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Set Theory





a1. Basic set theory

1. Sets and classes

In mathematics there are basically two ways to define the objects under
consideration. On the one hand, one can explicitly construct them from
already known objects. For instance, the rational numbers and the real
numbers are usually introduced in this way. On the other hand, one can
take the axiomatic approach, that is, one compiles a list of desired prop-
erties and one investigates any object meeting these requirements. Some
well known examples are groups, fields, vector spaces, and topological
spaces.

Since set theory is meant as foundation of mathematics there are
no more basic objects available in terms of which we could define sets.
Therefore, we will follow the axiomatic approach. We will present a list
of six axioms and any object satisfying all of them will be called a model
of set theory. Such a model consists of two parts : (1) a collection S of
objects that we will call sets, and (2) some method which, given two sets
a and b, tells us whether a is an element of b.
We will not care what exactly the objects in S are or how this method

looks like. For example, one could imagine a model of set theory con-
sisting of natural numbers. If we define that a natural number a is an
element of the natural number b if and only if the a-th bit in the binary
encoding of b is 1, then all but one of our axioms will be satisfied. It is
conceivable that a similar but more involved definition might yield a
model that satisfies all of them.
We will introduce our axioms in a stepwise fashion during the fol-

lowing sections. To help readers trying to look up a certain axiom we
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a1. Basic set theory

include a complete list below even if most of the needed definitions are
still missing.

Axiom of Extensionality. Two sets a and b are equal if, and only if, we
have x ∈ a⇔ x ∈ b, for all sets x.

Axiom of Separation. If a is a set and φ a property then { x ∈ a ∣ φ } is a
set.

Axiom of Creation. For every set a there is a set S such that S is a stage
and a ∈ S.

Axiom of Infinity. There exists a set that is a limit stage.

Axiom of Choice. For every set A there exists a well-order R over A.

Axiom of Replacement. If F is a function and dom F is a set then so is
rng F.

Asking whether these axioms are true does make as much sense as the
question of whether the field axioms are true, or those of a vector space.
Instead,whatwe are concernedwith is their consistency and completeness.
That is, there should exist at least one object satisfying these axioms and
all such objects should look alike. Unfortunately, one can prove that there
is no complete axiom system for set theory. Hence, we will have to deal
with the fact that there are many different models of set theory and there
is noway to choose one of them as the ‘canonical one’. In particular, there
is no such thing as ‘the real model of set theory’.

More seriously, it is even impossible to prove that our axiom system
is consistent. That is, it might be the case that there is no model of set
theory and we have wasted our time studying a nonsensical theory.

The first problem is dealt with rather easily. It does not matter which
of these models we are given since any theorem that we can derive from
the axioms holds in every model. But the second problem is serious. All
we can do is to restrict ourselves to as few axioms as possible and to hope
that no one will ever be able to derive a contradiction. Of course, the
weaker the axioms the more different models we might get and the fewer
theorems we will be able to prove.

4



1. Sets and classes

In the following we will assume that S is an arbitrary but fixed model
of set theory. That is, S is a collection of objects that satisfies all the
axioms we will introduce below. S will be called the universe and its
elements are called sets. Note that S itself is not a set since we will prove
below that no set is an element of itself. By convention, if below we say
that some set exists then we mean that it is contained in S. Similarly, we
say that all sets have some property if all elements of S do so.

Intuitively, a set is a collection of objects called its elements. If a and b
are sets, i.e., elements of S, we write a ∈ b if a is an element of b and we
define

a ⊆ b : iff every element x ∈ a is also an element x ∈ b .

If a ⊆ b, we call a a subset of b, and we say that a is included in b, or
that b is a superset of a. We use the usual abbreviations such as a ⊂ b for
a ⊆ b and a ≠ b ; a ∋ b for b ∈ a ; and a ∉ b if a ∈ b does not hold.

Since a set is a collection of objects it is natural to require that a set is
uniquely determined by its elements. Our first axiom can therefore be
regarded as the definition of a set.

Axiom of Extensionality. Two sets a and b are equal if, and only if,

x ∈ a iff x ∈ b , for all sets x .

Lemma 1.1. Two sets a and b are equal if and only if a ⊆ b and b ⊆ a.

In order to define a set we have to say what its elements are. If the set
is finite we can just enumerate them. Otherwise, we have to find some
property φ such that an object x is an element of a if, and only if, it has
the property φ.

Definition 1.2. (a) Let φ be a property. { x ∣ φ } denotes the set a such
that, for all sets x, we have

x ∈ a iff x has property φ .

5



a1. Basic set theory

If S does not contain such an object then the expression { x ∣ φ } is
undefined.

(b) Let b0 , . . . , bn−1 be sets. We define

{b0 , . . . , bn−1} ∶= { x ∣ x = b i for some i < n } .

(c) The empty set is ∅ ∶= { x ∣ x ≠ x }.

Note that, by the Axiom of Extensionality, if the set { x ∣ φ } exists, it
is unique.

In a model of set theory nothing but sets exists. But how can we have
sets without some objects that serve as elements? The answer of course
is to construct sets of other sets. First of all, there is one set that we can
form even if we do not have any suitable elements : the empty set ∅. So
we already have one object and we use it as element of other sets. In the
next step we can form the set {∅}, then we can form the sets {{∅}}
and {∅, {∅}} and so on.

Sometimes it is helpful to imagine such sets as trees. The empty set ∅
corresponds to a single vertex ●. To a nonempty sets a we associate the
tree consisting of a root to which we attach, for every element b ∈ a the
tree corresponding to b. For example, we have

∅
●

{∅}
●
●

{{∅}}
●
●
●

{∅, {∅}}
●
● ●
●

{∅, {∅}, {∅, {∅}}}
●

● ● ●
● ● ●

●

To better understand this inductive construction of sets we introduce
a toy version of set theory which has the advantage that it can be defined
explicitly. It consists of all sets that one can construct from the empty set
in finitely many steps.

Definition 1.3. We construct a sequence HF0 ⊆ HF1 ⊆ . . . of sets as
follows. We start with the empty set HF0 ∶= ∅. When the set HFn has

6



1. Sets and classes

already been defined, the next stage

HFn+1 ∶= { x ∣ x ⊆ HFn }

consists of all sets that we can construct from elements of HFn .
A set is called hereditary finite if it is an element of some HFn . The set

of all hereditary finite sets is

HF ∶= { x ∣ x ∈ HFn for some n } .

Note that we cannot prove at the moment that HF really is a set. Since
the empty universe S = ∅ trivially satisfies the Axiom of Extensionality,
we even cannot show that the empty set exists without additional axioms.
Let us assume for the moment that HF does exists. Its first stages are

HF0 = ∅

HF1 = {∅}

HF2 = {∅, {∅}}

HF3 = {∅, {∅}, {{∅}}, {∅, {∅}}}
. . .

By induction on n, one can prove that HFn ⊆ HFn+1 and each set a ∈
HFn+1 is of the form a = {b0 , . . . , bk−1}, for finitely many elements
b0 , . . . , bk−1 ∈ HFn . Note that each stage HFn is hereditary finite since
HFn ∈ HFn+1 ⊆ HF, but their union HF is not because HF ∉ HF.

Exercise 1.1. Prove the following statements by induction on n. (Al-
though we have not defined the natural numbers yet, you may assume
for this exercise that they are available and that their usual properties
hold.)

(a) HFn ⊆ HFn+1.
(b) HFn has finitely many elements.
(c) Every set a ∈ HFn+1 is of the form a = {b0 , . . . , bk−1}, for finitely

many elements b0 , . . . , bk−1 ∈ HFn .

7



a1. Basic set theory

HF can be regarded as an approximation to the class of all sets. In
fact, all but one of the usual axioms of set theory hold for HF. The only
exception is the Axiom of Infinity which states that there exists an infinite
set.
We can encode natural numbers by special hereditary finite sets.

Definition 1.4. To each natural number n we associate the set

[n] ∶= {[0], . . . , [n − 1]} .

The set of all natural numbers is

N ∶= { [n] ∣ n a natural number} .

Note that [n] ∈ HFn+1 but [n] ∉ HFn , and N ∉ HF. This construction
can be used to define the natural numbers in purely set theoretic terms.
In the following by a natural number we will always mean a set of the
form [n].

It would be nice if there were a universe S that contains all sets of
the form { x ∣ φ }. Unfortunately, such a universe does not exists, that
is, if we add the axiom that claims that { x ∣ φ } is defined for all φ, we
obtain a theory that is inconsistent, i.e., it contradicts itself. In fact, we
can even show that there are properties φ such that no model of set
theory contains a set of the form { x ∣ φ }. And we can do so without
using a single axiom of set theory.

Theorem 1.5 (Zermelo-Russell Paradox). { x ∣ x ∉ x } is not a set.

Proof. Suppose that the set a ∶= { x ∣ x ∉ x } exists. Let x be an arbitrary
set. By definition, we have x ∈ a if and only if x ∉ x. In particular, for
x = a, we obtain a ∈ a iff a ∉ a. A contradiction. ◻

To better understand what is going on, let us see what happens if we
restrict ourselves to hereditary finite sets. The set { x ∈ HF ∣ x ∉ x }
equals HF since no hereditary finite set contains itself. But HF ∉ HF is
not hereditary finite. The same happens in real set theory. The condition

8



1. Sets and classes

x ∉ x is satisfied by all sets and we have { x ∣ x ∉ x } = S, which is not a
set.

In general, an expression of the form { x ∣ φ } denotes a collection
X ⊆ S that may or may not be a set, i.e., an element X ∈ S. We will call
objects of the form { x ∣ φ } classes. Classes that are not sets will be called
proper classes. If X = { x ∣ φ } and Y = { x ∣ ψ } are classes and a is a set,
we write

a ∈ X : iff a has property φ ,
X ⊆ Y : iff every set with property φ also has property ψ ,

and X = Y : iff X ⊆ Y and Y ⊆ X .

If X is a proper class then we define X ∉ Y , for every Y . Note that, if
X and Y are sets then these definitions coincide with the ones above.
Finally, we remark that every set a is a class since we can write a as
{ x ∣ x ∈ a }.

When defining classes we have to be a bit careful about what we call a
property. Let us define a property to be a statement that is build up from
basic propositions of the form x ∈ y and x = y by

◆ logical conjunctions like ‘and’, ‘or’, ‘not’, ‘if-then’ ;

◆ constructs of the form ‘there exists a set x such that . . . ’ and ‘for
all sets x it holds that . . . ’.

(Such statements will be defined in a more formal way in Chapter c1
where we will call them ‘first-order formulae’.) Things we are not allowed
to say include statements of the form ‘There exists a property φ such
that . . . ’ or ‘For all classes X it holds that . . . ’.
We have defined a class to be an object of the form { x ∣ φ } where

φ is a statement about sets. What happens if we allow statements about
arbitrary classes? Note that, if φ is a property referring to a class X =
{ x ∣ ψ } then we can transform φ into an equivalent statement only
talking about sets by replacing all propositions y ∈ X, X ∈ y, X = y, etc.
by their respective definitions.

9



a1. Basic set theory

Example. Let X = { x ∣ ∅ ∉ x }. We can write the class

{ y ∣ y ≠ ∅ and y ⊆ X }

in the form

{ y ∣ y ≠ ∅ and ∅ ∉ x for all x ∈ y } .

The situation is analogous to the case of the complex numbers which
are obtained from the real numbers by adding imaginary elements. We
can translate any statement about complex numbers x+ iy into one about
pairs ⟨x , y⟩ of real numbers. Consequently, it does not matter whether
we allow classes in the definition of other classes.

Intuitively, the reason for a proper class such as S not being a set is
that it is too ‘large’. For instance, when considering HF we see that a
set a ⊆ HF is hereditary finite if, and only if, it has only finitely many
elements. Hence, if we can show that a class X = { x ∣ φ } is ‘small’, it
should form a set. What do we mean by ‘small’? Clearly, we would like
every set to be small. Furthermore, it is natural to require that, if Y is
small and X ⊆ Y then X is also small. Therefore, we define a class X to
be small if it is a subclass X ⊆ a of some set a.

Definition 1.6. For a class A and a property φ we define

{ x ∈ A ∣ φ } ∶= { x ∣ x ∈ A and x has property φ } .

This definition ensures that every class of the form X = { x ∈ a ∣ φ }
where a is a set is small. Conversely, if X = { x ∣ φ } is small then X ⊆ a,
for some set a, and we have X = { x ∈ a ∣ φ }. Our second axiom states
that every small class is a set.

Axiom of Separation. If a is a set and φ a property then the class

{ x ∈ a ∣ φ }

is a set.

10
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With this axiom we still cannot prove that there is any set. But if we
have at least one set a, we can deduce, for instance, that also the empty
set ∅ = { x ∈ a ∣ x ≠ x } exists.

Definition 1.7. Let A and B be classes.
(a) The intersection of A is the class

⋂A ∶= { x ∣ x ∈ y for all y ∈ A} .

(b) The intersection of A and B is

A∩ B ∶= { x ∣ x ∈ A and x ∈ B } .

(c) The difference between A and B is

A∖ B ∶= { x ∈ A ∣ x ∉ B } .

Lemma 1.8. Let a be a set and B a class. Then a ∩ B and a ∖ B are sets. If
B contains at least one element then ⋂B is a set.

Proof. The fact that a ∩ B = { x ∈ a ∣ x ∈ B } and a ∖ B are sets follows
immediately from the Axiom of Separation. If B contains at least one
element c ∈ B then we can write

⋂B = { x ∈ c ∣ x ∈ y for all y ∈ B } . ◻

Note that ⋂∅ = S is not a set.

2. Stages and histories
The construction of HF above can be extended to one of the class S of all
sets. We define S as the union of an increasing sequence of sets Sα , called
the stages of S. Again,we start with the empty set S0 ∶= ∅. If Sα is defined
then the next stage Sα+1 contains all subsets of Sα . But this time, we do
not stop when we have defined Sα for all natural numbers α. Instead,

11
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every time we have defined an infinite sequence of stages we continue
by taking their union to form the next stage. So our sequence starts with

S0 = HF0 , S1 = HF1 , S2 = HF2 , . . .

The next stage after all the finite ones is Sω ∶= HF and we continue with

Sω+1 = { x ∣ x ⊆ HF} , Sω+2 = { x ∣ x ⊆ Sω+1 } , . . .

After we have defined Sω+n for all natural numbers n we again take the
union

Sω+ω = { x ∣ x ∈ Sω+n for some n } ,

and so on.
Unfortunately, making this construction precise turns out to be quite

technical sincewe cannot define the numbers α yet that we need to index
the sequence Sα . This has to wait until Section a3.2. Instead, we start by
giving a condition for some set S to be a stage, i.e., one of the Sα . If we
order all such sets by inclusion then we obtain the desired sequence

S0 ⊆ S1 ⊆ ⋅ ⋅ ⋅ ⊆ Sω ⊆ Sω+1 ⊆ ⋯ ,

without the need to refer to its indices.
First, we isolate some characteristic properties of the sets HFn which

we would like that our stages Sα share. Note that, at the moment, we
cannot prove that any of the sets mentioned below actually exists.

Definition 2.1. Let A be a class.
(a) We call A transitive if x ∈ y ∈ A implies x ∈ A.
(b) We call A hereditary if x ⊆ y ∈ A implies x ∈ A.
(c) The accumulation of A is the class

acc(A) ∶= { x ∣ there is some y ∈ A such that x ∈ y or x ⊆ y } .

Note that each stage HFn of HF is hereditary and transitive.

12
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Exercise 2.1. By induction on n, show that the set [n] is transitive. Give
an example of a number n such that [n] is not hereditary.

The next lemmas follow immediately from the definitions.

Lemma 2.2. Let A be a class, and b, c sets. The following statements are
equivalent :

(a) c ∈ b ∈ A implies c ∈ A, that is, A is transitive.

(b) b ∈ A implies b ⊆ A.

(c) b ∈ A implies b ∩ A = b.

Lemma 2.3. Let A and B be classes.

(a) A ⊆ acc(A)

(b) If B is hereditary and transitive and if A ⊆ B, then acc(A) ⊆ B.

(c) A is hereditary and transitive if, and only if, acc(A) = A.

Lemma 2.4. If A and B are transitive classes then so is A∩ B.

Exercise 2.2. Prove Lemmas 2.2, 2.3, and 2.4.

Definition 2.5. Let A be a class.

(a) A minimal element of A is an element b ∈ A such that b ∩ A = ∅,
that is, there is no element c ∈ Awith c ∈ b.

(b) A set a is founded if every set b ∋ a has a minimal element.

(c) The founded part of A is the set

fnd(A) ∶= { x ∈ A ∣ x is founded} .

Example. The empty set ∅ and the set {∅} are founded. To see that {∅}
is founded, consider a set b ∋ {∅}. If {∅} is not a minimal element of b,
then b ∩ {∅} ≠ ∅. Hence, ∅ ∈ b is a minimal element of b.

Exercise 2.3. Prove that every hereditary finite set is founded.

13
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Wewill introduce an axiom belowwhich implies that every class has a
minimal element. Hence, every set is founded and we have fnd(A) = A,
for all classes A. Although the notions of a founded set and the founded
part of a set will turn out to be trivial, we still need them to define stages
and to formulate the axiom.

Lemma 2.6. If B is a hereditary class and a ∈ B then fnd(a) ∈ fnd(B).

Proof. For a contradiction suppose that fnd(a) ∉ fnd(B). Since B is
hereditary and fnd(a) ⊆ a ∈ B, we have fnd(a) ∈ B. Consequently,
fnd(a) ∉ fnd(B) implies that there is some set x ∋ fnd(a) without
minimal element. In particular, fnd(a) is not a minimal element of x,
that is, there exists some set y ∈ x ∩ fnd(a). But y ∈ fnd(a) implies
that y is founded. Therefore, from y ∈ x it follows that x has a minimal
element. A contradiction. ◻

In the language of Section a3.1 the next theorem states that the mem-
bership relation ∈ is well-founded on every class of transitive, hereditary
sets.

Theorem 2.7. Let A be a nonempty class. If every element x ∈ A is heredit-
ary and transitive, then A has a minimal element.

