
Information Processing Letters 135 (2018) 57–61
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On the complexity of the quantified bit-vector arithmetic with

binary encoding

M. Jonáš ∗, J. Strejček

Faculty of Informatics, Masaryk University, Botanická 68a, 602 00, Brno, Czech Republic

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 September 2017
Received in revised form 21 February 2018
Accepted 23 February 2018
Communicated by Krishnendu Chatterjee

Keywords:
Computational complexity
Satisfiability modulo theories
Fixed-size bit-vectors

We study the precise computational complexity of deciding satisfiability of first-order
quantified formulas over the theory of fixed-size bit-vectors with binary-encoded bit-
widths and constants. This problem is known to be in EXPSPACE and to be NEXPTIME-hard.
We show that this problem is complete for the complexity class AEXP(poly) – the class of
problems decidable by an alternating Turing machine using exponential time, but only a
polynomial number of alternations between existential and universal states.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

The first-order theory of fixed-size bit-vectors is widely
used for describing properties of software and hardware.
Although most current applications use only the quantifier-
free fragment of this logic, there are several use cases that
benefit from using bit-vector formulas containing quan-
tifiers [1–5]. Consequently, computational complexity of
quantified bit-vector logic has been investigated in re-
cent years. It has been shown that deciding satisfiability
of quantified bit-vector formulas is PSPACE-complete and
it becomes NEXPTIME-complete when uninterpreted func-
tions are allowed in addition to quantifiers [6].

However, these results suppose that all scalars in the
formula are represented in the unary encoding, which is
not the case in practice, because in most of real-world ap-
plications, bit-widths and constants are encoded logarith-
mically. For example, the format smt-lib [7], which is an
input format for most of the state-of-the-art smt solvers,
represents all scalar values as decimal numbers. Such rep-

* Corresponding author.
E-mail addresses: martin .jonas @mail .muni .cz (M. Jonáš),

strejcek @fi .muni .cz (J. Strejček).
https://doi.org/10.1016/j.ipl.2018.02.018
0020-0190/© 2018 Elsevier B.V. All rights reserved.
resentation can be exponentially more succinct than the
representation using unary-encoded scalars. The satisfiabil-
ity problem for bit-vector formulas with binary-encoded
scalars has been recently investigated by Kovásznai et
al. [8]. They have shown that the satisfiability of quantified
bit-vector formulas with binary-encoded scalars and with
uninterpreted functions is 2-NEXPTIME-complete. The sit-
uation for the same problem without uninterpreted func-
tions is not so clear: deciding satisfiability of quantified
bit-vector formulas with binary encoded scalars and with-
out uninterpreted functions (we denote this problem as
BV2 satisfiability) is known to be in EXPSPACE and to be
NEXPTIME-hard, but its precise complexity has remained
unknown [8].

In this paper, we solve this open problem by identifying
the complexity class for which BV2 satisfiability is com-
plete. We use the notion of an alternating Turing machine
introduced by Chandra et al. [9] and show that the BV2

satisfiability problem is complete for the class AEXP(poly)

of problems solvable by an alternating Turing machine us-
ing exponential time, but only a polynomial number of
alternations.

https://doi.org/10.1016/j.ipl.2018.02.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:martin.jonas@mail.muni.cz
mailto:strejcek@fi.muni.cz
https://doi.org/10.1016/j.ipl.2018.02.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2018.02.018&domain=pdf

58 M. Jonáš, J. Strejček / Information Processing Letters 135 (2018) 57–61
Table 1
Recursive definition of the formula size. Operations include logical con-
nectives, function symbols, and predicate symbols. Each ti denotes a sub-
term or a subformula, each i j denotes a scalar argument of an operation,
and Q ∈ {∃, ∀} [8].

