,
let 𝜑

𝑒
denote the formula 𝜑 with the effective bit-width of each existentially

quantified variable reduced to 𝑒 by the chosen extension. Namely, the formula
𝜑
𝑒
is obtained from the formula 𝜑 by replacing each its subformula of the form

∃𝑥[𝑛] (𝜓) by the formula ∃𝑥[𝑛] (𝜌𝑒𝑥[𝑛] ∧ 𝜓).
On the other hand, to obtain an overapproximation of a formula, we reduce

the effective bit-widths of all its universally quantified variables. Given a for-
mula 𝜑 and 𝑒 ∈ ℕ+, let 𝜑𝑒 denote the formula 𝜑 with the effective bit-width
of each universally quantified variable reduced to 𝑒 by the chosen extension.
Namely, the formula 𝜑 𝑒 is obtained from the formula 𝜑 by replacing each its
subformula of the form ∀𝑥[𝑛] (𝜓) by the formula ∀𝑥[𝑛] (𝜌𝑒𝑥[𝑛] → 𝜓).

The following theorem establishes that for each formula 𝜑 in the nnf, 𝜑
𝑒
is

indeed its underapproximation and 𝜑𝑒 is its overapproximation.

Theorem 5.1. For every formula 𝜑 in the nnf and any 𝑒 ∈ ℕ+, it holds:

1. If 𝜇 is a model of 𝜑
𝑒
, then 𝜇 is also a model of 𝜑.

2. If 𝜇 is a model of 𝜑, then 𝜇 is also a model of 𝜑𝑒.

Proof. We show the first claim by induction on the structure of the formula 𝜑:

• If the formula 𝜑 is quantifier-free, the claim holds trivially since formu-
las 𝜑 and 𝜑

𝑒
are identical.

• If the formula 𝜑 is of form ∃𝑥[𝑛] (𝜓): let 𝜇 be a model of 𝜑
𝑒
, which is

defined as 𝜑
𝑒
= ∃𝑥[𝑛] (𝜌𝑒𝑥[𝑛] ∧𝜓 𝑒

). Therefore there is a bit-vector 𝑣 of bit-
width 𝑛, such that 𝜇[𝑥[𝑛] ↦ 𝑣] is a model of 𝜌𝑒𝑥[𝑛] ∧ 𝜓 𝑒

. This assignment
is thus also a model of 𝜓

𝑒
and from the induction hypothesis also of 𝜓.

The assignment 𝜇 is hence a model of the formula ∃𝑥[𝑛] (𝜓).

• If the formula 𝜑 is of form ∀𝑥[𝑛] (𝜓1), or 𝜓1∧𝜓2, or 𝜓1∨𝜓2: In these cases,
the arguments 𝜓𝑖 are replaced by formulas 𝜓𝑖 𝑒. From the induction hy-
pothesis we know that each formula 𝜓𝑖 𝑒 logically entails the formula
𝜓𝑖. The claim thus follows from the monotonicity of the operations ∀, ∧,
and ∨. In other words, if each argument 𝜓𝑖 is replaced by a formula that
logically entails 𝜓𝑖, the result also entails the original formula 𝜑.
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We do not consider the negations during the induction, because since the for-
mula is in the nnf, negations can occur only in its quantifier-free part.

The proof of the second claim is analogous.

An obvious corollary hence allows deciding satisfiability of 𝜑 by deciding sat-
isfiability of 𝜑

𝑒
or 𝜑𝑒.

Corollary 5.1. For every formula 𝜑 in the nnf and any 𝑒 ∈ ℕ+, it holds:

1. If the formula 𝜑
𝑒
is satisfiable, so is the formula 𝜑.

2. If the formula 𝜑𝑒 is unsatisfiable, so is the formula 𝜑.

5.4 the algorithm

We now present the complete bdd-based algorithm for deciding satisfiabil-
ity of quantified bit-vector formulas. In the algorithm, we use the procedure
f2BDD fromPreliminaries, which converts a formula to the corresponding bdd
recursively on the structure of the formula.

For a given input formula 𝜑, the algorithm proceeds in the following steps:

1. Simplify the formula 𝜑 using the rules discussed in Section 5.1 up to the
fixed point and convert it to the negation normal form. If the result is ⊤,
return SAT. If the result is ⊥, return UNSAT.

2. Take the simplified formula in nnf 𝜑′ and compute a chosen ordering
≤𝑖 as described in Section 5.2. This ordering will be used as the initial
ordering in the procedure f2BDD.

3. Run the following three threads in parallel. Return the first result SAT or
UNSAT that any of the threads returns:

a) Precise solver: Call f2BDD(𝜑′) to compute the bdd corresponding
to 𝜑′. If the returned bdd is 0 , return UNSAT. Otherwise return
SAT.

b) Under-approximating solver: Sequentially compute f2BDD(𝜑′
𝑖
) for

𝑖 = 1, 2, 4, 6, 8, … until reaching the greatest bit-width of any bit-
vector variable in 𝜑′. If any of the resulting bdds is distinct from
0 , return SAT. Otherwise return UNSAT.

c) Over-approximating solver: Sequentially compute f2BDD(𝜑′𝑖) for
𝑖 = 1, 2, 4, 6, 8, … until reaching the greatest bit-width of any bit-
vector variable in 𝜑′. If any of the produced bdds is 0 , return
UNSAT. Otherwise return SAT.

The high-level workflow of the algorithm can be found in Figure 5.5.
Note that the algorithm is parametrized by the choice of an ordering and

the extension used for approximations. Regardless these parameters, the algo-
rithm is sound and complete. However, in practice, the procedure f2BDD may
need exponential time and memory and thus the algorithm may not finish
within reasonable limits.
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underapproximating solver precise solver overapproximating solver

𝜑

Simplify 𝜑

Compute
underapproximating
bdd with precision

Set
precision
to low

Increase
precision

Compute
precise
bdd

Compute
overapproximating
bdd with precision

Set
precision
to low

Increase
precision

SAT UNSAT

unsat sat sat unsat satunsat

Figure 5.5: High-level overview of the algorithm for solving quantified bit-vector for-
mulas by bdds.The three shaded areas are executed in parallel and the first
result is returned.



6ABSTRACTION OF BIT-VECTOR OPERATIONS FOR BDD-BASED
SMT SOLVERS

Although the algorithm presented in the previous chapter is competitive with
state-of-the-art smt solvers on most of the real-world formulas, the approach
has several drawbacks. For example, the presented algorithm cannot solve sat-
isfiability of simple formulas such as

∃𝑥, 𝑦 ((𝑥 × 𝑦 = 0) ∧ (𝑥 <ᵆ 2) ∧ (𝑥 >ᵆ 4)) ,

∃𝑥, 𝑦 ((𝑥 ≪ 1) × 𝑦 = 1) ,

∃𝑥, 𝑦 (𝑥 >ᵆ 0 ∧ 𝑥 ≤ᵆ 4 ∧ 𝑦 >ᵆ 0 ∧ 𝑦 ≤ᵆ 4 ∧ 𝑥 × 𝑦 = 0) ,

where all variables and constants have bit-width 32. All three of these formu-
las are unsatisfiable, but cannot be decided without approximations, because
they contain non-linear multiplication. Moreover, the introduced approxima-
tions do not help as the formulas are unsatisfiable and contain no universally
quantified variables, which could be used to approximate the formula.

However, the three above-mentioned formulas have something in common:
only a few of the bits of the multiplication results are sufficient to decide satis-
fiability of the formulas.The first formula can be decided unsatisfiable without
computing any bits of 𝑥×𝑦 whatsoever.The second formula can be decided by
computing only the least significant bit of (𝑥 ≪ 1) × 𝑦 because it must always
be zero. The third formula can be decided by computing 5 least significant bits
of 𝑥 × 𝑦, because they are enough to rule out all values of 𝑥 and 𝑦 between 1
and 4 as models.

With this in mind, we propose an improvement of bdd-based smt ap-
proaches, such as the one presented in the previous chapter, by allowing to
compute only several bits of results of the selected arithmetic operations. To
achieve this, the chapter defines abstract domains in which the operations can
produce do-not-know values and shows that these abstract domains can be
used to decide satisfiability of an input formula.

This chapter is structured as follows. Section 6.1 presents a general definition
of abstract domains for terms and formulas and shows how they can be used to
decide satisfiability of a formula. Section 6.2 introduces truncating term and
formula abstract domains that compute only several bits from results of arith-
metic bit-vector operations. Section 6.3 shows how to combine the proposed
abstractions with the bit-width approximations, which were described in the
previous chapter. And finally, Section 6.4 describes several further improve-
ments to the application of these abstract domains.

51
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6.1 formula and term abstractions

As was discussed in the previous chapter, it is often infeasible to compute func-
tions t2BDDvec and f2BDD precisely.This can be caused either by a large size of
some intermediate bdds or by a large size of the resulting bdd itself. However,
even an imprecise result can sometimes be sufficient to decide satisfiability of
the input formula as was illustrated in the introduction to this chapter. In this
section, we describe general notions of a term abstract domain, which captures
an imprecise computation of t2BDDvec, and a formula abstract domain, which
captures an imprecise computation of f2BDD. In the following definitions, we
denote the set of all bit-vector terms of the sort [𝑛] for some 𝑛 as𝒯 and the set
of all bit-vector formulas as ℱ. Recall that ℬ𝒱 is the set of all bit-vectors.

A term abstract domain defines a set of abstract objects𝐴, a function 𝛼map-
ping terms to these abstract objects, and an evaluation function J_K𝐴_ , which
assigns to each abstract object 𝑎 ∈ 𝐴 and a variable assignment 𝜇 the set J𝑎K𝐴𝜇
of bit-vectors represented by 𝑎.
Definition 6.1 (Term abstract domain). A term abstract domain is defined
as a triple (𝐴, 𝛼, J_K𝐴_ ), where 𝐴 is a set of abstract objects, 𝛼∶ 𝒯 → 𝐴 is an
abstraction function, and J_K𝐴_ ∶ 𝐴 × ℬ𝒱vars → 2ℬ𝒱 is an abstract evaluation
function.

As an example, consider the precise bdd term abstract domain, in which the
corresponding vector of precise bdds is assigned to each term. In particular,
the precise bdd term abstract domain is the triple

(BDDvec, t2BDDvec, J_KBDDvec_ ),

where the value J𝑎KBDDvec𝜇 is the singleton set {bv} such that bv is the result of
evaluation of vector of bdds 𝑎 in the assignment 𝜇, i.e., bv = J𝑎K𝜇 . Note that
this abstract domain serves only as an artificial example as it does not bring
any real abstraction.Nevertheless, it enjoys two interesting properties: for each
term and assignment, the corresponding abstract object represents the correct
result and it does not represent any incorrect result.These properties are called
completeness and soundness, respectively.

Definition 6.2 (Term abstract domain completeness and soundness). A term
abstract domain (𝐴, 𝛼, J_K𝐴_ ) is complete if each term 𝑡 ∈ 𝒯 and each assignment
𝜇 satisfy J𝑡K𝜇 ∈ J𝛼(𝑡)K𝐴𝜇 . Conversely, it is sound if each 𝑡 and 𝜇 satisfy J𝛼(𝑡)K𝐴𝜇 ⊆
{J𝑡K𝜇}.

Similarly to the term abstract domain, the formula abstract domain defines
a set of abstract objects 𝐴, a function 𝛼 mapping formulas to these abstract
objects, and an evaluation function J_K𝐴_ , which assigns to each abstract object
𝑎 and a variable assignment 𝜇 the set J𝑎K𝐴𝜇 ⊆ {0, 1} of truth values associated
to 𝑎.
Definition 6.3 (Formula abstract domain). A formula abstract domain is a
triple (𝐴, 𝛼, J_K𝐴_ ), where 𝐴 is an arbitrary set of abstract objects, 𝛼∶ ℱ → 𝐴 is
an abstraction function, and J_K𝐴_ ∶ 𝐴×ℬ𝒱vars → 2{0,1} is an abstract evaluation
function.



6.2 truncating formula and term abstract domains 53

Definition 6.4 (Formula abstract domain completeness and soundness). A
formula abstract domain (𝐴, 𝛼, J_K𝐴_ ) is complete if each formula 𝜑 ∈ ℱ and
each assignment 𝜇 satisfy J𝜑K𝜇 ∈ J𝛼(𝜑)K𝐴𝜇 . Conversely, it is sound if each 𝜑 and
𝜇 satisfy J𝛼(𝜑)K𝐴𝜇 ⊆ {J𝜑K𝜇}.

As in the case of terms, the precise computation of the bdd corresponding
to a formula yields a precise bdd formula abstract domain, which is complete
and sound. The precise bdd formula abstract domain is defined as a triple
(BDD, f2BDD, J_KBDD_ ), where J𝑎KBDD𝜇 is the singleton set {𝑏}, where 𝑏 is the result
of evaluation of the bdd 𝑎 in the assignment 𝜇, i.e., 𝑏 = J𝑎K𝜇 .

In the following, we weaken the precise term and formula bdd abstract do-
mains by dropping the requirement of soundness, while still retaining the re-
quirement of completeness. As the following theorem demonstrates, such an
abstract domain can still be used for deciding satisfiability of the input for-
mula.

Theorem 6.1. Let 𝜑 be a formula and (𝐴, 𝛼, J_K𝐴_ ) be a complete formula ab-
stract domain. If there exists an assignment 𝜇 such that J𝛼(𝜑)K𝐴𝜇 = {1}, the for-
mula 𝜑 is satisfiable. On the other hand, if all assignments 𝜇 satisfy J𝛼(𝜑)K𝐴𝜇 =
{0}, the formula is unsatisfiable.

Proof. Suppose that there is an assignment 𝜇 such that J𝛼(𝜑)K𝐴𝜇 = {1}. Since
the abstract domain is complete, we know that J𝜑K𝜇 ∈ {1}. Therefore J𝜑K𝜇 = 1
and 𝜑 is indeed satisfiable.

For the second claim suppose that all assignments 𝜇 satisfy J𝛼(𝜑)K𝐴𝜇 = {0}.
Again, from the completeness we know that J𝜑K𝜇 ∈ {0} for all assignments 𝜇.
Therefore J𝜑K𝜇 = 0 for any assignment 𝜇 and 𝜑 is indeed unsatisfiable.

6.2 truncating formula and term abstract domains

This section describes a term abstract domain and a corresponding formula ab-
stract domain that allow truncating results of bit-vector operations, i.e., com-
puting only several bits from the result of arithmetic bit-vector operations.

In this whole section, we suppose that all formulas are in negation normal
form.We also treat the negated subformulas¬(𝑡1 ≤ᵆ 𝑡2),¬(𝑡1 ≤𝑠 𝑡2),¬(𝑡1 <ᵆ 𝑡2),
and ¬(𝑡1 <𝑠 𝑡2) as the equivalent positive formulas 𝑡2 <ᵆ 𝑡1, 𝑡2 <𝑠 𝑡1, 𝑡2 ≤ᵆ 𝑡1,
and 𝑡2 ≤𝑠 𝑡1, respectively.

6.2.1 Truncating Term Abstract Domain

We introduce the truncating term abstract domain first. It is a complete but
unsound term abstract domain, in which the terms are represented by vectors
whose elements are bdds, as in the precise term abstract domain, or do-not-
know values. The do-not-know value, denoted as ?, represents an unknown
value of the corresponding bit – it can be both 0 and 1.

For example, Figure 6.1 shows the result of computing only the least signifi-
cant bit of the sum of two bit-vectors 𝑥2𝑥1𝑥0 + 𝑦2𝑦1𝑦0 (compare to Figure 2.3).
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? ?
𝑥0

𝑦0 𝑦0

10

Figure 6.1: Truncated result of addition 𝑥2𝑥1𝑥0 + 𝑦2𝑦1𝑦0 of two bit-vectors of size 3.

The value of this abstract object under the assignment {𝑥 ↦ 001, 𝑦 ↦ 100}
is the set {001, 011, 101, 111}, since only the value of the least significant bit is
computed precisely.

Formally, the truncating term abstract domain is a triple

(tBDDvec, t2tBDDvec, J_KtBDDvec_ ),

where the set of abstract elements consists of vectors of bdds and ? elements

tBDDvec = {(𝑏𝑖)0≤𝑖<𝑘 ∣ 𝑘 > 0, 𝑏𝑖 ∈ BDD ∪ {?} for all 0 ≤ 𝑖 < 𝑘}

and the abstract evaluation function assigns to each 𝑏 = (𝑏𝑖)0≤𝑖<𝑘 ∈ tBDDvec
and an assignment 𝜇 the following set of bit-vector values

J𝑏KtBDDvec𝜇 = {(𝑣𝑖)0≤𝑖<𝑘 ∣ if 𝑏𝑖 = ? then 𝑣𝑖 ∈ {0, 1} else 𝑣𝑖 = J𝑏𝑖K𝜇 , 0 ≤ 𝑖 < 𝑘} .

The function t2tBDDvec can be implemented in multiple ways, including the
following two:

1. the number of precisely computed bits is fixed and the remaining bits
are set to ?,

2. the limit on the number of bdd nodes is specified and after reaching it,
the remaining bits are set to ?.

In the following, we focus purely on the second option as our preliminary eval-
uation has shown that it outperforms the first one. Furthermore, it is easy to
derive the implementation of the first option based on the description of the
second option.

We suppose that the limit on the number of bdd nodes is fixed for the given
domain. Note that our satisfiability deciding procedure can use multiple ab-
stract domains parametrized by the bdd node limit.

The function t2tBDDvec is computed recursively on the input term. The
base case for the variables and numerals is the same as in the precise function
t2BDDvec (illustrated in Figure 2.4).The computation for bit-vector operations
differs from t2BDDvec in two important aspects:

• The operations have to work correctly with ? elements. To achieve this,
wemodify the bdd operations&, ∣, xor, and ite, which are the building
blocks of the t2BDDvec computation. The handling of ? in the modified
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operations is similar to the definition of logical connectives in the three-
valued logic and to the way bit-masks are computed in the smt solver
mcBV [ZWR16]. Themodified bdd operations&𝑡, ∣𝑡, xor𝑡, and ite𝑡 are
computed as follows:

𝑎 &𝑡 𝑏 =
⎧⎪
⎨⎪
⎩

0 , if 𝑎 = 0 or 𝑏 = 0 ,

𝑎 & 𝑏, if 𝑎, 𝑏 ∉ { 0 , ?},

?, otherwise,

𝑎 ∣𝑡 𝑏 =
⎧⎪
⎨⎪
⎩

1 , if 𝑎 = 1 or 𝑏 = 1 ,

𝑎 ∣ 𝑏, if 𝑎, 𝑏 ∉ { 1 , ?},

?, otherwise,

𝑎 xor𝑡 𝑏 = {
𝑎 xor 𝑏, if 𝑎, 𝑏 ≠ ?,

?, otherwise,

ite𝑡(𝑎, 𝑏, 𝑐) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑏, if 𝑎 = 1 or 𝑏 = 𝑐,

𝑐, if 𝑎 = 0 ,

ite(𝑎, 𝑏, 𝑐), if 𝑎 ∉ { 0 , 1 , ?}, 𝑏, 𝑐 ≠ ? and 𝑏 ≠ 𝑐,

?, otherwise.

Note that ? xor𝑡 ? is not 0 as each ? can represent a different value.

• Implementation of operations has to consider the given limit on the
number of bdd nodes and set the bits that have not been computed
precisely to ? after the limit has been reached. Listing 6.1 shows the
algorithms computing truncated addition and truncated multiplication,
which are the standard addition and multiplication functions extended
with the node limit (compare to the original functions given in List-
ing 2.1). Both algorithms use the function bddNodes, which returns the
total number of bdd nodes in a given vector of bdds. In the implemen-
tation of truncated addition, the precise results are computed until the
node limit is reached; all more significant bits after that are replaced by
?. The algorithm for multiplication is modified in a similar way: once
the limit is reached, all bits of the result that might be modified in the
rest of the precise algorithm are set to ?.
The implementations of other truncated operations are similar. How-
ever, they may differ in the order in which the precise bits are produced:
during computation of addition and multiplication, the first precisely
computed bits are the least significant ones; during computation of di-
vision, the first precisely computed bits are the most significant ones.
Therefore, if the computation of addition or multiplication reaches the
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bvec_add_trunc(𝑎, 𝑏, limit)
{

result ← ( 0 , 0 ,… , 0 ) with the bit -width 𝑘;
carry ← 0 ;

for 𝑖 from 0 to 𝑘 - 1 {

if (bddNodes(result) > limit) {
result𝑖 ← ?;

} else {
result𝑖 ← 𝑎𝑖 xor𝑡 𝑏𝑖 xor𝑡 carry;
carry ← (𝑎𝑖 &𝑡 𝑏𝑖) ∣𝑡 (carry &𝑡 (𝑎𝑖 ∣𝑡 𝑏𝑖));

}
}

return result;
}

bvec_mul_trunc(𝑎, 𝑏, limit)
{

result ← ( 0 , 0 ,… , 0 ) with the bit -width𝑘;

for 𝑖 from 0 to 𝑘 - 1 {

added ← bvec_add(result, 𝑎);

for 𝑗 from 𝑖 to 𝑘 − 1 {
result𝑗 ← ite𝑡(𝑏𝑖, added𝑗, result𝑗);
if (bddNodes(result) > limit) {

//too many nodes; set the remaining bits to DNK
for 𝑚 from 𝑖 + 1 to 𝑘 − 1 {

result𝑚 ← ?;
}

return result;
}

}

𝑎 ← bvec_shl(𝑎, 1);
}

return result;
}

Listing 6.1: Functions bvec_add_trunc and bvec_mul_trunc implementing truncated
addition and truncated multiplication of two tBDDvecs 𝑎 = (𝑎𝑖)0≤𝑖<𝑘 and
𝑏 = (𝑏𝑖)0≤𝑖<𝑘 .
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bdd node limit, remaining more significant bits are set to ?, while for
division less significant bits are set to ?.

For each assignment, the set of values represented by the result of the func-
tion t2tBDDvec always contains the precise result of the given term because
the function t2tBDDvec can only make precise values imprecise by using ? ele-
ments. The truncating term abstract domain is therefore complete, as is stated
by the following theorem. However, it is not sound, as the abstract object can
describe also incorrect results.

Theorem6.2. The truncating term abstract domain is complete. Moreover, each
element t2tBDDvec(𝑡)𝑖 is either equal to the bdd t2BDDvec(𝑡)𝑖 or it is ?.

6.2.2 Truncating Formula Abstract Domain

We now define a formula abstract domain that uses results of truncated bit-
vector operations.The abstract elements of this abstract domain are bdd pairs
(𝑏must, 𝑏may). Intuitively, 𝑏must determines the assignments that satisfy the for-
mula for all possible values of ? elements and 𝑏may determines the assignments
that satisfy the formula for some values of ? elements. In otherwords, 𝑏must rep-
resents a subset of all formula models while 𝑏may represents a superset of all
formula models.

Formally, the truncating formula abstract domain is a triple

(BDDpair, f2BDDpair, J_KBDDpair_ ),

where BDDpair = BDD × BDD and the evaluation function assigns to each pair
(𝑏must, 𝑏may) ∈ BDDpair and an assignment 𝜇 the set of Boolean values

J(𝑏must, 𝑏may)KBDDpair𝜇 = {𝑣 ∈ {0, 1} ∣ J𝑏mustK𝜇 ⟹ 𝑣 and 𝑣 ⟹ J𝑏mayK𝜇} .
Observe that J(𝑏must, 𝑏may)KBDDpair𝜇 is {0} when J𝑏mustK𝜇 = J𝑏mayK𝜇 = 0, it is {1}
when J𝑏mustK𝜇 = J𝑏mayK𝜇 = 1, and it is {0, 1} when J𝑏mustK𝜇 = 0, J𝑏mayK𝜇 = 1.
The result would be ∅ in the remaining case J𝑏mustK𝜇 = 1, J𝑏mayK𝜇 = 0, but
this situation never happens for the bdd pairs produced by f2BDDpair.

The function f2BDDpair(𝜑) is defined recursively as follows.