Proof. Choose an arbitrary element c ∈ A and set

b ∶= { fnd(x) ∣ x ∈ c ∩ A} .

If b = ∅ then c ∩ A = ∅ and c is a minimal element of A. Therefore,
we may assume that b ≠ ∅. Since c ∈ A is hereditary, it follows from
Lemma 2.6 that b ⊆ fnd(c). Fix some x ∈ b ⊆ fnd(c). Then x is founded
and x ∈ b implies that b has a minimal element y. By definition of b, we
have y = fnd(z), for some z ∈ c ∩ A.
We claim that z is a minimal element of A. Suppose otherwise. Then

there exists some element u ∈ z ∩ A. Since c is transitive we have u ∈ c.
Hence, u ∈ c ∩ A implies fnd(u) ∈ b. On the other hand, since z ∈ A
is hereditary it follows from Lemma 2.6 that fnd(u) ∈ fnd(z). Hence,
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fnd(u) ∈ fnd(z) ∩ b ≠ ∅ and y = fnd(z) is not a minimal element of b.
A contradiction. ◻

We would like to define that a set S is a stage if it is hereditary and
transitive. Unfortunately, this definition is too weak to show that the
stages can be arranged in an increasing sequence S0 ⊆ S1 ⊆ ⋯ ⊆ Sα ⊆ ⋯ .
Therefore, our definition will be slightly more involved. To each stage Sα
we will associate its history

H(Sα) = { Sβ ∣ β < α } ,

and we will call a set S a stage if S = acc(H(S)). Note that, for HFn , we
have

H(HFn) = {HF0 , . . . ,HFn−1} and HFn = acc(H(HFn)) .

Of course, to avoid a vicious cycle we have to define a history without
mentioning stages.

Definition 2.8. (a) A class H is a history if every element a ∈ H is
hereditary, transitive, and satisfies

a = acc(H ∩ a) .

(b) If H is a history, we call the class S ∶= acc(H) the stage with
history H.

Let us show that these definitions have the desired effect.

Lemma 2.9. Let S be a stage with history H.
(a) H ⊆ S.
(b) Every set a ∈ H is a stage with history H ∩ a.
(c) S is hereditary and transitive.
(d) S = { x ∣ x ⊆ s for some stage s ∈ S }.
(e) H(S) ∶= { s ∈ S ∣ s is a stage} is a history of S .

15
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Proof. (a) a ⊆ a ∈ H implies a ∈ acc(H) = S.
(b) By definition of a history, we have a = acc(H ∩ a). Hence, if

we can show that H ∩ a is a history then its stage is a. Clearly, every
element of H ∩ a ⊆ H is hereditary and transitive. Let b ∈ H ∩ a. Then
b ⊆ acc(H ∩ a) = a. It follows that H ∩ b = (H ∩ a) ∩ b. Furthermore,
since H is a history we have

b = acc(H ∩ b) = acc((H ∩ a) ∩ b) ,

which shows that H ∩ a is a history.
(c) Let b ∈ S. The class

a ∶= { s ∈ H ∣ b ∈ s or b ⊆ s }

is nonempty because b ∈ S = acc(H). By Theorem 2.7, it has a minimal
element s ∈ a.

If b ∈ s = acc(H ∩ s), there is some set z ∈ H ∩ s such that b ∈ z or
b ⊆ z. It follows that z ∈ a. But z ∈ s ∩ a implies that s is not a minimal
element of a. Contradiction.

Therefore, b ∉ s which implies, by definition of a, that b ⊆ s. For
transitivity, note that x ∈ b implies

x ∈ b ⊆ s = acc(H ∩ s) ⊆ acc(H) = S .

For hereditarity, let x ⊆ b. Then x ⊆ b ⊆ s ∈ H, which implies x ∈
acc(H) = S.

(d) By (c) we know that x ⊆ s ∈ S implies x ∈ S. For the other direction,
suppose that x ∈ S = acc(H). There is some set s ∈ H such that x ∈ s
or x ⊆ s. By (a), (b), and (c) it follows that s ∈ S, s is a stage, and s is
hereditary and transitive.By transitivity, if x ∈ s then x ⊆ s.Consequently,
we have x ⊆ s ∈ S in both cases and the claim follows.

(e) By (d), we have S = acc(H(S)). It remains to show that H(S) is
a history. By (c), every element s ∈ H(S) is hereditary and transitive.
Furthermore, since S is transitive we have s ⊆ S and it follows that

H(S) ∩ s = { x ∈ s ∣ x is a stage } .

Since s is a stage we know by (d) that s = acc(H(S) ∩ s). ◻
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Note that, by (a) and (b) above, we have H ⊆ H(S), for all histories H
of S. In fact, H(S) is the only history of S but we need some further
results before we can prove this.

Exercise 2.4. Prove, by induction on n, that {HF0 , . . . ,HFn−1} is a history
with stage HFn .

Exercise 2.5. Construct a hereditary transitivity set a that is not a stage.
Hint. It is sufficient to consider sets HFn ⊂ a ⊂ HFn+1, for a small n.

After we have seen how to define stages we now prove that they form
a strictly increasing sequence S0 ⊆ S1 ⊆ . . . . Together with Theorem 2.7
it follows that the class of all stages is well-ordered by the membership
relation ∈ (see Section a3.1).

Theorem 2.10. If S and T are stages that are sets then we have

S ∈ T or S = T or T ∈ S .

Proof. Suppose that there are stages S and T such that

(∗) S ∉ T , S ≠ T , and T ∉ S .

Define

A ∶= { s ∣ s is a stage and there is some stage t such that
s and t satisfy (∗) } .

By Theorem 2.7, the class A has a minimal element S0. Define

B ∶= { t ∣ t is a stage such that S0 and t satisfy (∗) } .

Again there is a minimal element T0 ∈ B.
If we can show that H(S0) = H(T0), it follows that

S0 = acc(H(S0)) = acc(H(T0)) = T0
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in contradiction to our choice of S0 and T0.
Let s ∈ S0 be a stage. Then s ≠ T0 since T0 ∉ S0. Furthermore, we have

T0 ∉ s since, otherwise, transitivity of S0 would imply that T0 ∈ S0. By
minimality of S0 it follows that s and T0 do not satisfy (∗). Therefore,
we have s ∈ T0.
We have shown that H(S0) ⊆ H(T0). A symmetric argument shows

that H(T0) ⊆ H(S0). Hence, we have H(S0) = H(T0) as desired. ◻

Lemma 2.11. Let S and T be stages that are sets.
(a) S ∉ S
(b) S ⊆ T if and only if S ∈ T or S = T.
(c) S ⊆ T or T ⊆ S.
(d) S ⊂ T if, and only if, S ∈ T.

Proof. (a) Suppose otherwise. Let X be the class of all stages s such that
s ∈ s. By Theorem 2.7, X has a minimal element s, that is, an element
such that s ∩ X = ∅. But s ∈ s ∩ X. Contradiction.

(b) If S = T then S ⊆ T , and if S ∈ T then S ⊆ T , by transitivity of T .
Conversely, if neither S = T nor S ∈ T then Theorem 2.10 implies that
T ∈ S. If S ⊆ T then T ∈ S ⊆ T would contradict (a).

(c) If S ⊈ T then (b) implies that S ∉ T and S ≠ T . By Theorem 2.10, it
follows that T ∈ S which, again by (b), implies T ⊆ S.

(d) We have S ⊂ T iff S ⊆ T and S ≠ T . By (a) and (b), the latter is
equivalent to S ∈ T . ◻

3. The cumulative hierarchy
In the previous section we have seen that we can arrange all stages in an
increasing sequence

S0 ⊂ S1 ⊂ ⋅ ⋅ ⋅ ⊂ Sα ⊂ ⋯ ,

which we will call the cumulative hierarchy. If S ∈ T are stages then we
will say that S is earlier than T , or that T is later than S.
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From the axioms we have availablewe cannot prove that there actually
are any stages. We introduce a new axiom which ensures that enough
stages are available.

Axiom of Creation. For every set a there is a set S ∋ a which is a stage.

In particular, this axiom implies that
◆ for every stage S that is a set, there exists a later stage T ∋ S that is

also a set.
◆ the universe S is the union of all stages.

Of course, even with this new axiom we might still have S = ∅. But if at
least one set exists, we can now prove that HF ⊆ S. In particular, S = HF
satisfies all axioms we have introduced so far.

Exercise 3.1. Prove that S is a stage with history

H(S) = { S ∣ S is a stage} .

Definition 3.1. (a) We say that a stage T is the successor of the stage S
if S ∈ T and there exists no stage T ′ such that S ∈ T ′ ∈ T . A nonempty
stage is a limit if it is not the successor of some other stage.

(b) Let A be a class. We denote by S(A) the earliest stage such that
A ⊆ S(A).

Note that S(A) is well-defined by Theorem 2.7. We have S(s) = s, for
every stage s, in particular, S(∅) = ∅. The stages S and HF are limits and
HFn+1 is the successor of the stage HFn .

Lemma 3.2. a ∈ b implies S(a) ∈ S(b).

Proof. Since a ∈ b ⊆ S(b) = acc(H(S(b))) it follows that there is some
stage s ∈ S(b) such that a ∈ s or a ⊆ s. In particular, S(a) is not later
than s which implies that S(a) ⊆ s ∈ S(b). As S(b) is hereditary we
therefore have S(a) ∈ S(b). ◻

Lemma 3.3. S is the only stage that is a proper class.

19



a1. Basic set theory

Proof. Let S be a stage. If S ≠ S, there is some set a ∈ S ∖ S. Hence,
S(a) ∉ S which implies that

T ∉ H(S) , for all stages T ⊇ S(a) .

By Lemma 2.9 (e) and Theorem 2.10, we have

H(S) ⊆ {T ∣ T is a stage with T ∈ S(a) } = H(S(a)) .

In particular, H(S) is a set, which implies that so is S = acc(H(S)). ◻

Lemma 3.4. Let A be a class. The following statements are equivalent :

(1) A is a proper class.

(2) S(A) is a proper class.

(3) S(A) = S.

Proof. (3)⇒ (1) By the Axiom of Creation, if A is a set then so is S(A).
(1)⇒ (2) If S(A) is a set then A ⊆ S(A) implies that

A = { x ∈ S(A) ∣ x ∈ A}

is also a set.
(2)⇒ (3) follows by Lemma 3.3. ◻

With the Axiom of Creation we are finally able to prove most ‘obvious’
properties of sets such that no set is an element of itself or that the union
of sets is a set.

Lemma 3.5. If a is a set then a ∉ a.

Proof. Suppose that there exists some set such that a ∈ a. Then a ∈ a ⊆
S(a) and, by Lemma 2.9 (d), there is some stage s ∈ S(a) with a ⊆ s.
This contradicts the minimality of S(a). ◻

Theorem 3.6. Every nonempty class A has a minimal element.
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Proof. By Theorem 2.7, we can choose some element b ∈ A such that
S(b) is minimal. We claim that b is a minimal element of A. Suppose
otherwise. Then there exists some element x ∈ A∩ b. Since x ∈ b ⊆ S(b),
Lemma 2.9 (d) implies that there is some stage s ∈ S(b) such that x ⊆ s.
Hence, x is an element of A with S(x) ∈ S(b) in contradiction to the
choice of b. ◻

We will see in Section a3.1 that Theorem 3.6 implies that there are no
infinite descending sequences a0 ∋ a1 ∋ . . . of sets. (If such a sequence
exists then the set {a0 , a1 , . . . } has no minimal element.)

Example. By induction on n, it trivially follows that, if a0 ∋ ⋯ ∋ ak−1 is
a sequence of sets starting with a0 ∈ HFn , then k < n. What happens if
a0 = HF? Then a1 ∈ HFn , for some n, and the sequence is of length k ≤ n.
But note that, for every n, we can find a sequence of length n starting
with a0 = HF. So there is no one bound that works for all sequences.

Definition 3.7. Let A and B be classes.

(a) The union of A is the class

⋃A ∶= { x ∣ x ∈ b for some b ∈ A} .

(b) The union of A and B is

A∪ B ∶= { x ∣ x ∈ A or x ∈ B } .

(c) The power set of A is the class

℘(A) ∶= { x ∣ x ⊆ A} .

Remark. Note that, by definition, a class contains only sets. In particular,
the power set ℘(A) of a proper class contains only the subsets of A, not
all subclasses. For instance, we have ℘(S) = S.

Lemma 3.8. If a and b are sets then so are ⋃ a, a ∪ b, {a}, and ℘(a).
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Proof. Let S0 and S1 be stages such that a ∈ S0 and b ∈ S1. We know that
S0 ⊆ S1 or S1 ⊆ S0. By choosing either S0 or S1 we can find a stage S such
that S0 ⊆ S and S1 ⊆ S. By transitivity of S it follows that

⋃ a = { x ∈ S ∣ x ∈ b for some b ∈ a } ,
a ∪ b = { x ∈ S ∣ x ∈ a or x ∈ b } ,
{a} = { x ∈ S ∣ x = a } ,

and ℘(a) = { b ∈ S ∣ b ⊆ a } . ◻

Corollary 3.9. If a0 , . . . , an−1 are sets then so is

{a0 , . . . , an−1} = {a0} ∪ ⋅ ⋅ ⋅ ∪ {an−1} .

In particular, every finite class is a set.

The next definition provides a useful tool which sometimes allows us
to replace a proper class A by a set a. Instead of taking every element
x ∈ Awe only consider those such that S(x) is minimal.

Definition 3.10. The cut of a class A is the set

cutA ∶= { x ∈ A ∣ S(x) ⊆ S(y) for all y ∈ A} .

Exercise 3.2. What are cutS and cut{ x ∣ a ∈ x }?

Lemma 3.11. Every class of the form cutA is a set.

Proof. If A = ∅ then cutA = ∅. Otherwise, choose an arbitrary set a ∈ A.
Then cutA ⊆ S(a) which implies that cutA is a set. ◻

The following lemmas clarify the structure of the cumulative hierarchy.

Lemma 3.12. The successor of a stage S is ℘(S).

Proof. By Theorem 2.7, there exists a minimal stage T with S ∈ T . We
have to prove that T = ℘(S). a ⊆ S ∈ T implies a ∈ T since T is
hereditary. Hence, ℘(S) ⊆ T .
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Conversely, if s ∈ T is a stage then S ∉ s because T is the successor
of S. By Theorem 2.10, it follows that s ∈ S or s = S. This implies s ⊆ S.
We have shown that s ∈ T iff s ⊆ S, for all stages s. It follows by

Lemma 2.9 (d) that

T = { x ∣ x ⊆ s for some stage s ∈ T }
= { x ∣ x ⊆ s for some stage s ⊆ S } = { x ∣ x ⊆ S } = ℘(S) . ◻

Lemma 3.13. Let S be a nonempty stage. The following statements are
equivalent :

(1) S is a limit stage.

(2) S = ⋃H(S).

(3) For every set a ∈ S, there exists some stage s ∈ S with a ∈ s.

(4) If a ∈ S then ℘(a) ∈ S.

(5) If a ∈ S then {a} ∈ S.

(6) If a ⊆ S then cut a ∈ S.

Proof. (2)⇒ (1) Suppose that S is the successor of a stage T . Then we
have

H(S) = {T} ∪H(T) .

Since s ⊆ T , for all s ∈ H(T), it follows that

⋃H(S) = T ≠ S .

(1)⇒ (2) Suppose that S is a limit stage. By Lemma 2.9 (d), we have

S =⋃{℘(s) ∣ s ∈ H(S) }
=⋃{ t ∣ t is the successor of some stage s ∈ H(S) }
=⋃{ t ∣ t ∈ H(S) }
=⋃H(S) .
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(1)⇒ (3) Suppose that S is a limit and let a ∈ S. By Lemma 2.9 (d),
there is some stage s ∈ S with a ⊆ s. Hence, a ∈ ℘(s). Since T ∶= ℘(s) is
the successor of s we have T ∈ S.

(3)⇒ (4) For each a ∈ S, there is some stage s ∈ S with a ∈ s. Since
s is transitive it follows that x ⊆ a implies x ∈ s. Hence, ℘(a) ⊆ s. By
transitivity of S, we obtain ℘(a) ∈ S.

(4)⇒ (5) If a ∈ S then {a} ⊆ ℘(a) ∈ S. Since S is hereditary, it follows
that {a} ∈ S.

(5)⇒ (1) If S is no limit, there is some stage T ∈ S such that S = ℘(T).
By assumption, {T} ∈ S = ℘(T). Hence, {T} ⊆ T which implies that
T ∈ T . A contradiction.

(3)⇒ (6) Let b ∶= cut a. If a = ∅ then b = ∅ and we are done. If there
is some element x ∈ a then, by assumption, we can find a stage s ∈ S
with x ∈ s. By definition, b ⊆ s, and it follows that b ∈ S.

(6)⇒ (5) Let a ∈ S and set b ∶= { x ∈ S ∣ a ⊆ x }. Clearly, b ⊆ S. By
assumption, we therefore have c ∶= cut b ∈ S. Hence, {a} ⊆ c implies
{a} ∈ S. ◻

So far, we still might have S = ∅ or S = HF. To exclude these cases we
introduce a new axiom which states that HF ∈ S.

Axiom of Infinity. There exists a set that is a limit stage.

We call the theory consisting of the four axioms

◆ Axiom of Extensionality

◆ Axiom of Separation

◆ Axiom of Creation

◆ Axiom of Infinity

basic set theory. Everymodel of this theory consist of a hierarchy of stages

S0 ⊂ S1 ⊂ ⋯ ⊂ Sω ⊂ Sω+1 ⊂ . . .

where Sn = HFn , for finite n. The differences between two such models
can be classified according to two axes : the length of the hierarchy and
the size of each stage.
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3. The cumulative hierarchy

Let S and S′ be two models with stages (Sα)α<κ and (S′α)α<λ , respect-
ively. We know that their lengths κ and λ are at least what we will call
ω + ω in Section a3.2. But our current axioms do not tell us whether the
process of creation stops there or whether we again take the union of all
stages and continue taking power sets until we reach ω + ω + ω. At this
point we again have to decide whether to stop or to continue, and so on.