Expression Size

Constant |c[n]| L(c) + L(n)

Variable |x[n]| 1 + L(n)

Operation |o(t1, . . . , tk, i1, . . . , ip)| 1 + ∑
1≤i≤k |ti | + ∑

1≤ j≤p L(i j)

Quantifier |Q x[n]ϕ| |x[n]| + |ϕ|

2. Quantified bit-vector formulas

The theory of fixed-size bit-vectors (BV or bit-vector the-
ory for short) is a many-sorted first-order theory with in-
finitely many sorts corresponding to bit-vectors of various
lengths. Each bit-vector variable has an explicitly assigned
sort, e.g. x[3] is a bit-vector variable of bit-width 3. The BV
theory uses only three predicates, namely equality (=), un-
signed inequality of binary-encoded non-negative integers
(≤u), and signed inequality of integers in 2’s complement
representation (≤s). The signature also contains constants
c[n] for each n ≥ 1 and 0 ≤ c ≤ 2n − 1, and various inter-
preted functions, namely addition (+), multiplication (∗),
unsigned division (÷), bitwise negation (∼), bitwise and
(&), bitwise or (|), bitwise exclusive or (⊕), left-shift (
),
right-shift (�), concatenation (·), and extraction of a sub-
word starting at the position i and ending at the position
j (extract(_, i, j)). Although various sources define the full
bit-vector theory with different sets of functions, all such
definitions can be polynomially reduced to each other [8].
All numbers occurring in the formula, i.e. values of con-
stants, bit-widths and bounds i, j of extraction, are called
scalars.

There are more ways to encode scalars occurring in the
bit-vector formula: in the unary encoding or in a logarithmic
encoding. In this paper, we focus only on formulas using
the binary encoding. This covers all logarithmic encodings,
since all of them are polynomially reducible to each other.
In the binary encoding, L(n) bits are needed to express
the number n, where L(0) = 1 and L(n) = �log2 n + 1 for
all n > 0. The entire formula is encoded in the following
way: each constant c[n] has both its value c and bit-width
n encoded in binary, each variable x[n] has its bit-width
n encoded in binary, and all scalar arguments of functions
are encoded in binary. The size of the formula ϕ is denoted
|ϕ|. The recursive definition of |ϕ| is given in Table 1. For
quantified formulas with binary-encoded scalars, we define
the corresponding satisfiability problem:

Definition 1 ([8]). The BV2 satisfiability problem is to decide
satisfiability of a given closed quantified bit-vector formula
with all scalars encoded in binary.

Similarly to Kovásznai et al. [8], we use an indexing op-
eration, which is a special case of the extraction operation
that produces only a single bit. In particular, for a term
t[n] and a number 0 ≤ i < n, the indexing operation t[n][i]
is defined as extract(t[n], i, i). We assume that bits of bit-
vectors are indexed from the least significant. For example,
given a bit-vector variable x[6] = x5x4x3x2x1x0, the value of
x[6][1] refers to x1. In the following, we use a more general
version of the indexing operation, in which the index can
be an arbitrary bit-vector term, not only a fixed scalar. This
operation can be defined using the indexing operation and
the bit-shift operation with only a linear increase in the
size of the term:

t[n][s[n]] df≡ (t[n] � s[n])[0].
3. Alternation complexity

We assume a basic familiarity with an alternating Turing
machine (atm) introduced by Chandra, Kozen, and Stock-
meyer [9], and basic concepts from the complexity theory,
which can be found for example in Kozen [10]. We recall
that each state of an atm is either existential or universal.
Existential states behave like states of a non-deterministic
Turing machine: a run passing through an existential state
continues with one of the possible successors. In contrast
to this, a run entering a universal state forks and contin-
ues into all possible successors. Hence, runs of an atm are
trees. Such a run is accepting if each branch of the run
ends in an accepting state.

This section recalls some complexity classes related to
alternating Turing machines. Computations in such com-
plexity classes are bounded not only by time and memory,
but also by the number of alternations between existen-
tial and universal states during the computation. Although
bounding both time and memory is useful in some ap-
plications, in this paper we need only complexity classes
related to atms that are bounded in time and the number
of alternations. Therefore, the following definition intro-
duces a family of complexity classes parameterized by the
number of steps and alternations used by corresponding
atms.