1. The formula 𝜑 is an atomic subformula or its negation, i.e., 𝜑 ≡ 𝑡1 ⋈ 𝑡2
for ⋈ ∈ {=,≠, ≤ᵆ, <ᵆ, ≤𝑠, <𝑠}. The function f2BDDpair computes the
pair (𝑏must, 𝑏may) from t2tBDDvec(𝑡1) and t2tBDDvec(𝑡2) using modified
algorithms for the corresponding predicates on the vectors of standard
bdds. For example, Listing 6.2 shows an algorithm computing truncated
equality (compare to the original function for equality of vectors of stan-
dard bdds presented in Listing 2.2). In this algorithm, the value 𝑏must
becomes 0 if there is ? in any of the input vectors, because then the
arguments may differ for some value of the ?. On the other hand, the
value 𝑏may is the conjunction of equalities of all pairs of corresponding
bits that both have a known value. In particular, construction of 𝑏may
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ignores the pairs of bits containing some ? as the equality may hold for
these bits. Listing 6.2 also shows the algorithms computing truncated
disequality and truncated unsigned inequality. The algorithms for other
predicates are similar.

2. The formula 𝜑 has the form 𝜑1 ∧ 𝜑2 or 𝜑1 ∨ 𝜑2. Let (𝑏1must, 𝑏1may) be the
result of f2BDDpair(𝜑1) and (𝑏2must, 𝑏2may) be the result of f2BDDpair(𝜑2).
Then we define

f2BDDpair(𝜑1 ∧ 𝜑2) = ((𝑏1must & 𝑏2must), (𝑏1may & 𝑏2may)),
f2BDDpair(𝜑1 ∨ 𝜑2) = ((𝑏1must | 𝑏2must), (𝑏1may | 𝑏2may)).

3. The formula 𝜑 has the form ∀𝑥 (𝜑1) or ∃𝑥 (𝜑1). Let (𝑏1must, 𝑏1may) be the
result of f2BDDpair(𝜑1). Then we define

f2BDDpair(∀𝑥 (𝜑1)) = (bdd_forall(𝑥, 𝑏1must), bdd_forall(𝑥, 𝑏1may)),
f2BDDpair(∃𝑥 (𝜑1)) = (bdd_exists(𝑥, 𝑏1must), bdd_exists(𝑥, 𝑏1may)),

where the function bdd_forall(𝑥, _) eliminates all the bdd variables that
form the bit-vector variable𝑥 universally and bdd_exists(𝑥, _) eliminates
them existentially as explained in Section 2.4.1.

Example 6.1. Let 𝑡, 𝑟, 𝑠, and 𝑢 be bit-vector terms, for which we have computed
only the least significant bit as computation of the other bits was infeasible. For-
mally,

t2tBDDvec(𝑡) = (?, … , ?, 𝑏𝑡), t2tBDDvec(𝑟) = (?, … , ?, 𝑏𝑟),
t2tBDDvec(𝑠) = (?, … , ?, 𝑏𝑠), t2tBDDvec(𝑢) = (?, … , ?, 𝑏ᵆ),

where 𝑏𝑡, 𝑏𝑟, 𝑏𝑠, and 𝑏ᵆ are bdds.
Consider the formula 𝑡 = 𝑟. The function f2BDDpair applied on this formula

returns the pair ( 0 , 𝑏𝑡 ↔ 𝑏𝑟). The pair says that an assignment may satisfy the
formula 𝑡 = 𝑟 only if it satisfies 𝑏𝑡 ↔ 𝑏𝑟. Therefore, if 𝑡 = 𝑟 is put in conjunction
with another formula implying that 𝑏𝑡 ↔ 𝑏𝑟 is equal to 0 , the whole conjunction
can be decided as unsatisfiable.
Consider the formula 𝑠 ≠ 𝑢. The function f2BDDpair now produces the pair

(𝑏𝑠 xor 𝑏ᵆ, 1 ). Intuitively, if an assignment satisfies 𝑏𝑠 xor𝑏ᵆ, it also satisfies the
formula 𝑠 ≠ 𝑢, regardless the values of the remaining bits of 𝑠 and 𝑢.

Further, consider the formula 𝑡 = 𝑟 ∧ 𝑠 ≠ 𝑢. The result of f2BDDpair applied
to this formula is computed as ( 0 & (𝑏𝑠 xor 𝑏ᵆ), (𝑏𝑡 ↔ 𝑏𝑟) & 1 ), which can be
simplified to ( 0 , 𝑏𝑡 ↔ 𝑏𝑟).
Finally, consider the formula 𝑡 = 𝑟 ∨ 𝑠 ≠ 𝑢. The result of f2BDDpair applied

to this formula is computed as ( 0 | (𝑏𝑠 xor 𝑏ᵆ), (𝑏𝑡 ↔ 𝑏𝑟) | 1 ), which is clearly
equivalent to (𝑏𝑠 xor 𝑏ᵆ, 1 ).
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bvec_eq_trunc(𝑎, 𝑏)
{

resultmust ← 1 ;
resultmay ← 1 ;
for 𝑖 from 0 to 𝑘 - 1 {

if (𝑎𝑖 == ? or 𝑏𝑖 == ?) {
resultmust ← 0 ;

} else {
resultmust ← resultmust & (𝑎𝑖 ↔ 𝑏𝑖);
resultmay ← resultmay & (𝑎𝑖 ↔ 𝑏𝑖);

}
}
return (resultmust, resultmay);

}

bvec_neq_trunc(𝑎, 𝑏)
{

resultmust ← 0 ;
resultmay ← 0 ;
for 𝑖 from 0 to 𝑘 - 1 {

if (𝑎𝑖 == ? or 𝑏𝑖 == ?) {
resultmay ← 1 ;

} else {
resultmust ← resultmust ∣ (𝑎𝑖 xor 𝑏𝑖);
resultmay ← resultmay ∣ (𝑎𝑖 xor 𝑏𝑖);

}
}
return (resultmust, resultmay);

}

bvec_leq_trunc(𝑎, 𝑏)
{

resultmust ← 1 ;
resultmay ← 1 ;
for 𝑖 from 0 to 𝑘 - 1 {

if (𝑎𝑖 == ? or 𝑏𝑖 == ?) {
resultmust ← 0 ;
resultmay ← 1 ;

} else {
resultmust ← (!𝑎𝑖 & 𝑏𝑖) ∣ (resultmust & (𝑎𝑖 ↔ 𝑏𝑖))
resultmay ← (!𝑎𝑖 & 𝑏𝑖) ∣ (resultmay & (𝑎𝑖 ↔ 𝑏𝑖))

}
}
return (resultmust, resultmay);

}

Listing 6.2: Algorithms bvec_eq_trunc, bvec_neq_trunc, and bvec_leq_trunc
implementing the functions for truncated equality, truncated disequality,
and truncated unsigned inequality of two tBDDvecs 𝑎 = (𝑎𝑖)0≤𝑖<𝑘 and
𝑏 = (𝑏𝑖)0≤𝑖<𝑘 .
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Similarly to the truncating term abstract domain, the truncating formula
abstract domain is also complete, as the following theorem shows.

Theorem 6.3. The truncating formula abstract domain is complete.

Proof. We show that if f2BDDpair(𝜑) = (𝑏must, 𝑏may) for a formula 𝜑, then the
following must hold for each assignment 𝜇:

J𝑏mustK𝜇 ⟹ J𝜑K𝜇 and J𝜑K𝜇 ⟹ J𝑏mayK𝜇 .
This implies completeness of the abstract domain, since the claim directly im-
plies that J𝜑K𝜇 ∈ Jf2BDDpair(𝜑)KBDDpair𝜇 holds for each assignment 𝜇.

We show that the aforementioned claim holds by induction on the structure
of the formula:

1. The formula 𝜑 is an atomic subformula or its negation, i.e., 𝜑 ≡ 𝑡1 ⋈ 𝑡2
for ⋈ ∈ {=,≠, ≤ᵆ, <ᵆ, ≤𝑠, <𝑠}. From the construction of the truncating
term abstract domain, we know that for both vectors of bdds that are
given as arguments, each bit is either the precise bdd or ? (see Theo-
rem 6.2).
We first consider the case for 𝜑 ≡ 𝑡1 = 𝑡2. If no input bdds are ?,
the claim trivially holds. Otherwise, if some input bdds are ?, then the
bdd resultmust returned by algorithm bvec_eq_trunc is 0 , and thus
definitely JresultmustK𝜇 ⟹ J𝜑K𝜇 . On the other hand, the returned
bdd resultmay misses some of the conjuncts compared to the precise re-
sult. Therefore the precise result implies resultmay, and thus J𝜑K𝜇 ⟹JresultmayK𝜇 . The situation is dual for 𝜑 ≡ 𝑡1 ≠ 𝑡2 and bvec_neq_trunc.
If⋈ = ≤ᵆ and the arguments contain some ? bits, observe that the algo-
rithm bvec_leq_trunc may repeatedly set resultmust to 0 and resultmay
to 1 instead of the precise result. Consider the last such step. All the
following iterations modify both resultmust and resultmay by applying
the operations & and ∣ with the correct values. Since both & and ∣ are
monotonous, it follows that JresultmustK𝜇 ⟹ J𝜑K𝜇 and J𝜑K𝜇 ⟹JresultmayK𝜇 .
The argumentation for the cases 𝑡1 <ᵆ 𝑡2, 𝑡1 ≤𝑠 𝑡2, and 𝑡1 <𝑠 𝑡2 is analo-
gous.

2. The formula 𝜑 has the form 𝜑1 ∧ 𝜑2. From the definition of f2BDDpair,
we know that

f2BDDpair(𝜑1 ∧ 𝜑2) = ((𝑏1must & 𝑏2must), (𝑏1may & 𝑏2may)),

where (𝑏1must, 𝑏1may) is the result of f2BDDpair(𝜑1) and (𝑏2must, 𝑏2may) is the
result of f2BDDpair(𝜑2). Let 𝜇 be an arbitrary assignment. We know
from the induction hypothesis that J𝑏1mustK𝜇 implies J𝜑1K𝜇 and J𝑏2mustK𝜇
implies J𝜑2K𝜇 . Because the operation computing conjunction of bdds
is correct, it follows that J𝑏1must & 𝑏2mustK𝜇 ≡ J𝑏1mustK𝜇 ∧ J𝑏2mustK𝜇 . There-
fore we know that J𝑏1must & 𝑏2mustK𝜇 ⟹ J𝜑1K𝜇 and J𝑏1must & 𝑏2mustK𝜇 ⟹
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J𝜑2K𝜇 . From the definition of conjunction and the evaluation functionJ_K𝜇 , we conclude

J𝑏1must & 𝑏2mustK𝜇 ⟹ J𝜑1K𝜇 ∧ J𝜑2K𝜇 ≡ J𝜑1 ∧ 𝜑2K𝜇 .
We also know from the induction hypothesis that J𝜑1K𝜇 ⟹ J𝑏1mayK𝜇
and J𝜑2K𝜇 ⟹ J𝑏2mayK𝜇 . From the definition of the evaluation function
thus J𝜑1 ∧ 𝜑2K𝜇 ≡ J𝜑1K𝜇 ∧ J𝜑2K𝜇 and therefore J𝜑1 ∧ 𝜑2K𝜇 ⟹ J𝑏1mayK𝜇
and J𝜑1 ∧ 𝜑2K𝜇 ⟹ J𝑏2mayK𝜇 . Therefore from the correctness of con-
junction of bdds, we can conclude that

J𝜑1 ∧ 𝜑2K𝜇 ⟹ J𝑏1may & 𝑏2mayK𝜇 .
The case when the formula 𝜑 has the form 𝜑1 ∨ 𝜑2 is analogous to the
previous one.

3. The formula 𝜑 has the form ∀𝑥 (𝜑1). From the definition of f2BDDpair
we know that

f2BDDpair (∀𝑥 (𝜑1)) = (bdd_forall(𝑥, 𝑏1must), bdd_forall(𝑥, 𝑏1may)),

where (𝑏1must, 𝑏1may) is the result of f2BDDpair(𝜑1). Let 𝜇 be an arbitrary
assignment. We want to show Jbdd_forall(𝑥, 𝑏1must)K𝜇 ⟹ J∀𝑥 (𝜑1)K𝜇
and J∀𝑥 (𝜑1)K𝜇 ⟹ Jbdd_forall(𝑥, 𝑏1may)K𝜇 .
For the first implication, assume that Jbdd_forall(𝑥, 𝑏1must)K𝜇 = 1 and 𝑣 is
an arbitrary bit-vector of the same bit-width as 𝑥. We want to show thatJ𝜑1K𝜇[𝑥↦𝑣] = 1. From the assumption we know that J𝑏1mustK𝜇[𝑥↦𝑣] = 1
since the operation bdd_forall is correct. From the induction hypothesis
we know that J𝑏1mustK𝜇[𝑥↦𝑣] implies J𝜑1K𝜇[𝑥↦𝑣], and thus J𝜑1K𝜇[𝑥↦𝑣] = 1.
For the second implication, assume that J∀𝑥 (𝜑1)K𝜇 = 1. We will show
that Jbdd_forall(𝑥, 𝑏1may)K𝜇 = 1. Because the operation bdd_forall is cor-
rect, it is enough to show that J𝑏1mayK𝜇[𝑥↦𝑣] = 1 for an arbitrary bit-
vector 𝑣 of the same bit-width as 𝑥. From the assumption we know thatJ𝜑1K𝜇[𝑥↦𝑣] = 1. From the induction hypothesis we know that J𝜑1K𝜇[𝑥↦𝑣]
implies J𝑏1mayK𝜇[𝑥↦𝑣] and thus, indeed, J𝑏1mayK𝜇[𝑥↦𝑣] = 1.
The case when the formula 𝜑 has the form ∃𝑥 (𝜑1) is again analogous to
the previous one.

Since the truncating formula abstract domain is complete, Theorem 6.1 can
be used to check satisfiability of a given formula 𝜑. Assume that the value
f2BDDpair(𝜑) is (𝑏must, 𝑏may). Then if 𝑏must is not 0 , the formula 𝜑 is satisfi-
able. Furthermore, if 𝑏may is 0 , the formula 𝜑 is unsatisfiable.

This satisfiability check solves the formulas mentioned in the beginning of
this chapter as the motivation for the described approach. For all three of the
formulas, 𝑏may is 0 after computing at most 5 bits of the multiplication. Thus
the formulas can be decided as unsatisfiable.
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solve_underapproximations(𝜑)
{

effBW ← initialEffBW;
nodeLimit ← initialNodeLimit;
while (true) {
𝜑𝑢 ← 𝜑

𝑒
;

(𝑏must, 𝑏may) ← f2BDDpair(𝜑𝑢, nodeLimit);
if (𝑏must != 0 ) return SAT;
if (𝑏may == 0 and 𝜑 == 𝜑𝑢) return UNSAT;
if (𝑏must != 𝑏may) {

nodeLimit ← increaseNodeLimit(nodeLimit);
}
if (𝑏must == 𝑏may and 𝜑 != 𝜑𝑢) {

effBW ← increaseEffBW(effBW);
}

}
}

Listing 6.3: Algorithm that combines abstractions of bit-vector operations and
formula underapproximation.

6.3 operation abstractions with formula approximations

We now show how to combine the proposed operation abstractions with the
formula approximations, which were introduced in the previous chapter. Re-
call that the formula approximations are performed on formulas by reducing
the effective bit-width of selected variables by fixing some of their bits to cho-
sen values. The underapproximations are obtained by decreasing effective bit-
widths of all existentially quantified variables and the overapproximations are
obtained by decreasing effective bit-widths of all universally quantified vari-
ables. The introduced approach tries to solve the input formula by solving the
original formula, underapproximations of the formula, and overapproxima-
tions of the formula in parallel. We show how to integrate the proposed opera-
tion abstractions into the functions for solving underapproximations and over-
approximations. The function solving the original formula can be adjusted to
use operation abstractions as well, but according to our experiments, the tool
performs better if we keep this function unchanged.

Listing 6.3 shows the modified pseudocode for the function that solves the
formula by using its underapproximations.The algorithm starts with the small
initial values of the effective bit-width effBW of existential variables and the
limit nodeLimit on the number of bdd nodes in the results of arithmetic op-
erations. It repeatedly tries to solve the input formula and if the result is not
determined, either the effective bit-width or the node limit is increased:

• If the operation abstractions caused an imprecision, the node limit is
increased. Observe that the source of potential imprecision can be de-
termined by checking equality of 𝑏must and 𝑏may.
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• If the bdd pair returned by f2BDDpair was precise, but the reduced ef-
fective bit-width could have caused imprecision, the effective bit-width
is increased.

The operation solve_overapproximations can be implemented analogously.

6.4 further extensions

The described approach can be extended in several ways. For example, the re-
turned bdd 𝑏𝑚𝑎𝑦 can be used even in cases in which the abstraction cannot be
used to decide the satisfiability of the input formula. We describe two such us-
ages. First of these is checking the potential models described by 𝑏𝑚𝑎𝑦 , which
is explained in the following Subsection 6.4.1. Subsection 6.4.2 then shows that
𝑏𝑚𝑎𝑦 may be also used to identify the bits whose values are implied by the in-
put formula.

Further, Subsection 6.4.3 introduces formula modifications that add new
variables for results of multiplications and divisions and their respective con-
gruences, which can further amplify the positive effect of the truncating ab-
stractions.

6.4.1 Checking Possible Models

In the describedmethod of checking satisfiability using abstractions, the result
is unknown if the bdd 𝑏𝑚ᵆ𝑠𝑡 is 0 and 𝑏𝑚𝑎𝑦 is not 0 . However, even in this
case, 𝑏𝑚𝑎𝑦 can sometimes be used to decide the satisfiability of the formula:
one can extract a model from 𝑏𝑚𝑎𝑦 , substitute it into the input formula, and
check satisfiability of the resulting formula 𝜑subst. If the formula 𝜑subst is sat-
isfiable, the input formula is also satisfiable. Only if the formula 𝜑subst is not
satisfiable, the result is unknown.

However, checking models of quantified formulas is more involved. The
problem is that the potential model contains values only for free variables and
the top-level existential variables, and therefore the formula 𝜑subst can still con-
tain not only universal quantifiers, but also existential quantifiers that were in
scope of some universal quantifier. Such a formula cannot be directly evalu-
ated to yield 1 or 0 and has to be decided by a new instance of the solver for
quantified formulas. This may be problematic because the satisfiability check
of 𝜑subst can be expensive and we want to ensure that the model checking fin-
ishes quickly. Therefore, we propose computing not the precise bdd for 𝜑subst,
but only its 𝑏′𝑚ᵆ𝑠𝑡 with the lowest possible precision. Note that this compu-
tation will usually finish in a short time. If the resulting 𝑏′𝑚ᵆ𝑠𝑡 is not 0 , the
formula 𝜑subst is satisfiable, and thus also the input formula is satisfiable. In the
opposite case, 𝑏′𝑚ᵆ𝑠𝑡 is 0 and the potential model is discarded, because it is
either not a model of the input formula or could not be validated quickly.

Note that without operation abstractions, there is no guarantee that the
model checking would finish quickly. For example, the formula 𝜑subst might
be quantifier-free and thus the formula underapproximation introduced in
the previous chapter cannot speed the model checking up, because there are
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no universally quantified variables whose effective bit-width could be reduced.
For this reason, model checking was not proposed in our original approach.

A dual approach can be used for closed formulas that contain universally
quantified variables on the top-level of a formula. If a bdd 𝑏𝑚ᵆ𝑠𝑡 for such for-
mula is 0 , one can identify a potential countermodel, i.e., an assignment of
values to the top-level universal variables that makes the formula unsatisfiable.
Such a potential countermodel can then be checked against the original for-
mula.

Since no countermodel can be computed directly from 𝑏𝑚ᵆ𝑠𝑡 = 0 , the pro-
posed counter-model checking can be implemented by negating all closed in-
put formulas that have an universal top-level quantifier. This reduces the situa-
tion to the one described in the beginning of this subsection: 𝑏𝑚𝑎𝑦 is computed
instead of 𝑏𝑚ᵆ𝑠𝑡; if it is not 0 , one of its models is extracted. Since the input
formula 𝜑 was negated, this model now corresponds to the assignment to the
top-level universally quantified variables of the original formula 𝜑. This po-
tential countermodel is then substituted into the original formula 𝜑 and the
satisfiability of the resulting formula 𝜑subst is checked by computing the corre-
sponding 𝑏′may. If 𝑏′may is 0 , the formula 𝜑subst is unsatisfiable an thus the input
formula is also unsatisfiable. If 𝑏′may is not 0 , the result is unknown.

6.4.2 Learning From Overapproximations

The bdd 𝑏may can be used not only for generating potential models, but also
for identifying values of some bits that are necessary to satisfy the formula.
Since 𝑏may represents a superset of all the satisfying assignments, if the value
of some bit 𝑏 is 1 in all of these assignments, this bit must be 1 if the input
formula should be satisfied. This also works analogously if the value of a bit
is 0 in all the represented assignments. After identifying all such bits, we can
replace them by their implied values and try solving the resulting formula with
an increased node limit. In practice, these bits and their implied values can by
identified by the functionality provided by bdd packages. For example, the
package cudd [Som15] offers the corresponding function FindEssential().

As an example, consider the formula 𝑥 ≤ᵆ 30 ∧ 𝑥 × 𝑦 = 0 where 𝑥, 𝑦
are 32-bit variables. The aforementioned procedure can identify that the most
significant 27 bits of 𝑥 must be zero. However, consider the following formula:

𝑥 ≤𝑠 4 ∧ 𝑥 ≥𝑠 −4 ∧ 𝑥 × 𝑦 = 0.

Although the most significant 29 bits of 𝑥 must be either all 0 (if 𝑥 is positive)
or all 1 (if 𝑥 is negative), the aforementioned procedure cannot identify this, as
these bits have more possible values. Therefore, we also propose a procedure
that identifies which successive bits of a variable must be equal for the formula
to be true. In the previous example, we can thus identify that the most signif-
icant 29 bits of 𝑥 must be all the same and therefore we can replace them all
by a single bdd variable and start the solving again with an increased node
limit. The pseudocode for the procedure that identifies equalities implied by
𝑏may is presented in Listing 6.4. The idea of this procedure is straightforward:
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get_implied_eqns(𝜑, 𝑏may)
{

impliedEqualities ← ∅;
foreach 𝑣 in vars(𝜑) {

foreach i from 0 to bitWidth(𝑣) − 2 {
if ((𝑏may & (𝑣𝑖 xor 𝑣𝑖+1)) == 0 ) {

impliedEqualities ← impliedEqualities ∪ {(𝑣𝑖, 𝑣𝑖+1)};
}

}
}
return impliedEqualities;

}

Listing 6.4: The algorithm that computes equivalences of the successive bits of
variables that are implied by the input formula.

if a conjunction of 𝑏may with 𝑎 xor 𝑏 is 0 , there is no satisfying assignment of
the formula with different values of 𝑎 and 𝑏. And thus the values of 𝑎 and 𝑏
must be the same if the formula should be satisfied.

6.4.3 Adding New Variables and Congruences

The abstractions by themselves cannot directly solve simple formulas as

𝑥 × 𝑦 ≤ᵆ 2 ∧ 𝑥 × 𝑦 ≥ᵆ 4. (6.1)

Even if the subterms 𝑥 × 𝑦 are computed abstractly, the information that the
? elements in the two vectors representing the two occurrences of 𝑥 × 𝑦 have
been the same is lost after computing bdd pairs for 𝑥 × 𝑦 ≤ᵆ 2 and 𝑥 × 𝑦 ≥ᵆ 4.
Therefore, we propose replacing each multiplication and division by a fresh
existentially quantified variable of the corresponding sort and add to the mod-
ified formula the constraint that specifies the relation of the new variable to
the corresponding multiplication or division, respectively. For example, the
previous formula is transformed to the equivalent formula

∃𝑚𝑥,𝑦(𝑚𝑥,𝑦 ≤ᵆ 2 ∧ 𝑚𝑥,𝑦 ≥ᵆ 4 ∧ 𝑚𝑥,𝑦 = 𝑥 × 𝑦).