The second possible difference stems from the fact that the power-set
operation is ambiguous. We know that Sn = HFn = S′n , for all finite n.
But we might have Sα ≠ S′α , for infinite α. The reason is that there is
no way to express that all subsets of Sα are contained in Sα+1. We have
the Axiom of Separation which states that all subsets exist that we can
explicitly define. But there are much more possible subsets than there
are definitions.
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1. Relations and functions
With basic set theory available we can define most of the concepts used
in mathematics. The simplest one is the notion of an ordered pair. The
characteristic property of such pairs is that ⟨a, b⟩ = ⟨c, d⟩ implies a = c
and b = d.

Definition 1.1. (a) Let a and b be sets. The ordered pair ⟨a, b⟩ is the set

⟨a, b⟩ ∶= {{a}, {a, b}} .

(b) Let A and B be classes. The cartesian product of A and B is the
class

A× B ∶= { c ∣ c = ⟨a, b⟩ for some a ∈ A and b ∈ B } .

Let us show that ordered pairs have the desired property.

Lemma 1.2. If {a, b} = {a, c} then b = c.

Proof. We have b ∈ {a, b} = {a, c}. Hence, b = a or b = c. In the latter
case we are done. Otherwise, we have c ∈ {a, c} = {a, b} = {b} which
implies that c = b. ◻

Lemma 1.3. If ⟨a, b⟩ = ⟨c, d⟩ then a = c and b = d.

Proof. Suppose that ⟨a, b⟩ = ⟨c, d⟩.

{a} ∈ {{a}, {a, b}} = {{c}, {c, d}}
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implies {a} = {c} or {a} = {c, d}. In the latter case, we have a = c = d.
In both cases, we therefore have {a} = {c}. By the preceding lemma, it
follows that {a, b} = {c, d} and, applying the lemma again, we obtain
b = d. ◻

Remark. The above definition of an ordered pair ⟨a, b⟩ does only work
for sets. Neverthelesswewill use also pairs ⟨A, B⟩whereAor B are proper
classes. There are several ways to make such an expression well-defined.
A simple one is to define

⟨A, B⟩ ∶= ({[0]} × A) ∪ ({[1]} × B) (= A⊍ B)

whenever at least one of A and B is a proper class. (The operation ⊍ will
be defined more generally in the next section.) It is easy to check that
with this definition the term ⟨A, B⟩ has the properties of an ordered pair,
that is, A⊍ B = C ⊍ D implies A = C and B = D.

Definition 1.4. (a) For sets a0 , . . . , an we define inductively

⟨⟩ ∶= ∅ , ⟨a0⟩ ∶= a0 ,

and ⟨a0 , . . . , an⟩ ∶= ⟨⟨a0 , . . . , an−1⟩, an⟩ .

We call ⟨a0 , . . . , an−1⟩ a tuple of length n. ⟨⟩ is the empty tuple.
(b) For a class A, we define its n-th power by

A0 ∶= {⟨⟩} , A1 ∶= A , and An+1 ∶= An × A , for n > 1 .

Definition 1.5. A relation, or a predicate, of arity n is a subclass R ⊆ Sn .
If R ⊆ An , for some class A, we say that R is over A.

Note that ∅ and {⟨⟩} are the only relations of arity 0. In logic they are
usually interpreted as false and true. A relation of arity 1 over A is just a
subclass R ⊆ A.

Definition 1.6. Let R be a binary relation. The domain of R is the class

dom R ∶= { a ∣ ⟨a, b⟩ ∈ R for some b } ,
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and its range is

rng R ∶= { b ∣ ⟨a, b⟩ ∈ R for some a } .

The field of R is dom R ∪ rng R.

In particular, dom R and rng R are the smallest classes such that

R ⊆ dom R × rng R .

Definition 1.7. (a) A binary relation R is called functional if, for every
a ∈ dom R, there exists exactly one set b such that ⟨a, b⟩ ∈ R. We denote
this unique element b by R(a). Hence, we can write R as

R = { ⟨a, R(a)⟩ ∣ a ∈ dom R } .

A functional relation R ⊆ A× B is also called a partial function from A
to B.

(b) A function from A to B is a functional relation f ⊆ A × B with
dom f = A and rng f ⊆ B. Functions are also called maps or mappings.
We write f ∶ A→ B to denote the fact that f is a function from A to B.

A function of arity n is a function of the form

f ∶ A0 ×⋯ × An−1 → B .

We will write x ↦ y to denote the function f such that f (x) = y.
(Usually, y will be an expression depending on x.)

(c) For a set a and a class B, we denote by Ba the class of all functions
f ∶ a → B.

Remark. A 0-ary function f ∶ A0 → B is uniquely determined by the
value f (⟨⟩). Wewill call such functions constants and identify them with
their only value.

Sometimes we write binary relations and functions in infix notation,
that is, for a relation R ∈ A× A, we write a R b instead of ⟨a, b⟩ ∈ R and,
for f ∶ A× A→ A, we write a f b instead of f (a, b).
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Definition 1.8. (a) For every class A, we define the identity function
idA ∶ A→ A by idA(a) ∶= a.

(b) If R ⊆ A × B and S ⊆ B × C are relations, we can define their
composition S ○ R ∶ A× C by

S ○ R ∶= { ⟨a, c⟩ ∣ there is some b ∈ B such that
⟨a, b⟩ ∈ R and ⟨b, c⟩ ∈ S } .

(Note the reversal of the ordering.) In particular, if f ∶ A → B and
g ∶ B → C are functions then

(g ○ f )(x) ∶= g( f (x)) .

(c) The inverse of a relation R ⊆ A× B is the relation

R−1 ∶= { ⟨b, a⟩ ∣ ⟨a, b⟩ ∈ R } .

In particular, a function g ∶ B → A is the inverse of the function f ∶ A→
B if

g( f (a)) = a and f (g(b)) = b , for all a ∈ A and b ∈ B ,

that is, if g ○ f = idA and f ○ g = idB .
For b ∈ B, we will write

R−1(b) ∶= { a ∣ ⟨a, b⟩ ∈ R } .

Note that, if R−1 is a function, we have already defined

R−1(b) ∶= a for the unique a such that ⟨a, b⟩ ∈ R .

It should always be clear from the context which of these two definitions
we have in mind when we write R−1(b).

(d) The restriction of a relation R ⊆ A× B to a class C is the relation

R∣C ∶= R ∩ (C × C) .
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Its left restriction is

R ↾ C ∶= R ∩ (C × B) .

(e) The image of a class C under a binary relation R ⊆ A × B is the
class

R[C] ∶= rng (R ↾ C) .

Remark. The set AA together with the operation ○ forms a monoid, that
is, ○ is associative

f ○ (g ○ h) = ( f ○ g) ○ h , for all f , g , h ∈ AA,

and there exists a neutral element

idA ○ f = f and f ○ idA = f for all f ∈ AA.

Exercise 1.1. Is it true that R−1 ○ R = idA, for all relations R ⊆ A× B?

Exercise 1.2. Prove that ○ is associative and that idA is a neutral element.

Definition 1.9. Let f ∶ A→ B be a function.

(a) f is injective if there is no pair a, a′ ∈ A of distinct elements such
that f (a) = f (a′).

(b) f is surjective if rng f = B.

(c) f is called bijective if it is both injective and surjective.

Lemma 1.10. Let f ∶ A→ B be a function.

(a) The following statements are equivalent :

(1) f is bijective.
(2) f −1 is a function B → A.
(3) There exists a function g ∶ B → A such that g ○ f = idA and

f ○ g = idB .
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(b) The following statements are equivalent :

(1) f is injective.
(2) f ○ g = f ○ h implies g = h, for all functions g , h ∶ C → A.
(3) A = ∅ or there exists some function g ∶ B → A such that

g ○ f = idA.
(4) f −1[ f [X]] = X, for all X ⊆ A.

(c) The following statements are equivalent :

(1) f is surjective.
(2) g ○ f = h ○ f implies g = h, for all functions g , h ∶ B → C.
(3) f [ f −1[Y]] = Y , for all Y ⊆ B.

(d) If there exists some function g ∶ B → A such that f ○ g = idB then
f is surjective.

Proof. (a) (1)⇒ (2) Let b ∈ B. Since f is surjective there exists some
a ∈ A such that f (a) = b. If a′ ∈ A is some element with f (a′) = b then
the injectivity of f implies that a′ = a. We have shown that, for every
element b ∈ B, there is a unique a ∈ A such that f −1(b) = a. Hence,
f −1 is functional and dom f −1 = B.

(2)⇒ (3) f −1 ∶ B → A is a function and we have f −1 ○ f = idA and
f ○ f −1 = idB .

(3)⇒ (1) If f (a) = f (b), for a, b ∈ A, then

a = idA(a) = (g ○ f )(a) = (g ○ f )(b) = idA(b) = b .

Consequently, f is injective. To show that it is also surjective let b ∈ B.
Setting a ∶= g(b) we have

f (a) = ( f ○ g)(b) = idB(b) = b .

Hence, b ∈ rng f .
(b) (1)⇒ (4) Let X ⊆ A. For every a ∈ X, we have f (a) ∈ f [X] and,

therefore, a ∈ f −1[ f [X]]. Consequently, X ⊆ f −1[ f [X]]. Conversely,
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suppose that a ∈ f −1[ f [X]] and set b ∶= f (a). Since b ∈ f [X] there is
some c ∈ X with f (c) = b. As f is injective this implies that a = c ∈ X.

(4)⇒ (3) If A = ∅ then there is nothing to do. Hence, assume that
A ≠ ∅. We define g as follows. For every b ∈ rng f , there is some element
a ∈ Awith f (a) = b. Since f −1(b) = f −1[ f [{a}]] = {a} it follows that
this element a is unique. Hence, fixing a0 ∈ Awe can define g by

g(b) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

a if f −1(b) = {a} ,
a0 if b ∉ rng f .

(3)⇒ (2) If A = ∅, there are no functions C → A and the claim holds
trivially. Hence, assume that A ≠ ∅ and let k be a function such that
k ○ f = idA. Then f ○ g = f ○ h implies

g = idA ○ g = k ○ f ○ g = k ○ f ○ h = idA ○ h = h .

(2)⇒ (1) Suppose that f is not injective. Then there are two elements
a, b ∈ A with a ≠ b such that f (a) = f (b). Let C ∶= [1] = {0} be a
set with a single element and define g , h ∶ C → A by g(0) ∶= a and
h(0) ∶= b. Then g ≠ h but f ○ g = f ○ h.

(c) (1)⇒ (2) Suppose that g ≠ h. There is some element b ∈ B with
g(b) ≠ h(b). Since f is surjective we can find an element a ∈ A with
f (a) = b. Hence, (g ○ f )(a) = g(b) ≠ h(b) = (h ○ f )(a).

(2)⇒ (1) Suppose that f is not surjective. Then there is some element
b ∈ B∖ rng f . Let C ∶= [2] = {0, 1} be a set with two elements and define
g , h ∶ B → C by

g(x) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

1 if x = b ,
0 otherwise,

and h(x) ∶= 0 , for all x ∈ B .

Then we have g ≠ h but g ○ f = h ○ f .
(3)⇒ (1) f [ f −1[B]] = B implies that rng f = B.
(1)⇒ (3) Let Y ⊆ B. If b ∈ f [ f −1[Y]] then there is some a ∈ f −1[Y]

with f (a) = b. Hence, a ∈ f −1[Y] implies that b = f (a) ∈ Y . Con-
sequently, we have f [ f −1[Y]] ⊆ Y .
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For the converse, let b ∈ Y . Since f is surjective there is some a ∈ A
with f (a) = b. Hence, a ∈ f −1[Y] and it follows that b = f (a) ∈
f [ f −1[Y]].

(d) Let k be a function such that f ○ k = idB . Then g ○ f = h○ f implies

g = g ○ idB = g ○ f ○ k = h ○ f ○ k = h ○ idB = h .

By (c), it follows that f is surjective. ◻

Remark. The converse of (d) also holds but we cannot prove it without
the Axiom of Choice, which we will introduce in Section a4.1 below.
Actually one can prove that the Axiom of Choice is equivalent to the
claim that, for every surjective function f , there exists some function g
with f ○ g = id.
Remark. The subset of all bijective functions f ∶ A→ A forms a group
since, by the preceding lemma, every element f has an inverse f −1.

Exercise 1.3. Let f ∶ A→ B and g ∶ B → C be functions. Prove that, if
f and g are (a) injective, (b) surjective, or (c) bijective then so is g ○ f .

We conclude this section with two important results about the exist-
ence of functions. The first one can be used to prove that there exists
a bijection between two given sets without constructing this function
explicitly.

Lemma 1.11. Let A ⊆ B ⊆ C be sets. If there exists a bijective function
f ∶ C → A, there is also a bijection g ∶ C → B.

Proof. Let

Z ∶=⋂{X ⊆ C ∣ C ∖ B ⊆ X and f [X] ⊆ X } .

Then C ∖ B ⊆ Z and f [Z] ⊆ Z. We claim that

g(x) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

f (x) if x ∈ Z ,
x otherwise,
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Figure 1.. The proof of Lemma 1.11.

is the desired bijection g ∶ C → B.
Let Y ∶= C∖Z be the complement of Z. Since g[Y] ⊆ Y and g[Z] ⊆ Z

it is sufficient to show that the restrictions g ↾Y ∶ Y → Y and g ↾Z ∶ Z →
Z ∩ B are bijections. Clearly, g ↾ Y = idY is bijective and g ↾ Z = f ↾ Z is
injective. Therefore, we only need to prove that f [Z] = Z ∩ B.
By definition of Z, we have f [Z] ⊆ Z ∩ rng f ⊆ Z ∩ B. For the other

inclusion, suppose that there exists some element a ∈ (Z ∩ B) ∖ f [Z].
Since a ∈ B the set X ∶= Z ∖ {a} satisfies C ∖ B ⊆ X and f [X] ⊆ X. By
definition of Z, it follows that Z ⊆ X. Contradiction. ◻

Theorem 1.12 (Bernstein). If there are injective functions f ∶ A→ B and
g ∶ B → A then there exists a bijective function h ∶ A→ B.

Proof. We have g[ f [A]] ⊆ g[B] ⊆ A. Since f and g are injective so is
their composition g○ f .When regarded as function g○ f ∶ A→ g[ f [A]] it
is also surjective. Hence, by the preceding lemma, there exists a bijective
mapping h ∶ A→ g[B]. Since k ∶= g−1 ↾ g[B] ∶ g[B] → B is bijective it
follows that so is k ○ h ∶ A→ B. ◻

The second result deals with functions between a set and its power
set.

Theorem 1.13 (Cantor). For every set a, there exists an injective function
a → ℘(a) but no surjective one.
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Proof. The function f ∶ a → ℘(a) with f (x) ∶= {x} is injective.
For a contradiction, suppose that there is also a surjective function

f ∶ a → ℘(a). We define the set

z ∶= { x ∈ a ∣ x ∉ f (x) } ⊆ a .

Since f is surjective there is some element b ∈ a with f (b) = z. By
definition of z, we have

b ∈ z iff b ∉ f (b) = z .

A contradiction. ◻

Corollary 1.14. For all sets a, there are no injective functions ℘(a)→ a.

Proof. Suppose that f ∶ ℘(a) → a is injective. We define a function
g ∶ a → ℘(a) by

g(x) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

f −1(x) if x ∈ rng f ,
∅ otherwise .

Note that g is well-defined since f is injective. Furthermore, we have
g ○ f = id℘(A). Hence, Lemma 1.10 (d) implies that g is surjective. This
contradicts the Theorem of Cantor. ◻

2. Products and unions
So far, we have defined cartesian products of finitely many sets and
tuples of finite length. In this section we will show how to generalise
these definitions to infinitely many factors.
Remark. (a) There is a canonical bijection π ∶ A[n] → An between the
set A[n] of all functions [n]→ A and the n-th power An of A. π maps a
function f ∶ [n]→ A to the tuple

π( f ) ∶= ⟨ f (0), . . . , f (n − 1)⟩ ,
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and its inverse π−1 maps a tuple ⟨a0 , . . . , an−1⟩ to the function f ∶ [n]→
Awith f (i) = a i .

(b) There is also a canonical bijection π ∶ (A× B) × C → A× (B × C)
defined by

π⟨⟨a, b⟩, c⟩ ∶= ⟨a, ⟨b, c⟩⟩ .

(c) Finally, let us define a canonical bijection π ∶ AB×C → (AC)B that
maps a function f ∶ B × C → A to the function g ∶ B → AC with

g(b) ∶= hb where hb(c) ∶= f (b, c) , for b ∈ B, c ∈ C .

In the theory of programming languages this transformation of a func-
tion B × C → A into a function B → AC is called currying.

Part (a) of the above remark gives a hint on how to generalise finite
tuples. A tuple of length n corresponds to a map [n]→ A. Therefore, we
define an infinite tuple as map N→ A.

Definition 2.1. (a) Let A be a class and I a set. A function f ∶ I → A is
called a sequence, or family, over I. If f (i) = a i then we also write f in
the form (a i)i∈I .

(b) Let I be a set, (A i)i∈I a sequence of sets, and A ∶= ⋃{A i ∣ i ∈ I }
their union. The product of (A i)i∈I is the class

∏
i∈I

A i ∶= { f ∈ AI ∣ f (i) ∈ A i for all i } .

(c) Let (A i)i∈I be a sequence of sets and k ∈ I. The projection to the
k-th coordinate is the map

prk ∶∏
i∈I

A i → Ak with prk( f ) ∶= f (k) .

Remark. (a) If A i = A, for all i ∈ I, then∏i∈I A i = AI .
(b) As we have seen above there is a canonical bijection between

A0 × A1 and∏i∈[2] A i . In the following we will not distinguish between
these sets.
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Let us introduce some notation and conventions regarding sequences.
To indicate that a certain variable refers to a sequence we will write it
with a bar ā. If the sequence is over I, the components of ā will always
be (a i)i∈I . Sometimes we will not distinguish between a sequence ā =
(a i)i∈I and its range rng ā = { a i ∣ i ∈ I }. In particular, we write ā ∪ b̄
instead of rng ā ∪ rng b̄ and, if we do not want to specify the index set I,
we will write ā ⊆ A instead of ā ∈ AI . Finally, for a function f ∶ A→ B,
we write f (ā) to denote the sequence ( f (a i))i∈I .

