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quantified formulas over the theory of fixed-size bit-vectors with binary-encoded bit-
widths and constants. This problem is known to be in EXPSPACE and to be NEXPTIME-hard. 
We show that this problem is complete for the complexity class AEXP(poly) – the class of 
problems decidable by an alternating Turing machine using exponential time, but only a 
polynomial number of alternations between existential and universal states.
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1. Introduction

The first-order theory of fixed-size bit-vectors is widely 
used for describing properties of software and hardware. 
Although most current applications use only the quantifier-
free fragment of this logic, there are several use cases that 
benefit from using bit-vector formulas containing quan-
tifiers [1–5]. Consequently, computational complexity of 
quantified bit-vector logic has been investigated in re-
cent years. It has been shown that deciding satisfiability 
of quantified bit-vector formulas is PSPACE-complete and 
it becomes NEXPTIME-complete when uninterpreted func-
tions are allowed in addition to quantifiers [6].

However, these results suppose that all scalars in the 
formula are represented in the unary encoding, which is 
not the case in practice, because in most of real-world ap-
plications, bit-widths and constants are encoded logarith-
mically. For example, the format smt-lib [7], which is an 
input format for most of the state-of-the-art smt solvers, 
represents all scalar values as decimal numbers. Such rep-
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resentation can be exponentially more succinct than the 
representation using unary-encoded scalars. The satisfiabil-
ity problem for bit-vector formulas with binary-encoded 
scalars has been recently investigated by Kovásznai et 
al. [8]. They have shown that the satisfiability of quantified 
bit-vector formulas with binary-encoded scalars and with 
uninterpreted functions is 2-NEXPTIME-complete. The sit-
uation for the same problem without uninterpreted func-
tions is not so clear: deciding satisfiability of quantified 
bit-vector formulas with binary encoded scalars and with-
out uninterpreted functions (we denote this problem as 
BV2 satisfiability) is known to be in EXPSPACE and to be 
NEXPTIME-hard, but its precise complexity has remained 
unknown [8].

In this paper, we solve this open problem by identifying 
the complexity class for which BV2 satisfiability is com-
plete. We use the notion of an alternating Turing machine 
introduced by Chandra et al. [9] and show that the BV2

satisfiability problem is complete for the class AEXP(poly)

of problems solvable by an alternating Turing machine us-
ing exponential time, but only a polynomial number of 
alternations.
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Table 1
Recursive definition of the formula size. Operations include logical con-
nectives, function symbols, and predicate symbols. Each ti denotes a sub-
term or a subformula, each i j denotes a scalar argument of an operation, 
and Q ∈ {∃, ∀} [8].

Expression Size

Constant |c[n]| L(c) + L(n)

Variable |x[n]| 1 + L(n)

Operation |o(t1, . . . , tk, i1, . . . , ip)| 1 + ∑
1≤i≤k |ti | + ∑

1≤ j≤p L(i j)

Quantifier |Q x[n]ϕ| |x[n]| + |ϕ|

2. Quantified bit-vector formulas

The theory of fixed-size bit-vectors (BV or bit-vector the-
ory for short) is a many-sorted first-order theory with in-
finitely many sorts corresponding to bit-vectors of various 
lengths. Each bit-vector variable has an explicitly assigned 
sort, e.g. x[3] is a bit-vector variable of bit-width 3. The BV
theory uses only three predicates, namely equality (=), un-
signed inequality of binary-encoded non-negative integers 
(≤u), and signed inequality of integers in 2’s complement 
representation (≤s). The signature also contains constants 
c[n] for each n ≥ 1 and 0 ≤ c ≤ 2n − 1, and various inter-
preted functions, namely addition (+), multiplication (∗), 
unsigned division (÷), bitwise negation (∼), bitwise and 
(&), bitwise or (|), bitwise exclusive or (⊕), left-shift (
), 
right-shift (�), concatenation (·), and extraction of a sub-
word starting at the position i and ending at the position 
j (extract(_, i, j)). Although various sources define the full 
bit-vector theory with different sets of functions, all such 
definitions can be polynomially reduced to each other [8]. 
All numbers occurring in the formula, i.e. values of con-
stants, bit-widths and bounds i, j of extraction, are called 
scalars.