This formula is decided as unsatisfiable even if 𝑥×𝑦 is computed with arbitrar-
ily low precision. Although this particular case could be solved by the original
approach without operation abstractions by computing precise bdd only for
the subformula 𝑚𝑥,𝑦 ≤ᵆ 2 ∧ 𝑚𝑥,𝑦 ≥ᵆ 4 (and not for the third conjunct) as
this conjunction is already unsatisfiable, the usage of operation abstractions is
more general.

A similar problem arises for example in the unsatisfiable formula

𝑥 × 𝑦 ≤ᵆ 2 ∧ ∀𝑧 (𝑧 × 𝑦 ≥ᵆ 4),
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which logically entails the above-mentioned formula (6.1). This formula can-
not be solved even after performing the above-mentioned transformation.The
transformation yields the formula

∃𝑚𝑥,𝑦(𝑚𝑥,𝑦 ≤ᵆ 2 ∧
𝑚𝑥,𝑦 = 𝑥 × 𝑦 ∧
∀𝑧 ∃𝑚𝑧,𝑦 (𝑚𝑧,𝑦 ≥ᵆ 4 ∧ 𝑚𝑧,𝑦 = 𝑧 × 𝑦)),

which cannot be decided unsatisfiable even by using the abstractions, because
the solver cannot infer the relationship between variables𝑚𝑥,𝑦 and𝑚𝑧,𝑦 with-
out computing the multiplication results precisely. To solve such formula, we
propose to add a congruence subformula stating that (𝑥 = 𝑧) → (𝑚𝑥,𝑦 = 𝑚𝑧,𝑦)
to the formula. This results in the formula

∃𝑚𝑥,𝑦(𝑚𝑥,𝑦 ≤ᵆ 2 ∧
𝑚𝑥,𝑦 = 𝑥 × 𝑦 ∧
∀𝑧 ∃𝑚𝑧,𝑦 (𝑚𝑧,𝑦 ≥ᵆ 4 ∧ 𝑚𝑧,𝑦 = 𝑧 × 𝑦 ∧ ((𝑥 = 𝑧) → (𝑚𝑥,𝑦 = 𝑚𝑧,𝑦)))),

which can be decided unsatisfiable using the abstractions. Similarly to the pre-
vious transformation, the resulting formula is equivalent to the original one
and its unsatisfiability cannot be shown by the original solver without the ab-
stractions, because it is infeasible to compute the precise bdd for the inner
quantified subformula.

We now describe the proposed formula modifications precisely. For sim-
plicity, suppose that the input formula is closed. The extension to non-closed
formulas is straightforward. The modifications proceed in two steps:

1. In the first step, we introduce constants 𝑚𝑥,𝑦 for each subterm 𝑥 × 𝑦,
where 𝑥 and 𝑦 are bit-vector variables. Namely, we recursively traverse
the formula and identify all subformulas of the form 𝑄1𝑥 (𝜓), where 𝜓
has a subformula of the form 𝑄2𝑦 (𝜌) and 𝜌 contains a subterm 𝑥 × 𝑦 or
𝑦 ×𝑥 for 𝑄1, 𝑄2 ∈ {∃, ∀} and bit-vector variables 𝑥, 𝑦. We replace all such
subformulas 𝜌 by

𝜌′ ≡ ∃𝑚𝑥,𝑦 (𝜌[(𝑥 × 𝑦) ← 𝑚𝑥,𝑦] ∧ 𝑚𝑥,𝑦 = 𝑥 × 𝑦),

where 𝑚𝑥,𝑦 is a fresh variable of the same sort as 𝑥 and 𝑦, if the found
subterm was 𝑥 × 𝑦, and analogously for the case of 𝑦 × 𝑥.

2. In the resulting formula, we add the subformulas expressing the congru-
ences for the variables𝑚𝑥,𝑦 . We iterate through all the modified subfor-
mulas 𝜌′ ≡ ∃𝑚𝑥,𝑦 (𝜌[(𝑥 × 𝑦) ← 𝑚𝑥,𝑦] ∧ 𝑚𝑥,𝑦 = 𝑥 × 𝑦) such that the
occurrence of the subformula 𝜌′ is in scope of some newly introduced
variable𝑚𝑧,𝑣. Based on the syntactic equality of the variables 𝑥, 𝑦, 𝑧, and
𝑣, we then perform one of the following modifications:

• If 𝑥 ≠ 𝑧 and 𝑦 = 𝑣, the body of the quantified subformula 𝜌′ is
conjoined with the formula (𝑥 = 𝑧) → (𝑚𝑥,𝑦 = 𝑚𝑧,𝑦).
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• If 𝑥 = 𝑧 and 𝑦 ≠ 𝑣, the body of the quantified subformula 𝜌′ is
conjoined with the formula (𝑦 = 𝑣) → (𝑚𝑥,𝑦 = 𝑚𝑥,𝑣).

• If 𝑥 ≠ 𝑧 and 𝑦 ≠ 𝑣, the body of the quantified subformula 𝜌′ is
conjoined with the formula (𝑥 = 𝑧 ∧ 𝑦 = 𝑣) → (𝑚𝑥,𝑦 = 𝑚𝑧,𝑣).

The analogous procedure should also be implemented for the results of divi-
sion of two variables, not only for multiplications. We propose not implement-
ing the transformations for the results of additions, as they were not helpful
during in our preliminary experiments.





7SIMPLIFICATION OF FORMULAS WITH UNCONSTRAINED
VARIABLES AND QUANTIFIERS

For most of the modern smt solvers, preprocessing of the input formula is a
crucial step for the efficiency of the solver. Therefore, modern smt solvers em-
ploy hundreds of rewrite rules in order to simplify the input formula [Fra10].
The aim of most of the simplifications is to reduce the size of the input for-
mula and to replace expensive operations by easier ones. One class of these
simplification rules focuses on formulas containing unconstrained variables.
An unconstrained variable is a variable that occurs only once in the formula
and therefore can be set to any suitable value without affecting the rest of the
formula. For example, the formula 𝑥 + (5 × 𝑦 + 𝑧) = 𝑦 × 𝑧 can be rewrit-
ten to an equisatisfiable formula 𝑢 = 𝑦 × 𝑧 because, regardless of the values
of 𝑦 and 𝑧, the term 𝑥 + (5 × 𝑦 + 𝑧) can be evaluated to any value of 𝑢 by
choosing a suitable value of 𝑥. Such terms, which can be set to an arbitrary
value by a well-suited choice of values of unconstrained variables, are called
unconstrained terms. The principle of simplifications of unconstrained terms
is recalled in more detail in Section 7.1. This simplification technique was pro-
posed by Bruttomesso [Bru08] and Brummayer [Bru10], who independently
observed that industrial benchmarks often contain non-trivial amount of un-
constrained variables. For example, consider smt queries coming from sym-
bolic execution [Kin76] of a program, where a query is satisfiable if and only
if the symbolically executed program path is feasible. There are basically two
sources of unconstrained variables in such queries. One source is input vari-
ables: an input variable is unconstrained in all queries corresponding to the
symbolic execution of a path that reads the input variable at most once. The
second source is program variables that are assigned on an executed path, but
not read yet. For instance, the execution of an assignment y:=x+5 leads to a
conjunct 𝑦 = 𝑥 + 5 in the path condition query, where 𝑦 does not appear any-
where else in the query (unless it is read) and thus it is unconstrained. Such sit-
uations are especially frequent when analyzing Static Single Assignment (ssa)
code such as llvm [LA04], which uses many program variables.

In this chapter, we extend the notion of unconstrained terms in several ways:

• In some cases, the definition of unconstrained term is too restrictive
by allowing only terms that can evaluate to every possible value by a
suitable choice of values of unconstrained variables. For example, Brut-
tomesso and Brummayer describe the simplification rule that replaces
the bit-vector term 𝑐[𝑛] × 𝑥[𝑛] by a fresh variable 𝑦[𝑛], if 𝑥[𝑛] is an un-
constrained variable and 𝑐 is an odd numeral. However, if 𝑐 is even, the
simplification is no longer possible. We describe a less restrictive sim-
plification using partially constrained terms, which for example allows
replacing the term 6[𝑛] × 𝑥[𝑛] by the term 2[𝑛] × 𝑦[𝑛]; although these two
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terms can not evaluate to all possible values, they can evaluate to pre-
cisely the same set of values.
Partially constrained terms are studied in Section 7.2. This section also
shows that several ad-hoc simplification rules introduced by Bruttome-
sso can be seen as instances of simplification of partially constrained
terms. Our definition of partially constrained terms allows construction
of more similar rules.

• Previously, the simplifications of unconstrained terms were described
only on quantifier-free formulas. In Section 7.3, we formalize the con-
ditions under which the simplification of unconstrained terms can be
performed on quantified formulas.

• Section 7.4 combines techniques from the two preceding sections and
describes simplification of partially constrained terms in quantified for-
mulas. Furthermore, the resulting technique is combinedwith additional
quantifier-specific simplification rules to allowmore efficient and straight-
forward applications.

• Section 7.5 extends the simplifications of partially constrained terms in
quantifier-free formulas by taking into account also the location of the
simplified term in the formula. Namely, we take into account whether
the term should be unsigned-minimized, unsigned-maximized, signed-
minimized, or signed-maximized. We call such terms as goal uncon-
strained terms.

• Section 7.6 extends the goal unconstrained terms to formulas with quan-
tifiers.

We emphasize that the presented approach is not tied to any particular the-
ory. We use the bit-vector theory in many examples as its functions tend to
produce unconstrained terms when at least one argument is an unconstrained
variable.

7.1 unconstrained terms in quantifier-free formulas

This section formalizes known simplifications of quantifier-free formulas con-
taining unconstrained terms. Intuitively, a term 𝑡 is unconstrained in the for-
mula 𝜑 if for every assignment to the variables occurring in the term, every
possible value of the sort of the term 𝑡 can be obtained by changing values
of only variables that are unconstrained in 𝜑. The idea of simplification is to
replace a nontrivial unconstrained term by a fresh variable, which leads to a
smaller equisatisfiable formula. For example, consider the formula

(𝑥 + (3 × 𝑦) = 0 ∧ 𝑦 >ᵆ 0)

in the bit-vector theorywith all variables and numerals having the bit-width 32.
The formula contains one unconstrained variable 𝑥. The term 𝑥 + (3 × 𝑦) is
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unconstrained as it can attain any value, regardless of the value of 𝑦. Indeed,
any bit-vector value bv ∈ {0, 1}32 can be obtained from 𝑥 + (3 × 𝑦) by setting
𝑥 = −(3 × 𝑦) + bv. We can thus replace the term 𝑥 + (3 × 𝑦) by a fresh variable
𝑣 and get an equisatisfiable formula (𝑣 = 0 ∧ 𝑦 >ᵆ 0). Alternatively, one can
realize that the whole term 𝑥 + (3 × 𝑦) = 0 is unconstrained and thus it can Recall that formulas

are terms of sort Bool.be replaced by a fresh Bool variable 𝑤. In this way, we get an equisatisfiable
formula (𝑤 ∧ 𝑦 >ᵆ 0). In both cases, the variable 𝑦 of the simplified formula
becomes unconstrained and the formula can be simplified further.

To formalize the simplification principle, we define when a term is uncon-
strained due to a set of variables𝑈, which means that a term can evaluate to an
arbitrary value by changing only values of variables in 𝑈. Further, we define
when a term is unconstrained in a formula 𝜑, which means that it is uncon-
strained due to a set of variables that are unconstrained in 𝜑.

Definition 7.1 (Unconstrained term). Let 𝑡 be a term and𝑈 ⊆ vars(𝑡) be a set of
variables. We say that the term 𝑡 is unconstrained due to𝑈 if for each valuation
𝜇 of variables in (vars(𝑡) ∖ 𝑈) and every value 𝑏 of the same sort as the term 𝑡,
there exists a valuation 𝜈 of variables in 𝑈 such that J𝑡K𝜇∪𝜈 = 𝑏.

Example 7.1. In the bit-vector theory, the following terms are unconstrained due
to {𝑥} for any term 𝑡′ not containing 𝑥:

• 𝑥[𝑛] + 𝑡′[𝑛] and 𝑡′[𝑛] + 𝑥[𝑛],

• 𝑐[𝑛] × 𝑥[𝑛] and 𝑥[𝑛] × 𝑐[𝑛] if 𝑐 is an odd numeral,

• ∼𝑥[𝑛],

• 𝑥[𝑛] <ᵆ 𝑐[𝑛] if 𝑐 ≠ 0,

• 𝑐[𝑛] <ᵆ 𝑥[𝑛] if 𝑐 ≠ 2𝑛 − 1,

• 𝑥[𝑛] = 𝑡′[𝑛] and 𝑥[𝑛] ≠ 𝑡′[𝑛].

Note that the last two terms are unconstrained due to {𝑥[𝑛]} because each sort of
the bit-vector theory contains at least two elements. Further, the terms 𝑥[𝑛]×𝑦[𝑛],
(𝑥[𝑛] & 𝑦[𝑛]), (𝑥[𝑛] ∣ 𝑦[𝑛]) are unconstrained due to {𝑥[𝑛], 𝑦[𝑛]}. A comprehensive
list of unconstrained terms can be found for example in Franzén’s doctoral the-
sis [Fra10].

On the contrary, multiplication by an even numeral is not an unconstrained
term. For example, the term 2[32] × 𝑥[32] over the theory of bit-vectors never
evaluates to bv32(3) as the least significant bit of the results has to be 0. In
other words, the number 3 does not have a multiplicative inverse in the ring
of integers modulo 232. As a consequence, the term 𝑥[32] ⋅ 𝑦[32] is neither un-
constrained due to {𝑥[32]}, nor unconstrained due to {𝑦[32]}.

As was stated in the introduction of this chapter, unconstrained terms are
useful when they are unconstrained due to a set of variables that occur only
once in the given formula. We call such terms unconstrained in the given for-
mula.
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Definition 7.2 (Unconstrained term). A subterm 𝑡 of a formula 𝜑 is called un-
constrained in the formula 𝜑 if it is unconstrained due to a set of variables that
are unconstrained in the formula 𝜑.

The following theorem states the correctness of simplification based on uncon-
strained terms.

Theorem 7.1 ([Bru08; Fra10]). Let 𝜑 be a quantifier-free formula and 𝑡 its sub-
term unconstrained in 𝜑. Then 𝜑 is equisatisfiable with the formula 𝜑[𝑡 ← 𝑣],
where 𝑣 is a fresh variable of the same sort as 𝑡.

Note that our definition of unconstrained terms and the statement of Theo-
rem 7.1 are slightly more general than the ones given by Brummayer and Brut-
tomesso, which consider unconstrained terms containing only a single uncon-
strained variable.The definition of an unconstrained term used in this chapter
is due to Franzén [Fra10].

The definition of many-sorted logic, in which subformulas are identified
with terms of sort Bool, brings some additional benefits. In particular, a subfor-
mula can be an unconstrained term even if it consists of terms that are not un-
constrained. For example, let us consider the formula𝜑 ≡ (3𝑥+3𝑦 = 0 ∧ 𝑦 > 0)
over the theory of integers. The term 3𝑥 + 3𝑦 is not unconstrained as its value
is always a multiple of 3. However, term 3𝑥 + 3𝑦 = 0 of sort Bool is uncon-
strained due to {𝑥} because it can evaluate to 1 by setting 𝑥 ↦ −𝑦 and to 0 by
setting 𝑥 ↦ −𝑦 + 1. As 𝑥 is unconstrained in 𝜑, we can simplify the formula
to the equisatisfiable form (𝑣 ∧ 𝑦 > 0). Elimination of pure literals [DLL62]
can then further reduce the formula to the form (𝑦 > 0). As both 1 and 0 can
be obtained by suitable choices of the value of the variable 𝑦, the term 𝑦 > 0 is
unconstrained due to {𝑦}, and thus the formula can be simplified to 𝑣′, where
𝑣′ is a Boolean variable.

7.1.1 Note on models

The simplified formulas are in general equisatisfiable to the original ones, but
not equivalent. For example, the formulas (𝑥 + (3 × 𝑦) = 0 ∧ 𝑦 > 0) and
(𝑣 = 0 ∧ 𝑦 > 0) mentioned above are both satisfiable, but they use different
sets of variables and thus they have different models. In this case, a model of
the original formula can be easily computed from themodel 𝜇 of the simplified
formula: it assigns to 𝑦 the value J𝑦K𝜇 and to 𝑥 the value J−(3×𝑦)K𝜇 . However,
in some cases, the computation of a model for the original formula can be
harder. For example, assume that we have replaced the unconstrained term
180423[32] ⋅𝑥 over the bit-vector theory by a fresh variable 𝑦. To get the value of
𝑥 such that the term 180423[32] ⋅ 𝑥 evaluates to a given value of 𝑦 then means to
find themultiplicative inverse of 180423 in the ring of integers modulo 232 and
multiply it by the value of 𝑦. Although this inverse can be still computed using
an extended Euclidean algorithm [Bur97], it is computationally not trivial.

Note that algorithms for effective retrieval of models for the original formu-
las from models of the simplified formulas are beyond the scope of this thesis.
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7.2 partially constrained terms

The key property of the simplification presented in the previous section is that
the possible values of an unconstrained term are precisely the same as the pos-
sible values of a fresh variable of the same sort. This approach can be gener-
alized even to terms that are partially constrained: a complex term can be re-
placed by a simpler one representing the same values. For example, the value
of the term 6[𝑛] ×𝑥[𝑛] over the bit-vector theory can be any bit-vector divisible
by 2[𝑛]. Therefore, if 6[𝑛] × 𝑥[𝑛] is a subterm of a formula where 𝑥[𝑛] is uncon-
strained, then the subterm 6[𝑛] × 𝑥[𝑛] can be replaced by 2[𝑛] × 𝑦[𝑛] where 𝑦[𝑛]
is a fresh variable of the same bit-width as 𝑥[𝑛].

The following definition formalizes the notion that two terms represent the
same set of possible values for any fixed valuation of variables in 𝐶. Intuitively,
in applications of this definition, the set𝐶 will contain all variables in the input
formula that are not unconstrained, because their values could be enforced by
the rest of the formula. Such variables, which are not unconstrained in the
given formula, are called constrained in this formula.

Definition 7.3 (𝐶-interchangeable terms). Let 𝐶 be a set of variables and 𝑡, 𝑠 be
terms of the same sort. Further, let𝑈 = (vars(𝑡) ∪ vars(𝑠)) ∖ 𝐶. Terms 𝑡 and 𝑠 are
called 𝐶-interchangeable, written 𝑡

𝐶
⇌ 𝑠, if for every valuation 𝜇 of variables in

𝐶 it holds that

{J𝑡K𝜇∪𝜈 ∣ 𝜈 is a valuation of 𝑈} = {J𝑠K𝜇∪𝜌 ∣ 𝜌 is a valuation of 𝑈}.

Now we precisely formulate the simplification principle for partially con-
strained terms and prove its correctness.

Theorem 7.2. Let 𝜑 be a quantifier-free formula, 𝑡 its subterm, and 𝐶 a superset
of all constrained variables in 𝜑 that occur in 𝑡. Then for any term 𝑠 such that

𝑡
𝐶
⇌ 𝑠 and vars(𝑠)∩vars(𝜑) ⊆ 𝐶, the formula 𝜑 is equisatisfiable with the formula

𝜑[𝑡 ← 𝑠].

Proof. As is illustrated by the following diagram, all variables of 𝜑 and 𝑠 can
be divided into three disjoint sets:

1. the set 𝐶 that contains all constrained variables in 𝑡 (marked red in the
diagram),

2. the set𝑈 = (vars(𝑡)∪vars(𝑠))∖𝐶 of all variables in 𝑡 or 𝑠 that are not in 𝐶,
i.e., the set of all variables in 𝑠 that are not in 𝜑 and some unconstrained
variables of 𝑡 (marked yellow in the diagram),

3. the set 𝑈′ containing all variables that are neither in 𝐶 nor in 𝑈, i.e., a
set unconstrained variables of the original formula that do not occur in
𝑡 (marked blue in the diagram).
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vars (t)

vars(𝜑)vars(𝑠)

The precondition vars(𝑠) ∩ vars(𝜑) ⊆ 𝐶 formulated in the theorem implies
that every variable of 𝑈 appears either only in 𝑠 or only in 𝑡 and not in any
other part of the formula. Moreover, variables of 𝑈′ appear neither in term 𝑡,
nor in term 𝑠.

Suppose that 𝜑 is satisfiable. Hence, there exists a valuation 𝜇 of variables in
𝐶, a valuation 𝜈 of variables in𝑈, and a valuation 𝜈′ of variables in𝑈′ such that
𝜇∪𝜈∪𝜈′ is a satisfying assignment of 𝜑. Because 𝑡 does not contain any variable
from 𝑈′, we know that J𝑡K𝜇∪𝜈∪𝜈′ = J𝑡K𝜇∪𝜈 . As 𝑡 and 𝑠 are 𝐶-interchangeable,
there exists a valuation 𝜌 of variables in 𝑈 such that J𝑡K𝜇∪𝜈 = J𝑠K𝜇∪𝜌. As val-
uations 𝜇 and 𝜌 concern only variables that do not appear in 𝑈′, the result
of 𝜇 ∪ 𝜌 ∪ 𝜈′ is a well-defined function that assigns values to all variables in
𝐶 ∪𝑈 ∪𝑈′. Finally, because J𝑠K𝜇∪𝜌 = J𝑠K𝜇∪𝜌∪𝜈′ and because variables in 𝑈 do
not occur in the formula 𝜑[𝑡 ← 𝑠], we get that the assignment 𝜇∪𝜌∪𝜈′ satisfies
𝜑[𝑡 ← 𝑠].

It remains to show that satisfiability of 𝜑[𝑡 ← 𝑠] implies satisfiability of 𝜑.
However, the arguments are completely symmetric.

Note that the definition of 𝐶-interchangeability generalizes the previous
Definition 7.1 in the sense that a term 𝑡 is unconstrained due to 𝑈 if and only
if it is 𝐶-interchangeable with a fresh variable 𝑢 of the same sort as 𝑡 for the set
𝐶 = vars(𝑡) ∖ 𝑈. Theorem 7.1 can then be seen as a corollary of Theorem 7.2.

7.2.1 Applications

Now we show some applications of the previous theorem. We start with an
example from the theory of non-linear real arithmetic and then focus on terms
over the bit-vector theory. In particular, we focus on simplification of partially
constrained terms with multiplication as this operation is very expensive for
some smt solvers, especially these based on bdds.

Example 7.2. Consider the term 𝑡×𝑢 in the theory of non-linear real arithmetic,
where 𝑢 is an unconstrained variable and 𝑡 is an arbitrary term not containing
the variable 𝑢. The term 𝑡 × 𝑢 can be replaced by ite(𝑡 = 0, 0, 𝑣), where 𝑣 is a
fresh variable, as the terms 𝑡 ×𝑢 and ite(𝑡 = 0, 0, 𝑣) are vars(𝑡)-interchangeable.
Indeed, if J𝑡 × 𝑢K𝜇∪{ᵆ↦𝑛𝑢} = 𝑛, then the same value 𝑛 can be obtained from the
term ite(𝑡 = 0, 0, 𝑣) by setting 𝑣 to J𝑡K𝜇 × 𝑛ᵆ. On the other hand, if Jite(𝑡 =
0, 0, 𝑣)K𝜇∪{𝑣↦𝑛𝑣} = 𝑛′, then the same value 𝑛′ can be obtained from the term 𝑡×𝑢
by setting 𝑢 to 0 if J𝑡K𝜇 is 0 and by setting it to 𝑛𝑣J𝑡K𝜇 otherwise.
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In general, this simplification can be performed in any theory in which addi-
tion and multiplication form a field.