Lemma 2.2. Let A be a set and (B i)i∈I a sequence of sets. For every
sequence ( f i)i∈I of functions f i ∶ A → B i there exists a unique function
g ∶ A→∏i B i such that

pri ○ g = f i , for all i ∈ I .

Proof. The function

g(a) ∶= ( f i(a))i∈I

has obviously the desired properties. We have to show that it is unique.
Let h ∶ A → ∏i B i be another such function. If g ≠ h, there is some
element a ∈ A such that g(a) ≠ h(a). Let (b i)i∈I ∶= h(a). For every
i ∈ I, we have

b i = (pri ○ h)(a) = f i(a) .

Hence g(a) = ( f i(a))i = (b i)i = h(a). A contradiction. ◻

Definition 2.3. The disjoint union of a sequence (A i)i∈I of sets is the
class

⊍
i∈I

A i ∶= { ⟨i , a⟩ ∣ i ∈ I, a ∈ A i } .

Similarly, if A and B are classes then we can define their disjoint union
as

A⊍ B ∶= ({[0]} × A) ∪ ({[1]} × B) .
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The k-th insertion is the canonical map

ink ∶ Ak →⊍
i∈I

A i with ink(a) ∶= ⟨k, a⟩ .

Remark. If A i = A, for all i ∈ I, then ⊍i∈I A i = I × A.

Lemma 2.4. Let B be a set and (A i)i∈I a sequence of sets. For every
sequence ( f i)i∈I of functions f i ∶ A i → B there exists a unique function
g ∶ ⊍i A i → B such that

g ○ ini = f i , for all i ∈ I .

Proof. The function

g⟨i , a⟩ ∶= f i(a)

has obviously the desired properties. We have to show that it is unique.
Let h ∶ ⊍i A i → B be another such function. If g ≠ h then there is some
element ⟨k, a⟩ ∈ ⊍i A i such that g⟨k, a⟩ ≠ h⟨k, a⟩. We have

h⟨k, a⟩ = (h ○ ink)(a) = fk(a) = g⟨k, a⟩ .

A contradiction. ◻

3. Graphs and partial orders
When considering relations it is frequently necessary to specify the sets
they are over.

Definition 3.1. A graph is a pair ⟨A, R⟩ where R ⊆ A × A is a binary
relation on A.

More generally one can consider sets together with several relations and
functions. This will lead to the notion of a structure in Chapter b1.

Definition 3.2. Let ⟨A, R⟩ be a graph.
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(a) R is reflexive if ⟨a, a⟩ ∈ R, for all a ∈ A.

(b) R is irreflexive if ⟨a, a⟩ ∉ R, for all a ∈ A.

(c) R is symmetric if we have ⟨a, b⟩ ∈ R if, and only if, ⟨b, a⟩ ∈ R, for
all a, b ∈ A.

(d) R is antisymmetric if ⟨a, b⟩ ∈ R and ⟨b, a⟩ ∈ R implies a = b.

(e) R is transitive if ⟨a, b⟩ ∈ R and ⟨b, c⟩ ∈ R implies ⟨a, c⟩ ∈ R, for all
a, b, c ∈ A.

Note that, for the definition of reflexivity, it is important to specify the
set A. If ⟨A, R⟩ is reflexive and A ⊂ B then ⟨B, R⟩ is not reflexive.

Example. (a) The relation A× A is reflexive, symmetric, and transitive.
It is irreflexive if, and only if, A = ∅, and it is antisymmetric if, and only
if, A contains at most one element.

(b) The diagonal idA = { ⟨a, a⟩ ∣ a ∈ A} is reflexive, symmetric,
antisymmetric, and transitive. It is irreflexive if, and only if, A = ∅.

(c) The empty relation ∅ ⊆ A× A is irreflexive, symmetric, antisym-
metric, and transitive. It is reflexive if, and only if, A = ∅.

Definition 3.3. (a) A (non-strict) partial order is a graph ⟨A, ≤⟩ where
≤ is reflexive, transitive, and antisymmetric.

(b) A strict partial order is a graph ⟨A, <⟩ where < is irreflexive and
transitive.

(c) A partial order ⟨A, ≤⟩ is linear, or total, if

a ≤ b or b ≤ a , for all a, b ∈ A .

(d) Instead of saying that ⟨A, R⟩ is a partial or linear order we also say
that R is a partial/linear order on A, or that R orders A partially/linearly.

(e) If A = ⟨A, ≤⟩ is a partial order, we denote by Aop ∶= ⟨A, ≤−1⟩ the
graph where the order relation is reversed. Aop is called the opposite
order.
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Remark. (a) To each non-strict partial order ≤ on Awe can associate the
strict partial order

a < b : iff a ≤ b and a ≠ b .

Similarly, if < is a strict partial order on A, we can define a non-strict
version by

a ≤ b : iff a < b or a = b .

(b) If A is a partial order then so is Aop.

Example. (a) The subset relation ⊆ is a partial order on S.
(b) The usual ordering ≤ is a linear order on the rational numbers Q.
(c) The divisibility relation

a ∣ b : iff b = ac for some c

is a partial order on the natural numbers N.

Definition 3.4. Let A = ⟨A, ≤⟩ be a partial order.
(a) An initial segment of A is a subset I ⊆ A such that a ∈ I and b ≤ a

implies b ∈ I. Similarly, a final segment of A is a subset F ⊆ A such that
a ∈ F and b ≥ a implies b ∈ F.

(b) A set X ⊆ A generates the segments

⇓AX ∶= { a ∈ A ∣ a ≤ b for some b ∈ X } ,
and ⇑AX ∶= { a ∈ A ∣ a ≥ b for some b ∈ X } .

For X = {x}, we also write ⇓Ax and ⇑Ax. Similarly, we define

↓AX ∶= { a ∈ A ∣ a < b for some b ∈ X } ,
and ↑AX ∶= { a ∈ A ∣ a > b for some b ∈ X } .

Finally, we set

[a, b]A ∶= ⇑Aa ∩ ⇓Ab and (a, b)A ∶= ↑Aa ∩ ↓Ab .
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(c) Let X ⊆ A and a ∈ X. We call a the greatest element of X if x ≤ a,
for all x ∈ X. And we say that a is maximal if there is no x ∈ X with
a < x. Least and minimal elements are defined analogously. We denote
the greatest element of X by maxA X and the least element by minA X,
provided these elements exist.

(d) Let X ⊆ A. We say that a is an upper bound of X if x ≤ a, for all
x ∈ X. If a is an upper bound of X and a ≤ b, for every other upper
bound b of X, then a is the least upper bound, or supremum, of X. If the
least upper bound of X exists, we denote it by supA X.

The notion of a (greatest) lower bound is defined analogously. The
greatest lower bound is also called the infimum of X. We denote it by
infA X. If the order A is understood we will omit the subscript A and we
just write sup X and inf X.

(e) A linearly ordered subset C ⊆ A is called a chain.

Example. (a) Let Q ∶= ⟨Q, ≤⟩. The set I ∶= { x ∈ Q ∣ x <
√

2} is an initial
segment of Q. Every rational number y >

√
2 is an upper bound of I but

I has no least upper bound.
(b) Consider ⟨N, ∣ ⟩. Its least element is the number 1 and its greatest

element is 0. The least upper bound of two elements [k], [m] ∈ N is
their least common multiple lcm(k,m), and their greatest lower bound
is their greatest common divisor gcd(k,m). The set P ⊆ N of all prime
numbers has the least upper bound 0 and the greatest lower bound 1.
The set { 2n ∣ n ∈ N} of all powers of two forms a chain.

Exercise 3.1. Consider ⟨B, ⊆⟩ where

B ∶= {X ⊆ N ∣ X is finite or N ∖ X is finite} .

(a) Construct a set X ⊆ B that has no minimal element.
(b) Construct a set X ⊆ B with lower bounds but without infimum.

Lemma 3.5. Let ⟨A, ≤⟩ be a partial order. If A is a set, the following
statements are equivalent :

(1) Every subset X ⊆ A has a supremum.
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(2) Every subset X ⊆ A has an infimum.

Proof. We only prove (1)⇒ (2). The other direction follows in exactly
the same way. Let X ⊆ A and set

C ∶= { a ∈ A ∣ a is a lower bound of X } .

By assumption, c ∶= supC exists. We claim that inf X = c. Let b ∈ X. By
definition, we have a ≤ b, for all a ∈ C. Hence, b is an upper bound of C
and we have b ≥ supC = c. As b was arbitrary it follows that c is a lower
bound of X. If a is an arbitrary lower bound of X, we have a ∈ C, which
implies that a ≤ c. Consequently, c is the greatest lower bound of X. ◻

Definition 3.6. A partial order ⟨A, ≤⟩ is complete if every subset X ⊆ A
has an infimum and a supremum.

Remark. Every complete partial order has a least element � ∶= sup∅
and a greatest element ⊺ ∶= inf ∅.

Example. (a) Let A be a set. The partial order ⟨℘(A), ⊆⟩ is complete. If
X ⊆ ℘(A) then

sup X =⋃X ∈ ℘(A) and inf X =⋂X ∈ ℘(A) .

(b) The order ⟨R, ≤⟩ is complete. ⟨Q, ≤⟩ is not since the set

{ x ∈ Q ∣ x ≤ π }

has no least upper bound in Q.
(c) The order ⟨N, ≤⟩ is not complete since inf ∅ and supN do not exist.
(d) Let A = ⟨A, ≤⟩ be an arbitrary partial order. We can construct a

complete partial order C = ⟨C , ⊆⟩ containing A as follows. Let C ⊆ ℘(A)
be the set of all initial segments of A ordered by inclusion. The desired
embedding f ∶ A→ C is given by f (a) ∶= ⇓Aa.
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Next we turn to the study of functions between partial orders. In
particular, we will consider functions f ∶ A → A mapping one partial
order into itself. To simplify notation, we will write

f ∶ A→ B ,

for partial orders A = ⟨A, ≤A⟩ and B = ⟨B, ≤B⟩, to denote that f is a
function f ∶ A→ B.

Definition 3.7. Let A = ⟨A, ≤A⟩ and B = ⟨B, ≤B⟩ be partial orders.
(a) A function f ∶ A→ B is increasing if

a ≤A b implies f (a) ≤B f (b) , for all a, b ∈ A ,

and f is strictly increasing if

a <A b implies f (a) <B f (b) , for all a, b ∈ A .

(b) A function f ∶ A→ B is an embedding if we have

a ≤A b iff f (a) ≤B f (b) , for all a, b ∈ A .

A bijective embedding is called an isomorphism. If there exists an iso-
morphism f ∶ A→ B then we say that A and B are isomorphic and we
write A ≅ B.

Remark. Every isomorphism is strictly increasing.

Exercise 3.2. Define a function that is
(a) increasing but not strictly increasing ;

(b) strictly increasing but not an embedding ;

(c) an embedding but not an isomorphism.

Exercise 3.3. Construct a strictly increasing function

f ∶ ⟨N, ∣ ⟩→ ⟨℘(N), ⊆⟩ .
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Lemma 3.8. Let ⟨A, ≤A⟩ and ⟨B, ≤B⟩ be partial orders and h ∶ A→ B an
increasing function. Let C ⊆ A and a ∈ A.

(a) If a is an upper bound of C then h(a) is an upper bound of h[C].

(b) If a is a lower bound of C then h(a) is a lower bound of h[C].

Lemma 3.9. Let ⟨A, ≤A⟩ and ⟨B, ≤B⟩ be partial orders and h ∶ A→ B an
embedding. Let C ⊆ A and a ∈ A.

(a) h(a) = sup h[C] implies a = supC .

(b) h(a) = inf h[C] implies a = inf C .

Proof. (a) Since h is an embedding it follows that h(c) ≤B h(a) implies
c ≤A a, for c ∈ C. Hence, a is an upper bound of C. To show that
it is the least one, suppose that b is another upper bound of C. Then
c ≤A b, for c ∈ C, implies h(c) ≤B h(b). Hence, h(b) is an upper bound
of h[C]. Since h(a) is the least such bound it follows that h(a) ≤B h(b).
Consequently, we have a ≤A b, as desired.

(b) h is also an embedding of ⟨A, ≥A⟩ into ⟨B, ≥B⟩. Hence, (b) follows
from (a) by reversing the orders. ◻

Corollary 3.10. Let ⟨F , ⊆⟩ be a partial order with F ⊆ ℘(A) and C ⊆ F.

(a) ⋃C ∈ F implies supC = ⋃C.

(b) ⋂C ∈ F implies inf C = ⋂C.

Proof. We can apply Lemma 3.9 to the inclusion map F → ℘(A). ◻

Corollary 3.11. Let A = ⟨A, ≤⟩ be a partial order. If B ⊆ A is a nonempty
set such that

infA X ∈ B and supA X ∈ B , for every nonempty X ⊆ B ,

then B ∶= ⟨B, ≤⟩ is a complete partial order where, for every nonempty
subset X ⊆ B, we have

infB X = infA X and supB X = supA X .
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Proof. If X ⊆ B is nonempty then, applying Lemma 3.9 to the inclusion
map B→ A, it follows that

infB X = infA X and supB X = supA X .

In particular, infB X and supB X exist. For the empty set, it follows
similarly that

infB∅ = supB B = supA B ∈ B ,
and supB∅ = infB B = infA B ∈ B .

Consequently, B is complete. ◻

We have seen that although increasing functions preserve the ordering
of elements they do not necessarily preserve supremums and infimums.
Let us take a look at functions that do.

Definition 3.12. Let ⟨A, ≤A⟩ and ⟨B, ≤B⟩ be partial orders. A function
f ∶ A → B is continuous if, whenever a nonempty chain C ⊆ A has a
supremum then f [C] also has a supremum and we have

sup f [C] = f (supC) .

f is called strictly continuous if it is continuous and injective.

Remark. Every (strictly) continuous function is (strictly) increasing.

Exercise 3.4. Prove that continuous functions are increasing.

Example. (a) Let ⟨A, ≤⟩ be the linear order where A = N ⊍N and

⟨i , a⟩ ≤ ⟨k, b⟩ : iff i < k , or i = k and a ≤ b .

⟨0, 0⟩ ⟨0, 1⟩ ⟨0, 2⟩ ⟨0, 3⟩ ⟨1, 0⟩ ⟨1, 1⟩ ⟨1, 2⟩ ⟨1, 3⟩
. . . . . .
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The function f ∶ A→ A ∶ ⟨i , a⟩↦ ⟨i , a + 1⟩ is not continuous. Consider
the initial segment X ∶= {0} ×N = ↓⟨1, 0⟩ ⊆ A. We have sup X = ⟨1, 0⟩
but

sup f [X] = ⟨1, 0⟩ < ⟨1, 1⟩ = f (⟨1, 0⟩) .

(b) Let A be a set and ⟨F , ⊆⟩ the partial order with

F ∶= {X ⊆ A ∣ A∖ X is finite} .

For every bijective function σ ∶ A→ Awe obtain a continuous mapping
f ∶ F → F by setting

f (X) ∶= { σ(x) ∣ x ∈ X } .

Lemma 3.13. Every isomorphism f ∶ A→ B is strictly continuous.

Proof. Let C ⊆ A be a nonempty chain with supremum. For every a ∈ C,
we have a ≤ supC, which implies that f (a) ≤ f (supC). Hence,

sup f [C] ≤ f (supC) .

For the converse, let b ∶= sup f [C]. By Lemma 3.9, it follows that supC =
f −1(b). ◻

4. Fixed points and closure operators

Many objects can be defined as solution to an equation of the form
x = f (x). Such solutions are called fixed points of the function f . For
example, the solutions of a system of linear equations Ax = b are exactly
the fixed points of the function

f (x) ∶= Ax + x − b .
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Figure 2.. Fixed points of f (x) = x3 − x
2 + x + 

Definition 4.1. Let f ∶ A → A be a function. An element a ∈ A with
f (a) = a is called a fixed point of f . The class of all fixed points of f is
denoted by

fix f ∶= { a ∈ A ∣ f (a) = a } .

We denote the least and greatest fixed point of f , if it exists, by

lfp f ∶= minfix f and gfp f ∶= maxfix f .

Example. (a) Let ⟨R, <⟩ be the order of the real numbers. The function

f (x) ∶= x3 − x2 + x + 

has 3 fixed points : fix f = {−1, 1, 3}.
(b) Consider ⟨N, ≤⟩. The function f ∶ N → N with f (n) ∶= n + 1 has

no fixed points.
(c) Consider ⟨℘[2], ⊆⟩. The function f ∶ ℘[2]→ ℘[2] with

f (x) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

{0} if x = ∅ ,
x otherwise ,
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has the fixed points {0}, {1}, {0, 1}. It has no least fixed point.
(d) Consider ⟨F , ⊆⟩ where

F ∶= {X ⊆ N ∣ X or N ∖ X is finite} .

The function f ∶ F → F defined by

f (X) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

X ∪ {1 +max X} if X is finite,
X otherwise,

has fixed points

fix f = {X ⊆ N ∣ N ∖ X is finite} ,

but no least one.

Exercise 4.1. Let A = ⟨℘(N), ⊆⟩. Construct a function f ∶ A → A that
has a least fixed point but no greatest one.

Not every function has fixed points. The next theorem presents an
important special case where we always have a least fixed point. In Sec-
tion a3.3 wewill collect further results about the existence of fixed points
and methods to compute them.

Theorem 4.2 (Knaster, Tarski). Let ⟨A, ≤⟩ be a complete partial order
where A is a set. Every increasing function f ∶ A → A has a least fixed
point and we have

lfp f = inf { a ∈ A ∣ f (a) ≤ a } .

Proof. Set B ∶= { a ∈ A ∣ f (a) ≤ a } and b ∶= inf B. For every a ∈ B,
b ≤ a implies f (b) ≤ f (a) ≤ a, since f is increasing. Hence, f (b) is a
lower bound of B and it follows that f (b) ≤ inf B = b. This implies that
f ( f (b)) ≤ f (b) and, by definition of B, it follows that f (b) ∈ B. Hence,
f (b) ≥ inf B = b. Consequently, we have f (b) = b and b is a fixed point
of f .