Definition 2. Let t, g : N → N be functions such that
g(n) ≥ 1. We define the complexity class ATIME(t, g) as
the class of all problems A for which there is an alter-
nating Turing machine that decides A and, for each input
of length n, it needs at most t(n) steps and g(n) − 1
alternations along every branch of every run. If T and
G are classes of functions, let ATIME(T , G) =⋃

t∈T ,g∈G ATIME(t, g).

Chandra et al. have observed several relationships be-
tween classical complexity classes related to time and
memory and the complexity classes defined by atms [9].
We recall relationships between alternating complexity
classes and the classes NEXPTIME and EXPSPACE, which
are important for this paper. It can easily be seen that
the class NEXPTIME corresponds to all problems solv-
able by an alternating Turing machine that starts in
an existential state and can use exponential time and
no alternations: this yields an inclusion NEXPTIME ⊆
ATIME(2O(n), 1). On the other hand, results of Chandra et
al. imply that EXPSPACE is precisely the complexity class
ATIME(2nO(1)

, 2nO(1)
) of problems solvable in exponential

time and with exponential number of alternations. An in-
teresting class that lies in between those two complexity

M. Jonáš, J. Strejček / Information Processing Letters 135 (2018) 57–61 59
classes can be obtained by bounding the number of steps
exponentially and the number of alternations polynomi-
ally. This class is called AEXP(poly).

Definition 3. AEXP(poly) df= ATIME(2nO(1)
, nO(1)).

The following inclusions immediately follow from the
mentioned results.

NEXPTIME ⊆ AEXP(poly) ⊆ EXPSPACE

However, it is unknown whether any of the inclusions is
strict.

4. Complexity of BV2 satisfiability

In this section, we show that the BV2 satisfiability
problem is AEXP(poly)-complete. First, we prove that the
problem is in the class AEXP(poly).

Theorem 1. The BV2 satisfiability problem is in AEXP(poly).

Proof. We describe the alternating Turing machine solv-
ing the problem. For a given BV2 formula ϕ , the ma-
chine first converts the formula to the prenex normal form,
which can be done in polynomial time without any alter-
nations [11]. The machine then assigns values to all ex-
istentially quantified variables using existential states and
to all universally quantified variables using universal states.
Although this requires exponential time, as there are expo-
nentially many bits whose value has to be assigned, only a
polynomial number of alternations is required, because the
formula ϕ can contain only polynomially many quantifiers.

Finally, the machine uses the assignment to evaluate
the quantifier-free part of the formula. If the result of the
evaluation is true, the machine accepts; it rejects other-
wise. The evaluation takes exponential time and no quan-
tifier alternations: the machine replaces all variables by
exponentially many previously assigned bits and computes
results of all operations from the bottom of the syntac-
tic tree of the formula up. The computation of each of the
operations takes time polynomial in the number of bits,
which is exponential. �

In the rest of this section, we show that the BV2 satis-
fiability problem is also AEXP(poly)-hard. In particular, we
present a reduction of a known AEXP(poly)-hard second-
order Boolean formulas satisfiability problem [12,13] to the
BV2 satisfiability.

Intuitively, the second-order Boolean logic (SO2) can be
obtained from a quantified Boolean logic by adding func-
tion symbols and quantification over such symbols. Alter-
natively, the SO2 logic corresponds to the second-order
predicate logic restricted to the domain {0, 1}. Lohrey and
Lück have shown that by bounding the number of quan-
tifier alternations in second-order Boolean formulas, prob-
lems complete for all levels of the exponential hierarchy
can be obtained. Moreover, if the number of quantifier
alternations is unbounded, the problem of deciding sat-
isfiability of quantified second-order Boolean formulas is
AEXP(poly)-complete [12,13].
We now introduce the SO2 logic more formally. The
definitions of the syntax and semantics of SO2 used in this
paper are due to Hannula et al. [14].