Example 7.3. In the bit-vector theory, the term 4 × 𝑢 can be evaluated to any
bit-vector where the two least significant bits are zeroes. The same holds for the
term 12×𝑢. In general, the term 𝑐[𝑛]×𝑢with a numeral 𝑐[𝑛] can represent any bit-
vector ending with 𝑖 zeroes, where 𝑖 is the greatest integer such that 2𝑖 divides 𝑐.
This follows from the fact that 𝑐 can be expressed as 2𝑖×𝑚 for some odd number𝑚
and every odd number has a multiplicative inverse 𝑚−1 in the bit-vector theory.
All bit-vectors with 𝑖 zeroes at the end can be also represented by the term 𝑣 ≪ 𝑖.
Hence, the terms 𝑐[𝑛] × 𝑢 and 𝑣 ≪ 𝑖 are ∅-interchangeable. Finally, Theorem 7.2 ∅-interchangeability

means that the two
interchanged terms
do not share any
variables.

implies that a formula 𝜑 with an unconstrained variable 𝑢 and a term 𝑐[𝑛] × 𝑢
is equisatisfiable with the formula 𝜑[(𝑐[𝑛] × 𝑢) ← (𝑣[𝑛] ≪ 𝑖)] where 𝑣[𝑛] is a
fresh variable and 𝑖 is the constant described above. Note that the term 𝑣 ≪ 𝑖 is
easier to compute and express as a circuit than the original multiplication by a
potentially large and complicated number 𝑐.

Example 7.4. More interestingly, we can simplify also the term 𝑡 × 𝑢 where 𝑢 is
unconstrained, even if 𝑡 not a numeral. As an example, consider the term 𝑡 ×𝑢[3]
for a 3-bit variable 𝑢. We write 𝑡[𝑖] as a shortcut for the extraction of the 𝑖-th
least significant bit of the term 𝑡 where 0 ≤ 𝑖 ≤ 2, i.e., 𝑡[𝑖] ≡ extract𝑖,𝑖(𝑡). Then
𝑡 × 𝑢[3] is vars(𝑡)-interchangeable with the term

ite(𝑡[0] = 1[1], 𝑣,
ite(𝑡[1] = 1[1], 𝑣 ≪ 1[3],

ite(𝑡[2] = 1[1], 𝑣 ≪ 2[3], 0[3]))).

This term uses the idea from the previous example, but performs dynamic choice
on the number of the least significant zeroes in the value of 𝑡. If the last significant
bit of 𝑡 is 1, then any value can be obtained from 𝑡 × 𝑢[3] by choosing a suitable
value of 𝑢[3]. Additionally, if the least significant bit of 𝑡 is 0 and the second least
significant bit is 1, then any value with the least significant bit 0 can be obtained
from 𝑡 × 𝑢[3]. Similarly, any value with the two least significant bits can be ob-
tained from 𝑡 × 𝑢[3] if the three least significant bits of 𝑡 are 100. Finally, if the
three least significant bits of 𝑡 are 000 then the result of 𝑡 × 𝑢[3] must be 0[3].
In general, the term 𝑡 × 𝑢[𝑛] is vars(𝑡)-interchangeable with the term defined

as

ite(𝑡[0] = 1[1], 𝑣,
ite(𝑡[1] = 1[1], 𝑣 ≪ 1[𝑛],

…
ite(𝑡[𝑘 − 1] = 1[1], 𝑣 ≪ (𝑘 − 1)[𝑛],

0[𝑛]) … )).

Therefore, in a formula 𝜑with an unconstrained variable 𝑢[𝑛], a term 𝑡×𝑢[𝑛] can
be replaced by the term above with a fresh variable 𝑣 and the resulting formula
is equisatisfiable with 𝜑.
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𝑡 <ᵆ 𝑢[𝑛] 𝑏 ∧ 𝑡 ≠ unsignedMax[𝑛]

𝑡 <𝑠 𝑢[𝑛] 𝑏 ∧ 𝑡 ≠ signedMax[𝑛]

𝑢[𝑛] <ᵆ 𝑡 𝑏 ∧ 𝑡 ≠ 0[𝑛]

𝑢[𝑛] <𝑠 𝑡 𝑏 ∧ 𝑡 ≠ signedMin[𝑛]

𝑡 ≤ᵆ 𝑢[𝑛] 𝑏 ∨ 𝑡 = 0[𝑛]

𝑡 ≤𝑠 𝑢[𝑛] 𝑏 ∨ 𝑡 = signedMin[𝑛]

𝑢[𝑛] ≤ᵆ 𝑡 𝑏 ∨ 𝑡 = unsignedMax[𝑛]

𝑢[𝑛] ≤𝑠 𝑡 𝑏 ∨ 𝑡 = signedMax[𝑛]

Table 7.1: Each line presents a pair of vars(𝑡)-interchangeable terms, assuming that
𝑏, 𝑢 ∉ vars(𝑡). Terms on the right are considered simpler for smt solvers
than these on the left.

Using known bitwise tricks1, a much simpler vars(𝑡)-interchangeable term canThis term was not
mentioned in our

original paper [JS17]
and it is inspired by
the corresponding

invertibility condition
for multiplica-
tion [Nie+18b].

be defined.The term 𝑡 ×𝑢[𝑛] is vars(𝑡)-interchangeable with the term 𝑣&(𝑡 ∣ −𝑡).
Recall that the result of (𝑡 ∣ −𝑡) has the same number of least significant zeroes
as the value of 𝑡 and has all the other bits set to 1.

In the previous two examples, the multiplications have been replaced by
bitwise operations and bit-shift by a constant, which are generally cheaper for
the smt solvers.

Example 7.5. Now we discuss several simplification rules mentioned by Brut-
tomesso without a proof of correctness. For example, consider the simplification
rule that rewrites the term 𝑡 >ᵆ 𝑢[𝑛] containing an unconstrained bit-vector vari-
able 𝑢 to the term 𝑏 ∧ 𝑡 ≠ 0[𝑛], where 𝑏 is a fresh Bool variable. Intuitively, the
rule is correct as 𝑡 >ᵆ 𝑢[𝑛] can be evaluated to both 1 and 0 unless 𝑡 is evalu-
ated to 0. If the value of 𝑡 is 0, 𝑡 >ᵆ 𝑢[𝑛] evaluates to 0. Correctness of this rule
follows directly fromTheorem 7.2 and the fact that the term 𝑡 >ᵆ 𝑢[𝑛] is vars(𝑡)-
interchangeable with the term 𝑏 ∧ 𝑡 ≠ 0[𝑛] assuming that 𝑢[𝑛], 𝑏 ∉ vars(𝑡).
Similar simplification rules can be derived from pairs of vars(𝑡)-interchangeable
terms presented in Table 7.1.

7.3 unconstrained terms in quantified formulas

In this section, we extend the treatment of unconstrained variables to formu-
las containing quantifiers. To simplify the presentation, we suppose that all
formulas are in the prenex normal form and do not contain any free vari-
ables. That is, 𝜑 = 𝑄1𝐵1𝑄2𝐵2…𝑄𝑛𝐵𝑛𝜓, where 𝜓 is a quantifier-free formula,
𝑄𝑖 ∈ {∀, ∃} for all 1 ≤ 𝑖 ≤ 𝑛, and all 𝐵𝑖 are pairwise disjoint sets of variables.
Sequences 𝑄𝑖𝐵𝑖 are called quantifier blocks. Quantifier blocks are supposed to
be maximal, that is 𝑄𝑖 ≠ 𝑄𝑖+1. A quantifier block 𝑄𝑖𝐵𝑖 is existential if 𝑄𝑖 = ∃

1 https://catonmat.net/low-level-bit-hacks

https://catonmat.net/low-level-bit-hacks
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and universal otherwise. The level of a variable 𝑥 is 𝑖 such that 𝑥 ∈ 𝐵𝑖. For a
variable 𝑥, we denote as level(𝑥) its level and for a set of variables 𝑋 we define
levels(𝑋) = {level(𝑥) ∣ 𝑥 ∈ 𝑋}. If the set 𝑋 contains only variables of the same
level, we denote as level(𝑋) the level of all variables in that set. A variable is
called unconstrained in the quantified formula 𝜑 if it is unconstrained in its
quantifier-free part 𝜓.

It is easy to see that Theorem 7.1 can not be directly applied to quantified
formulas. As an example, consider the formula 𝜑 ≡ ∃𝑥∀𝑦 (𝑥 + 𝑦 = 0) where
both variables have bit-width 32. Although the variable 𝑥 is unconstrained in
the formula 𝜑 and the term 𝑥+𝑦 is unconstrained due to {𝑥}, the conclusion of
Theorem 7.1 is not true regardless of the position of the quantifier for the fresh
variable 𝑣: the formula 𝜑 is equisatisfiable neither with ∃𝑣∀𝑦 (𝑣 = 0) nor with
∀𝑦∃𝑣 (𝑣 = 0). Intuitively, the problem is with the order of the quantifiers: the
simplification of unconstrained terms relies on the ability to choose a suitable
value of the unconstrained variable 𝑥 for each value of 𝑦. However, in the men-
tioned example, the variable 𝑦 is quantified after the variable 𝑥 and therefore
its value is unknown in the time when we have to choose the suitable value of
the variable 𝑥.

The following modified definition of the unconstrained term solves this
problem by forbidding any unconstrained variable in the given term to be
quantified before any constrained variable of the term.

Definition 7.4 (Quantified unconstrained term). Let𝜑 be a quantified formula,
𝑡 its subterm, and 𝑈 ⊆ vars(𝑡) a set of variables such that |levels(𝑈)| = 1. We
say that the term 𝑡 is unconstrained due to𝑈 if for each valuation 𝜇 of variables
in (vars(𝑡) ∖ 𝑈) and every value 𝑏 of the same sort as the term 𝑡, there exists a
valuation 𝜈 of variables in 𝑈 such that J𝑡K𝜇∪𝜈 = 𝑏 and, furthermore,

level(𝑈) ≥ max (levels(vars(𝑡) ∖ 𝑈)).

For example, in the formula ∃𝑥∀𝑦 (𝑥+𝑦 = 0)mentioned above, the subterm
𝑥 + 𝑦 is not unconstrained due to {𝑥}, since level(𝑥) < level(𝑦). On the other
hand, it is unconstrained due to {𝑦}.

The following theorem shows that subterms that are unconstrained due to
a set of unconstrained variables can be simplified even in quantified formulas.

Theorem 7.3. Let 𝜑 be a formula, 𝑡 be a term, 𝑈 be a subset of vars(𝑡), and 𝑣 be
a variable not occurring in 𝜑. If 𝑡 is unconstrained due to the set of variables 𝑈
and all variables in𝑈 are unconstrained in 𝜑, then 𝜑 is equivalent to the formula
𝜑 in which the term 𝑡 is replaced by 𝑣 and the variables in𝑈 are replaced in their
quantifier block by the variable 𝑣.

Proof. The definition of unconstrained subterm implies that all variables in
𝑈 have the same level. Let 𝑘 = level(𝑈) and let 𝜑 ≡ 𝑄1𝐵1…𝑄𝑘𝐵𝑘 𝜓, where
the formula 𝜓 can contain quantifiers. We show that the formula 𝑄𝑘𝐵𝑘 𝜓 is
equivalent to the formula𝑄𝑘((𝐵𝑘∖𝑈)∪{𝑣}) (𝜓[𝑡 ← 𝑣]) and thus also the formula
𝜑 is equivalent to 𝑄1𝐵1…𝑄𝑘−1𝐵𝑘−1𝑄𝑘((𝐵𝑘 ∖ 𝑈) ∪ {𝑣}) (𝜓[𝑡 ← 𝑣]) as required.

Let 𝑉 = ⋃1≤𝑖<𝑘 𝐵𝑖. Observe that 𝑈 ⊆ 𝐵𝑘 and the last line of the definition
of an unconstrained term implies (vars(𝑡) ∖ 𝑈) ⊆ 𝑉 ∪ (𝐵𝑘 ∖ 𝑈). Let 𝜇 be an
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assignment of values to all variables in 𝑉. We distinguish two cases according
to the quantifier 𝑄𝑘.

• Suppose that 𝑄𝑘 = ∃. If J∃𝐵𝑘𝜓K𝜇 = 1, then there is a valuation 𝜈 of
variables in 𝐵𝑘 such that J𝜓K𝜇∪𝜈 = 1. Note that the function 𝜇 ∪ 𝜈 as-
signs values to a superset of vars(𝑡) and therefore can be used to evalu-
ate the term 𝑡. Let 𝑏𝑣 be the value J𝑡K𝜇∪𝜈 . For this value, we have J𝜓[𝑡 ←
𝑣]K𝜇∪𝜈∪{𝑣↦𝑏𝑣} = 1 and therefore also J∃(𝐵𝑘∪{𝑣})𝜓[𝑡 ← 𝑣]K𝜇 = 1. Since all
variables in𝑈 are unconstrained, the formula 𝜓[𝑡 ← 𝑣] does not contain
any variable from 𝑈 and therefore J∃((𝐵𝑘 ∖ 𝑈) ∪ {𝑣}) 𝜓[𝑡 ← 𝑣]K𝜇 = 1.

Conversely, if J∃((𝐵𝑘 ∖ 𝑈) ∪ {𝑣}) 𝜓[𝑡 ← 𝑣]K𝜇 = 1, there is a valuation
𝜈 of variables in (𝐵𝑘 ∖ 𝑈) ∪ {𝑣} such that J𝜓[𝑡 ← 𝑣]K𝜇∪𝜈 = 1. As 𝑡 is
unconstrained due to the set 𝑈, there is a valuation 𝜈𝑈 of variables in
𝑈 such that J𝑡K𝜇∪𝜈∪𝜈𝑈 = 𝜈(𝑣). Therefore J𝜓K𝜇∪𝜈∪𝜈𝑈 = 1 and in turnJ∃(𝐵𝑘 ∪ {𝑣}) 𝜓K𝜇 = 1, because 𝜈 ∪ 𝜈𝑈 is an assignment to variables from
𝐵𝑘 ∪ {𝑣}. Finally, because the formula 𝜓 does not contain the variable 𝑣,
we know that J∃𝐵𝑘 𝜓K𝜇 = 1.

• If 𝑄𝑘 = ∀, the proof is dual to the ∃ case, but each existential quantifier
is replaced by the universal quantifier and each 1 is replaced by 0.

As an example, consider again the formula ∃𝑥∀𝑦 (𝑥 + 𝑦 = 0). According to
the previous theorem, it is equivalent to ∃𝑥∀𝑣 (𝑣 = 0) because the term 𝑥 + 𝑦
is unconstrained due to {𝑦}. Moreover, as the term 𝑣 = 0 is unconstrained due
to {𝑣}, the formula is equisatisfiable with ∃𝑥∀𝑝 (𝑝), where 𝑝 is a Bool variable.
This formula is trivially equivalent to ⊥.

7.4 partially constrained terms in quantified formulas

Both described extensions of unconstrained terms, i.e., partially constrained
terms and unconstrained terms in quantified formulas, can be combined to-
gether in a fairly obvious way.The next theoremprecisely describes this combi-
nation. The proof of this theorem is a straightforward combination of already
presented proofs.
Theorem 7.4. Let 𝜑 be a closed quantified formula in pnf and 𝑡 be its sub-
term such that a subset 𝑈 of unconstrained variables appearing in 𝑡 satisfies
|levels(𝑈)| = 1 and

level(𝑈) ≥ max (levels(𝐶)),

where 𝐶 = vars(𝑡) ∖ 𝑈. Further, let 𝑠 be an arbitrary term such that 𝑡
𝐶
⇌ 𝑠 and

vars(𝑠)∩vars(𝜑) ⊆ 𝐶.Then the formula 𝜑 is equivalent with the formula 𝜑where
the term 𝑡 is replaced by the term 𝑠 and the variables of 𝑈 are replaced in their
quantifier block by the set of variables vars(𝑠) ∖ vars(𝜑).

Note that due to this theorem, we can easily transfer simplification rules
mentioned by Bruttomesso to quantified formulas, because they can be refor-
mulated using the notion of interchangeable terms, as was described in Sec-
tion 7.2.
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Quantifier type of 𝑢

Term Existential Universal

𝑢[𝑛] = 𝑡 or 𝑡 = 𝑢[𝑛] ⊤ ⊥
𝑢[𝑛] ≠ 𝑡 or 𝑡 ≠ 𝑢[𝑛] ⊤ ⊥

𝑡 <ᵆ 𝑢[𝑛] 𝑡 ≠ unsignedMax[𝑛] ⊥
𝑡 <𝑠 𝑢[𝑛] 𝑡 ≠ signedMax[𝑛] ⊥
𝑢[𝑛] <ᵆ 𝑡 𝑡 ≠ 0[𝑛] ⊥
𝑢[𝑛] <𝑠 𝑡 𝑡 ≠ signedMin[𝑛] ⊥

𝑡 ≤ᵆ 𝑢[𝑛] ⊤ 𝑡 = 0[𝑛]

𝑡 ≤𝑠 𝑢[𝑛] ⊤ 𝑡 = signedMin[𝑛]

𝑢[𝑛] ≤ᵆ 𝑡 ⊤ 𝑡 = unsignedMax[𝑛]

𝑢[𝑛] ≤𝑠 𝑡 ⊤ 𝑡 = signedMax[𝑛]

Table 7.2: Derived simplification rules for partially constrained terms (in the left col-
umn) with positive polarity in quantified formulas. We assume that 𝑢 is an
unconstrained variable and level(𝑢) ≥ max (levels(vars(𝑡))).

Moreover, such simplifications can be combined with additional quantifier-
specific simplification rules such as the elimination of pure literals. The key
observation is that the simplifications using unconstrained and partially con-
strained terms often introduce fresh – and therefore unconstrained –Bool vari-
ables (see Table 7.1). Furthermore, if 𝑏 is an existentially quantified Bool vari-
able that is unconstrained in a formula 𝜑, it can be replaced by ⊤ if it occurs
in 𝜑 with the positive polarity and by ⊥ if it occurs with the negative polarity
and the resulting formula will be equivalent to the original one. Similarly, an
unconstrained universally quantified Bool variable can be replaced by ⊥ if it
has the positive polarity and by ⊤ if it has the negative polarity. Combining
those simplifications with simplifications using unconstrained and partially
constrained terms therefore yields more straightforward simplification rules,
which are shown in Table 7.2. Although this table shows only rules for terms
with positive polarity, the dual versions for terms with negative polarity are
straightforward.

7.5 goal unconstrained terms

In the previous sections, we have seen that in some cases, a subterm 𝑡 of a for-
mula can be replaced by a simpler subterm that generates precisely the same
set of results. We now improve this technique further by considering the con-
text of the term 𝑡 in the input formula. For example, consider the formula

𝜑 ≡ 𝜑′ ∧ (𝑢 × 𝑡1 ≤ᵆ 𝑡2),
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where 𝑡1 and 𝑡2 are arbitrary terms of bit-width 32, 𝜑′ is an arbitrary quantifier-
free formula, and the variable 𝑢 is unconstrained. According to Example 7.4,
the subterm 𝑢 × 𝑡1 can be replaced by the term 𝑣 & (𝑡1 ∣ −𝑡1). However, the
subterm 𝑢 × 𝑡1 can actually be replaced by an even simpler term because it
occurs as the first argument of the predicate ≤ᵆ. The term 𝑢 × 𝑡1 hence can
be replaced by a term that describes the least possible unsigned value that can
be result of 𝑢 × 𝑡1 for any choice of the value 𝑢. Namely, the subterm 𝑢 × 𝑡1
can be replaced by the subterm 0[32], because it can be obtained by setting 𝑢
to bv32(0). The intuition for the correctness of this rewrite is as follows: if the
entire formula should be satisfiable, the subterm 𝑢 × 𝑡1 ≤ᵆ 𝑡2 will certainly be
satisfied by the least possible value of 𝑢 × 𝑡1; if, on the other hand, the least
possible value of 𝑢 × 𝑡1 satisfies the formula, it is certainly satisfiable. Note
that the value of the variable 𝑢 can be changed arbitrarily, e.g., set to bv32(0),
without affecting the rest of the formula, since the variable 𝑢 is unconstrained.

This section formalizes the above-mentioned intuition of replacing a term
by simpler term that captures its least or greatest possible value. We call terms
that can be replaced in this way as goal unconstrained terms. Similarly to the
previous sections, which introduced partially unconstrained terms, we first
formalize goal unconstrained terms in quantifier-free formulas and extend the
treatment to quantified formulas later-on.

We begin by formalizing the subterms of the input formula whose unsigned
value can be increased or decreased while preserving satisfiability of the input
formula; we call such subterms unsigned-monotone and unsigned-antimono-
tone, respectively.

Definition 7.5 (Unsigned-monotone andunsigned-antimonotone occurrence).
Let 𝜑 be an arbitrary quantifier-free formula and 𝑡 be its subterm. We say that
the subterm 𝑡 occurs unsigned-monotonically in 𝜑 if for arbitrary terms 𝑠 and 𝑣
of the same sort as 𝑡 and each valuation 𝜇 of variables in 𝑡, 𝑠, and 𝑣, the following
holds:

if J𝑠 ≤ᵆ 𝑣K𝜇 = 1 and 𝜇 satisfies 𝜑[𝑡 ← 𝑠], then 𝜇 satisfies 𝜑[𝑡 ← 𝑣].

We say it occurs unsigned-antimonotically in 𝜑, if all such terms 𝑡, 𝑠, and 𝑣 and
each valuation 𝜇 satisfy:

if J𝑣 ≤ᵆ 𝑠K𝜇 = 1 and 𝜇 satisfies 𝜑[𝑡 ← 𝑠], then 𝜇 satisfies 𝜑[𝑡 ← 𝑣].

As mentioned in the motivation, one group of unsigned-monotone sub-
terms 𝑡 are the ones that occur only in the subformulas of form 𝑠 ≤ᵆ 𝑡 that
have the positive polarity. For each such term 𝑡, its unsigned value can be arbi-
trarily increased without turning the satisfying assignment to an unsatisfying
one. Similarly, terms 𝑡 that occur only in subformulas that have the positive
polarity and are of the form 𝑡 ≤ᵆ 𝑠 are unsigned-antimonotone. Dually, in
subformulas with the negative polarity, each term 𝑡 that occurs only in 𝑠 ≤ᵆ 𝑡
is unsigned-antimonotone and the term 𝑡 in 𝑡 ≤ᵆ 𝑠 is unsigned-monotone.
Furthermore, the unsigned-monotonicity and unsigned-antimonoticity can
be propagated through the monotonic operations that preserve the ordering.
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For example, if concat(𝑡, 𝑠) occurs unsigned-monotonically in 𝜑, then the sub-
terms 𝑡 and 𝑠 also occur unsigned-monotonically in 𝜑, since the formulas
𝑥 ≤ᵆ 𝑥′ → concat(𝑥, 𝑦) ≤ᵆ concat(𝑥′, 𝑦) and 𝑦 ≤ᵆ 𝑦′ → concat(𝑥, 𝑦) ≤ᵆ
concat(𝑥, 𝑦′) are valid.

We now define the necessary notions of unsigned-min and unsigned-max 𝐶-
interchangeability, which capture the mentioned property that two terms have
exactly the same possible least unsigned result and greatest unsigned result,
respectively, for all values of variables in 𝐶. For this, we use the function minᵆ,
which to each set of bit-vectors of the same bit-width returns the bit-vector in
this set with the least unsigned value, and the function maxᵆ, which similarly
for a set returns its bit-vector with the greatest unsigned value.

Definition 7.6 (Unsigned-min and unsigned-max 𝐶-interchangeability). Let
𝐶 be a set of variables and 𝑡, 𝑠 be terms of the same sort. Further, let𝑈 = (vars(𝑡)∪
vars(𝑠))∖𝐶. Terms 𝑡 and 𝑠 are called unsigned-min𝐶-interchangeable if for every
valuation 𝜇 of variables in 𝐶 it holds that

minᵆ({J𝑡K𝜇∪𝜈 ∣ 𝜈 is a valuation of 𝑈}) = minᵆ({J𝑠K𝜇∪𝜌 ∣ 𝜌 is a valuation of 𝑈}).

Similarly, the terms 𝑡 and 𝑠 are called unsigned-max 𝐶-interchangeable if for
every valuation 𝜇 of variables in 𝐶 it holds that

maxᵆ({J𝑡K𝜇∪𝜈 ∣ 𝜈 is a valuation of 𝑈}) = maxᵆ({J𝑠K𝜇∪𝜌 ∣ 𝜌 is a valuation of 𝑈}).