Let a be another fixed point of f . Then f (a) = a implies a ∈ B and
we have b = inf B ≤ a. Hence, b is the least fixed point of f . ◻
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Theorem 4.3. Let ⟨A, ≤⟩ be a complete partial order where A is a set and
let f ∶ A→ A be increasing. The set F ∶= fix f is nonempty and F ∶= ⟨F , ≤⟩
forms a complete partial order where, for X ⊆ F,

infF X = supA { a ∈ A ∣ a ≤ infA X and f (a) ≥ a } ,
supF X = infA { a ∈ A ∣ a ≥ supA X and f (a) ≤ a } .

Proof. We have already shown in the preceding theorem that F ≠ ∅. It
remains to prove that F is complete. For X ⊆ A, let U ∶= ⇑ supA X ⊆ A
be the set of all upper bounds of X. If Z ⊆ U then

supA Z ≥ supA X and infA Z ≥ supA X .

It follows that the partial order ⟨U , ≤⟩ is complete. Furthermore, if a ∈ U
and x ∈ X then a ≥ x implies f (a) ≥ f (x). Hence, f ↾U is an increasing
function U → U . By Theorem 4.2, it follows that

supF X = lfp ( f ↾U) = infA { a ∈ U ∣ f (a) ≤ a } ,

as desired. The claim for infF X follows by applying the equation for
supF X to the opposite order Aop. ◻

Example. Consider a closed interval [a, b] ⊆ R of the real line.
(a) Since the order ⟨[a, b], <⟩ is complete, it follows by the Theorem

of Knaster and Tarski that every increasing function f ∶ [a, b]→ [a, b]
has a fixed point.

(b) Let f ∶ [0, 2]→ [0, 2] be the polynomial function

f (x) ∶= x3 − x2 + x + 

from Figure 2. We have { x ∣ f (x) ≤ x } = [1, 2] and lfp f = 1.
(c) The order ⟨R, <⟩ is not complete. Again, let f ∶ R → R by the

function from Figure 2. We have already seen that its fixed points are
−1, 1, and 3. But the set

{ x ∣ f (x) ≤ x } = (−∞,−1] ∪ [1, 3]

has no minimal element.
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As a special case of Theorem 4.3 we consider complete partial orders
obtained via closure operators.

Definition 4.4. Let A be a class.
(a) A closure operator on A is a function c ∶ ℘(A)→ ℘(A) such that,

for all x , y ∈ ℘(A),
◆ x ⊆ c(x) ,
◆ c(c(x)) = c(x) , and
◆ x ⊆ y implies c(x) ⊆ c(y) .

(b) A set x ⊆ A is c-closed if c(x) = x.
(c) A closure operator c has finite character if, for all sets x ⊆ A, we

have

c(x) =⋃{ c(x0) ∣ x0 ⊆ x is finite} .

If c has finite character we also say that c is algebraic.
(d) A closure operator c is topological if we have
◆ c(∅) = ∅ and
◆ c(x ∪ y) = c(x) ∪ c(y) , for all x , y ∈ ℘(A).

Remark. Let c be a closure operator on A.
(a) The class of c-closed sets is fix c = rng c.
(b) If the class A is a set then it is c-closed.

Example. (a) LetV be a vector space. For X ⊆ V , let ⟪X⟫ be the subspace
of V spanned by X. The function X ↦ ⟪X⟫ is a closure operator with
finite character.

(b) Let X be a topological space. For A ⊆ X, let c(A) be the topological
closure of A in X. Then c is a topological closure operator.

(c) Let A be a set and a ∈ A. The functions c, d ∶ ℘(A)→ ℘(A) with

c(X) ∶= X and d(X) ∶= X ∪ {a}

are closure operators on A.
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Exercise 4.2. Let A = ⟨A, ≤⟩ be a partial order. For X ⊆ A, we define

c(X) ∶= { supC ∣ C ⊆ X is a nonempty chain with supremum} .

(a) Prove that the function c is a topological closure operator on A.
(b) Let B be a second partial order and d the corresponding closure

operator. Prove that a function f ∶ A→ B is continuous if, and only if,
every d-closed set X ∈ fix d has a c-closed preimage f −1[X] ∈ fix c.

Exercise 4.3. Let ⟨A, ≤⟩ be a partial order. For sets X ⊆ A, we define

U(X) ∶= { a ∈ A ∣ a is an upper bound of X } ,
L(X) ∶= { a ∈ A ∣ a is a lower bound of X } .

Prove that the function c ∶ X ↦ L(U(X)) is a closure operator on A.

Lemma 4.5. Let c be a closure operator on A and x , y ⊆ A sets.
(a) c(x) ∪ c(y) ⊆ c(x ∪ y) .
(b) c(x ∪ y) = c(c(x) ∪ c(y)) .

Proof. (a) By monotonicity of c, we have c(x) ⊆ c(x ∪ y) and c(y) ⊆
c(x ∪ y).

(b) It follows from x ∪ y ⊆ c(x) ∪ c(y) and (a) that

c(x ∪ y) ⊆ c(c(x) ∪ c(y)) ⊆ c(c(x ∪ y)) = c(x ∪ y) . ◻

Lemma 4.6. Let c be a closure operator on A with finite character. For
every chain C ⊆ fix c, we have

c(⋃C) = ⋃C .

Proof. By definition, we have ⋃C ⊆ c(⋃C). For the converse, let x0 ⊆
⋃C be finite. Since C is linearly ordered by ⊆ there exists some element
x ∈ C with x0 ⊆ x. Hence, we have c(x0) ⊆ c(x) = x ⊆ ⋃C. It follows
that

c(⋃C) =⋃{ c(x0) ∣ x0 ⊆ ⋃C finite} ⊆ ⋃C . ◻
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If c is a closure operator, the set C ∶= fix c of c-closed sets has the
following properties.

Definition 4.7. A set C ⊆ ℘(A) is called a system of closed sets if we have

◆ A ∈ C and

◆ ⋂ Z ∈ C, for every Z ⊆ C.

A pair ⟨A, C⟩ where C ⊆ ℘(A) is a system of closed sets is called a closure
space.

Lemma 4.8. (a) If c is a closure operator on A then fix c forms a system
of closed sets.

(b) If C ⊆ ℘(A) is a system of closed sets then the mapping

c ∶ X ↦⋂{C ∈ C ∣ X ⊆ C }

defines a closure operator on Awith fix c = C.

The following theorem states that the family of c-closed sets forms a
complete partial order. We can use this result to prove that a given partial
order A is complete by defining a closure operator whose closed sets are
exactly the elements of A. An example of such a proof is provided in
Corollary 4.17.

Theorem 4.9. Let A be a set and c a closure operator on A. The graph
⟨F , ⊆⟩ with F ∶= fix c forms a complete partial order with

inf X = ⋂X and sup X = c(⋃X) , for all X ⊆ F .

Proof. Since closure operators are increasing we can apply Theorem 4.3.
By Lemma 4.8 (b), it follows that

sup X =⋂{ Z ⊆ A ∣ Z ⊇ ⋃X and c(Z) ⊆ Z }
=⋂{ Z ⊆ A ∣ Z ⊇ ⋃X and c(Z) = Z }
= c(⋃X) ,
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and inf X =⋃{ Z ⊆ A ∣ Z ⊆ ⋂X and c(Z) ⊇ Z }
=⋃{ Z ⊆ A ∣ Z ⊆ ⋂X }
= ⋂X . ◻

Corollary 4.10. Let c be a closure operator on A and set F ∶= fix c. The
operator c is continuous if we consider it as a function

c ∶ ⟨℘(A), ⊆⟩→ ⟨F , ⊆⟩ .

Proof. For a nonempty chain X ⊆ ℘(A), we have

c(sup X) = c(⋃X) ⊆ c(⋃ c[X]) = sup c[X]
⊆ sup{c(sup X)} = c(sup X) . ◻

As an application of closure operators we consider equivalence rela-
tions.

Definition 4.11. (a) A binary relation ∼ ⊆ A×A is an equivalence relation
on A if it is reflexive, symmetric, and transitive.

(b) Let ∼ ⊆ A× A be an equivalence relation. If A is a set, we define
the ∼-class of an element a ∈ A by

[a]∼ ∶= { b ∈ A ∣ b ∼ a } .

For proper classes A, we set

[a]∼ ∶= cut{ b ∈ A ∣ b ∼ a } .

Note that, despite the name, a ∼-class is always a set. We denote the class
of all ∼-classes by

A/∼ ∶= { [a]∼ ∣ a ∈ A} .

Example. (a) The diagonal idA is the smallest equivalence relation on A.
The largest one is the full relation A× A.

(b) The isomorphism relation ≅ is an equivalence relation on the class
of all partial orders.
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Lemma 4.12. Let ∼ be an equivalence relation on A and a, b ∈ A. Then

a ∼ b iff [a]∼ = [b]∼ iff [a]∼ ∩ [b]∼ ≠ ∅ .

Remark. Let A be a set. A partition of A is a set P ⊆ ℘(A) of nonempty
subsets of A such that A = ⋃ P and p ∩ q = ∅, for all p, q ∈ P with p ≠ q.

If ∼ is an equivalence relation on A then A/∼ forms a partition on A.
Conversely, given a partition P of A, we can define an equivalence rela-
tion ∼P on Awith A/∼P = P by setting

a ∼P b : iff there is some p ∈ P with a, b ∈ p .

Definition 4.13. Let A be a set and R ⊆ A × A a binary relation on A.
The transitive closure of R is the relation

TC(R) ∶=⋂{ S ⊆ A× A ∣ S ⊇ R is transitive} .

Since the family of transitive relations is closed under intersections
we can use Lemma 4.8 (b) to prove that TC is a closure operator.

Lemma 4.14. Let A be a class. TC is a closure operator on A× A.

Exercise 4.4. Prove Lemma 4.14.

Lemma 4.15. If R ⊆ A× A is a symmetric relation then so is TC(R).

Proof. Let S ∶= TC(R)∩(TC(R))−1. Since R is symmetricwe have R ⊆ S.
We claim that S is transitive.

Let ⟨a, b⟩, ⟨b, c⟩ ∈ S. Then ⟨a, b⟩, ⟨b, c⟩ ∈ TC(R) and ⟨b, a⟩, ⟨c, b⟩ ∈
TC(R). Therefore, we have ⟨a, c⟩ ∈ TC(R) and ⟨c, a⟩ ∈ TC(R). This
implies that ⟨a, c⟩ ∈ S, as desired.
We have shown that S is a transitive relation containing R. By the

definition of TC it follows that TC(R) ⊆ S = TC(R) ∩ TC(R)−1. This
implies that TC(R)−1 = TC(R). Hence, TC(R) is symmetric. ◻

Lemma 4.16. Let R ⊆ A× A be a binary relation.
(a) The smallest reflexive relation containing R is R ∪ idA.
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(b) The smallest symmetric relation containing R is R ∪ R−1.

(c) The smallest transitive relation containing R is TC(R).

(d) The smallest equivalence relation containing R is TC(R∪R−1 ∪ idA).

Proof. (a) R ∪ idA is obviously reflexive and it contains R. Conversely,
suppose that S ⊇ R is reflexive. Then idA ⊆ S implies that R ∪ idA ⊆ S.

(b) is proved analogously.
(c) Let S ⊇ R be transitive. Then the intersection in the definition

of TC contains S. Hence, TC(R) ⊆ S. Furthermore, we have R ⊆ TC(R)
by definition. It remains to prove that TC(R) is transitive.

Let ⟨a, b⟩, ⟨b, c⟩ ∈ TC(R). Then we have ⟨a, b⟩, ⟨b, c⟩ ∈ S, for every
transitive relation S ⊇ R. Hence, we have ⟨a, c⟩ ∈ S, for each such
relation S. This implies that ⟨a, c⟩ ∈ TC(R).

(d) Set E ∶= TC(R ∪ R−1 ∪ idA). Clearly, we have R ⊆ E and, if S ⊇ R is
an equivalence relation then E ⊆ S. Hence, it is remains to prove that E is
an equivalence relation. It is transitive by (c), symmetric by Lemma 4.15,
and E is reflexive since idA ⊆ TC(R ∪ R−1 ∪ idA). ◻

Corollary 4.17. Let A be a set and F ⊆ ℘(A×A) the set of all equivalence
relations on A. Then ⟨F , ⊆⟩ forms a complete partial order. If X ⊆ F is
nonempty then we have

inf X = ⋂X and sup X = TC(⋃X) .

Proof. By Lemma 4.16, we have F = fix c where c is the closure operator
with

c(R) ∶= TC(R ∪ R−1 ∪ idA) .

The relation E ∶= ⋃X is reflexive and symmetric since X is nonempty.
Hence, we have TC(E ∪ E−1 ∪ idA) = TC(E). Consequently, the claim
follows from Theorem 4.9. ◻
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1. Well-orders
When defining stages we frequently used the fact that any class of stages
has a minimal element. In this section we study arbitrary orders with
this property.

Definition 1.1. Let ⟨A, R⟩ be a graph.
(a) An element a ∈ A is R-minimal if ⟨b, a⟩ ∈ R implies b = a.
(b) A relation R is left-narrow if R−1(a) is a set, for every set a ∈ rng R.
(c) R is well-founded if every nonempty subset B ⊆ A contains an

R-minimal element. A left-narrow, well-founded linear order is called a
well-order.

Example. (a) ⟨N, ≤⟩ is a well-order.
(b) ⟨N, ∣ ⟩ is a well-founded partial order.
(c) The membership relation ∈ is a well-founded partial order on S. It

is a well-order on the class of all stages.
(d) ⟨℘(N), ⊆⟩ is not well-founded.
(e) A partial order ⟨A, ≤⟩ is left-narrow if, and only if, ⇓a is a set, for

all a ∈ A.

Exercise 1.1. Prove that ⟨℘(N), ⊆⟩ is not well-founded.

Lemma 1.2. If ⟨A, R⟩ is a well-founded graph and B ⊆ A then ⟨B, R∣B⟩ is
also well-founded.

Proof. Every nonempty subset C ⊆ B is also a nonempty subset of A and
has an R-minimal element. ◻
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Lemma 1.3. If ⟨A, ≤⟩ is a well-founded and left-narrow partial order,
there exists no infinite sequence (an)n∈N ∈ AN such that an ≠ an+1 and
an+1 ≤ an , for all n.

Proof. If there exists such an infinite sequence then the class rng ā =
{ an ∣ n ∈ N} is nonempty and has no ≤-minimal element. Furthermore,
rng ā ⊆ ⇓a0 is a set since the order is left-narrow. ◻

The reason why well-founded relations are of interest is that these are
exactly those relations that admit proofs by induction. As the theorem
below shows we can prove that every element of a well-founded partial
order ⟨A, ≤⟩ satisfies a given property φ by showing that, if every element
b < a satisfies φ then a also satisfies φ.

Lemma 1.4. Let ⟨A, ≤⟩ be a well-founded, left-narrow partial order. Every
nonempty subclass X ⊆ A has a minimal element.

Proof. Let X ⊆ A be nonempty and fix some element a ∈ X. ⇓a is a set
since ≤ is left-narrow. Hence, Y ∶= X ∩ ⇓a is a nonempty subset of A
and has a minimal element b. Note that b ∈ Y ⊆ X and, if c ∈ X is some
element with c ≤ b ≤ a, then c ∈ Y . Therefore, it follows that b is also a
minimal element of X. ◻

Theorem 1.5. Let ⟨A, ≤⟩ be a well-founded, left-narrow partial order. If
X ⊆ A is a subclass such that

↓a ⊆ X implies a ∈ X , for all a ∈ A ,

then X = A.

Proof. Let X ⊆ A be a class as above. For a contradiction, suppose that
X ≠ A. Fix some element a ∈ A∖ X. Since ≤ is left-narrow B ∶= ⇓a∖ X is
a set. Hence, B has a ≤-minimal element b. It follows that ↓b ⊆ A∖B ⊆ X,
which implies that b ∈ X. Contradiction. ◻
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Example. Consider the well-order ⟨N, <⟩ of the natural numbers. Sup-
pose that X ⊆ N is a subset such that we can show that

b ∈ X , for all b < a , implies a ∈ X ,

then we have X = N. Proofs based on this fact are called ‘proofs by
induction’. The above corollary states that such proofs work not only for
the natural numbers but for all well-orders.

Let ⟨A, ≤⟩ be a well-order. The minimal element of a given subclass
X ⊆ A is unique since A is linearly ordered. Therefore, if A is not empty,
it has a least element �. The successor a+ of an element a ∈ A is the least
element of the class ↑a. a+ is defined for every element of A except for
the greatest one. An element that is neither the least one nor a successor
of some other element is called a limit.

It turns out that we can define a canonical well-founded order on the
class Wo of all well-orders.

Remark. Note that speaking of ‘the class of all well-orders’ is sloppy
language since, by definition, a class contains only sets. Instead, we
should call Wo ‘the class of all well-orders that are sets’.

Definition 1.6. Let A = ⟨A, ≤A⟩ and B = ⟨B, ≤B⟩ be well-orders. We
define

A < B : iff A is a set and, for some b ∈ B , there exists an
isomorphism f ∶ A→ ↓Bb .

(Note that, if f exists, it is necessarily a set because A and ↓Bb are both
sets.)

To prove that this defines an order on Wo we need some technical
lemmas.

Lemma 1.7. Let ⟨A, ≤⟩ be a well-order. If f ∶ A→ A is a strictly increasing
function then a ≤ f (a), for all a ∈ A.
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Proof. Suppose that there exists some a ∈ A with a > f (a). Let a0 be
the minimal such element. By minimality of a0 we have

f (a0) ≤ f ( f (a0)) .

On the other hand, since f is strictly increasing we have

f ( f (a0)) < f (a0) .

Contradiction. ◻

Lemma 1.8. Let ⟨A, ≤⟩ be awell-order and I ⊆ A. The following statements
are equivalent :

(1) I is a proper initial segment of A.

(2) I = ↓Aa, for some a ∈ A.

(3) I is an initial segment of A and I is non-isomorphic to A.