There are more ways to encode scalars occurring in the 
bit-vector formula: in the unary encoding or in a logarithmic 
encoding. In this paper, we focus only on formulas using 
the binary encoding. This covers all logarithmic encodings, 
since all of them are polynomially reducible to each other. 
In the binary encoding, L(n) bits are needed to express 
the number n, where L(0) = 1 and L(n) = �log2 n + 1 for 
all n > 0. The entire formula is encoded in the following 
way: each constant c[n] has both its value c and bit-width 
n encoded in binary, each variable x[n] has its bit-width 
n encoded in binary, and all scalar arguments of functions 
are encoded in binary. The size of the formula ϕ is denoted 
|ϕ|. The recursive definition of |ϕ| is given in Table 1. For 
quantified formulas with binary-encoded scalars, we define 
the corresponding satisfiability problem:

Definition 1 ([8]). The BV2 satisfiability problem is to decide 
satisfiability of a given closed quantified bit-vector formula 
with all scalars encoded in binary.

Similarly to Kovásznai et al. [8], we use an indexing op-
eration, which is a special case of the extraction operation 
that produces only a single bit. In particular, for a term 
t[n] and a number 0 ≤ i < n, the indexing operation t[n][i]
is defined as extract(t[n], i, i). We assume that bits of bit-
vectors are indexed from the least significant. For example, 
given a bit-vector variable x[6] = x5x4x3x2x1x0, the value of 
x[6][1] refers to x1. In the following, we use a more general 
version of the indexing operation, in which the index can 
be an arbitrary bit-vector term, not only a fixed scalar. This 
operation can be defined using the indexing operation and 
the bit-shift operation with only a linear increase in the 
size of the term:

t[n][s[n]] df≡ (t[n] � s[n])[0].
3. Alternation complexity

We assume a basic familiarity with an alternating Turing 
machine (atm) introduced by Chandra, Kozen, and Stock-
meyer [9], and basic concepts from the complexity theory, 
which can be found for example in Kozen [10]. We recall 
that each state of an atm is either existential or universal. 
Existential states behave like states of a non-deterministic 
Turing machine: a run passing through an existential state 
continues with one of the possible successors. In contrast 
to this, a run entering a universal state forks and contin-
ues into all possible successors. Hence, runs of an atm are 
trees. Such a run is accepting if each branch of the run 
ends in an accepting state.

This section recalls some complexity classes related to 
alternating Turing machines. Computations in such com-
plexity classes are bounded not only by time and memory, 
but also by the number of alternations between existen-
tial and universal states during the computation. Although 
bounding both time and memory is useful in some ap-
plications, in this paper we need only complexity classes 
related to atms that are bounded in time and the number 
of alternations. Therefore, the following definition intro-
duces a family of complexity classes parameterized by the 
number of steps and alternations used by corresponding 
atms.

Definition 2. Let t, g : N → N be functions such that 
g(n) ≥ 1. We define the complexity class ATIME(t, g) as 
the class of all problems A for which there is an alter-
nating Turing machine that decides A and, for each input 
of length n, it needs at most t(n) steps and g(n) − 1
alternations along every branch of every run. If T and
G are classes of functions, let ATIME(T , G) =⋃

t∈T ,g∈G ATIME(t, g).

Chandra et al. have observed several relationships be-
tween classical complexity classes related to time and 
memory and the complexity classes defined by atms [9]. 
We recall relationships between alternating complexity 
classes and the classes NEXPTIME and EXPSPACE, which 
are important for this paper. It can easily be seen that 
the class NEXPTIME corresponds to all problems solv-
able by an alternating Turing machine that starts in 
an existential state and can use exponential time and 
no alternations: this yields an inclusion NEXPTIME ⊆
ATIME(2O(n), 1). On the other hand, results of Chandra et 
al. imply that EXPSPACE is precisely the complexity class 
ATIME(2nO(1)

, 2nO(1)
) of problems solvable in exponential 

time and with exponential number of alternations. An in-
teresting class that lies in between those two complexity 



M. Jonáš, J. Strejček / Information Processing Letters 135 (2018) 57–61 59
classes can be obtained by bounding the number of steps 
exponentially and the number of alternations polynomi-
ally. This class is called AEXP(poly).

Definition 3. AEXP(poly) df= ATIME(2nO(1)
, nO(1)).

The following inclusions immediately follow from the 
mentioned results.

NEXPTIME ⊆ AEXP(poly) ⊆ EXPSPACE

However, it is unknown whether any of the inclusions is 
strict.

4. Complexity of BV2 satisfiability

In this section, we show that the BV2 satisfiability 
problem is AEXP(poly)-complete. First, we prove that the 
problem is in the class AEXP(poly).