Example 7.6. As themotivating example showed, if 𝑢 ∉ vars(𝑡), the terms 𝑢[𝑛]×𝑡
and 0[𝑛] are unsigned-min vars(𝑡)-interchangeable, because for each valuation 𝜇
of variables in vars(𝑡), the equation

minᵆ ({J𝑢[𝑛] × 𝑡K𝜇∪𝜈 ∣ 𝜈 is a valuation of {𝑢[𝑛]}}) = bv𝑛(0)

can be shown to hold by considering 𝜈 = {𝑢[𝑛] ↦ bv𝑛(0)}.

We now show that the proposed simplification method, which allows re-
placing unsigned-min and unsigned-max 𝐶-interchangeable terms that con-
tain unconstrained variables is indeed correct.

Theorem 7.5. Let 𝜑 be a quantifier-free formula, 𝑡 its subterm that occurs un-
signed-antimonotically in 𝜑, and 𝐶 be a superset of all constrained variables that
occur in 𝑡. Then for any term 𝑠 that is unsigned-min 𝐶-interchangeable with 𝑡
and that satisfies vars(𝑠) ∩ vars(𝜑) ⊆ 𝐶, the formula 𝜑 is equisatisfiable with the
formula 𝜑[𝑡 ← 𝑠].

Proof. The structure of the proof is similar to the one of Theorem 7.2. Again,
all variables of 𝜑 and 𝑠 can be divided into three disjoint sets:

1. the set 𝐶 that contains all constrained variables in 𝑡,

2. the set 𝑈 = (vars(𝑡) ∪ vars(𝑠)) ∖ 𝐶 of all variables in 𝑡 or 𝑠 that are not
in 𝐶,

3. the set 𝑈′ containing all variables that are neither in 𝐶 nor in 𝑈.
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Recall that the set 𝑈 contains only variables that occur only in 𝑡 or only in 𝑠.
Let 𝑛 be the bit-width of the terms 𝑡 and 𝑠. Suppose that 𝜑 is satisfiable.

Hence, there exist valuations 𝜑, 𝜈, and 𝜈′ of variables in 𝐶, 𝑈, and 𝑈′, respec-
tively, such that 𝜇 ∪ 𝜈 ∪ 𝜈′ satisfies 𝜑. Because 𝑡 does not contain any variable
from 𝑈′, we know that J𝑡K𝜇∪𝜈∪𝜈′ = J𝑡K𝜇∪𝜈 . Because 𝜈 is a valuation of 𝑈, we
know that

nat𝑛(minᵆ({J𝑡K𝜇∪𝜈 ∣ 𝜈 is a valuation of 𝑈})) ≤ nat𝑛(J𝑡K𝜇∪𝜈).
And because 𝑡 and 𝑠 are unsigned-min 𝐶-interchangeable, there is an assign-
ment 𝜌 to the variables of 𝑈 such that nat𝑛(J𝑠K𝜇∪𝜌) ≤ nat𝑛(J𝑡K𝜇∪𝜈). We can
suppose that the assignment 𝜌 agrees with the assignment 𝜈 on all variables
from vars(𝑡) ⧵ 𝐶, because they do not occur in the term 𝑠. Therefore, we know
that J𝑠 ≤ᵆ 𝑡K𝜇∪𝜌∪𝜈′ = 1 and that the assignment 𝜇 ∪ 𝜌 ∪ 𝜈′ satisfies 𝜑. And be-
cause it satisfies 𝜑 ≡ 𝜑[𝑡 ← 𝑡], the term 𝑡 occurs unsigned-antimonotonically
in 𝜑, and J𝑠 ≤ᵆ 𝑡K𝜇∪𝜌∪𝜈′ = 1, the formula 𝜑[𝑡 ← 𝑠] must also satisfied by
𝜇 ∪ 𝜌 ∪ 𝜈′.

The arguments to show that satisfiability of 𝜑[𝑡 ← 𝑠] implies the satisfiability
of 𝜑 are again completely symmetric.

Observe that the dual theorem allows replacing each term that occurs un-
signed-monotonically in a formula by a termwith which it is unsigned-max𝐶-
interchangeable. Moreover, all the presented notions have the straightforward
corresponding counterparts for the comparison of signed integers. We thus
obtain notions of signed-monotone occurence, signed-antimonotone occurence,
signed-min 𝐶-interchangeability, and signed-max 𝐶-interchangeability, which
satisfy a claim analogous to the one of the Theorem 7.5.

7.5.1 Applications

Wenowpresentmore examples of bit-vector unsigned-min andunsigned-max
𝐶-interchangeable terms. We focus on operations like division and remainder,
which are hard formost of the current smt solvers.We also focus on bit-shifts,
because they are hard for bdd based smt solvers as they introduce multiple
dependencies between bits on different positions in the input bit-vectors.

Example 7.7. Consider the term 𝑡 /ᵆ𝑢[𝑛] for an arbitrary term 𝑡 and an arbitrary
assignment 𝜇 to the variables in 𝑡.
The least possible unsigned result of 𝑡 /ᵆ 𝑢[𝑛] can be obtained by setting 𝑢[𝑛]

to unsignedMax[𝑛]. If the value of J𝑡K𝜇 is equal to unsignedMax[𝑛], the least
possible unsigned result of 𝑡 /ᵆ 𝑢[𝑛] is thus bv𝑛(1) and otherwise it is bv𝑛(0). The
term 𝑡/ᵆ𝑢[𝑛] is thus unsigned-min vars(𝑡)-interchangeable with the term ite(𝑡 =
unsignedMax[𝑛], 1[𝑛], 0[𝑛]).
On the other hand, the greatest unsigned value obtainable from 𝑡 /ᵆ 𝑢[𝑛] isRecall thatJ𝑡 /𝑢 0[𝑛]K𝜇 =

unsignedMax[𝑛].
unsignedMax[𝑛], which is obtained by setting 𝑢[𝑛] to bv𝑛(0). The term 𝑡 /ᵆ 𝑢[𝑛] is
thus unsigned-max vars(𝑡)-interchangeable with the term unsignedMax[𝑛].
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Example 7.8. Consider the term 𝑢[𝑛]%ᵆ𝑡 for an arbitrary term 𝑡 and an arbitrary
assignment 𝜇 to the variables in 𝑡.
The least possible unsigned value of 𝑢[𝑛]%ᵆ 𝑡 can be obtained by setting 𝑢[𝑛] to

bv𝑛(0). This works even for the case when the value of 𝑡 is bv𝑛(0) because J𝑡 %ᵆ
0[𝑛]K𝜇 = J𝑡K𝜇 . The term 𝑢[𝑛] %ᵆ 𝑡 is thus unsigned-min vars(𝑡)-interchangeable
with the term 0[𝑛].

On the other hand, the greatest possible unsigned value of the term 𝑢[𝑛] %ᵆ
𝑡 is J𝑡 − 1[𝑛]K𝜇 . To see this, consider two cases. If J𝑡K𝜇 is bv𝑛(0), then the re-
sult of 𝑢[𝑛] %ᵆ 𝑡 is its first argument, which may be unsignedMax[𝑛]. However,
unsignedMax[𝑛] is exactly J0[𝑛] − 1[𝑛]K𝜇 due to underflows. If the value J𝑡K𝜇 is
not zero, then the result of 𝑢[𝑛] %ᵆ 𝑡 is equal to the standard remainder of the
natural numbers corresponding to the value of 𝑢[𝑛] and the result of J𝑡K𝜇 . This
result is definitely at most J𝑡 − 1[𝑛]K𝜇 and this value can be indeed obtained by
setting 𝑢[𝑛] to J𝑡−1[𝑛]K𝜇 . Putting this together, the term 𝑢[𝑛]%ᵆ 𝑡 is unsigned-max
vars(𝑡)-interchangeable with the term 𝑡 − 1[𝑛].

Example 7.9. Consider the term 𝑡 ≫ᵆ 𝑢[𝑛] for an arbitrary term 𝑡 and an arbi-
trary assignment 𝜇 to the variables in 𝑡.

The least possible unsigned value of 𝑡 ≫ᵆ 𝑢[𝑛] is bv𝑛(0) because it can be
obtained by setting 𝑢[𝑛] to bv𝑛(𝑛). The term 𝑡 ≫ᵆ 𝑢[𝑛] is thus unsigned-min
vars(𝑡)-interchangeable with the term 0[𝑛].

On the other hand, shifting a bit-vector logically to the right by one or more
bits cannot increase its unsigned value. The greatest possible unsigned value of
the term 𝑡 ≫ᵆ 𝑢[𝑛] is therefore J𝑡K𝜇 , which can be obtained by setting 𝑢[𝑛] to
bv𝑛(0). The term 𝑡 ≫ᵆ 𝑢[𝑛] is thus unsigned-max vars(𝑡)-interchangeable with
the term 𝑡.

More unsigned-min and unsigned-max 𝐶-interchangeable terms are pre-
sented in Table 7.3. Note that each of these examples gives rise to a correspond-
ing simplification rule.

7.6 goal unconstrained terms in quantified formulas

This section briefly shows how to extend the simplifications of goal uncon-
strained terms to quantified formulas. Similarly to the partially constrained
terms in quantified formulas, the simplification depends on the quantifier type
of the unconstrained variables of the term that is being rewritten. The treat-
ment of terms whose unconstrained variables are bound existentially is given
by Theorem 7.5. On the other hand, for the treatment of terms whose un-
constrained variables are bound universally, we need the following theorem,
which is the exact dual ofTheorem 7.5 and whose proof is also analogous. Note
that the definitions of unsigned-monotonicity and unsigned-antimonotoni-
city are dual: a term 𝑡 occurs unsigned-monotonically in a formula 𝜑 if and
only if it occurs unsigned-antimonotically in the formula ¬𝜑.

Theorem 7.6. Let 𝜑 be a quantifier-free formula, 𝑡 its subterm that occurs un-
signed-monotically in 𝜑, and 𝐶 be a superset of all constrained variables that
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vars(𝑡)-interchangability

Term Unsigned-min Unsigned-max

𝑢[𝑛] × 𝑡 0[𝑛] (𝑡 ∣ −𝑡)

𝑡 /ᵆ 𝑢[𝑛] ite(𝑡 = unsignedMax[𝑛],
1[𝑛],
0[𝑛])

unsignedMax[𝑛]

𝑢[𝑛] /ᵆ 𝑡 ite(𝑡 = 0[𝑛],
unsignedMax[𝑛],
0[𝑛])

unsignedMax[𝑛] /ᵆ 𝑡

𝑡 %ᵆ 𝑢[𝑛] 0[𝑛] 𝑡
𝑢[𝑛] %ᵆ 𝑡 0[𝑛] 𝑡 − 1[𝑛]

𝑡 ≪ 𝑢[𝑛] 0[𝑛] ?
𝑢[𝑛] ≪ 𝑡 0[𝑛] unsignedMax[𝑛] ≪ 𝑡

𝑡 ≫ᵆ 𝑢[𝑛] 0[𝑛] 𝑡
𝑢[𝑛] ≫ᵆ 𝑡 0[𝑛] unsignedMax[𝑛] ≫ᵆ 𝑡

𝑡 ≫𝑠 𝑢[𝑛] ite(𝑡[𝑛 − 1] = 0[1],
0[𝑛],
𝑡)

ite(𝑡[𝑛 − 1] = 0[1],
𝑡,
unsignedMax[𝑛])

𝑢[𝑛] ≫𝑠 𝑡 0[𝑛] unsignedMax[𝑛]

Table 7.3: The table shows unsigned-min and unsigned-max vars(𝑡)-interchangeable
terms for selected bit-vector operations. In all the cases 𝑡 is an arbitrary term
of bit-width 𝑛. The question mark denotes that the corresponding vars(𝑡)-
interchangeable term is too complex to produce a reasonable simplification
rule.
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occur in 𝑡. Then for any term 𝑠 that is unsigned-min 𝐶-interchangeable with 𝑡
and that satisfies vars(𝑠) ∩ vars(𝜑) ⊆ 𝐶, the formula 𝜑 is valid if and only if the
formula 𝜑[𝑡 ← 𝑠] is valid.

We now show an example of application of this theorem on a formula that
is universally quantified.

Example 7.10. Consider a formula 𝜑 ≡ ∀𝑥[𝑛]∀𝑦[𝑛]∀𝑢[𝑛]((𝑥[𝑛] × 𝑦[𝑛]) ≤ᵆ (𝑢[𝑛] ×
𝑦[𝑛])), where the variable 𝑢[𝑛] is unconstrained. Because the term 𝑢[𝑛] × 𝑦[𝑛] oc-
curs unsigned-monotonically in 𝑥[𝑛]×𝑦[𝑛] ≤ᵆ 𝑢[𝑛]×𝑦[𝑛] and because 𝑢[𝑛]×𝑦[𝑛] is
unsigned-min {𝑦[𝑛]}-interchangeable with 0[𝑛], we know that the formula 𝑥[𝑛] ×
𝑦[𝑛] ≤ᵆ 𝑢[𝑛] × 𝑦[𝑛] is valid if and only if the formula 𝑥[𝑛] × 𝑦[𝑛] ≤ᵆ 0[𝑛] is valid.
The quantified formula 𝜑 is thus equivalent with the formula ∀𝑥[𝑛]∀𝑦[𝑛]((𝑥[𝑛] ×
𝑦[𝑛]) ≤ᵆ 0[𝑛]).

By combining ideas from Theorems 7.4, 7.5, and 7.6, we obtain the following
result, which describes simplification of goal unconstrained terms in quanti-
fied formulas. Its proof is straightforward combination of the proofs of the
mentioned theorems.

Theorem 7.7. Let 𝜑 be a closed quantified formula in pnf and 𝑡 be its sub-
term such that a subset 𝑈 of unconstrained variables appearing in 𝑡 satisfies
|levels(𝑈)| = 1 and

level(𝑈) ≥ max (levels(𝐶)),

where 𝐶 = vars(𝑡) ∖𝑈. Further, let 𝑠 be an arbitrary term such that and vars(𝑠)∩
vars(𝜑) ⊆ 𝐶. Then the following two statements hold:

• if all variables in𝑈 are quantified existentially, the term 𝑡 occurs unsigned-
antimonotonically in 𝜑, and the terms 𝑡 and 𝑠 are unsigned-min 𝐶-inter-
changeable, the formula 𝜑 is equivalent with the formula 𝜑where the term
𝑡 is replaced by the term 𝑠 and the variables in 𝑈 are replaced in their
quantifier block by the set of variables vars(𝑠) ∖ vars(𝜑);

• if all variables in𝑈 are quantified universally, the term 𝑡 occurs unsigned-
monotonically in 𝜑, and the terms 𝑡 and 𝑠 are unsigned-min 𝐶-interchang-
eable, the formula 𝜑 is equivalent with the formula 𝜑 where the term 𝑡 is
replaced by the term 𝑠 and the variables in 𝑈 are replaced in their quanti-
fier block by the set of variables vars(𝑠) ∖ vars(𝜑).

It comes as no surprise that analogous claims hold also for unsigned-max,
signed-min, and signed-max 𝐶-interchangeable terms. The only difference is
that for unsigned-max and signed-max 𝐶-interchangeable terms, the mono-
tonicity must be swapped:

• an unsigned-monotonically occurring term can be rewritten for an un-
signed-max 𝐶-interchangable term if all its unconstrained variables are
quantified existentially and
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Quantification of unconstrained variables

Term occurence Existential Universal

unsigned-monotone unsigned-max unsigned-min
unsigned-antimonotone unsigned-min unsigned-max
signed-monotone signed-max signed-min
signed-antimonotone signed-min signed-max

Table 7.4: The table shows for each occurence of a term and each quantifier for its un-
constrained variables, by which 𝐶-interchangeable term it can be replaced.

• an unsigned-antimonotonically occurring term can be rewritten for un-
signed-max 𝐶-interchangable term if all its unconstrained variables are
quantified universally.

All such relationships are summarized in Table 7.4.
Observe that the application of the proposed simplifications to a bit-vector

term 𝑢∘𝑡 ⋈ 𝑠 for a bit-vector function ∘ and a predicate⋈ in many cases yields
precisely the corresponding invertibility condition [Nie+18b] for the formula
𝑢 ∘ 𝑡 ⋈ 𝑠. However, our approach does not rely on counter-example based
quantifier instantiation and can be performed as a preprocessing step in an
arbitrary bit-vector smt solver. Moreover, our approach can simplify even
quantifier-free formulas and existentially quantified variables.



8Q3B: AN EFFICIENT BDD-BASED SMT SOLVER FOR
QUANTIFIED BIT-VECTORS

We have implemented all the techniques described in previous three chapters
in an smt solver called Q3B. Namely, Q3B solves satisfiability of quantified
bit-vector formulas using binary decision diagrams, formula approximations,
bit-vector operation abstractions, and offers simplifications of such formulas
using unconstrained variables. In this chapter, we describe Q3B’s architecture
and the details of its implementation. The performance of the implemented
solver is then experimentally evaluated in Chapter 9.

The overall approach to smt solving used by Q3B is mostly the same as
the one presented in Section 5.4. However, the approach is extended by the
simplifications using unconstrained variables and all the features described in
Chapter 6. In particular, the solver threads for underapproximations and over-
approximations also use abstractions of bit-vector operations and refine the
results as described in Section 6.3. The underapproximating and overapproxi-
mating solvers also implement checking of potential models and countermod-
els (Subsection 6.4.1), learning from overapproximations (Subsection 6.4.2),
and introduce new variables and congruences for results of multiplications
and divisions (Subsection 6.4.3). The high-level overview of thus extended ap-
proach is depicted in Figure 8.1. The refinement loop is currently using the
following parameters: the initial effective bit-width is 1 and it is increased to 2,
4, 6, 8, etc.; the initial bdd node limit of bit-vector operations is 1000 and is
multiplied by 4 during the refinement.

There are some differences between the theoretical description of the ap-
proach given in the previous chapters and its real implementation in Q3B. The
first difference is in handling negations in the input formula. In the previous
chapters, it was assumed that the input formula is in the negation normal form.
However, instead of converting the input formula into the negation normal
form, Q3B only eliminates bi-implications from the input formula and then
maintains polarity of each subformula and uses variants of the described tech-
niques that take the polarity into the account. For example, during the under-
approximations of the formula, all existential quantifiers that occur under an
odd number of negations are treated as universal quantifiers and vice-versa.

The second difference is in computing approximations of the input formula.
In the theoretical description in Section 5.3, the approximations are performed
by modifying the formula. In the real implementation, however, the approxi-
mations are performed during the computation of the bdd corresponding to
the formula.Thismore closely resembles the illustration of various reductions,
which is shown in Figure 5.4. In particular, vectors of bdds that represent vari-
ables whose effective bit-width should be reduced are modified by replacing
some of their bdds either by 0 or by the bdd that represents the bit of the
variable that should be used as a sign bit. Therefore, some of the bdd variables
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Figure 8.1: High-level overview of smt solving approach used by Q3B. The three
shaded areas are executed in parallel and the first result is returned.

that represent bits of the input bit-vector variables may not be present in the
resulting bdd. The value of these bits has to be computed according to the
chosen extension later-on if the model is required.

Q3B is implemented in C++17, is open-source and available under mit li-
cense on GitHub:

https://github.com/martinjonas/Q3B.

The project development process includes continuous integration and auto-
matic regression tests, which increase the trustworthiness of the tool.

8.1 external libraries

To implement all the functionality, Q3B relies on several external libraries and
tools. For representation of and manipulation with bdds, Q3B uses the open-

https://github.com/martinjonas/Q3B
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source library cudd 3.0 [Som15]. Since cudd does not support bit-vector op-
erations, we use the library by Peter Navrátil [Nav18], which on top of cudd
implements representation of bit-vectors and also implements bit-vector op-
erations and relations. The algorithms in this library are inspired by the ones
in the bdd library BuDDy1, which provide a decent performance. Neverthe-
less, we have further improved its performance by several modifications. In
particular, we added a specific code for handling expensive operations like
bit-vector multiplication and division when their arguments contain constant
bdds. This for example considerably speeds up multiplication whenever one
argument contains many constant zero bits, which is a frequent case when we
use the variable bit-width approximation fixing some bits to zero. Further, we
have fixed few incorrectly implemented bit-vector operations in the original
library.

Moreover, to implement the abstractions of bit-vector operations, we have
extended all operations in the library with the support for do-not-know bits
in their inputs. We have also implemented abstract versions of arithmetic op-
erations, so that they can produce do-not-know bits when the result exceeds
a given number of bdd nodes. In particular, the operations that introduce
do-not-know bits when the precise result would contain too many bdd nodes
are addition,multiplication, and division. We have selected these operations as
the original approach without operation abstractions often struggles to han-
dle them. Finally, we have modified all algorithms for relation operators, log-
ical operators, and quantifier processing to work with bdd pairs (𝑏must, 𝑏may)
rather than with individual precise bdds.

Q3B reads the input formulas in the smt-lib format [BFT17], which is the
standard input format for almost all modern smt solvers. For parsing this
format, Q3B uses antlr parser generated from the grammar2 of smt-lib
2.6. We have modified the grammar to correctly handle bit-vector numerals
and to support push and pop commands without numerical argument. The
parser allows Q3B to support all bit-vector operations and almost all smt-
lib commands except get-assertions, get-assignment, get-proof, get-
unsat-assumptions, get-unsat-core, and all the commands that work with
algebraic data-types. This is in sharp contrast with the initially implemented
experimental versions of Q3B, which only collected all the assertions from the
input file and performed the satisfiability check regardless of the rest of the
commands and of the presence of the check-sat command. The reason for
this was that the older versions parsed the input file using the C++ api of the
smt solver Z3 [MB08], which can provide only the list of assertions and not
the rest of the smt-lib script. Thanks to the antlr parser, the current ver-
sion of Q3B can therefore also provide the user with a model of a satisfiable
formula after calling get-model; this important aspect of other smt solvers
was completely missing in the initial experimental versions of Q3B.

On the other hand, C++ api of the solver Z3 is still used for internal repre-
sentation of parsed formulas. The Z3 C++ api is also used to perform manip-

1 https://sourceforge.net/projects/buddy/
2 https://github.com/julianthome/smtlibv2-grammar

https://sourceforge.net/projects/buddy/
https://github.com/julianthome/smtlibv2-grammar
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Figure 8.2: Architecture of Q3B. Components in the shaded box are parts of Q3B, the
other components are external.

ulations with formulas, such as substitution of values for variables, and some
of the formula simplifications. Note that these are the only uses of Z3 api in
Q3B during solving the formula; no actual smt- or sat-solving capabilities of
Z3 are used during the solving process.