Definition 4 (SO2 syntax [14]). Let F be a countable set
of function symbols, where each symbol f ∈ F is given
an arity ar(f) ∈ N0. The set SO2(F) of quantified Boolean
second-order formulas is defined inductively as

ϕ ::= ϕ ∧ ϕ | ¬ϕ | ∃ f ϕ | ∀ f ϕ | f (ϕ, . . . ,ϕ︸ ︷︷ ︸
ar(f) times

),

where f ∈F .

Definition 5 (SO2 semantics [14]). An F -interpretation is a
function I that assigns to each symbol f ∈ F a Boolean
function of the corresponding arity, i.e. I(f) : {0, 1}ar(f) →
{0, 1} for each f ∈ F . The valuation of a formula ϕ ∈
SO2(F) in I , written �ϕ�I , is defined recursively as

�ϕ ∧ ψ �I = �ϕ�I ∗ �ψ �I,

�¬ϕ�I = 1 − �ϕ�I ,

� f (ϕ1, . . . ,ϕn)�I = I(f)(�ϕ1 �I , . . . , �ϕn �I),

�∃ f ϕ�I = max
{

�ϕ�I[f �→F] | F : {0,1}ar(f) → {0,1}
}

,

�∀ f ϕ�I = min
{

�ϕ�I[f �→F] | F : {0,1}ar(f) → {0,1}
}

,

where I[f �→ F] is the function defined as I[f �→ F](f) =
F and I[f �→ F](g) = I(g) for all g �= f .

An SO2 formula ϕ is satisfiable if �ϕ�I = 1 for some I .

We call function symbols of arity 0 propositions and all
other function symbols proper functions. An SO2 formula ϕ
is in the prenex normal form if it has the form Q ψ , where
Q is a sequence of quantifiers called a quantifier prefix, ψ
is a quantifier-free formula called a matrix, and all proper
functions are quantified before propositions. In the follow-
ing, we fix an arbitrary countable set of function symbols
F and instead of SO2(F), we write only SO2.

Definition 6. The SO2 satisfiability problem is to decide
whether a given closed SO2 formula in the prenex normal
form is satisfiable.

Theorem 2 ([12,13]). The SO2 satisfiability problem is
AEXP(poly)-complete.

We now show a polynomial time reduction of SO2 sat-
isfiability to BV2 satisfiability and thus finish the main
claim of this paper, which states that the BV2 satisfiabil-
ity problem is AEXP(poly)-complete.

Theorem 3. The BV2 satisfiability problem is AEXP(poly)-hard.

Proof. We present a polynomial time reduction of SO2
satisfiability to BV2 satisfiability. Let ϕ be an SO2 formula
with a quantifier prefix Q and a matrix ψ , i.e. ϕ = Q ψ

60 M. Jonáš, J. Strejček / Information Processing Letters 135 (2018) 57–61
Table 2
Completeness results for various bit-vector logics and encodings. This is
the table presented by Fröhlich et al. [15] extended by the result proved
in this paper.

Encoding Quantifiers

No Yes

Uninterpreted functions Uninterpreted functions

No Yes No Yes

Unary NP NP PSPACE NEXPTIME
Binary NEXPTIME NEXPTIME AEXP(poly) 2-NEXPTIME

where ψ is a quantifier-free formula. We construct a bit-
vector formula ϕB V , such that ϕ is satisfiable iff the for-
mula ϕB V is satisfiable.

In the formula ϕB V , each function symbol f of the
formula ϕ is represented by a bit-vector variable x f of
bit-width 2ar(f) . Intuitively, the bits of the variable x f
will encode values f (bn−1, . . . , b0) for all possible inputs
b0, . . . , bn−1 ∈ {0, 1}. In particular, the value f (bn−1, . . . , b0)

is represented as the bit on the index
∑n−1

i=0 (2ibi) in the
bit-vector x f . Equivalently, this index can be expressed
as the numerical value of the bit-vector bn−1bn−2 . . .b0.
For example, for a ternary function symbol f , bits of the
bit-vector value x f = x7x6x5x4x3x2x1x0 will represent val-
ues f (1, 1, 1), f (1, 1, 0), f (1, 0, 1), f (1, 0, 0), f (0, 1, 1),
f (0, 1, 0), f (0, 0, 1), and f (0, 0, 0), respectively.