Theorem 1. The BV2 satisfiability problem is in AEXP(poly).

Proof. We describe the alternating Turing machine solv-
ing the problem. For a given BV2 formula ϕ , the ma-
chine first converts the formula to the prenex normal form, 
which can be done in polynomial time without any alter-
nations [11]. The machine then assigns values to all ex-
istentially quantified variables using existential states and 
to all universally quantified variables using universal states. 
Although this requires exponential time, as there are expo-
nentially many bits whose value has to be assigned, only a 
polynomial number of alternations is required, because the 
formula ϕ can contain only polynomially many quantifiers.

Finally, the machine uses the assignment to evaluate 
the quantifier-free part of the formula. If the result of the 
evaluation is true, the machine accepts; it rejects other-
wise. The evaluation takes exponential time and no quan-
tifier alternations: the machine replaces all variables by 
exponentially many previously assigned bits and computes 
results of all operations from the bottom of the syntac-
tic tree of the formula up. The computation of each of the 
operations takes time polynomial in the number of bits, 
which is exponential. �

In the rest of this section, we show that the BV2 satis-
fiability problem is also AEXP(poly)-hard. In particular, we 
present a reduction of a known AEXP(poly)-hard second-
order Boolean formulas satisfiability problem [12,13] to the 
BV2 satisfiability.

Intuitively, the second-order Boolean logic (SO2) can be 
obtained from a quantified Boolean logic by adding func-
tion symbols and quantification over such symbols. Alter-
natively, the SO2 logic corresponds to the second-order 
predicate logic restricted to the domain {0, 1}. Lohrey and 
Lück have shown that by bounding the number of quan-
tifier alternations in second-order Boolean formulas, prob-
lems complete for all levels of the exponential hierarchy 
can be obtained. Moreover, if the number of quantifier 
alternations is unbounded, the problem of deciding sat-
isfiability of quantified second-order Boolean formulas is 
AEXP(poly)-complete [12,13].
We now introduce the SO2 logic more formally. The 
definitions of the syntax and semantics of SO2 used in this 
paper are due to Hannula et al. [14].

Definition 4 (SO2 syntax [14]). Let F be a countable set 
of function symbols, where each symbol f ∈ F is given 
an arity ar( f ) ∈ N0. The set SO2(F) of quantified Boolean 
second-order formulas is defined inductively as

ϕ ::= ϕ ∧ ϕ | ¬ϕ | ∃ f ϕ | ∀ f ϕ | f (ϕ, . . . ,ϕ︸ ︷︷ ︸
ar( f ) times

),

where f ∈F .

Definition 5 (SO2 semantics [14]). An F -interpretation is a 
function I that assigns to each symbol f ∈ F a Boolean 
function of the corresponding arity, i.e. I( f ) : {0, 1}ar( f ) →
{0, 1} for each f ∈ F . The valuation of a formula ϕ ∈
SO2(F) in I , written �ϕ�I , is defined recursively as

�ϕ ∧ ψ �I = �ϕ�I ∗ �ψ �I,

�¬ϕ�I = 1 − �ϕ�I ,

� f (ϕ1, . . . ,ϕn)�I = I( f )(�ϕ1 �I , . . . , �ϕn �I),

�∃ f ϕ�I = max
{

�ϕ�I[ f �→F ] | F : {0,1}ar( f ) → {0,1}
}

,

�∀ f ϕ�I = min
{

�ϕ�I[ f �→F ] | F : {0,1}ar( f ) → {0,1}
}

,

where I[ f �→ F ] is the function defined as I[ f �→ F ]( f ) =
F and I[ f �→ F ](g) = I(g) for all g �= f .

An SO2 formula ϕ is satisfiable if �ϕ�I = 1 for some I .

We call function symbols of arity 0 propositions and all 
other function symbols proper functions. An SO2 formula ϕ
is in the prenex normal form if it has the form Q ψ , where 
Q is a sequence of quantifiers called a quantifier prefix, ψ
is a quantifier-free formula called a matrix, and all proper 
functions are quantified before propositions. In the follow-
ing, we fix an arbitrary countable set of function symbols 
F and instead of SO2(F), we write only SO2.

Definition 6. The SO2 satisfiability problem is to decide 
whether a given closed SO2 formula in the prenex normal 
form is satisfiable.

Theorem 2 ([12,13]). The SO2 satisfiability problem is
AEXP(poly)-complete.