8.2 architecture of q3b

This section describes the internal architecture ofQ3B.Theoverall structure in-
cluding both internal and external components and the interactions between
them is depicted in Figure 8.2. We explain the purpose of the internal compo-
nents:

smt-lib interpreter (implemented in the file SMTLIBInterpreter.cpp)
reads the input file in smt-lib format. The interpreter sequentially ex-
ecutes all the commands from the input file. In particular, it maintains
the options set by the user (commands as set-option, get-option),
maintains the assertion stack (commands assert, push, and pop), calls
the component Solver when the check-sat command is issued, and
queries Solver if the user requires the model using the command get-
model or its part by using get-value.

formula simplifier (implemented in the file FormulaSimplifier.cpp)
provides interface to all formula simplifications described in Chapter 5.
In particular, it implements miniscoping, pure literal elimination, con-
structive and destructive equality resolution (cer, der), and simple
theory-related rewriting. Furthermore, it also provides an interface to
simplifications using unconstrained variables described in Chapter 7.
Some of these simplifications are implemented directly in this compo-
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nent. Others, like cer, der, and majority of the theory-related rewrit-
ings are performed by calling C++ api of Z3. Simplifications using un-
constrained variables are implemented in a separate component of Q3B.
The simplifier also removes top-level existential quantifiers, so values of
the corresponding variables are also included in a model. This increases
the chance of a successful validation of a model that is a result of an
overapproximation. Some simplifications that could change models of
the formula are disabled if the user enables model generation, i.e., sets
the option :produce-models to true in the input smt-lib file.

unconstrained variable simplifier (implemented in the file Uncon-
strainedVariableSimplifier.cpp) provides all the simplifications of
formulas with unconstrained variables that are described in Chapter 7.
Besides the basic unconstrained variable simplifications, this compo-
nent also provides simplifications using partially constrained terms and
goal unconstrained terms.

mul/div variable introducer (implemented in the file TermConstIn-
troducer.cpp) provides the functions for adding new variables for re-
sults of multiplications and divisions and also for adding their congru-
ences, as described in Subsection 6.4.3.

solver (implemented in Solver.cpp) is the central component of our tool.
It calls formula simplifier and then creates three threads for the pre-
cise solver, the underapproximating solver, and the overapproximating
solver. It also controls the approximation refinement loops of the ap-
proximating solvers. Finally, it returns the result of the fastest thread
and stores the respective model, if the result was sat.

formula to bdd transformer (implemented in the source file ExprTo-
BDDTransformer.cpp) performs the actual conversion of the formula
to a bdd. Each subterm of the input formula is converted to a vector
of bdds (if the subterm’s sort is a bit-vector of width 𝑛, the constructed
vector contains 𝑛 bdds, each of whose represents one bit of the sub-
term). Further, each subformula of the input formula is converted to
a corresponding bdd. These conversions proceed by a straightforward
bottom-up recursion on the formula syntax tree. The transformer com-
ponent calls an external library to compute the effect of logical and bit-
vector operations on bdds and vectors of bdds, respectively. Besides
the precise conversion, the transformer can also construct overapproxi-
mating and underapproximating bdds or the pairs of bdds (𝑏must, 𝑏may).
Precision of approximations depends on parameters set by the solver
component. The solver component also computes the heuristic initial
ordering of the bdd variables as described in Section 5.2.

cache (implemented as a part of ExprToBDDTransformer.cpp) maintains
for each converted subformula and subterm the corresponding bdd or a
vector of bdds, respectively. Each of the three solvers has its own cache.
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When an approximating solver increases the precision of the approxima-
tion, only entries of its cache that can be affected by the precision change
are invalidated. This ensures that results for subterms and subformulas
that were not affected by the refinement do not have to be recomputed
in each iteration of the refinement loop. All the caches are internally
implemented by hash-tables.

Some of the components also provide the public C++ api, which can be
used by external tools for smt solving or for performing formula simplifica-
tions. In particular, this is the of with components FormulaSimplifier, Un-
constrainedVariableSimplifier, and Solver. For example, Solver exposes
a method Solve(formula, approximationType), which can be used to de-
cide satisfiability of a given formula by performing simplifications and run-
ning the precise solver, the underapproximating solver, or the overapproxi-
mating solver. The component Solver also exposes the method SolveParal-
lel(formula), which simplifies the input formula and runs all three of these
solvers in parallel and returns the first result as depicted in Figure 8.1.

8.3 future work

In future, we would like to drop the dependency on Z3: namely to implement
our own representation of formulas and reimplement all the simplifications
currently outsourced to Z3 api directly in Q3B. We also plan to extend some
simplificationswith an additional bookkeeping needed to construct amodel of
the original formula. With these extensions, all simplifications could be used
even if the user wants to get amodel of the formula. As a further research topic,
we would also like to implement production of unsatisfiable cores since they
are also valuable for software verification.

We would also like to experiment with different decision diagrams than
bdds. Namely, we would like to try Chain-reduced bdds [Bry18], Tagged
bdds [DWM17], or bdds with Edge-Specified Reductions [Bab+19], which
should combine benefits of bdds and Zero-suppressed Binary Decision Dia-
grams [Min01]. As a preliminary investigation of these decision diagrams, we
have already implemented a version of Q3B that uses Chain-reduced bdds.
In theory, these should provide smaller representation of bdds such as the
one in Figure 5.2 because the variables 𝑥0, 𝑥1, 𝑥2, and 𝑥3 can be represented
by a single node. However, this did not happen in practice as the variables 𝑥0,
𝑥1, 𝑥2, and 𝑥3 do not form a consecutive block because they are interleaved
with variables 𝑣0, 𝑣1, 𝑣2, and 𝑣3. We therefore propose further investigation of
a compatible variable ordering or improved variants of Chain-reduced bdds,
which would allow representing blocks of non-consecutive variables.



9EXPERIMENTAL EVALUATION OF Q3B

This chapter experimentally evaluates the performance of the implemented
smt solver Q3B. Section 9.1 compares the performance of Q3B against other
state-of-the-art smt solvers for quantified bit-vector formulas. Section 9.2 in-
vestigates the effect of the individual techniques used by Q3B on its perfor-
mance.

As the benchmark set, we have used all 5751 quantified bit-vector formu-
las from the smt-lib repository. The benchmarks are divided into 8 distinct
families of formulas:

• 5 families of formulas 2017-Preiner-*, whichwere obtained byM. Preiner For brevity, we call
the family
2017-Preiner-
UltimateAutomizer
as 2017-Preiner-ua.

by conversion of integer and real arithmetic benchmarks to bit-vectors
of bit-width 32 [PNB17].

• The family 2018-Preiner-cav, which consists of formulas that validate
the generated invertibility condition formulas that are used in the smt
solver CVC4 [Nie+18b].

• The family heizmann-ua, which contains benchmarks from the tool Ul- The original name of
this family is
20170501-Heizmann-
UltimateAutomizer;
we use the shorter
version for brevity.

timate Automizer by M. Heizmann [HHP13].

• The familywintersteiger, which contains benchmarks from software and
hardware verification by C. M. Wintersteiger [WHM13].

All benchmarks were executed with cpu time limit 20 minutes and ram
limit of 16 GiB. All experiments were performed on a Debian machine with
two six-core Intel Xeon E5-2620 2.00GHz processors and 128 gb of ram. All
themeasured times are cpu times, unless stated otherwise. For reliable bench-
markingwe employed BenchExec [BLW15], a tool that allocates specified re-
sources for a program execution and preciselymeasures their usage. All scripts
used for running benchmarks and processing their results, together with de-
tailed descriptions and some additional results not presented in the chapter,
are available online1.

9.1 overall performance

We have evaluated the performance of QB3 1.0 and compared it to the latest
versions of smt solvers Boolector (v3.0), CVC4 (v1.6), and Z3 (v4.8.4). All
tools were used with their default settings except for CVC4, where we used the
same settings as in the paper that introduces quantified bit-vector solving in
CVC4 [Nie+18b], since they give better results than the default CVC4 settings.

1 https://fi.muni.cz/~xjonas/PhdThesis/Q3BExperiments
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2017-Preiner-keymaera 3925 3916 3919 3905 3923
2017-Preiner-psyco 62 62 61 59 62
2017-Preiner-scholl-smt08 75 62 34 70 68
2017-Preiner-tptp 56 53 56 56 56
2017-Preiner-ua 137 136 137 137 137
2018-Preiner-cav18 590 549 565 565 550
heizmann-ua 110 11 109 104 17
wintersteiger 94 85 89 92 92

Total UNSAT 5049 4874 4970 4988 4905

SA
T

2017-Preiner-keymaera 108 103 77 104 108
2017-Preiner-psyco 132 131 129 123 132
2017-Preiner-scholl-smt08 256 244 214 247 204
2017-Preiner-tptp 17 16 17 17 17
2017-Preiner-ua 16 16 14 16 16
heizmann-ua 21 19 19 20 15
wintersteiger 91 77 85 90 71

Total SAT 641 606 555 617 563

Total 5751 5480 5525 5605 5468

Table 9.1: Numbers of benchmarks solved by the individual solvers divided by the sat-
isfiability/unsatisfiability and the benchmark family.
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Boolector CVC4 Q3B Z3 Uniquely solved

Boolector 0 118 68 72 7
CVC4 163 0 61 173 6
Q3B 193 141 0 206 25
Z3 60 116 69 0 7

Table 9.2: The table shows cross-comparison of solved benchmarks for all pairs of the
solvers. Each cell shows the number of benchmarks that were solved by the
solver in the corresponding row, but not by the solver in the corresponding
column.The columnUniquely solved shows the number of benchmarks that
were solved only by the given solver.

family Boolector CVC4 Q3B Z3

2017-Preiner-keymaera 1 0 1 4
2017-Preiner-psyco 0 0 0 1
2017-Preiner-scholl-smt08 5 2 10 1
2018-Preiner-cav18 1 0 11 0
heizmann-ua 0 3 1 0
wintersteiger 0 1 2 1

Table 9.3: For each solver and benchmark family, the table shows the number of
benchmarks solved only by the given solver.

Table 9.1 shows the numbers of benchmarks solved by the individual solvers.
The table is divided according to the satisfiability of the benchmarks and ac-
cording to their families. Our solver Q3B is able to solve the most benchmarks
in benchmark families 2017-Preiner-scholl-smt08, 2017-Preiner-tptp, 2017-Prei-
ner-ua, 2018-Preiner-cav18, and wintersteiger, and it is competitive in the re-
maining families. In total, Q3B also solves more formulas than each of the
other solvers: 125 more than Boolector, 80 more than CVC4, and 137 more
than Z3. Although the numbers of solved formulas for the solvers seem fairly
similar, the cross-comparison in Table 9.2 shows that the differences among
the individual solvers are actually larger. For each other solver, there are at
least 141 benchmarks that can be solved by Q3B but not by the other solver.
We think this shows the importance of developing an smt based on bdds,
approximations, and abstractions besides the solvers based on quantifier in-
stantiation. For completeness, Table 9.3 shows the distribution of the uniquely
solved benchmarks between the benchmark families.

From the opposite point of view, Figure 9.1 shows the number of bench-
marks unsolved by the individual solvers.This plot graphically shows that Q3B
solves substantially more benchmarks than the other solvers and that its per-
formance is quite stable across the benchmark families.
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Figure 9.1: The number of benchmarks unsolved by the individual solvers. The bench-
marks are divided by the source of the benchmark. For better readability,
the numbers of unsolved benchmarks less than 3 are not explicitly spelled
out in the plot.

As the solving times are concerned, Figure 9.2 shows quantile plots of solv-
ing times of all the compared solvers.The plot shows that Q3B performs worse
on the easier benchmarks but as the benchmarks grow harder, it tends to out-
perform the other solvers. To see the differencesmore clearly, Figure 9.3 shows
the same plot with only non-trivial benchmarks. In this plot, we have filtered
out 3225 trivial benchmarks, i.e., the benchmarks that were decided by all of
the solvers in less than 0.1 s.

9.2 effect of individual techniques

This section evaluates the effect of the individual introduced techniques on
the performance if Q3B. In particular, we test the following three base config-
urations of Q3B:

• full, which uses both variable bit-width approximations and abstrac-
tions of bit-vector operations (the default configuration of Q3B),

• approx, which uses only variable bit-width approximations (command-
line option --abstract:method=variables), and

• none, which performs only simplifications and conversion to the corre-
sponding bdd without any approximations or abstractions (command-
line option --abstractions=none).

For each base configuration conf of these three, we have evaluated its three
variants:
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Figure 9.2: Quantile plot of all benchmarks from the smt-lib repository. The plot
shows the number of non-trivial benchmarks (𝑥-axis) that each solver was
able to decide within a given cpu time limit (𝑦-axis).
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Figure 9.3: Quantile plot of all solved non-trivial benchmarks from the smt-lib
repository. Trivial benchmarks are those that all solvers solved within 0.1 s.
The plot shows the number of non-trivial benchmarks (𝑥-axis) that each
solver was able to decide within a given cpu time limit (𝑦-axis).
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• conf -gu, which uses simplifications of unconstrained variables in un-
constrained terms, partially unconstrained terms, and goal unconstrai-
ned terms (the default configuration of Q3B),

• conf -u, which uses simplifications of unconstrained variables only in
unconstrained terms and partially unconstrained terms (command-line
option --uc:goal=0), and

• conf without no suffix, which uses no simplifications of unconstrained
variables (command-line option --simpl:unconstrained=0).

In total, this gives us 9 different configurations of Q3B. We have run each of
these configurations on all 5751 described benchmarks with 20minutes of cpu
time limit and 16 GiB of ram.

Figure 9.4 shows the number of solved satisfiable formulas, solved unsatis-
fiable formulas, and unsolved formulas for each of the 9 described configura-
tions. It can be seen that both approximations of bit-width and abstractions
of bit-vector operations significantly improve the number of solved formu-
las. Similarly, both simplification of unconstrained terms and of goal uncon-
strained terms also improve the performance of the solver. Furthermore, these
simplifications improve the performance regardless the used approximations
or abstractions. On the other hand, approximations bring the additional cost
of running three parallel solvers and abstractions bring the additional cost of
the repeated abstraction refinement. Therefore, there are benchmarks where
approximations and abstractions degrade the performance.

Further, we compare the various configurations of Q3B against the state-of-
the-art smt solvers Boolector, CVC4, and Z3. To compare the numbers in Fig-
ure 9.4 with the numbers for solvers, note that the number of benchmarks un-
solved by Boolector, CVC4, and Z3, are 271, 226, and 283, respectively. Even the
configuration full-u without the simplifications of goal unconstrained terms
can solve more formulas than these smt solvers. Furthermore, configurations
full, approx-gu and approx-u are competitive with these smt solvers. Ob-
serve that the performance of the configurations none-* is significantly worse.
However, this is expected since these configurations time-out for most of the
benchmarks that contain multiplication of two non-constant terms because it
leads to an exponential bdd.

For the selected configurations of Q3B, Table 9.4 shows the numbers of
solved benchmarks grouped by their satisfiability and family. From the op-
posite view, the number of unsolved benchmarks grouped by their family is
shown in Figure 9.5 for all of the configurations of Q3B. In particular, it can be
observed that effective bit-width approximations are particularly helpful for
the following benchmark families: 2017-Preiner-keymaera, 2017-Preiner-
psycho, 2017-Preiner-scholl-smt08, and wintersteiger. Additionally, ab-
stractions of bit-vector operations are particularly helpful for families 2017-
Preiner-keymaera and 2017-Preiner-scholl-smt08.

On the other hand, simplification using unconstrained and partially un-
constrained terms are helpful for categories heizmann-ua and 2018-Preiner-
cav18. This is not surprising as the benchmarks heizmann-ua come from soft-
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2017-Preiner-keymaera 3905 3781 3783 3786 3905 3905 3905
2017-Preiner-psyco 59 44 55 56 58 59 59
2017-Preiner-scholl-smt08 71 36 44 59 65 70 70
2017-Preiner-tptp 56 54 56 56 56 56 56
2017-Preiner-ua 137 137 137 137 137 137 137
2018-Preiner-cav18 532 435 448 531 453 530 565
heizmann-ua 107 85 80 104 82 104 104
wintersteiger 93 75 92 92 92 92 92

Total UNSAT 4960 4647 4695 4821 4848 4953 4988

SA
T

2017-Preiner-keymaera 104 7 103 104 104 104 104
2017-Preiner-psyco 126 74 124 124 123 123 123
2017-Preiner-scholl-smt08 248 136 226 229 246 247 247
2017-Preiner-tptp 17 13 17 17 17 17 17
2017-Preiner-ua 16 16 16 16 16 16 16
heizmann-ua 20 18 18 18 20 20 20
wintersteiger 92 55 92 92 90 90 90

Total SAT 623 319 596 600 616 617 617

Total 5751 4966 5291 5421 5464 5570 5605

Table 9.4: Numbers of benchmarks solved by the individual Q3B configurations
grouped by the satisfiability/unsatisfiability and the benchmark family. The
families in which the given configuration solved more benchmarks than
Boolector, CVC4, and Z3 are marked bold.

ware verification problems, which tend to contain unconstrained variables,
and all benchmarks in the family 2018-Preiner-cav18 contain unconstrained
variables by construction. For the family heizmann-cav18, the simplification
using goal unconstrained terms help even further.

Interestingly, the most basic configuration none of Q3B, which uses only
simplifications and conversion to bdd can solve significantly more unsatisfi-
able benchmarks from category heizmann-ua than Boolector and Z3.
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Figure 9.4: Numbers of solved satisfiable formulas, solved unsatisfiable formulas, and
unsolved formulas by the individual configurations of Q3B. If a configura-
tion was used in a paper, it is referenced besides the corresponding con-
figuration. Each arrow from configuration 𝑐1 to 𝑐2 labeled +x, -y denotes
that the configuration 𝑐2 solved 𝑥 formulas that 𝑐1 did not and that the
configuration 𝑐2 did not solve 𝑦 formulas that 𝑐1 did.
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Figure 9.5: The number of benchmarks unsolved by the individual configurations of
Q3B. The benchmarks are grouped by the source of the benchmark. For
better readability, the numbers of unsolved benchmarks less than 20 are
not explicitly spelled out in the plot.





10IS SATISFIABILITY OF QUANTIFIED BIT-VECTOR FORMULAS
STABLE UNDER BIT-WIDTH CHANGES?

For most of the decision procedures for solving satisfiability of quantifier-free
bit-vector formulas, their time and space complexities grow with the increas-
ing bit-widths of used variables. This is caused by the conversion of the input
formula to the equisatisfiable propositional formula (bit-blasting) and solving
it by a sat solver, which is either themain or a fall-back strategy formost of the
current decision procedures. The problem with growing bit-widths in turn ap-
plies to decision procedures for quantified bit-vectors based on the quantifier-
instantiation used by Boolector [NPB17], CVC4 [Nie+18b], and Z3 [WHM13],
which employ a solver for quantifier-free formulas as a black box. The ap-
proach to quantified bit-vector formulas based on binary decision diagrams
used by the solver Q3B is sensitive to bit-widths as well: as the bit-widths in-
crease, so do the sizes of the produced binary decision diagrams. These claims
are supported by plots in Figure 10.1, which show solving times of the solver
CVC4 on almost all 32bit and 64bit quantified bit-vector formulas from the
smt-lib repository [BFT16] after reducing their bit-widths to all values be-
tween 1 and the original bit-width. Details concerning the selection of bench-
marks and reduction of their bit-widths are described in Section 10.1.

Under reasonable complexity-theory assumptions, the effect of increasing
bit-widths is also observable from the complexity-theory point of view based
on the results mentioned in Chapter 4. For both quantifier-free and quantified
formulas, the respective complexity classes of deciding satisfiability of formu-
las with bit-widths encoded in unary and in binary differ:NP vs.NEXPTIME
for quantifier-free formulas and PSPACE vs. AEXP(poly) for quantified for-
mulas.Therefore, the decision problem has to become harder with the increas-
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Figure 10.1: The scatter plots show cpu times of the solver CVC4 on a subset of 32bit
and 64bit formulas from the smt-lib repository after changing their bit-
widths to the bit-width specified on the 𝑥-axis. The formulas are divided
according to the maximal bit-width of their subterms.
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ing bit-widths, otherwise the complexity classes for unary andbinary encoding
would coincide.

For quantifier-free bit-vector formulas, this problem has been tackled sev-
eral times. As was already mentioned in Section 5.3, Bryant et al. have pro-
posed an abstraction-based procedure that tries to solve underapproximations
of the input formula with reduced effective bit-widths of variables and selec-
tively increases their bit-widths if the underapproximation is unsatisfiable. If
the underapproximation is satisfiable, the original formula can be decided to
be satisfiable as well [Bry+07]. Approaching the problem from another side,
Fröhlich et al. have proposed stochastic local search approach that randomly
looks for models of quantifier-free formulas and thus avoids bit-blasting with
its inherent space-complexity dependence on the bit-widths of the input for-
mula [Frö+15]. This approach was improved by propagation rules by Niemetz
et al. [NPB17]. Zeljić et al. have developed the solver mcBV [ZWR16], which
implements the model-constructing satisfiability calculus [MJ13] that tries to
construct a model directly and thus also avoids bit-blasting. Johannsen has
shown how to compute a bit-width to which a formula can be reduced while
preserving its satisfiability for a restricted class of formulas that represent bit-
wise functions [Joh01; Joh02]. Kovásznai et al. used this observation regarding
such formulas to show that the complexity of their satisfiability is the same
for both unary and binary encoding of the bit-widths [KFB16]. Considering a
related theory of floating-point arithmetic, Zeljić et al. have introduced an ap-
proximation framework that produces mixed-approximations of the original
formula by reducing the bit-widths used for representation of all floating-point
variables. After solving the mixed-approximation, the solver checks its result
against the original formula and if it fails, it refines the approximation [ZWR17;
Zel+18]. In general, this approachworks for an arbitrary quantifier-free theory,
but as far as we know, it has been implemented only for floating-point arith-
metic.

For quantified bit-vector formulas, only one existing smt solver tries to re-
duce bit-widths of some variables of the input formula: the solver Q3B uses
approximations inspired by the abstractions by Bryant et al. and computes
underapproximations and overapproximations by reducing bit-widths of ex-
istentially and universally quantified variables, respectively. This is discussed
in detail in Section 5.3.

In this chapter, we experimentally evaluate the hypothesis that the satisfi-
ability of only a small fraction of quantified bit-vector formulas actually de-
pends on the bit-widths of the used variables. We show that the satisfiability
of the vast majority of quantified bit-vector formulas from the smt-lib repos-
itory remains the same even after reducing bit-widths of their variables to a
very small number of bits. Therefore, the results of this chapter suggest that
extending the techniques described for quantifier-free formulas to quantified
formulas or designing novel techniques for reducing bit-widths of quantified
bit-vector formulas could be worthwhile. These techniques could allow smt
solvers both to solve more quantified bit-vector formulas and to solve them
more quickly.
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The chapter is structured as follows: Section 10.1 describes how we obtain
formulas with reduced bit-widths, Section 10.2 presents our experiments with
the reduced formulas and results of these experiments, and the following Sec-
tion 10.3 discusses challenges arising from these results.

10.1 obtaining formulas with reduced bit-widths

This section describes how we obtain formulas with the reduced bit-width
from the original benchmarks. For each term, we denote as bw(𝑡) its bit-width.
Given a formula 𝜑 and a desired bit-width 𝑏𝑤 ≥ 1, the following procedure
produces the formula reduceF(𝜑, 𝑏𝑤) in which all subterms have bit-width at
most 𝑏𝑤. In particular, reduceF(𝜑, 𝑏𝑤) is obtained from 𝜑 by:

• decreasing bit-widths of all variables with the bit-width more than 𝑏𝑤
to 𝑏𝑤,

• replacing all numeralswith the bit-widthmore than 𝑏𝑤 by their 𝑏𝑤 least-
significant bits,

• decreasing the numbers of added bits by all zeroExtend and signExtend
functions so that the bit-width of the result is at most 𝑏𝑤.

Formally, we introduce the two mutually recursive functions reduceT and
reduceF. The first one, reduceT, performs the above-described reduction of
maximal bit-width on bit-vector terms:

reduceT(𝑐[𝑛], 𝑏𝑤) = (𝑐 mod 2min(𝑛,𝑏𝑤))
[min(𝑛,𝑏𝑤)]

,
reduceT(𝑥[𝑛], 𝑏𝑤) = 𝑥[min(𝑛,𝑏𝑤)],

reduceT(op(𝑡1), 𝑏𝑤) = op(reduceT(𝑡1, 𝑏𝑤))
for op ∈ {−,∼},

reduceT(𝑡1 ⋄ 𝑡2, 𝑏𝑤) = reduceT(𝑡1, 𝑏𝑤) ⋄ reduceT(𝑡2, 𝑏𝑤)
for ⋄ ∈ {&, |, +, ×, /ᵆ, /𝑠, %ᵆ, %𝑠,≪,≫ᵆ,≫𝑠},

reduceT(ite(𝜑, 𝑡1, 𝑡2), 𝑏𝑤) = ite(reduceF(𝜑, 𝑏𝑤),
reduceT(𝑡1, 𝑏𝑤),
reduceT(𝑡2, 𝑏𝑤)),

reduceT(ext𝑛(𝑡), 𝑏𝑤) = {reduceT(𝑡, 𝑏𝑤) if bw(𝑡) ≥ 𝑏𝑤,

𝑒𝑥𝑡min(𝑛,𝑏𝑤−bw(𝑡))(𝑡) if bw(𝑡) < 𝑏𝑤,
for ext ∈ {zeroExtend, signExtend}.
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By using the function reduceT on arguments of relation symbols in the for-
mula, we obtain the function reduceF, which reduces maximal bit-widths in
arbitrary formulas:

reduceF(⊤, 𝑏𝑤) = ⊤,
reduceF(⊥, 𝑏𝑤) = ⊥,

reduceF(𝑡1 ⋈ 𝑡2, 𝑏𝑤) = reduceT(𝑡1, 𝑏𝑤) ⋈ reduceT(𝑡2, 𝑏𝑤)
for⋈ ∈ {=,≤ᵆ, <ᵆ, ≤𝑠, <𝑠},

reduceF(¬𝜑, 𝑏𝑤) = ¬reduceF(𝜑, 𝑏𝑤),
reduceF(𝜑1 ⋄ 𝜑2, 𝑏𝑤) = reduceF(𝜑1, 𝑏𝑤) ⋄ reduceF(𝜑2, 𝑏𝑤)

for ⋄ ∈ {∧, ∨},
reduceF(𝑄𝑥[𝑛] (𝜑), 𝑏𝑤) = 𝑄𝑥[min(𝑛,𝑏𝑤)] (reduceF(𝜑, 𝑏𝑤))

for 𝑄 ∈ {∀, ∃}.