The reduction proceeds in two steps. First, we induc-
tively construct a bit-vector term ψ B V of bit-width 1,
which corresponds to the formula ψ :

• If ψ ≡ ρ1 ∧ ρ2, we set ψ B V ≡ ρB V
1 & ρB V

2 .
• If ψ ≡ ¬ρ , we set ψ B V ≡ ∼ρB V .
• If ψ ≡ f () (i.e. f is a proposition), we set ψ B V ≡ x[1]

f .
• If ψ ≡ f (ρn−1, . . . , ρ0) where n = ar(f), we set

ψ B V ≡ x[2n]
f

[
0[2n−n] · ρB V

n−1 · ρB V
n−2 · . . . · ρB V

0

]
.

Note that because both arguments of the indexing op-
eration have to be of the same sort, 2n − n additional
bits have to be added to the index term to get a term
of the same bit-width as the term x[2n]

f .

In the second step, we replace each quantifier Q i f in
the quantifier prefix Q by a bit-vector quantifier Q i x

[2n]
f ,

where n = ar(f), and thus obtain a sequence of bit-

vector quantifiers Q
B V

. The final formula ϕB V is then
Q

B V
(ψ B V = 1[1]).

Due to the binary representation of the bit-widths,
the formula ϕB V is polynomial in the size of the for-
mula ϕ . �
Example 1. Consider an SO2 formula

∃ f ∀p∀q .¬ f (p, p,q) ∧ f (p,q ∧ ¬q,q),

where f is a ternary function symbol and p, q are propo-
sitions. Then the result of the described reduction is the
formula
∃x[8]
f ∀x[1]

p ∀x[1]
q (∼x[8]

f [0[5] · xp · xp · xq] &

x[8]
f [0[5] · xp · (xq & ∼xq) · xq] = 1[1]).

Corollary 1. The BV2 satisfiability problem is AEXP(poly)-com-
plete.

5. Conclusions

We have identified the precise complexity class of
deciding satisfiability of a quantified bit-vector formula
with binary-encoded bit-widths. This paper shows that the
problem is complete for the complexity class AEXP(poly),
which is the class of all problems solvable by an alternat-
ing Turing machine that can use exponential time and a
polynomial number of alternations. This result settles the
open question raised by Kovásznai et al. [8]. Known com-
pleteness results for various bit-vector logics including the
result proven in this paper are summarized in Table 2.

Acknowledgements

Authors of this work are supported by the Czech Sci-
ence Foundation, project No. GBP202/12/G061.

References

[1] Sumit Gulwani, Saurabh Srivastava, Ramarathnam Venkatesan,
Constraint-based invariant inference over predicate abstraction, in:
Verification, Model Checking, and Abstract Interpretation, Proceed-
ings of the 10th International Conference, VMCAI 2009, Savannah,
GA, USA, January 18–20, 2009, 2009, pp. 120–135.

[2] Saurabh Srivastava, Sumit Gulwani, Jeffrey S. Foster, From pro-
gram verification to program synthesis, in: Proceedings of the 37th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2010, Madrid, Spain, January 17–23, 2010, 2010,
pp. 313–326.

[3] Byron Cook, Daniel Kroening, Philipp Rümmer, Christoph M. Win-
tersteiger, Ranking function synthesis for bit-vector relations, Form.
Methods Syst. Des. 43 (1) (2013) 93–120.

[4] Daniel Kroening, Matt Lewis, Georg Weissenbacher, Under-
approximating loops in C programs for fast counterexample
detection, in: Computer Aided Verification – 25th International
Conference, CAV 2013, in: Lect. Notes Comput. Sci., vol. 8044,
Springer, 2013, pp. 381–396.