We now show a polynomial time reduction of SO2 sat-
isfiability to BV2 satisfiability and thus finish the main 
claim of this paper, which states that the BV2 satisfiabil-
ity problem is AEXP(poly)-complete.

Theorem 3. The BV2 satisfiability problem is AEXP(poly)-hard.

Proof. We present a polynomial time reduction of SO2
satisfiability to BV2 satisfiability. Let ϕ be an SO2 formula 
with a quantifier prefix Q and a matrix ψ , i.e. ϕ = Q ψ
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Table 2
Completeness results for various bit-vector logics and encodings. This is 
the table presented by Fröhlich et al. [15] extended by the result proved 
in this paper.

Encoding Quantifiers

No Yes

Uninterpreted functions Uninterpreted functions

No Yes No Yes

Unary NP NP PSPACE NEXPTIME
Binary NEXPTIME NEXPTIME AEXP(poly) 2-NEXPTIME

where ψ is a quantifier-free formula. We construct a bit-
vector formula ϕB V , such that ϕ is satisfiable iff the for-
mula ϕB V is satisfiable.

In the formula ϕB V , each function symbol f of the 
formula ϕ is represented by a bit-vector variable x f of 
bit-width 2ar( f ) . Intuitively, the bits of the variable x f
will encode values f (bn−1, . . . , b0) for all possible inputs 
b0, . . . , bn−1 ∈ {0, 1}. In particular, the value f (bn−1, . . . , b0)

is represented as the bit on the index 
∑n−1

i=0 (2ibi) in the 
bit-vector x f . Equivalently, this index can be expressed 
as the numerical value of the bit-vector bn−1bn−2 . . .b0. 
For example, for a ternary function symbol f , bits of the 
bit-vector value x f = x7x6x5x4x3x2x1x0 will represent val-
ues f (1, 1, 1), f (1, 1, 0), f (1, 0, 1), f (1, 0, 0), f (0, 1, 1), 
f (0, 1, 0), f (0, 0, 1), and f (0, 0, 0), respectively.

The reduction proceeds in two steps. First, we induc-
tively construct a bit-vector term ψ B V of bit-width 1, 
which corresponds to the formula ψ :

• If ψ ≡ ρ1 ∧ ρ2, we set ψ B V ≡ ρB V
1 & ρB V

2 .
• If ψ ≡ ¬ρ , we set ψ B V ≡ ∼ρB V .
• If ψ ≡ f () (i.e. f is a proposition), we set ψ B V ≡ x[1]

f .
• If ψ ≡ f (ρn−1, . . . , ρ0) where n = ar( f ), we set

ψ B V ≡ x[2n]
f

[
0[2n−n] · ρB V

n−1 · ρB V
n−2 · . . . · ρB V

0

]
.

Note that because both arguments of the indexing op-
eration have to be of the same sort, 2n − n additional 
bits have to be added to the index term to get a term 
of the same bit-width as the term x[2n]

f .

In the second step, we replace each quantifier Q i f in 
the quantifier prefix Q by a bit-vector quantifier Q i x

[2n]
f , 

where n = ar( f ), and thus obtain a sequence of bit-

vector quantifiers Q
B V

. The final formula ϕB V is then 
Q

B V
(ψ B V = 1[1]).

Due to the binary representation of the bit-widths, 
the formula ϕB V is polynomial in the size of the for-
mula ϕ . �
Example 1. Consider an SO2 formula

∃ f ∀p∀q .¬ f (p, p,q) ∧ f (p,q ∧ ¬q,q),

where f is a ternary function symbol and p, q are propo-
sitions. Then the result of the described reduction is the 
formula
∃x[8]
f ∀x[1]

p ∀x[1]
q ( ∼x[8]

f [0[5] · xp · xp · xq] &

x[8]
f [0[5] · xp · (xq & ∼xq) · xq] = 1[1]).

Corollary 1. The BV2 satisfiability problem is AEXP(poly)-com-
plete.

5. Conclusions

We have identified the precise complexity class of 
deciding satisfiability of a quantified bit-vector formula 
with binary-encoded bit-widths. This paper shows that the 
problem is complete for the complexity class AEXP(poly), 
which is the class of all problems solvable by an alternat-
ing Turing machine that can use exponential time and a 
polynomial number of alternations. This result settles the 
open question raised by Kovásznai et al. [8]. Known com-
pleteness results for various bit-vector logics including the 
result proven in this paper are summarized in Table 2.
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