Note that the function reduceT is undefined on terms that contain extraction
or concatenation. We have decided to exclude formulas that contain these op-
erations for the following reasons. For extraction, there are multiple arbitrary
choices of bits to extract; e.g., the extraction of the middle (i.e. the third) bit
from a 5bit variable reduced to 3 bits could extract the middle (i.e. the second)
bit or the third bit. Reduction of a formula containing concatenation may re-
quire reducing a single variable tomultiple different bit-widths – although this
is possible to achieve by adding extractions, this would change the semantics
of the formula beyond merely changing the bit-widths of variables in which
we are interested. For example, after reducing the formula

concat(𝑥[4], 𝑦[4]) = concat(𝑦[4], 𝑥[4])

to 6 bits, the variable 𝑥 would get reduced to 2 bits on the left-hand side, but
would stay 4bit on the right-hand side.

10.1.1 Resulting Reduced Formulas

We have written a simple tool that for an input formula 𝜑 in the smt-lib for-
mat [BFT17] generates formulas reduceF(𝜑, 𝑖) for all 𝑖 between 1 and the max-
imal bit-width (included) of any subterm of the formula 𝜑. The tool uses api
of the smt solver Z3 [MB08] and it is available at

https://gitlab.fi.muni.cz/xjonas/FormulaReducer.

Using this tool, we have generated reduced versions of all quantified bit-vector
formulas from the smt-lib repository except for

• all 400 4bit and 32bit formulas from the 2018-Preiner-cav18 benchmark
family. This does not lead to loss of information because all these for-
mulas are generated from the remaining 64bit formulas by the function
reduceF with the parameter 4 and 32, respectively;

https://gitlab.fi.muni.cz/xjonas/FormulaReducer


10.2 experimental evaluation 107

Benchmark family Total bw>100
concat
extract t/o Remaining

2017-Preiner-keymaera 4035 0 0 65 3970
2017-Preiner-psyco 194 0 0 5 189
2017-Preiner-scholl-smt08 374 0 0 153 221
2017-Preiner-tptp 73 0 0 0 73
2017-Preiner-ua 153 0 0 2 151
2018-Preiner-cav18 200 0 40 30 130
heizmann-ua 131 0 4 7 120
wintersteiger 191 21 67 52 51

Total 5351 21 111 314 4905

Table 10.1: The table shows the formulas excluded from our evaluation according to
their families. The column Total shows a total number of formulas in each
family (except for 2018-Preiner-cav18, where all 4bit and 32bit benchmarks
have been excluded). Next three columns show numbers of formulas ex-
cluded because of too large bit-width, use of operations concat or extract,
and timeout of the solver for any of the reduced versions of the formula, re-
spectively. The last column shows the number of remaining formulas on
which our evaluation of effects of bit-width reduction on satisfiability was
performed.

• 21 formulas that contain subterms of bit-width larger than 100 to keep
the solving time reasonable;

• 111 formulas that use operations concat or extract.

Table 10.1 shows the numbers of such excluded benchmarks according to their
families.

From the set of 5219 non-excluded original formulas, we have generated in
total 173 105 corresponding formulas with the reduced bit-widths. An archive
containing all these generated formulas can be found at

http://fi.muni.cz/~xstrejc/lpar2018/ReducedBW.tar.gz.

10.2 experimental evaluation

We have evaluated satisfiability of all the resulting 173 105 formulas. For the
evaluation, we have used the smt solver CVC4 [Nie+18b], as it is the winner
of the smt Competition 2018 in the category of quantified bit-vector formulas.
The solver was runwith 1minute cpu time limit and 8GiB ram limit. For this,
we again employed BenchExec [BLW15]. All experiments were performed
on a Debian machine with two six-core Intel Xeon E5-2620 2.00GHz proces-
sors and 128 gb of ram.

From the original 5219 formulas, 4905 were decided by CVC4 for all bit-
widths. On the other hand, CVC4 exceeded the time limit on at least one bit-

http://fi.muni.cz/~xstrejc/lpar2018/ReducedBW.tar.gz
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Benchmark family Benchmarks ≥ 1b ≥ 2b ≥ 4b ≥ 8b

2017-Preiner-keymaera 3970 64 19 12 4
2017-Preiner-psyco 189 49 5 0 0
2017-Preiner-scholl-smt08 221 1 0 0 0
2017-Preiner-tptp 73 20 10 3 0
2017-Preiner-ua 151 41 32 3 0
2018-Preiner-cav18 130 4 3 3 3
heizmann-ua 120 29 20 6 5
wintersteiger 51 8 6 5 2

Total 4905 216 95 32 14
% 4.4 1.9 0.65 0.29

Table 10.2: The table shows the numbers of benchmarks in the individual families
whose satisfiability status is different for the original formula and for any
reduced formula with bit-width at least 1, 2, 4, and 8 bits, respectively.

width on the remaining 314 formulas. The distribution of these non-decided
formulas among benchmark families can be found in Table 10.1. We excluded
these 314 formulas from the evaluation and performed the evaluation only on
4905 formulas with known status for all bit-widths. When grouped by their
maximal bit-width, the set of evaluated formulas contains 10 formulas of bit-
width 1; 10 of bit-width 8; 20 of bit-width 20; 4727 of bit-width 32; 1 of bit-width
33; 134 of bit-width 64; and 3 of bit-width 65.

10.2.1 Satisfiability of Formulas with Reduced Bit-Widths

Surprisingly, from the 4905 formulas, only 4.4% have a different satisfiability
status for the original formula and any of its reduced version. Moreover, only
1.9% have a different satisfiability status after reducing to 2 bits or more, 0.65%
have a different satisfiability status after reducing to 4 bits or more, and only
0.29% have a different satisfiability status after reducing to 8 bits or more. Ta-
ble 10.2 shows the numbers of such benchmarks precisely after grouping the
formulas to their respective families. For example, the table shows that all de-
cided formulas from the family 2017-Preiner-scholl-smt08, which contains the
largest number of undecided benchmarks, have the same satisfiability status
for all bit-widths from 2 to the original bit-width and all decided formulas
from the family 2017-Preiner-psyco have the same satisfiability status for all bit-
widths from 4 to the original bit-width. Note that the original bit-width of all
benchmarks from these families is 32 bits.

Figure 10.2 presents these results graphically for all bit-widths between 1
and the original bit-width. The figure shows the results only for formulas with
the original bit-width of 32 or 64 bits as the number of benchmarks of other
bit-widths is negligible. The figure for example shows that only under 0.25% of
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Figure 10.2: The plot shows the percentage of 32bit and 64bit benchmarks (𝑦-axis)
whose satisfiability status is different for the original formula and for any
reduced formula with a given (𝑥-axis) or a larger bit-width.
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Figure 10.3: For each of the 32 benchmarks that have a different satisfiability result
when reducing their bit-width to 4 bits or more, the plot shows satisfiabil-
ity statuses for all their reduced versions.

32bit formulas change their satisfiability status after reducing their bit-width
to 6 bits or more.

Figure 10.3 presents the satisfiability status of each reduction for all 32 for-
mulas that changed the status after reducing the bit-width to 4 bits or more.
Although the plot does not show names of the respective formulas due to the
available space, the names can be found on the accompanying web page1. Note

1 http://fi.muni.cz/~xstrejc/lpar2018/

http://fi.muni.cz/~xstrejc/lpar2018/
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that most of these formulas are unsatisfiable; this is caused by the simple fact
that most of the formulas in the whole benchmark set are unsatisfiable. The
plot contains four outstanding groups of formulas:

• Formulas 7–10 (intersection-example-onelane.proof-node{19355,
20770,46589,54847} from 2017-Preiner-keymaera). These formulas are
unsatisfiable for even bit-widths and satisfiable for odd bit-widths be-
cause they contain subformulas equivalent to

(𝑐[𝑛] = (𝑥[𝑛] ⋅ 𝑥[𝑛])/𝑠(2[𝑛] ⋅ 𝑦[𝑛])) ∧
(0[𝑛] ≤𝑠 𝑦[𝑛]) ∧
(𝑦[𝑛] >𝑠 𝑦[𝑛] + 𝑐[𝑛]) ∧
(𝑦[𝑛] ≤𝑠 𝑐[𝑛]) .

For 𝑛 ≥ 2, this subformula entails the formula

𝑐[𝑛] ≥𝑠 (2𝑛−2)
[𝑛]

and thus also a formula

((𝑥[𝑛] ⋅ 𝑥[𝑛])/𝑠(2[𝑛] ⋅ 𝑦[𝑛])) ≥𝑠 (2𝑛−2)[𝑛],

which is unsatisfiable for even bit-widths, but satisfiable for odd bit-
widths by setting 𝑥[𝑛] ↦ bv𝑛(2(𝑛−1)/2) and 𝑦[𝑛] ↦ bv𝑛(2(𝑛−1) − 1).

• Formulas 11–15 (jain_7_true_unreach-call_true-no-overflow_i_{
215,242,245,262,475} from heizmann-ua). Satisfiability of these for-
mulas differs for bit-widths less than 23 and at least 23, because these
formulas contain the numeral (presented here in binary)

1111 1111 1100 0000 0000 0000 0000 0000,

which gets reduced to 0 after reduction to less than 23 bits.

• Formulas 27–29 (check_eq_bvashr0_64bit and check_ne_{bvlshr0,
bvshl0}_64bit from 2018-Preiner-cav18). Satisfiability of these formu-
las is different for the original bit-width of 64 bits and for almost all
smaller bit-widths because the formulas contain a subformula similar to
(𝑥[64] <ᵆ 64[64]) → 𝜓, where 𝜓 contains a subterm of the form 𝑡 ≪ 𝑥[64].

• Formula 30 (mmedia_gsm610_gsm6102.c fromwintersteiger). Satisfiabil-
ity of this formula is different for reduction to 31 bits, as it contains a
subformula of the form

𝑥[32] ≤𝑠 0100 0000 0000 0000 0000 0000 0000 0000,

in which the second argument has a negative sign-bit precisely for the
reduction to 31 bits.

Detailed results together with the raw data files and scripts we used to produce
them can be found at:

http://fi.muni.cz/~xstrejc/lpar2018/.

http://fi.muni.cz/~xstrejc/lpar2018/
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10.3 discussion

The experimental evaluation in the previous section shows that the satisfia-
bility of the vast majority of quantified bit-vector formulas remains the same
even after reducing their maximal bit-widths to a very small number of bits.
In our opinion, this observation can be helpful in several ways:

• Because satisfiability of some formulas can be decided even without us-
ing the original bit-width, more fine-grained computational complexity
of deciding their satisfiability could be identified. Currently, the known
results of computational complexity are in term of the size of the input
formula, from which the bit-widths are inseparable. In contrast, param-
eterized computational complexity [DF99] could be examined to show
how the complexity depends on various parameters such as the bit-width,
the size of the largest constant, the number of used function symbols,
number of quantifier alternations, etc.

• As a practical use of the previous point, it could be possible for some
formulas to compute a bit-width for which the reduced formula is equi-
satisfiable to the input one. Such a bit-width could be used to decide the
satisfiability without using the original bit-width.

• Similarly to the case of the approximation framework of Zeljić et al. for
quantifier-free formulas, the performance of smt solvers for quantified
bit-vectors could be improved by first solving a reduced version of the
input formula and then checking the result against the original formula.
For example, the solver Boolector computes symbolically represented
Skolem functions, which certify satisfiability, and Herbrand functions,
which certify unsatisfiability [PNB17].These functions can be computed
from a reduced formula and their validity can be checked against the
original formula. More generally, in an smt solver based on quantifier
instantiation such as Boolector, CVC4 [Nie+18b], or Z3 [WHM13], the
set of quantifier instances that are sufficient to decide satisfiability of the
reduced formula can be checked against the original formula.
Preliminary investigation of this line of research is presented in the next
chapter.





11SPEEDING UP QUANTIFIED BIT-VECTOR SMT SOLVERS BY
BIT-WIDTH REDUCTIONS AND EXTENSIONS

In the previous chapter, we have experimentally confirmed that satisfiability
of quantified bit-vector formulas is usually stable under bit-width reduction.
Moreover, formulas with reduced bit-widths can often be solved faster. Build-
ing on these observations, this chapter presents a new technique for solving
satisfiability of quantified bit-vector formulas, which uses formulas with the
reduced bit-widths.

Intuitively, the technique consists of the following steps:

1. Reduce bit-widths of all variables and numerals in the input formula to
some small bit-width.

2. Decide satisfiability of the reduced formula using a standard decision
procedure. If the reduced formula is satisfiable, obtain its model, which
assigns terms to all existentially quantified variables. If it is unsatisfiable,
obtain its countermodel, i.e., an assignment of terms to all universally
quantified variables.

3. Extend the model (or the countermodel) to the original bit-widths.

4. Check whether the extended (counter)model is also a (counter)model
of the original formula. If the extended model is a model of the original
formula, then the formula is satisfiable. If the extended countermodel
is a countermodel of the original formula, then it is unsatisfiable. In the
remaining cases, repeat the process with increased bit-widths in the re-
duced formula.

The technique has some similarities with the approximation framework of
Zeljić et al. [ZWR17; Zel+18], which also reduces the precision of a given for-
mula, computes a model of the reduced formula, and checks if it is a model of
the original formula. However, the framework considers only quantifier-free
formulas and hence the obtained models are just elements of the considered
domains. In comparison, the models in our settings also provide interpreta-
tions of all Skolem function symbols, which correspond to the values of the
existential variables of the original formula. Furthermore, the approximation
framework of Zeljić et al. does not work with countermodels but processes
unsatisfiable cores of reduced formulas instead.

As in the technique of Zeljić et al., the reduced formulas may not entail the
original formula nor be entailed by it. This technique thus producesmixed ap-
proximations of the original formula, and not its underapproximations or over-
approximations. This difference sets the technique apart from the technique
using underapproximations and overapproximations, which was discussed in
Chapter 5. On the one hand, the mixed approximations are beneficial because

113



114 using bit-width reductions and extensions

bit-widths of all variables are reduced, and thus the technique guarantees small
upper bounds on the number of bits in the formula. On the other hand, nei-
ther satisfiability nor unsatisfiablity of a mixed approximation directly proves
the satisfiability or unsatisfiability of the input formula.This requires checking
of models or countermodels.

The structure of the chapter is as follows. Section 11.1 explains the neces-
sary notions of symbolic model and countermodel. The detailed description
of (counter)model extension is given in Section 11.2.The algorithm is precisely
formulated in Section 11.3. Section 11.4 presents our proof-of-the-concept im-
plementation and it discusses its practical aspects: e.g., how to get a counter-
model and what to do with an incomplete model. Experimental evaluation of
the technique can be found in Section 11.5. It shows that the presented tech-
nique can improve performance of the considered state-of-the-art solvers for
quantified bit-vector formulas, namely Boolector [Nie+18a], CVC4 [Bar+11],
and Q3B, on various families of both satisfiable and unsatisfiable quantified
bit-vector formulas from the smt-lib repository.

11.1 symbolic models and countermodels

This section defines notions of symbolic model and symbolic countermodel,
which are crucial for our approach.

For a satisfiable formula 𝜑 without uninterpreted functions, a model ℳ of
skolemize(𝜑) assigns

• to each free variable 𝑦[𝑚] of 𝜑 a bit-vectorℳ(𝑦[𝑚]) of bit-width𝑚 and

• to each Skolem function symbol 𝑓𝑥[𝑛] , which corresponds to an existen-
tially quantified variable 𝑥[𝑛] in the formula𝜑, a functionℳ(𝑓𝑥[𝑛])whose
arguments correspond to all universally quantified variables before 𝑥[𝑛].

However, the functionsℳ(𝑓𝑥[𝑛])may be arbitrary functions in the mathemati-
cal sense. To be able to work with the model and substitute its valuesℳ(𝑓𝑥[𝑛])
into a formula, we use the notion of a symbolic model, in which the function
ℳ(𝑓𝑥[𝑛]) is represented symbolically by a term. Namely,ℳ(𝑓𝑥[𝑛]) is a bit-vector
term of bit-width 𝑛, whose free variables may be only the universal variables
that are quantified before 𝑥[𝑛] in the original formula 𝜑. In the further text,
we identify the Skolem function symbols with the corresponding variables.
Namely, we treat the symbolic models as if they assign a term not to the cor-
responding Skolem function 𝑓𝑥[𝑛] , but directly to the existentially quantified
variable 𝑥[𝑛]. For example:

Example 11.1. The formula

𝜑 = ∀𝑥[32]∃𝑦[32] (𝑥[32] + 𝑦[32] = 0[32])

has a symbolic model {𝑦[32] ↦ −𝑦[32]}.

For an unsatisfiable formula 𝜑, the dual notion to the symbolic model is a
symbolic countermodel. The symbolic countermodel of a formula 𝜑 is a sym-
bolic model of the formula ¬𝜑′, where 𝜑′ is the result of adding all implicit
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existential quantifiers to 𝜑. In other words, a symbolic countermodel is map-
ping that assigns to each universally quantified variable 𝑥[𝑛] in 𝜑 a term of bit-
width 𝑛 whose free variables may be only the free variables of 𝜑 or existentially
quantified variables that are quantified before 𝑥[𝑛] in the original formula 𝜑.

Example 11.2. The formula

∀𝑦[32] (𝑥[32] + 𝑦[32] = 0[32])

has a symbolic countermodel {𝑦[32] ↦ −𝑥[32] + 1[32]}.

Because all elements of symbolic models and countermodels are terms, we
can substitute them into a given formula.We define this notionmore generally
to allow substitution of an arbitrary assignment that assigns terms to variables
of the formula. For each such assignment𝒜 and a formula𝜑, we denote as𝒜(𝜑)
the result of simultaneous substitution of the term𝒜(𝑥[𝑛]) for each variable𝑥[𝑛]
from the domain of𝒜 and removing all quantifiers for the substituted variables.
For example, given 𝒜 = {𝑦[32] ↦ −𝑥[32]}, the value of

𝒜(∀𝑥[32]∃𝑦[32] (𝑥[32] + 𝑦[32] = 0[32]))

is ∀𝑥[32] (𝑥[32] + −𝑥[32] = 0[32]).

11.2 extending bit-width of a symbolic model

If a reduced formula is satisfiable and its symbolic model ℳ is obtained, it
cannot be directly substituted into the original formula. It first needs to be
extended to the original bit-widths. Namely, some bit-widths need to be in-
creased to match those of the original formula 𝜑. Intuitively, for each result
ℳ(𝑥) = 𝑡, where the original bit-width of the variable 𝑥 is 𝑛, we

1. increase bit-widths of all variables in 𝑡 to match the bit-widths in the
original formula 𝜑,

2. for each operation whose arguments need to have the same bit-width,
such as + or ×, we increase bit-width of the argument with the smaller
bit-width to match the bit-width of the other argument,

3. change the bit-width of the resulting term to match the bit-width of the
original variable 𝑥[𝑛].

In the formalization, we need to know bit-widths of the variables of the
original formula. Therefore, for a formula 𝜑, we introduce the function bws𝜑
that to each variable name 𝑥 used in 𝜑 assigns its bit-width in 𝜑. For example,
bws𝑥[32]+𝑦[32]=0[32](𝑥) = 32. To ensure that the function bws𝜑 is well-defined,
we suppose that the input formula 𝜑 does not contain any variable with two
different bit-widths.
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We also use the function changeBW, which increases or decreases the bit-
width of the given term 𝑡 to the given bit-width. I.e.,

The operation
zero_extend can

also be used instead
of sign_extend.

changeBW(𝑡, 𝑛) =
⎧⎪
⎨⎪
⎩

𝑡, if bw(𝑡) = 𝑛,

sign_extend𝑛−bw(𝑡)(𝑡), if bw(𝑡) < 𝑛,

extract(𝑛−1),0(𝑡), if bw(𝑡) > 𝑛.

Wenow describe how to for each element 𝑡 of the reducedmodel compute a
term 𝑡, which uses only the variables of the original formula and is well-sorted,
i.e., how to implement steps 1. and 2. of the extension described above. The
computation of 𝑡 proceeds by recursion on the structure of the term.

As the base cases, we keep the bit-width of all numerals and extend the bit-Bit-widths of
numerals will be
increased later if
some operation

requires it.

width of all variables to their original bit-widths, which are used in 𝜑:

𝑐[𝑛] = 𝑐[𝑛],
𝑥[𝑛] = 𝑥[bws𝜑(𝑥)].

For the operations whose arguments are not required to have the same bit-
widths, we proceed by the straightforward homomorphic extension:

op(𝑡1) = op(𝑡1) for op ∈ {−,∼},
concat(𝑡1, 𝑡2) = concat(𝑡1, 𝑡2),
extract𝑗,𝑖(𝑡1) = extract𝑗,𝑖(𝑡1),

ext𝑛(𝑡1) = ext𝑛(𝑡1) for ext ∈ {zeroExtend, signExtend}.

For the operations whose arguments are required to have the same bit-widths,
we may need to extend the shorter of these arguments:

𝑡1 ⋄ 𝑡2 = changeBW (𝑡1,max (bw(𝑡1), bw(𝑡2))) ⋄
changeBW (𝑡2,max (bw(𝑡1), bw(𝑡2)))
for ⋄ ∈ {&, |, +, ×, /ᵆ, /𝑠, %ᵆ, %𝑠,≪,≫ᵆ,≫𝑠},

ite(𝜑, 𝑡1, 𝑡2) = ite(𝜑,

changeBW (𝑡1,max (bw(𝑡1), bw(𝑡2))) ,

changeBW (𝑡2,max (bw(𝑡1), bw(𝑡2))) ).

In the previous case, we also have to extend bit-widths in the formula 𝜑, which
is the first argument of the if-then-else function. We suppose that this formula
is quantifier-free, which is always the case for the existing smt solvers. We
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therefore also define the extension for formulas, i.e., terms of sort Bool. This
uses precisely the same approach as above:

⊤ = ⊤,
⊥ = ⊥,

𝑡1 ⋈ 𝑡2 = changeBW (𝑡1,max (bw(𝑡1), bw(𝑡2))) ⋈
changeBW (𝑡2,max (bw(𝑡1), bw(𝑡2)))
for⋈ ∈ {=,≤ᵆ, <ᵆ, ≤𝑠, <𝑠},

¬𝜑1 = ¬𝜑1,
𝜑1 ⋄ 𝜑2 = 𝜑1 ⋄ 𝜑2 for ⋄ ∈ {∧, ∨},

The defined extension function can be used to extend all terms in the given
symbolic model of the reduced formula. In particular, we define the model
extension extendM(ℳ) for each variable 𝑥 in the domain ofℳ by

extendM(ℳ)(𝑥) = changeBW(ℳ(𝑥), bws𝜑(𝑥)).