[5] Jan Mrázek, Petr Bauch, Henrich Lauko, Jiří Barnat SymDIVINE, Tool
for control-explicit data-symbolic state space exploration, in: Model
Checking Software – Proceedings of the 23rd International Sym-
posium, SPIN 2016, Co-located with ETAPS 2016, Eindhoven, The
Netherlands, April 7–8, 2016, 2016, pp. 208–213.

[6] Christoph M. Wintersteiger, Youssef Hamadi, Leonardo de Moura, Ef-
ficiently solving quantified bit-vector formulas, Form. Methods Syst.
Des. 42 (1) (2013) 3–23.

[7] Clark Barrett, Pascal Fontaine, Cesare Tinelli, The SMT-LIB Standard:
Version 2.5, Technical report, Department of Computer Science, The
University of Iowa, 2015, available at http://www.SMT-LIB .org.

[8] Gergely Kovásznai, Andreas Fröhlich, Armin Biere, Complexity of
fixed-size bit-vector logics, Theory Comput. Syst. 59 (2) (2016)
323–376.

[9] Ashok K. Chandra, Dexter Kozen, Larry J. Stockmeyer, Alternation,
J. ACM 28 (1) (1981) 114–133.

[10] Dexter Kozen, Theory of Computation, Texts Comput. Sci., Springer,
2006.

[11] John Harrison, Handbook of Practical Logic and Automated Reason-
ing, Cambridge University Press, 2009.

[12] Markus Lohrey, Model-checking hierarchical structures, J. Comput.
Syst. Sci. 78 (2) (2012) 461–490.

http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4753563039s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4753563039s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4753563039s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4753563039s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4753563039s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib5347463130s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib5347463130s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib5347463130s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib5347463130s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib5347463130s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib434B52573133s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib434B52573133s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib434B52573133s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4B4C573133s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4B4C573133s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4B4C573133s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4B4C573133s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4B4C573133s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4D424C423136s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4D424C423136s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4D424C423136s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4D424C423136s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4D424C423136s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib57484D3133s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib57484D3133s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib57484D3133s1
http://www.SMT-LIB.org
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4B46423136s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4B46423136s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4B46423136s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib434B533831s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib434B533831s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4B6F7A3036s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4B6F7A3036s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4861723039s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4861723039s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4C6F683132s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4C6F683132s1

M. Jonáš, J. Strejček / Information Processing Letters 135 (2018) 57–61 61
[13] Martin Lück, Complete problems of propositional logic for the ex-
ponential hierarchy, arXiv:1602 .03050 [cs .CC], 2016. (Accessed July
2017).

[14] Miika Hannula, Juha Kontinen, Martin Lück, Jonni Virtema, On quan-
tified propositional logics and the exponential time hierarchy, in:
Proceedings of the Seventh International Symposium on Games, Au-
tomata, Logics and Formal Verification, GandALF 2016, Catania, Italy,
14–16 September 2016, 2016, pp. 198–212.

[15] Andreas Fröhlich, Gergely Kovásznai, Armin Biere, More on the com-
plexity of quantifier-free fixed-size bit-vector logics with binary en-
coding, in: Computer Science – Theory and Applications – Pro-
ceedings of the 8th International Computer Science Symposium in
Russia, CSR 2013, Ekaterinburg, Russia, June 25–29, 2013, 2013,
pp. 378–390.

http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4C75633136s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4C75633136s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib4C75633136s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib484B4C563136s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib484B4C563136s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib484B4C563136s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib484B4C563136s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib484B4C563136s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib464B423133s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib464B423133s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib464B423133s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib464B423133s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib464B423133s1
http://refhub.elsevier.com/S0020-0190(18)30047-4/bib464B423133s1

	On the complexity of the quantiﬁed bit-vector arithmetic with binary encoding
	1 Introduction
	2 Quantiﬁed bit-vector formulas
	3 Alternation complexity
	4 Complexity of BV2 satisﬁability
	5 Conclusions
	Acknowledgements
	References