Proof. (1)⇒ (2) If I is a proper subclass of A then A∖ I is nonempty and
has a least element a. Consequently, we have I = ↓a.

(2)⇒ (3) Let I = ↓a. Suppose there exists an isomorphism f ∶ A→ I.
By Lemma 1.7, we have f (a) ≥ a. Hence, f (a) ∉ I = rng f . Contradic-
tion.

(3)⇒ (1) is trivial. ◻

Corollary 1.9. < is a strict partial order on Wo.

Proof. We can see immediately from the definition that < is transitive.
Suppose that A < A, for some well-order A = ⟨A, ≤⟩. By definition
there exists an element a ∈ A and an isomorphism f ∶ A → ↓Aa. This
contradicts the preceding lemma. ◻

Lemma 1.10. Let ⟨A, ≤A⟩ and ⟨B, ≤B⟩ be well-orders. There exists at most
one isomorphism f ∶ A→ B.
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Proof. Let f , g ∶ A→ B be isomorphisms. Then so is g ○ f −1 ∶ B → B. In
particular, g ○ f −1 is strictly increasing. By Lemma 1.7, we obtain

f (a) ≤ (g ○ f −1)( f (a)) = g(a) , for all a ∈ A .

Similarly, we derive g(a) ≤ f (a), for all a. It follows that f = g. ◻

We still have to prove that < is linear. Unfortunately, this is not true.
The following theorem states that, for all well-orders A and B, exactly
one of the following conditions holds A < B or A ≅ B or A > B. In
order for < to be linear, the second condition should read A = B. We
will see how to deal with this problem in the next section.

Theorem 1.11. Let ⟨A, ≤A⟩ and ⟨B, ≤B⟩ be well-orders. Exactly one of the
following statements holds :

(1) There exists an isomorphism f ∶ A → J where J ⊂ B is a proper
initial segment of B.

(2) There exists an isomorphism f ∶ A→ B.
(3) There exists an isomorphism f ∶ I → B where I ⊂ A is a proper

initial segment of A.
( f might be a proper class.)

Proof. We claim that

f ∶= { ⟨a, b⟩ ∈ A× B ∣ there is an isomorphism ↓a → ↓b } .

is the desired isomorphism.
First, we show that ⟨a0 , b0⟩, ⟨a1 , b1⟩ ∈ f implies

a0 < a1 iff b0 < b1 .

For a contradiction, suppose that a0 < a1 and b0 ≥ b1. We have iso-
morphisms

h0 ∶ ↓a0 → ↓b0 and h1 ∶ ↓a1 → ↓b1 .
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The restriction of h1 to ↓a0 is an isomorphism

h1 ↾ ↓a0 ∶ ↓a0 → ↓h1(a0) .

Composing it with h−1
0 yields an isomorphism

(h1 ↾ ↓a0) ○ h−1
0 ∶ ↓b0 → ↓h1(a0) .

But this contradicts h1(a0) < b1 ≤ b0, by Lemma 1.8.
Therefore, f is the graph of a strictly increasing function.We claim that

dom f and rng f are initial segments of, respectively, A and B. Suppose,
for a contradiction, that there are elements a < b such that a ∉ dom f
and b ∈ dom f . By definition, there is an isomorphism h ∶ ↓b → ↓ f (b).
Its restriction to ↓a yields an isomorphism h ↾ ↓a ∶ ↓a → ↓h(a) which
shows that a ∈ dom f . Contradiction. Analogously, it follows that rng f
is an initial subclass of B.

It remains to show that dom f = A or rng f = B. Suppose, otherwise.
Let a be the minimal element of A∖ dom f and b the minimal one of
B ∖ rng f . Then dom f = ↓a and rng f = ↓b and f is an isomorphism
from ↓a to ↓b. By definition, we therefore have ⟨a, b⟩ ∈ f . Contradiction.

◻

Corollary 1.12. For all A,B ∈Wo, we have either

A < B or A ≅ B or A > B .

We conclude this section with two remarks about continuous map-
pings between well-orders. The following lemma provides a simple cri-
terion to check whether a mapping between well-orders is continuous.

Lemma 1.13. Let ⟨A, ≤⟩ be a well-order and ⟨B, ≤⟩ an arbitrary partial
order. A function f ∶ A → B is continuous if, and only if, it satisfies the
following conditions :

(1) f (a+) ≥ f (a) , for all a ∈ A ,
(2) f (a) = sup{ f (b) ∣ b < a } , for every limit a ∈ A .
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Proof. (⇒) By definition, every continuous function satisfies (2). Fur-
thermore, a+ = sup{a, a+} implies that f (a+) = sup{ f (a), f (a+)}.
(⇐) For the other direction, suppose that f satisfies (1) and (2). First,

we show that f is increasing. Suppose otherwise and let a ∈ A be the
minimal element such that f (b) > f (a), for some b < a. Note that a is
not theminimal element of A since b < a. If a were a limit then (2) would
imply that

f (a) = sup{ f (x) ∣ x < a } ≥ f (b) .

Contradiction. Hence, a must be a successor and we have a = c+, for
some c ∈ A. By choice of a, we have f (x) ≤ f (c), for all x ≤ c. In
particular, f (c) ≥ f (b) > f (a). But (1) implies f (a) = f (c+) ≥ f (c).
Again a contradiction.

We have shown that f is increasing. But what we really want to prove
is that it is continuous. Let X ⊆ A be a nonempty subset of A with
supremum a ∶= sup X. If b ∈ X then b ≤ a implies f (b) ≤ f (a). Hence,
f (a) is an upper bound of f [X]. To prove that f (a) is its least upper
bound we distinguish two cases.

If a ∈ X then f (a) ∈ f [X], which implies f (a) = sup f [X].
If a ∉ X then a = sup X is a limit and, for every b < a, there is

some x ∈ X with b ≤ x. If c is another upper bound of f [X] then
f (b) ≤ f (x) ≤ c. By (2), it follows that

f (a) = sup{ f (b) ∣ b < a } ≤ sup{ f (x) ∣ x ∈ X } ≤ c .

Hence, f (a) is the least upper bound of f [X]. ◻

Lemma 1.14. Let ⟨A, ≤⟩ be a well-order and f ∶ A→ A strictly continuous.
If a ≥ f (�) then

max { b ∈ A ∣ f (b) ≤ a }

exists.
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Proof. If a is the greatest element of A, we can set b ∶= a. Otherwise,
we have f (a+) > f (a) ≥ a, by Lemma 1.7. Hence, there are elements
x ∈ Awith f (x) > a. Let c be the least such element. We have c > � since
f (c) > a ≥ f (�). If c were a limit then, by choice of c, we would have

f (c) = sup{ f (x) ∣ x < c } ≤ a < f (c) .

A contradiction. Hence, c is a successor and there exists some b ∈ Awith
c = b+. By choice of c, we have f (b) ≤ a. Furthermore, if x > b then
x ≥ c, which implies that f (x) ≥ f (c) > a. Therefore, b is the desired
element. ◻

2. Ordinals
We have seen that there exists a well-order on Wo if one does not dis-
tinguish between isomorphic orders. We would like to define a subclass
On ⊆ Wo of ordinals such that, for each well-order A, there exists a
unique element B ∈ On that is isomorphic to A.

We will present two approaches to do so. The usual one – due to von
Neumann – has the disadvantage that it requires the Axiom of Replace-
ment. Without it we cannot prove that, for every well-order α, there
exists an isomorphic von Neumann ordinal. Therefore, we will adopt a
different approach. The relation ≅ forms a congruence (see Section b1.4
below) on the class of all well-orders. A first try might thus consist in
representing a well-ordering by its congruence class. Unfortunately, the
class of all well-orders isomorphic to a given one is not a set. Hence,with
this definition one could not form sets of ordinals. Instead of considering
all isomorphic well-orders we will therefore only take some of them.

Definition 2.1. The order type of a well-order A is the set

ord(A) ∶= [A]≅ = cut{B ∣ B is a well-order isomorphic to A} .

The elements of On ∶= rng(ord) are called ordinals.
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Instead of a subclass On ⊆Wo the above definition results in a func-
tion ord ∶Wo→ On. Below we will see that there exists a canonical way
to associate with every ordinal α ∈ On a well-order f (α) ∈Wo. Using
this injection f ∶ On→Wo we can identify the class On with its image
f [On] ⊆Wo.

First, let us show that the mapping ord ∶ Wo → On has the desired
property of characterising a well-order up to isomorphism.

Lemma 2.2. Let A and B be well-orders that are sets. There exists an
isomorphism f ∶ A→ B if, and only if, ord(A) = ord(B).

Proof. If f ∶ A→ B is an isomorphism then awell-order C is isomorphic
to A if, and only if, it is isomorphic to B. Therefore ord(A) = ord(B).
Conversely, suppose ord(A) = ord(B). Since A is a well-order iso-
morphic to A,we have ord(A) ≠ ∅. Fix an arbitrary element C ∈ ord(A).
By definition, C is isomorphic to A and to B. Consequently, A and B
are isomorphic. ◻

Remark. We will prove in Lemma a4.5.3 with the help of the Axiom of
Replacement that any two well-ordered proper classes are isomorphic.
In particular, it follows that in the above lemma we can drop the require-
ment of A and B being sets.

Definition 2.3. Let On ∶= ⟨On, <⟩ where the ordering < is defined by

ord(A) < ord(B) : iff A < B .

For α ∈ On, recall that ↓α = { β ∈ On ∣ β < α } .

Remark. (a) The ordering < is well-defined since ord(A) = ord(A′) and
ord(B) = ord(B′) implies that A < B iff A′ < B′.

(b) In the chapters on set theory we will strictly distinguish between
an ordinal α and the set ↓α. But in the remainder of the book we will
usually drop the arrow and write α in both cases.

CombiningCorollaries 1.9 and 1.12 and Lemma 2.2 it follows that On is
well-ordered.
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Theorem 2.4. On is a well-order.

The notions of a successor ordinal and a limit ordinal are defined in the
sameway as for arbitrary well-orders. Recall thatwe denote the successor
of α by α+. Furthermore, we define

0 ∶= ord ⟨∅,∅⟩ , 1 ∶= 0+ , 2 ∶= 1+ , . . .

The first limit ordinal is ω ∶= ord ⟨N, ≤⟩.

Lemma 2.5. Let α, β ∈ On. If α ≤ β then S(α) ⊆ S(β).

Proof. If α = β, the claim is trivial. Therefore, we assume that α < β.
Let A = ⟨A, ≤A⟩ ∈ α and B = ⟨B, ≤B⟩ ∈ β. Since α < β there exists an
isomorphism f ∶ A → ↓Bb, for some b ∈ B. Set B0 ∶= ⟨↓Bb, ≤B⟩. Then
ordB0 = α and A ∈ ordB0 implies that S(A) ⊆ S(B0). Since S(B0) ⊆
S(B) it follows that S(A) ⊆ S(B). We have shown that S(x) ⊆ S(y),
for all x ∈ α and y ∈ β. Consequently, we have S(α) ⊆ S(β). ◻

To every ordinal α we can associate a canonical well-order of type α.

Lemma 2.6. ⟨↓α, ≤⟩ is a well-order of type ord ⟨↓α, ≤⟩ = α.

Proof. Let ⟨A, ≤⟩ be a well-order of type ord ⟨A, ≤⟩ = α. We claim that
the function f ∶ A→ On with

f (a) ∶= ord ⟨↓Aa, ≤⟩

is an isomorphism f ∶ A→ ↓α.
f is strictly increasing since, if a < b then ↓Aa is a proper initial

segment of ↓Ab. By Lemma 1.8 and Lemma 2.2, it follows that

f (a) = ord ⟨↓Aa, ≤⟩ < ord ⟨↓Ab, ≤⟩ = f (b) .

Furthermore, f is surjective since, for every β < α, there exists some
a ∈ Awith

β = ord ⟨↓Aa, ≤⟩ = f (a) . ◻
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Lemma 2.7. On is not a set.

Proof. Suppose that On is a set. Since On is well-ordered there exists
some ordinal α ∈ On with α = ord ⟨On, ≤⟩. We have just seen that
ord ⟨↓α, ≤⟩ = α. Therefore, there exists an isomorphism f ∶ ↓α → On.
But ↓α is a proper initial segment of On. This contradicts Lemma 1.8. ◻

Lemma 2.8. A subclass X ⊆ On is a set if, and only if, it has an upper
bound.

Proof. (⇐) If X ⊆ On has an upper bound α then X ⊆ ⇓α. Since ⇓α is
a set the claim follows.
(⇒) Suppose that X is a set. Since On is a proper class there exists

some ordinal α ∈ On ∖ S(X). We claim that α is an upper bound of X.
Suppose there exists some β ∈ X with β ≰ α. Then α < β and we have
α ⊆ S(α) ⊆ S(β) ∈ S(X), which implies that α ∈ S(X). This contradicts
our choice of α. ◻

Corollary 2.9. Every set of ordinals has a supremum.

Another consequence is the following special case of the Axiom of
Replacement which we will introduce in Section a4.5.

Corollary 2.10. If F ∶ On→ On is increasing then F[↓α] is a set, for all
α ∈ On.

Proof. Suppose that F is increasing. Then we have F(β) ≤ F(α), for
all β < α. Consequently, F(α) is an upper bound of F[↓α] and, by
Lemma 2.8, it follows that F[↓α] is a set. ◻

Let us give a simpler characterisation of the relation ≤ on well-orders.

Lemma 2.11. Let A and B be well-orders. Then A ≤ B if, and only if, there
exists a strictly increasing function f ∶ A→ B.

Proof. (⇒) If A ≤ B then, by definition, there exists an isomorphism
f ∶ A→ I between A and an initial segment I of B. In particular, f ∶ A→
B is a strictly increasing function.
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(⇐) Suppose that f ∶ A→ B is a strictly increasing function and let
C ∶= rng f . Since C ⊆ B is well-ordered there exists an isomorphism
g ∶ C → I ⊆ On between C and an initial segment of On. Similarly, there
is some isomorphism h ∶ B → J ⊆ On. We claim that

k ∶= h−1 ○ g ○ f ∶ A→ B

is the desired isomorphism between A and an initial segment of B. Since
f , g, and h−1 are isomorphisms so is k. What remains to be shown is
that k is in fact well-defined, that is, I = rng g ⊆ rng h = J.
We claim that g(c) ≤ h(c), for all c ∈ C. Since I and J are initial

segments this implies that I ⊆ J. For a contradiction, suppose that there
is some c ∈ C with g(c) > h(c) and let c be the minimal such element.
Note that, since g and h are strictly increasing and rng g and rng h are
initial segments we must have

g(c) = min (I ∖ rng (g ↾ ↓C c))
and h(c) = min (J ∖ rng (h ↾ ↓Bc)) .

By choice of c, we have rng (g ↾ ↓C c) ⊆ rng (h ↾ ↓Bc). But, by the above
equations, this implies that g(c) ≤ h(c). A contradiction. ◻

In order to use the theory of ordinals for proofs about arbitrary sets
one usually needs to define a well-order on a given set. In general this is
only possible if one assumes the Axiom of Choice. Until we introduce
this axiom the following theorem will serve as a stopgap. Once we have
defined the cardinality of a set in Section a4.2 it will turn out that the
ordinal the theorem talks about is α = ∣A∣+.

Theorem 2.12 (Hartogs). For every set A there exists an ordinal α such
that there are no injective functions ↓α → A.

Proof. For a contradiction, suppose that there exists a set A such that,
for every ordinal α, there is an injective function fα ∶ ↓α → A. Let
Aα ∶= rng fα ⊆ A and set

Rα ∶= { ⟨a, b⟩ ∈ Aα × Aα ∣ f −1
α (a) ≤ f −1

α (b) } .
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By construction, fα ∶ ⟨↓α, ≤⟩→ ⟨Aα , Rα⟩ is an isomorphism. Hence, by
the definition of an ordinal, we have

S(α) ⊆ S(⟨Aα , Rα⟩) .

Since Rα ⊆ A× A ∈ ℘3(A) ⊆ ℘3(S(A)) it follows that

⟨Aα , Rα⟩ = {{Aα}, {Aα , Rα}} ⊆ ℘
4(S(A)) .

We have shown that

α ⊆ S(α) ⊆ S(⟨Aα , Rα⟩) ⊆ ℘
4(S(A)) , for all α ∈ On .

Consequently, On ⊆ ℘5(S(A)), which implies that On is a set. This
contradicts Lemma 2.7. ◻

Von Neumann ordinals

We conclude this section with an alternative definition of ordinals. This
definition is simpler and the resulting ordinals havemany nice properties
such that α = ↓α and sup X = ⋃X. The only disadvantage is that one
needs an additional axiom in order to prove that every well-order is
isomorphic to some ordinal. Intuitively,we define a von Neumann ordinal
to be the set of all smaller ordinals, that is, α ∶= ↓α. As usual, the actual
definition is more technical and we have to verify afterwards that it has
the desired effect.

Definition 2.13. A set α is a von Neumann ordinal if it is transitive and
linearly ordered by the membership relation ∈. We denote the class of all
von Neumann ordinals by On0 and we set On0 ∶= ⟨On0 , ∈⟩.

Example. The set [n] = {[0], . . . , [n − 1]} is a von Neumann ordinal,
for each n ∈ N.

Lemma 2.14. If α ∈ On0 and β ∈ α then β ∈ On0.
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Proof. First, note that β ∈ α implies β ⊆ α. As α is linearly ordered by ∈
it therefore follows that so is β ⊆ α.

It remains to prove that β is transitive. Suppose that η ∈ γ ∈ β. By
transitivity of α, we have η, γ, β ∈ α. Since α is linearly ordered by ∈ we
know that the relation ∈, restricted to α, is transitive. Hence, η ∈ γ and
γ ∈ β implies that η ∈ β. ◻

Remark. Note that, for α ∈ On0, we have

↓α = { β ∈ On0 ∣ β ∈ α } .

Hence, α = ↓α and our definition of a von Neumann ordinal coincides
with the intuitive one.

Exercise 2.1. Suppose that α = {β0 , . . . , βn−1} is a von Neumann ordinal
with n < ω elements. Prove, by induction on n, that α = [n].