Example 11.3. Consider a formula 𝜑 that contains variables 𝑥[8], 𝑦[8], and 𝑧[4].
Suppose that we have the following modelℳ of reduceF(𝜑, 4):

ℳ = {𝑥[4] ↦ 𝑦[4] + 3[4],
𝑦[4] ↦ 𝑧[4],
𝑧[4] ↦ 𝑦[4]}.

Then the candidate extended model extendM(ℳ) is

extendM(ℳ) = {𝑥[8] ↦ 𝑦[8] + 3[8],
𝑦[8] ↦ sign_extend4(𝑧[4]),
𝑧[4] ↦ extract0,3(𝑦[8])}.

11.3 algorithm

In this section, we propose an algorithm that uses formulas with reduced bit-
widths to decide satisfiability of an input formula. In the first subsection, we
describe a simpler approach that can only decide that a formula is satisfiable.
The following subsection dualizes this approach to unsatisfiable formulas. We
then show how to combine these two approaches in a single algorithm, which
is able to decide both satisfiability and unsatisfiability of a formula.

11.3.1 Checking Satisfiability Using Reductions and Extensions

Having defined the functions reduceF (see Section 10.1), which reduces bit-
widths in a formula, and extendM, which extends bit-widths in a model of the
reduced formula, it is fairly straightforward to formulate an algorithm that can
decide satisfiability of a formula using reduced bit-widths.
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This algorithm first reduces the bit-widths in the input formula 𝜑, thus ob-
tains a reduced formula 𝜑red, and checks its satisfiability. If the formula is not
satisfiable, the algorithm computes a new reduced formula 𝜑red with an in-
creased bit-width and repeats the process. If, on the other hand, the reduced
formula 𝜑red is satisfiable, the algorithm obtains its symbolic modelℳ, which
assigns a term to each existentially quantified and free variable of the formula
𝜑red. The model is then extended to the original bit-widths of the variables in
the formula 𝜑 and the extended model is substituted into the original formula
𝜑, yielding a formula 𝜑subst. The formula 𝜑subst may not be quantifier-free, but
it contains only universally quantified variables and no free variables. The for-
mula 𝜑subst may therefore be checked for satisfiability by a solver for quantifier-
free bit-vectors: the solver can be called on the formula that results from remov-
ing all quantifiers from the formula ¬𝜑subst. Since the formula 𝜑subst is closed,This call may actually

use a different smt
solver than the one
used for checking

satisfiability of 𝜑red.

the satisfiability of ¬𝜑subst implies unsatisfiability of 𝜑subst and vice-versa. Fi-
nally, if the formula 𝜑subst is satisfiable, so is the original formula. If the formula
𝜑subst is not satisfiable, the process is repeated with an increased bit-width.

Example 11.4. Consider the formula 𝜑 ≡ ∀𝑥[32]∃𝑦[32] (𝑥[32] + 𝑦[32] = 0[32]).
Reduction to 2 bits yields the formula reduceF(𝜑, 2) ≡ ∀𝑥[2]∃𝑦[2] (𝑥[2] + 𝑦[2] =
0[2]). An smt solver can decide that this formula is satisfiable and its symbolic
model is {𝑦[2] ↦ −𝑥[2]}. An extended candidate model is then {𝑦[32] ↦ −𝑥[32]}.
After substituting this candidate model into the formula, one gets the formula
𝜑subst ≡ ∀𝑥[32] (𝑥[32]+(−𝑥[32]) = 0[32]). Negating the formula𝜑subst and removingNote that in this case,

satisfiability of 𝜑subst
can be decided purely
by simple rewriting

rules.

all the quantifiers yields the quantifier-free formula (𝑥[32] + (−𝑥[32]) ≠ 0[32]),
which can be decided unsatisfiable by an smt solver.Therefore, the formula 𝜑subst
is satisfiable and, in turn, the original formula 𝜑 was satisfiable.

The correctness of the approach is guaranteed by the following theorem.

Theorem11.1. Let𝜑 be a formula in the negation normal formandℳ amapping
that assigns terms only to free and existentially quantified variables of 𝜑. Then
satisfiability ofℳ(𝜑) implies satisfability of 𝜑.

Proof. In the formulaℳ(𝜑), some subformulas of form ∃𝑥 (𝜓) are replaced by
formulas 𝜓[𝑥 ← ℳ(𝑥)] and some free variables are replaced by given terms.
The claim follows from the following three observations

• The entailment 𝜓[𝑥 ← 𝑡] ⊧ ∃𝑥 (𝜓) holds for an arbitrary formula 𝜓 and
a term 𝑡 of the same sort as the variable 𝑥.

• If a formula after replacing some of its free variables by some terms is
satisfiable, the original formula must have been satisfiable.

• All the logical operations ∧, ∨, ∀, ∃ are monotnic. I.e., for all 𝜓1 ⊧ 𝜓′1 and
𝜓2 ⊧ 𝜓′2:

𝜓1 ∧ 𝜓2 ⊧ 𝜓′1 ∧ 𝜓′2,
𝜓1 ∨ 𝜓2 ⊧ 𝜓′1 ∨ 𝜓′2,
∀𝑥 (𝜓1) ⊧ ∀𝑥 (𝜓′1),
∃𝑥 (𝜓1) ⊧ ∃𝑥 (𝜓′1).
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Although the negation is not monotonic, this is not a problem since the
formula 𝜑 is in the negation normal form. Therefore, no negation in 𝜑
is applied to a formula that contains a subformula of form ∃𝑥 (𝜓).

11.3.2 Dual Solver

The described algorithm can improve performance only for satisfiable formu-
las since it can only decide a formula as unsatisfiable after computing its sat-
isfiability for the original bit-width. However, similarly to the dual solver em-
ployed in Boolector, a dual version of the described algorithm can be used
to improve performance on unsatisfiable formulas. In the dual algorithm, one
can decide unsatisfiability of a formula by computing a countermodel from
the reduced formula and verifying it against the original formula. In particu-
lar, if the solver decides that the reduced formula 𝜑red is unsatisfiable and 𝒞
is its countermodel, one can again extend the countermodel 𝒞, substitute the
extended countermodel into the original formula, obtaining a formula 𝜑subst,
which contains only existentially quantified variables. If the formula 𝜑subst is
unsatisfiable, the original formula 𝜑 must have been unsatisfiable. If the for-
mula 𝜑subst is satisfiable, the process is repeated with an increased bit-width.

Example 11.5. Consider the formula 𝜑 = ∀𝑦[32] (𝑥[32] + 𝑦[32] = 0[32]). Reduc-
tion to one bit yields the formula reduceF(𝜑, 1) = ∀𝑦[1] (𝑥[1] + 𝑦[1] = 0[1]).
This formula can be decided as unsatisfiable by an smt solver and its counter-
model is {𝑦[1] ↦ −𝑥[1] + 1[1]}. The extension of this countermodel to the origi-
nal bit-widths is then {𝑦[32] ↦ −𝑥[32] + 1[32]}. After substituting this candidate
countermodel to the original formula, one obtains the quantifier-free formula
𝜑subst = (𝑥[32] + (−𝑥[32] + 1[32]) = 0[32]), which is unsatisfiable. The original
formula 𝜑 is thus unsatisfiable.

Similarly to the claim in the previous section, correctness of the dual solver is
guaranteed by the following theorem.

Theorem 11.2. Let 𝜑 be a formula in the negation normal form andℳ a map-
ping that assigns terms to some universally quantified variables of 𝜑. Then un-
satisfiability ofℳ(𝜑) implies unsatisfiability of 𝜑.

Proof. The proof is dual to the proof of Theorem 11.1.

11.3.3 Combined Solver

We now show how to combine the two previously mentioned approaches into
one algorithm. In the rest of this section, we suppose that there exists an smt
solver that can return symbolic models for satisfiable quantified bit-vector for-
mulas and countermodels for unsatisfiable ones.On the one hand, this assump-
tion significantly improves the presentation and simplicity of the proposed al-
gorithm. On the other hand, there currently is no such solver. However, we
show in Section 11.4 how this assumption can be weakened to only a solver
that can return symbolic models for satisfiable formulas.
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checkUsingReductions(𝜑)
{

bw ← 1
while (bw <= maxBW(𝜑))
{
𝜑𝑟𝑒𝑑 ← reduceF(𝜑, bw)

(result , assignment) ← solve(𝜑𝑟𝑒𝑑)
𝒜 ← extendM(assignment)
𝜑𝑠𝑢𝑏𝑠𝑡 ← 𝒜(𝜑)

if (result == sat) {
// primal solver
𝜑𝑠𝑢𝑏𝑠𝑡 ← removeQuantifiers(¬𝜑𝑠𝑢𝑏𝑠𝑡)
verificationResult ← verify(𝜑𝑠𝑢𝑏𝑠𝑡)
if (verificationResult == UNSAT) return SAT

} else if (result == unsat) {
//dual solver
verificationResult ← verify(𝜑𝑠𝑢𝑏𝑠𝑡)
if (verificationResult == UNSAT) return UNSAT

}

bw ← min (2*bw , maxBW(𝜑))
}

}

Listing 11.1: Pseudocode of the combined solver.

We call the described solver as a model-generating solver. Let us denote as
solve its function, which returns solve(𝜑) = (sat,model) for each satisfiable
formula 𝜑 and solve(𝜑) = (unsat, countermodel) for each unsatisfiable one.
The proposed approach also uses smt queries to test the satisfiability of ¬𝜑subst.
Generally, this query can be checked by a different smt solver than the model-
generating one; we call the second solver model-validating solver and denote
its function, which for a given formula returns either sat or unsat, as verify.

Using these two solvers, the algorithm presented in Listing 11.1 combines
the techniques of the two preceding sections. This algorithm first checks sat-
isfiability of the reduced formula and according to the result tries to validate
either its symbolic model or symbolic countermodel.

11.4 implementation

Based on the described algorithm for the combined solver, we have imple-
mented a proof-of-the-concept experimental tool, which solves quantified bit-
vector formulas using bit-width reductions and extensions. However, our im-
plementation differs in several aspects from the described algorithm. This sec-
tion explains all these differences and provides more details about the imple-
mentation.
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11.4.1 Model-Generating Solver

As the model-generating smt solver, we have used Boolector 3.0.0 as it can
return symbolically expressed Skolem functions as models of satisfiable quan-
tified formulas, which is crucial for our approach. To the best of our knowl-
edge, no other smt solver for quantified bit-vectors offers this functionality.
However, the current version of Boolector does not satisfy all the other require-
ments that we imposed on the model-generating solver.

First, the symbolic modelℳ returned by Boolector may not contain terms
for all existentially quantified variables in the input formula 𝜑. Therefore, the
formula 𝜑subst = ℳ(𝜑)may still contain existentially quantified variables. This
prohibits the explained check of its satisfiability using a solver for quantifier-
free formulas. Our implementation can solve this problem in two different
ways:

• we check satisfiability of the formula 𝜑subst by a model-validating solver
that supports quantified bit-vector formulas; or

• we substitute the bit-vector term 0[𝑛] for each existentially quantified
variable 𝑥[𝑛] that remains in the formula 𝜑subst.This allows using a solver
for quantifier-free bit-vectors as the model-validating solver.

Second, Boolector returns symbolicmodels only for satisfiable formulas and
cannot return symbolic countermodels. We alleviate this problem by running
two parallel instances of Boolector: one on the original formula 𝜑 and one
on the formula ¬𝜑′, where 𝜑′ is the result of existentially quantifying all free
variables in 𝜑. We then use only the result of the solver that decides that the
formula is satisfiable; if 𝜑 is satisfiable, we get its symbolic model, if ¬𝜑′ is
satisfiable, we get its symbolic model, which is a symbolic countermodel of 𝜑.
Effectively, this is equivalent to running the proposed algorithm without the
dual solver on 𝜑 and ¬𝜑′ in parallel.This is similar to the dual solver employed
internally by Boolector. However, we treat Boolector as a black-box and use
only its public interface.

11.4.2 Portfolio Solver

Additionally, to ensure that the performance of the original model-validating
solver is not degraded by computing reductions, we propose to run in parallel
also the original model-validating solver besides the other two solvers that use
bit-width reductions. As is standard for portfolio solvers, the result of the first
of the three solvers that decides the satisfiablity of the formulas is returned.
The schematic overview of the portfolio solver is presented in Figure 11.1.

Thanks to the fact that the original solver is one of the three parallel solvers,
the wall time of the portfolio solver can be worsened only by the time needed
to initialize the parallel threads, which is constant. On the other hand, the cpu
time of the portfolio solver can be even three times worse than the cpu time
of the original solver.
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Figure 11.1: High-level overview of the portfolio solver. The three shaded areas are ex-
ecuted in parallel and the first result is returned.

We have implemented the described portfolio solver partly in C++ and
partly in Python. C++ was used to implement the solvers that use reduced
formulas and are executed in parallel with the model-validating solver. The
implementation is experimental and uses C++ api of the smt solver Z3 to
parse the input formula in the smt-lib format. The Z3 api is also used in the
implementation of formula reductions.The extension of the model and substi-
tution of the extended model to the original formula is achieved by a simple,
inefficient, and incomplete text manipulations with the smt-lib text format.
We have further used a simple Pythonwrapper to implement the tool that runs
three parallel threads and collects their results. The complete tool is available
from

https://gitlab.fi.muni.cz/xjonas/BWReducingSolver.

Note that the current implementation of the portfolio solver is experimental
and has many limitations. Namely, the current version supports only formulas
in which all variables have the same bit-width. On the other formulas, only the
model-validating solver is used.

11.5 experimental evaluation

Wehave tested the performance of the implemented portfolio solverwith three
model-validating solvers: Boolector 3.0.0 [Nie+18a], CVC4 1.6 [Bar+11], and

https://gitlab.fi.muni.cz/xjonas/BWReducingSolver
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Q3B 1.0. Recall that the model-generating solver is the same in all of the cases,
namely Boolector 3.0.0. For the evaluation, we have again used all 5751 quanti-
fied bit-vector formulas from the smt-lib benchmark repository [BFT16]. As
described in previous chapters, this repository consists of several benchmark
families. All the presented results in this evaluation are divided according to
these benchmark families.

All experiments were again performed on a Debian machine with two six-
core Intel Xeon E5-2620 2.00GHz processors and 128 gb of ram. Each bench-
mark run was limited to use 16 gb of ram and 5 minutes of wall time. All
measured times are wall times. For reliable benchmarking we employed the
tool BenchExec [BLW15].

11.5.1 Boolector

First, we have evaluated the effect of reductions on the performance of Boolec-
tor 3.0.0. as the model-validating solver. We have compared the following
three solvers:

• btor: the vanilla Boolector,

• btor-r: the portfolio solver using Boolector as the model-validating
solver, without substituting zeroes for values not present in the model,
as described in Subection 11.4.1,

• btor-rz: the portfolio solver using Boolector as the model-validating
solver, with substituting zeroes for values not present in the model.

Table 11.1 shows the numbers of solved formulas in the individual bench-
mark families for all three of these solvers. The portfolio solver using the bit-
width reductionswas able to solve 24more formulas thanBoolector itself. Note
that this amounts to 8.4 % of the benchmarks unsolved by Boolector. After en-
abling the substitution of zeroes for unknown values in the model, the portfo-
lio solver btor-rzwas able to decide 6 less benchmarks than btor-r; however,
it solved 3 benchmarks that could not be solved by btor-r.

In addition to solving more formulas, the proposed reductions also help to
solve several formulas faster. The scatter plot in Figure 11.2 shows the compar-
ison of wall times of btor and btor-r on the logarithmic scale. It can be seen
that the proposed reductions significantly improve performance of Boolector
on a non-trivial number of benchmarks. Furthermore, these improvements oc-
cur in multiple benchmarks families and in both satisfiable and unsatisfiable
benchmarks alike.

Further, we have also investigated the reduced bit-width that was sufficient
to improve the performance of Boolector. Among all executions of the port-
folio solver btor-r, in total 558 benchmarks were decided by one of two par-
allel solvers that perform bit-width reductions faster than by the thread using
only Boolector. From these 558 benchmarks, 122 were decided by using the bit-
width of 1 bit; 286 using 2 bits; 97 using 4 bits; 24 using 8 bits; 4 using 16 bits;
24 using 32 bits; and 1 using 64 bits.
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Family Total btor btor-r btor-rz

2017-Preiner-keymaera 4035 4017 4023 4024
2017-Preiner-psyco 194 191 191 191
2017-Preiner-scholl-smt08 374 296 303 301
2017-Preiner-tptp 73 69 72 69
2017-Preiner-ua 153 151 152 152
2018-Preiner-cav18 600 548 554 553
heizmann-ua 131 30 31 30
wintersteiger 191 161 161 161

Total 5751 5463 5487 5481

Table 11.1: Comparison of benchmarks solved by btor, btor-r, and btor-rz within
the given timeout.
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Figure 11.2: Scatter plot of wall times of the solver btor and the solver btor-r. Each
point represents one benchmark, its color shows the benchmark family,
and its shape shows its satisfiability. The gray lines represent hundredfold
and thousandfold difference.
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11.5.2 CVC4 and Q3B

We have also performed evaluations with CVC4 and Q3B as model-validating
solvers. This yields the following four solvers:

• cvc4, q3b: the vanilla CVC4 and Q3B, respectively,

• cvc4-r, q3b-r: the portfolio solvers using CVC4 and Q3B, respectively,
as themodel-validating solver, without substituting zeroes for values not We did not evaluate

the variant that
substitutes zeroes,
because its
performance was
inferior in the case of
Boolector.

present in the model.

The comparison in this case, in which a model-generating solver differs
from the model-validating solver, is more involved. For example, the direct
comparison of cvc4 and cvc4-r would be unfair and could be biased towards
cvc4-r. The reason for this is that a benchmark can be decided within cvc4-r
purely by Boolector itself as the model-generating solver. This happens when
the formula is reduced to its original bit-width. In this case, the model con-
taining terms for all of the variables of the original formula may be provided
by Boolector and the substituted formula may become trivial to solve.

To eliminate this bias, we have not compared cvc4 against cvc4-r, but the
virtual-best solver from btor and cvc4, denoted as btor|cvc4, against the
virtual-best solver from btor and cvc4-red, denoted as btor|cvc4-red. We
thus investigate only the effect of reductions and not the case when the model-
generating solver solves the input formula. Similarly, we compare the virtual-
best solver btor|q3b against the virtual-best solver btor|q3b-red.

Table 11.2 shows the number of benchmarks solved by the compared solvers.
In particular, reductions helped the virtual-best solver btor|cvc4-red to solve
9 more benchmarks than the solver btor|cvc4. This amounts to 7.4 % of the
benchmarks unsolved by btor|cvc4. On the other hand, the reductions do
not help the virtual-best solver btor|q3b-red to solve any new benchmarks.

Similarly to the case of Boolector, reductions also help btor|cvc4-red to
decide several benchmarks faster than the solver btor|cvc4 without reduc-
tions. This can be seen on the scatter plot in Figure 11.3. As the second scatter
plot in Figure 11.4 shows, reductions also help Q3B to solve some benchmarks
faster, although the effect is not as pronounced as with Boolector or CVC4.

11.5.3 All Model-Validating Solvers

Another interesting question is whether the reductions can improve the com-
bination of Boolector, CVC4, and Q3B. To answer this, we have compared the
virtual-best solver btor|cvc4|q3b and the virtual best solver btor-r|cvc4-
r|q3b-r. The comparison of the numbers of solved formulas in the individual
benchmark families can be found inTable 11.3. In total, reductions help to solve
4 more formulas, which could by solved neither by Boolector, CVC4, nor Q3B
by itself without reductions. This amounts to 5.5 % of the unsolved formulas.

As in the previous sections, by using reductions, one can solve several for-
mulas faster than by Boolector, CVC4, or Q3B without reductions. This can be
seen in the scatter plot presented in Figure 11.5.
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Figure 11.3: Scatter plot of wall times of the virtual-best solver btor|cvc4 and the
virtual-best solver btor|cvc4-r.
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2017-Preiner-keymaera 4035 4023 4028 4025 4025
2017-Preiner-psyco 194 193 193 192 192
2017-Preiner-scholl-smt08 374 306 309 324 324
2017-Preiner-tptp 73 73 73 73 73
2017-Preiner-ua 153 152 153 153 153
20170501-Heizmann-ua 131 130 130 128 128
2018-Preiner-cav18 600 577 577 590 590
wintersteiger 191 176 176 182 182

Total 5751 5630 5639 5667 5667

Table 11.2: Comparison of benchmarks solved by btor|cvc4, btor|cvc4-r, btor|q3b,
and btor|q3b-r within the given timeout.

Additional materials for all the experiments, including the experimental
data, used scripts, and additional plots and tables are available from

https://fi.muni.cz/~xjonas/PhdThesis/BWReductions.

11.6 future work

We again stress out that the implementation that is used for evaluation of the
approach is experimental. We plan to improve the implementation so that it
supports also formulas that contain variables with different bit-widths. This
requires reimplementation of the model extension, which is currently imple-
mented by a simple text modifications. We thus plan to implement the func-
tion extendT exactly as it is described in Section 11.2 and perform new evalu-
ation. This can only improve the results of the evaluation, which are already
positive.

We also see several potential improvements of the described algorithm. For
example, consider the formula

𝜑 ≡ (𝑥[32] × 𝑥[32] = 0[32]) ∧ (𝑥[32] ≠ 0[32]) .

Observe that the formula reduceF(𝜑, 2) has a model {𝑥[2] ↦ bv2(2)}, the for-
mula reduceF(𝜑, 4) has a model {𝑥[4] ↦ bv4(4)}, and the formula reduceF(𝜑, 6)
has a model {𝑥[6] ↦ bv6(8)}. The described approach does not solve this for-
mula faster because none of these models can be extended to the model of
the original formula by the function extendM. However, it is possible to ob-
serve that these models are related: a model of a formula reduceF(𝜑, 𝑛+2) can
be obtained from the model of the formula reduceF(𝜑, 𝑛) by multiplying the

https://fi.muni.cz/~xjonas/PhdThesis/BWReductions
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Total 5751 5678 5682

Table 11.3: Comparison of benchmarks solved by btor|cvc4|q3b and btor-r|cvc4-
r|q3b-r within the given timeout.
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Figure 11.5: Scatter plot of wall times of the virtual-best solver btor|cvc4|q3b and the
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value of the variable 𝑥 by 2, or in other words, shifting it by one bit to the left.
This example motivates an improved version of the function extendM, which
can also use the previously computed models of the formulas with the smaller
bit-widths.





12CONCLUSIONS

In this thesis, we have studied satisfiability of quantified formulas in the theory
of fixed-size bit-vectors.The thesis has presented both theoretical and practical
advances related to this problem.

We have identified the precise complexity class for the problem of solving
satisfiability of quantified bit-vector formulas in which the bit-widths are en-
coded in binary or in decimal notation. Namely, this problem is polynomi-
ally equivalent to the satisfiability problemof second-order quantified Boolean
formulas, which is known to be AEXP(poly)-complete. We have therefore an-
swered the open question raised by Kovásznai et al. [KFB16].

Moreover, we have introduced an approach to solving satisfiability of quan-
tified bit-vector formulas that is based on binary decision diagrams and ap-
proximations, in which some of the variables of the formula are represented
by fewer bits. We have also extended this approach by abstractions in which
for the results of selected bit-vector operations, only some of the bits are com-
puted. Furthermore, we have extended known simplifications of formulas that
leverage unconstrained variables in several aspects, one of which is extension
to quantified formulas.Wehave implemented an smt solver calledQ3B,which
incorporates all the mentioned techniques and we have experimentally shown
that this smt solver outperforms other state-of-the-art smt solvers for quan-
tified bit-vector formulas.

Finally, we have experimentally shown that satisfiability of the vast major-
ity of quantified bit-vector formulas stays the same when the bit-widths of
their variables are modified. We have also presented an approach that uses
this observation to improve the performance of smt solvers for quantified bit-
vectors. The proposed approach first decides the satisfiability of the formula
with reduced bit-widths and then verifies the result against the original for-
mula. The preliminary evaluation of this approach shows that it can improve
performance of the state-of-the-art smt solvers.
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