Theorem 2.15. On0 is a well-order.

Proof. ∈ is irreflexive since we have a ∉ a, for all sets. Furthermore, ∈ is
transitive on On0 since, α ∈ β ∈ γ implies α ∈ γ, by transitivity of γ.
Consequently, ∈ is a strict partial order on On0. Since ∈ is well-founded
on any class it remains to prove that it is linear.

Let α, β ∈ On0. The set γ ∶= α ∩ β is transitive by Lemma a1.2.4. As
α is linearly ordered by ∈ so is γ ⊆ α. Therefore, γ ∈ On0. Furthermore,
γ is an initial segment of α since δ ∈ η ∈ γ implies δ ∈ γ, by transitivity.
By Lemma 1.8, it follows that γ = α or γ = ↓δ = δ, for some δ ∈ α.
Hence, we either have γ = α or γ ∈ α. Similarly, we can prove that either
γ = β or γ ∈ β. Since γ ∉ γ = α ∩ β it follows that either γ ∉ α or γ ∉ β.
Consequently, we either have β = γ ∈ α or α = γ ∈ β or α = γ = β. ◻

Exercise 2.2. Show that α+ = α ∪ {α}, for every α ∈ On0.

Lemma 2.16. On0 is not a set.

Proof. On0 is transitive and well-ordered by ∈. If it were a set, it would
be an element of itself. ◻
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On0 is linearly ordered by ∈. The following sequence of lemmas con-
tains several characterisations of this ordering. In particular, we show
that the mapping

ord ∶ ⟨On0 , ∈⟩→ ⟨On, <⟩

is strictly increasing.Afterwehave introduced theAxiom of Replacement
in Section a4.5 we will prove that it is actually an isomorphism.

Lemma 2.17. Let α, β ∈ On0. We have α ∈ β if, and only if, α ⊂ β.

Proof. (⇒) was already proved in Lemma a1.2.2. For (⇐), suppose that
α ∉ β. By Lemma 2.15, it follows that α = β or β ∈ α. Since α ⊂ β we
therefore have β ⊂ β or β ∈ β. Contradiction. ◻

Lemma 2.18. Let α, β ∈ On0. If f ∶ α → β is an isomorphism between
α and an initial segment of β then f = idα .

Proof. Suppose that f ≠ idα and let γ ∈ α be the minimal element
of α such that δ ∶= f (γ) ≠ γ. Since f is an isomorphism we have ξ =
f (ξ) ∈ f (γ) = δ, for all ξ ∈ γ. Hence, γ ⊆ δ. Since δ ≠ γ it follows that
γ ⊂ δ, which implies, by Lemma 2.17, that γ ∈ δ. But γ ∉ rng f , since
f (ξ) = ξ ∈ γ, for ξ ∈ γ, and f (ξ) ∋ f (γ) = δ, for ξ ∋ γ. Hence, rng f is
not an initial segment of β. Contradiction. ◻

Lemma 2.19. Let α, β ∈ On0. The following statements are equivalent :
(1) α ∈ β.
(2) α ⊂ β.
(3) S(α) ∈ S(β).
(4) ⟨α, ∈⟩ < ⟨β, ∈⟩.

Proof. (1)⇔ (2) was already shown in Lemma 2.17.
(1)⇒ (3) a ∈ b implies S(a) ∈ S(b), for arbitrary sets a and b.
(3) ⇒ (1) If α ∉ β then, by Lemma 2.15, we either have α = β or

β ∈ α. Consequently, either S(α) = S(β) or S(β) ∈ S(α). It follows that
S(α) ∉ S(β).
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(2)⇒ (4) If α ⊆ β, the identity idα ∶ α → α ⊆ β is an isomorphism
from α to an initial segment of β. Hence, α < β.

(4)⇒ (2) If α < β, there exists an isomorphism f ∶ α → I ⊂ β between
α and a proper initial subset of β. By the preceding lemma, it follows
that f = idα and α = I ⊂ β. ◻

It follows that, similarly to On, the von Neumann ordinals are linearly
ordered by the relation <. If we could prove that every well-order is
isomorphic to some von Neumann ordinal, we could use On0 as repres-
entatives instead of On.

Corollary 2.20. For all α, β ∈ On0, we have

α < β or α = β or α > β .

Infimum and supremum of sets of von Neumann ordinals can be
computed especially easily.

Lemma 2.21. Let X ⊆ On0.

(a) If X is nonempty then inf X = ⋂X.

(b) If X has an upper bound then sup X = ⋃X.

Proof. (a) Since X is nonempty it has a minimal element α,which is also
the infimum of X. Clearly, ⋂X ⊆ α. Conversely, if β ∈ α then β ∈ γ, for
all γ ∈ X, which implies β ∈ ⋂X. It follows that inf X = α = ⋂X.

(b) Note that we have α ≤ β iff α ⊆ β, for all von Neumann ordinals
α, β ∈ On0.

Clearly,we have α ⊆ ⋃X, for all α ∈ X. Hence,⋃X is an upper bound
of X. Conversely, let β be an upper bound of X. Then α ⊆ β, for all α ∈ X,
which implies that ⋃X ⊆ β. ◻

The reason why there might be less von Neumann ordinals than ele-
ments of On is that each von Neumann ordinal is contained in a new
stage. That is, we have exactly one von Neumann ordinal for every stage.
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Lemma 2.22. The function f ∶ On0 → H(S) defined by f (α) ∶= S(α) is
an isomorphism between On0 and the class of all stages.

Proof. By Lemma 2.19 it follows that f is injective and increasing. Sup-
pose that it is not surjective. Let S be the minimal stage such that
S ∉ rng f , and set

X ∶= { α ∈ On0 ∣ S(α) ∈ S } .

Since X ⊆ S, X is a set and, hence, a proper initial segment of On0.
Therefore, there is some α ∈ On0 such that X = ↓α. Since S(β) ∈ S, for
all β ∈ α, it follows that S(α) ⊆ S. By choice of S, we have S(α) ≠ S.
Hence, S(α) ∈ S, which implies that α ∈ X = ↓α. Contradiction. ◻

Definition 2.23. For α ∈ On0, we set Sα ∶= S(α).

Remark. In On0 we have finally found the indices to enumerate the
cumulative hierarchy

S0 ⊂ S1 ⊂ ⋯ ⊂ Sα ⊂ Sα+1 ⊂ ⋯

The class of all stages can be written in the form

H(S) = { Sα ∣ α ∈ On0 } ,

and we have S = ⋃{ Sα ∣ α ∈ On0 } .

Definition 2.24. The rank ρ(a) of a set a is the von Neumann ordinal α
such that S(a) = Sα .

Remark. (a) For α ∈ On0, we have ρ(α) = α.
(b) Note that

cutA = { x ∈ A ∣ ρ(x) ≤ ρ(y) for all y ∈ A} .

Lemma 2.25. A class X is a set if, and only if, { ρ(x) ∣ x ∈ X } is bounded.

Exercise 2.3. Prove the preceding lemma.
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3. Induction and fixed points
The importance of ordinals stems from the fact that they allow proofs
and constructions by induction. The next theorem follows immediately
from Theorem 1.5.

Theorem 3.1 (Principle of Transfinite Induction). Let I ⊆ On be an initial
segment of On. If X ⊆ I is a class such that, for every α ∈ I,

↓α ⊆ X implies α ∈ X

then X = I.

Usually one applies this theorem in the following way. If one wants
to prove that all ordinals satisfy a certain property φ, it is sufficient to
prove that

◆ 0 satisfies φ ;

◆ if α satisfies φ then so does α+ ;

◆ if δ is a limit ordinal and every α < δ satisfies φ then so does δ.

Transfinite induction is not only useful for proofs but also to define
sequences. For a class A, we set

A<∞ ∶= { f ∣ f ∶ ↓β → a for some β ∈ On and a ⊆ A} .

Lemma 3.2. Let H be a partial function H ∶ S<∞ → S. For each ordinal
α ∈ On, there exists at most one function f ∶ ↓α → S such that f is a set
and

f (β) = H( f ↾ ↓β) , for all β < α .

Proof. Suppose that f and g both satisfy the above condition. We apply
the Principle of Transfinite Induction to prove that f = g. Let

X ∶= { β ∈ ↓α ∣ f (β) = g(β) } .
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If β < α is an ordinal such that ↓β ⊆ X then f ↾ ↓β = g ↾ ↓β, which
implies that

f (β) = H( f ↾ ↓β) = H(g ↾ ↓β) = g(β) .

Consequently, β ∈ X. By the Principle of Transfinite Induction, it follows
that X = ↓α, that is, f = g. ◻

Remark. If a function f satisfies the conditions of the preceding lemma
then so does f ↾ I, for every initial segment I ⊆ dom f . In particular,
if f ∶ ↓α → S and g ∶ ↓β → S are two such functions with α ≤ β then
f = g ↾ ↓α.

Definition 3.3. Let H be a partial function H ∶ S<∞ → S and let fα be
the unique function fα ∶ ↓α → S such that fα is a set and

fα(β) = H( fα ↾ ↓β) , for all β < α .

Let I ⊆ On be the class of all α such that fα+ is defined. (Note that I is
an initial segment since if α ∈ I and β < α then fβ+ = fα+ ↾ ⇓β.)

We say that H defines the function F by transfinite recursion if

dom F = I and F(α) = fα+(α) , for all α ∈ dom F .

Theorem 3.4 (Principle of Transfinite Recursion). Every partial function
H ∶ S<∞ → S defines a unique function F by transfinite recursion. We
have F ∉ dom H and

F(α) = H(F ↾ ↓α) , for all α ∈ dom F .

Proof. The existence of F follows immediately from the definition. Note
that, by the remark after Lemma 3.2, we have fβ(α) = fγ(α), for all
β, γ > α. Consequently,

F(α) = fα+(α) = fβ(α) , for all β > α ,
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which implies that

F ↾ ↓α = fβ ↾ ↓α , for all β ≥ α .

Therefore, it follows that

F(α) = fα+(α) = H( fα+ ↾ ↓α) = H(F ↾ ↓α) .

In particular, if F is a set then F = fα , for some α. Hence, we have
dom F = dom fα = ↓α. Since α ∉ dom F it follows that fα+ does not
exists. Hence, H( fα) = H(F) is undefined and F ∉ dom H. If F is a
proper class then we trivially have F ∉ dom H. ◻

Remark. After we have introduced the Axiom of Replacement we can
actually show that, if H ∶ S<∞ → S is a total function then dom F = On.

At the moment we can prove this statement only for the special case
where rng H is a set.

Lemma 3.5. Let A be a set. If H ∶ A<∞ → A is a total function that
defines the function F by transfinite recursion then F is a proper class with
dom F = On.

Proof. Note that rng F ⊆ rng H ⊆ A is a set. If dom F = ↓α ⊂ On then
F ∈ A↓α ⊂ A<∞ = dom H in contradiction to Theorem 3.4. ◻

Usually definitions by transfinite recursion have the following simpler
form. Given an element a ∈ A and two functions s ∶ A → A and h ∶
℘(A)→ A one can construct a unique function f ∶ I → A such that

◆ f (0) = a ;

◆ f (β+) = s( f (β)) ; and

◆ f (δ) = h( f [↓δ]), for limit ordinals δ.

Example. We can define addition and multiplication of ordinals as fol-
lows. By transfinite recursions, we first define the function β ↦ α + β
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by

α + 0 ∶= α ,
α + β+ ∶= (α + β)+ ,
α + δ ∶= sup{ α + β ∣ β < δ } , for limit ordinals δ ,

and then we define the function β ↦ α ⋅ β by

α ⋅ 0 ∶= 0 ,
α ⋅ β+ ∶= α ⋅ β + α, ,
α ⋅ δ ∶= sup{ α ⋅ β ∣ β < δ } , for limit ordinals δ .

By the above theorem, we know that these operations are defined on
some initial segment of On and that they are uniquely determined by
these equations. Below we will give a different, more concrete definition
of addition and multiplication.

Definitions by transfinite recursion are special cases of so-called induct-
ive fixed points. Consider a partial order ⟨A, ≤⟩ and a function f ∶ A→ A.
If certain conditions on ⟨A, ≤⟩ and f are satisfied, one can compute a
fixed point of f in the following way. Starting with some element a ∈ A
we construct the sequence a, f (a), f ( f (a)), . . . . If it converges, its limit
will be a fixed point of f . The next definition formalises this process.

Definition 3.6. Let ⟨A, ≤⟩ be a partial order. A function f ∶ A → A is
inductive over an element a ∈ A if there exists an increasing function
F ∶ I → A where I ⊂ On is an initial segment of On such that F is a
proper class and we have

F(0) = a ,
F(β+) = f (F(β)) ,

and F(δ) = sup F[↓δ] , for limits δ .

We call F the fixed-point induction of f over a. The element F(α) is also
called the α-th stage of the induction.
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Remark. (a) Note that, if A is a set then, by the Principle of Transfinite Re-
cursion, there exists a unique function F ∶ On→ A satisfying the above
equations provided we can show that, for every limit δ, the supremum
sup F[↓δ] exists. If, furthermore, we can prove that F(β+) ≥ F(β), for
all β, then it follows that f is inductive.

(b) Every fixed-point induction F is continuous, by Lemma 1.13.

Example. (a) The function f ∶ On→ On ∶ α ↦ α+ is inductive. Its fixed-
point induction over 0 is the identity function F ∶ On→ On ∶ α ↦ α.

(b) Let f ∶ S→ S be the function with f (a) ∶= ℘(a). The fixed-point
induction of f over ∅ is the function F ∶ On0 → S with

F(α) ∶= Sα .

(c) The graph of addition

A ∶= { (x , y, z) ∈ N3 ∣ x + y = z }

is the least fixed point of the function f ∶ ℘(N3)→ ℘(N3) with

f (R) ∶= { (x , 0, x) ∣ x ∈ N}
∪ { (x , y + 1, z + 1) ∣ (x , y, z) ∈ R } .

Its fixed-point induction over ∅ is the function

F(α) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

{(x , y, z) ∣ x + y = z , y < α } if α < ω ,
A if α ≥ ω .

(d) Let ⟨V , E⟩ be a graph. The function

f ∶ ℘(V × V)→ ℘(V × V)

defined by f (R) ∶= E ∪ E ○ R is increasing. Let F be the fixed-point
induction of f over ∅. Then

F(0) = ∅ ,
F(1) = E ,
F(2) = E ∪ E ○ E ,
F(3) = E ∪ E ○ E ∪ E ○ E ○ E ,
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and, generally, we have

F(n) = for n < ω ,⋃k<n Ek ,
and F(α) = for α ≥ ω .⋃k<ω Ek ,

Hence, the inductive fixed point of f is the relation ⋃k<ω Ek = TC(E).
(e) We consider the following simple game between two players. It is

played on a graph ⟨V , E⟩ where the set of vertices V = V0 ⊍ V1 is parti-
tioned into vertices V0 that belong to player 0 and vertices V1 belonging
to player 1. At the start of the game a pebble is placed on the starting po-
sition v0 ∈ V . In every round one of the players moves this pebble along
an edge to a new vertex. If the pebble is on a vertex in V0 then player 0
can choose where to move, if it is on a vertex in V1 then player 1 may
move. Hence, a play of the game determines a path v0 , . . . , vn through
the graph. If at some point the pebble is on a vertex in Vi without outgo-
ing edge then player i loses. If none of the players manage to manœuvre
his opponent into such a situation then the game never stops and both
players lose. The winning region Wi for player i is the set of all vertices w
such that, if we start the game in w, then player i has a strategy to win
the game. We can compute these winning regions by the fixed-point
induction Fi of the function

f i(X) ∶= { x ∈ Vi ∣ there is some y ∈ X with ⟨x , y⟩ ∈ E }
∪ { x ∈ V1−i ∣ every y with ⟨x , y⟩ ∈ E is element of X } .

Note that Fi(1) is the set of all vertices x ∈ V1−i without outgoing edge.
Generally, Fi(n) contains all vertices such that player i has a strategy to
win the game in at most n rounds.

Exercise 3.1. Let ⟨V , E⟩ be a graph. Prove that TC(E) = ⋃n<ω En .

If the fixed point induction of a function f converges, its limit is a
fixed point of f .

Lemma 3.7. Let F be the fixed-point induction of a function f . If F(α) =
F(α+) then F(α) ∈ fix f .
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Proof. F(α) is a fixed point of f since f (F(α)) = F(α+) = F(α). ◻

Thus, we can use the fixed point induction F of f to compute a fixed
point provided F converges.

Lemma 3.8. Let F be the fixed-point induction of a function f . If F(α) =
F(α+) then F(α) = F(β), for all β ≥ α.

Proof. We prove the claim by induction on β. If β = α then the claim is
trivial. For the successor step, we have

F(β+) = f (F(β)) = f (F(α)) = F(α+) = F(α) .

Finally, if δ > α is a limit ordinal, then

F(δ) = sup{ F(β) ∣ β < δ } = sup{ F(β) ∣ α ≤ β < δ }
= sup{F(α)} = F(α) . ◻

If the universe A is a set, every fixed-point induction stabilises at
some ordinal. Intuitively, the reason is that the size of the universe A is
bounded. Therefore, if we repeat the application of f long enough, we
will obtain some element a ∈ A that already appeared in the sequence.

Theorem 3.9. Let ⟨A, ≤⟩ be a partial order where A is a set. Let f ∶ A→ A
be inductive over a ∈ A and F ∶ On → A the corresponding fixed-point
induction. There exists some ordinal α such that F(α) = F(β), for all
β ≥ α.

Proof. By Theorem 2.12, there exists an ordinal γ such that there is no
injective function ↓γ → A. We claim that there is some α < γ such that
F(α) = F(α+). By Lemma 3.8, it then follows that F(β) = F(α), for all
β ≥ α. Suppose that F(α) ≠ F(α+), for all α < γ. Since F is increasing
it follows that F ↾ ↓γ ∶ ↓γ → A is injective. This contradicts our choice
of γ. ◻

Remark. This proof actually shows that α < ∣A∣+ where ∣A∣ is the cardin-
ality of A (see Section a4.2).
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Definition 3.10. Let f ∶ A → A be inductive and F ∶ On → A the
corresponding fixed-point induction. The minimal ordinal α such that
F(α) = F(α+) is called the closure ordinal of the induction and the
element F(∞) ∶= F(α) is the inductive fixed point of f over a.

Remark. IfA is a set, every inductive function f ∶ A→ Ahas an inductive
fixed point.

Example. Let ⟨A, R⟩ be a graph. The well-founded part of R is the max-
imal subset B ⊆ A such that ⟨B, R∣B⟩ is well-founded and, for all ⟨a, b⟩ ∈
R with b ∈ B, we also have a ∈ B. We can compute B as inductive fixed
point over ∅ of the function

f (X) ∶= { x ∈ A ∣ R−1(x) ⊆ X ∪ {x}} .

If we want to apply the above machinery to compute fixed points, we
needmethods to show that a given function f is inductive.Basically, there
are two conditions a function f has to satisfy. The sequence obtained by
iterating f has to be linearly ordered and its supremum must exists.

Definition 3.11. Let A = ⟨A, ≤⟩ be a partial order.
(a) A is inductively ordered if every chain C ⊆ A that is a set has a

supremum.
(b) A function f ∶ A→ A is inflationary if f (a) ≥ a, for all a ∈ A.

Remark. (a) Every inductively ordered set has a least element � since
the set ∅ is linearly ordered.

(b) Every complete partial order is inductively ordered.
(c) ⟨On, ≤⟩ is inductively ordered.
(d) If ⟨A, ≤⟩ is a well-order then according to Lemma 1.7 all strictly

continuous functions f ∶ A→ A are inflationary.

Example. (a) The partial order ⟨F , ⊆⟩ where

F ∶= {X ⊆ N ∣ X is finite}
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is not inductively ordered since the chain

[0] ⊂ [1] ⊂ [2] ⊂ ⋅ ⋅ ⋅ ⊂ [n] ⊂ ⋯

has no upper bound.
(b) Let V be a vector space over the field K and set

I ∶= {B ⊆ V ∣ B is linearly independent} .

We claim that ⟨I, ⊆⟩ is inductively ordered.
Let C ⊆ I be a chain. We show that supC = ⋃C. By Corollary a2.3.10,

it is sufficient to prove that ⋃C ∈ I.
Suppose otherwise. Then ⋃C is not linearly independent and there

are elements v0 , . . . , vn ∈ ⋃C and λ0 , . . . , λn ∈ K such that λ i ≠ 0, for
all i, and

λ0v0 + ⋅ ⋅ ⋅ + λnvn = 0 .

For each v i , fix some B i ∈ C with v i ∈ B i . Since C is linearly ordered so
is the set {B0 , . . . , Bn}. This set is finite and, therefore, it has a maximal
element Bk , that is, B i ⊆ Bk , for all i. It follows that v0 , . . . , vn ∈ Bk ,
which implies that Bk is not linearly independent. Contradiction.

Lemma 3.12. Let A = ⟨A, ≤⟩ be inductively ordered.
(a) If f ∶ A→ A is inflationary, f is inductive over every element a ∈ A.
(b) If f ∶ A→ A is increasing, f is inductive over every element a with

f (a) ≥ a.
(c) If f ∶ A→ A is continuous, f is inductive over every element a with

f (a) ≥ a. Furthermore, if the inductive fixed point of f over a exists, its
closure ordinal is at most ω.

Proof. (a) By transfinite recursion, we construct an increasing function
F ∶ I → A satisfying the equations inDefinition 3.6. Let F(0) ∶= a. For the
inductive step, suppose that F(α) is already defined. We set F(α+) ∶=
f (F(α)). Since f is inflationary, it follows that F(α+) = f (F(α)) ≥
F(α). Finally, suppose that δ is a limit ordinal. If F ↾ ↓δ is a proper class,
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we are done. Otherwise, F[↓δ] is a set which, furthermore, is linearly
ordered because F ↾ ↓δ is increasing. As ⟨A, ≤⟩ is inductively ordered it
follows that F[↓δ] has a supremum and we can set F(δ) ∶= sup F[↓δ].

(b) Again we define an increasing function F ∶ I → A by transfinite
recursion. Let F(0) ∶= a. For the inductive step, suppose that F(α) is
already defined. We set F(α+) ∶= f (F(α)). To prove that F(α+) ≥ F(α)
we consider three cases. For α = 0 we have F(1) = f (a) ≥ a = F(0). If
α = β+ is a successor, we know by inductive hypothesis that F(β+) ≥
F(β). Since f is increasing it follows that

F(α+) = f (F(β+)) ≥ f (F(β)) = F(β+) = F(α) .

If α is a limit then F(α) = sup F[↓α] and

F(α+) = f (sup F[↓α]) ≥ f (F(β)) = F(β+) , for all β < α .

This implies that

F(α+) ≥ sup F[↓α] = F(α) .

Finally, let δ be a limit ordinal. Again, if F ↾ ↓δ is a proper class, we are
done. Otherwise, F[↓δ] is a set and, as above, F(δ) ∶= sup F[↓δ] exists.

(c) Since continuous functions are increasing it follows from (b) that
f is inductive over a. Let F be the corresponding fixed-point induction.
It remains to show that, if ω ∈ dom F then F(∞) = F(ω). Since f is
continuous we have

F(ω+) = f (sup F[↓ω])
= sup{ f (F(α)) ∣ α < ω }
= sup{ F(α+) ∣ α < ω }
= sup F[↓ω] = F(ω) ,

as desired. ◻

Lemma 3.13. Let f ∶ On→ On be strictly continuous and let α ∈ On.
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(a) f is inductive over α.

(b) If F is the fixed-point induction of f over α then F(∞) exists if, and
only if, the set { f n(α) ∣ n < ω } is bounded. In this case we have
F(∞) = F(ω).

Proof. (a) In Lemma 1.7 we have shown that every strictly continuous
function on a well-order is inflationary. Therefore, Lemma 3.12 implies
that f is inductive over α.

(b) We prove by induction on n < ω that n ∈ dom F. By definition
we have 0 ∈ dom F. If n ∈ dom F then f (F(n)) ≥ F(n) since f is
inflationary. Hence, F(n + 1) = f (F(n)) is defined. If

{ f n(α) ∣ n < ω } = F[↓ω]

is bounded, it follows that F(ω) = sup F[↓ω] is defined. Consequently,
Lemma 3.12 implies that F(∞) = F(ω). ◻

Exercise 3.2. Let f ∶ ℘(A)→ ℘(A) be inflationary and increasing, and
let c ∶ ℘(A) → ℘(A) be the function that maps X ⊆ A to the inductive
fixed point of f over X. Prove that c is a closure operator.

We conclude this section with two theorems which can be used to
prove the existence of fixed points. The first one is an immediate conse-
quence of the above results.

Theorem 3.14 (Bourbaki). Let ⟨A, ≤⟩ be an inductively ordered graph. If
A is a set then every inflationary function f ∶ A → A has an inductive
fixed point.

Proof. By Lemma 3.12, f is inductive over �. Consequently, f has an
inductive fixed point, by Theorem 3.9. ◻

Example. The condition of A being a set is necessary. For instance, On is
inductively ordered since every set of ordinals has a supremum and the
function f ∶ On→ On ∶ α ↦ α+ is inflationary. But f has no fixed point.
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The second theorem is a version of the Theorem of Knaster and Tarski
which shows that we can compute the least fixed point of a function f
by a fixed-point induction.

Theorem 3.15. Let ⟨A, ≤⟩ be an inductively ordered graph where A is a set
and let f ∶ A→ A be an increasing function. If the least fixed point of f
exists then it coincides with its inductive fixed point over �.

Proof. Let F ∶ On→ A be the fixed-point induction of f over �. Suppose
that a ∶= lfp f exists. We prove by induction on α that F(α) ≤ a. Then it
follows that F(∞) ≤ a and the minimality of a implies that F(∞) = a.
Clearly, F(0) = � ≤ a. For the inductive step, suppose that F(α) ≤ a.

Since f is increasing it follows that

F(α+) = f (F(α)) ≤ f (a) = a .

Finally, if δ is a limit ordinal, the inductive hypothesis implies that

F(δ) = sup{ F(α) ∣ α < δ } ≤ a . ◻

4. Ordinal arithmetic
Many properties of natural numbers can be generalised to ordinals. We
have already seen that ordinals allow proofs by induction. In this section
we will show how to define addition, multiplication, and exponentiation
for such numbers.

We start by defining these operations for arbitrary linear orders. Intu-
itively, the sum of two linear orders A and B is the order consisting of a
copy of A followed by a copy of B. Similarly, their product is obtained
from B by replacing every element by a copy of A.

Definition 4.1. Let A = ⟨A, ≤A⟩ and B = ⟨B, ≤B⟩ be linear orders.
(a) The sum A +B is the graph ⟨C , ≤C⟩ where

C ∶= A⊍ B = ({0} × A) ∪ ({1} × B)
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+ = ⋅ =

Figure 1.. Sum and product of linear orders

and the order is defined by

⟨i , a⟩ ≤C ⟨k, b⟩ : iff i = k = 0 and a ≤A b
or i = k = 1 and a ≤B b
or i = 0 and k = 1 .

(b) The product A ⋅B is the graph ⟨C , ≤C⟩ where C ∶= A× B and the
order is defined by

⟨a, b⟩ ≤C ⟨a′ , b′⟩ : iff b <B b′ or (b = b′ and a ≤A a′) .

(This is the reversed lexicographic ordering, see Definition b2.1.1.)
(c) If A and B are well-orders then we define A(B) ∶= ⟨C , ≤C⟩ where

C ∶= { f ∈ AB ∣ there are only finitely many b ∈ B with
f (b) ≠ �} ,

and the order is defined by

f <C g : iff the set { b ∈ B ∣ f (b) ≠ g(b) } has a maximal
element b0 and we have f (b0) <A g(b0) .

For natural numbers, these operations coincide with the usual ones.

Exercise 4.1. Let K ∶= ⟨[k], ≤⟩ and M ∶= ⟨[m], ≤⟩where k,m < ω. Prove
that

(a) K +M ≅ ⟨[k +m], ≤⟩,

(b) K ⋅M ≅ ⟨[km], ≤⟩,
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4. Ordinal arithmetic

(c) K(M) ≅ ⟨[km], ≤⟩.

Addition of linear orders is associative and the empty order is a neutral
element. Below we will give an example showing that, in general, it is
not commutative.

Lemma 4.2. If A, B, and C are linear orders then

(A +B) + C ≅ A + (B + C) .

Proof. Let A = ⟨A, ≤A⟩, B = ⟨B, ≤B⟩, and C = ⟨C , ≤C⟩. We can define a
bijection f ∶ (A⊍ B) ⊍ C → A⊍ (B ⊍ C) by

f ⟨0, ⟨0, a⟩⟩ ∶= ⟨0, a⟩ for a ∈ A ,
f ⟨0, ⟨1, b⟩⟩ ∶= ⟨1, ⟨0, b⟩⟩ for b ∈ B ,

f ⟨1, c⟩ ∶= ⟨1, ⟨1, c⟩⟩ for c ∈ C .

Since this bijection preserves the ordering it is the desired isomorphism.
◻

As we want to define arithmetic operations on ordinals we have to
show that, if we apply the above operations to well-orders, we again
obtain a well-order.

Lemma 4.3. If A and B are well-orders then so are A + B, A ⋅ B, and
A(B).

Proof. Suppose that A = ⟨A, ≤A⟩ and B = ⟨B, ≤B⟩. We will prove the
claim only for C ∶= A(B). The other operations are left as an exercise to
the reader.

Let C = ⟨C , ≤C⟩. The relation <C is irreflexive since, for each f ∈ C,
the set { b ∈ B ∣ f (b) ≠ f (b) } is empty and has no maximal element.
Furthermore, <C is linear. For transitivity, let f , g , h ∈ C be functions
such that f <C g <C h. Let b0 , b1 ∈ B be the maximal elements such that,
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respectively, f (b0) ≠ g(b0) and g(b1) ≠ h(b1). By definition, we have
f (b0) <A g(b0) and g(b1) <A h(b1). If b0 ≤B b1 then

f (b1) ≤ g(b1) <A h(b1)

and f (b) = g(b) = h(b) , for b >B b1 ,

implies that f <C h. Similarly, if b1 <B b0 then

f (b0) <A g(b0) = h(b0)

and f (b) = g(b) = h(b) , for b >B b0 .

In both cases it follows that f <C h. Consequently, <C is a strict linear
order.

It remains to prove that every nonempty subset X ⊆ C has a minimal
element. We prove the claim by induction on β ∶= ord(B). If β = 0 then
C = A(∅) = {∅} and we are done. Suppose that β > 0 and select an
arbitrary element f ∈ X. If f (b) = �, for all b ∈ B, then f is the minimal
element of X and we are done. Hence, we may assume that there is some
b ∈ B with f (b) ≠ �. Since there are only finitely many such elements
we may assume that b is the maximal one. Define

Y ∶= { g ∈ X ∣ g(c) = � for all c > b } .

This set is nonempty since f ∈ Y . Set

a ∶= min{ g(b) ∣ g ∈ Y } and Z ∶= { g ∈ Y ∣ g(b) = a } .

By construction, we have g <C h whenever g ∈ Z and h ∈ X ∖ Z.
Consequently, if we can find a minimal element of Z, we also have the
minimal element of X. Let

U ∶= { g ↾ ↓b ∣ g ∈ Z } ⊆ A(↓b) .

Since ord(↓b) < β we can apply the inductive hypothesis and there exists
a minimal element h ∈ U . Note that the restriction map

ρ ∶ Z → U ∶ g ↦ g ↾ ↓b

88



4. Ordinal arithmetic

is a bijection since we have

g(c) = g′(c) for all g , g′ ∈ Z and every c ≥ b .

Furthermore, ρ preserves the ordering, that is, it is an isomorphism. It
follows that ρ−1(h) is the minimal element of Z and of X. ◻

Exercise 4.2. Show that, if A and B are well-orders then so are A +B
and A ⋅B.

It is easy to see that A ≅ A′ andB ≅ B′ implies that the sums, products,
and powers are also isomorphic. Therefore, we can define the corres-
ponding operations on ordinals by taking representatives.

Definition 4.4. For α = ord(A) and β = ord(B) we define

α + β ∶= ord (A +B) ,
α ⋅ β ∶= ord (A ⋅B) ,

α(β) ∶= ord (A(B)) .

Example. The following equations can be proved easily by the lemmas
below. We encourage the reader to derive them directly from the defini-
tions.

1 + 1 = 2 (3 + 6)ω = 9ω = ω < ω2 = 3ω + 6ω

ω + ω = ω2 (ω6 + 17)ω = ωω = ω(2)

1 + ω = ω < ω + 1 2(ω) = ω
2ω = ω < ω2

Exercise 4.3. Show that α + β, α ⋅ β, and α(β) are well-defined, for all
α, β ∈ On.

Exercise 4.4. Show that α+ = α + 1.
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Ordinal addition

The properties of ordinal addition, multiplication, and exponentiation
are similar to, but not quite the same as those for integers. The following
sequence of lemmas summarises them. We start with addition.

Lemma 4.5. Let α, β, γ ∈ On. If β < γ then α + β < α + γ.

Proof. Fix representatives α = ord(A), β = ord(B), and γ = ord(C).
There exists an isomorphism f ∶ B → I ⊂ C between B and some proper
initial segment I of C. We define an isomorphism g ∶ A⊍ B → A⊍ I by

g(⟨0, a⟩) ∶= ⟨0, a⟩ , for a ∈ A ,
and g(⟨1, b⟩) ∶= ⟨1, f (b)⟩ , for b ∈ B .

Hence, A +B < A + C. ◻

In the last section we gave an inductive definition of addition. The
next lemma shows that it is equivalent to the official definition above.

Lemma 4.6. Let α, β ∈ On.

(a) α + 0 = α .

(b) α + β+ = (α + β)+.

(c) α + δ = sup{ α + β ∣ β < δ } , for limit ordinals δ.

Proof. Fix representatives α = ord(A) and β = ord(B).
(a) follows immediately since A + ⟨∅, ≤⟩ ≅ A.
(b) By Lemma 4.2, we have

(A +B) + C ≅ A + (B + C) , for all linear orders A,B,C .

Since β+ = ord(B + ⟨[1], ≤⟩) the result follows.
(c) Let X ∶= { α + β ∣ β < δ } and set γ ∶= sup X. By Lemma 4.5, we

have α + β < α + δ, for all β < δ, which implies that γ ≤ α + δ.
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For a contradiction suppose that γ < α + δ. Fix representatives γ =
ord(C) and δ = ord(D). Since α + 0 < γ < α + δ there exists an iso-
morphism f ∶ C → A ⊍ I, for some proper initial segment ∅ ⊂ I ⊂ D.
Let C0 ∶= f −1[A] and C1 ∶= f −1[I]. Since f is an isomorphism we have

A ≅ ⟨C0 , ≤⟩ and C ≅ ⟨C0 , ≤⟩ + ⟨C1 , ≤⟩ .

Set β ∶= ord(⟨C1 , ≤⟩). It follows that γ = α + β. Furthermore, because of
the inclusion map I → D we have β < δ. By (b) it follows that

γ < (α + β)+ = α + β+ ≤ sup X .

Contradiction. ◻

Corollary 4.7. The function fα ∶ On→ On with fα(β) ∶= α + β is strictly
continuous, for every α ∈ On.

Proof. The claim follows immediately from the preceding lemma and
Lemma 1.13. ◻

Since ordinal addition is not commutative there are two possible ways
to subtract ordinals. Given α ≥ β we can ask for some ordinal γ such
that α = β + γ, or we can ask for some γ with α = γ + β. The next lemma
shows that the first operation is well-defined. The second one is not since,
for example, 1 + ω = ω = 2 + ω.

Lemma 4.8. For all ordinals β ≤ α, there exists a unique ordinal γ such
that α = β + γ.

Proof. By Corollary 4.7 and Lemma 1.14, there exists a greatest ordinal γ
such that β + γ ≤ α. If β + γ < α then we would have

(β + γ)+ = β + γ+ ≤ α

in contradiction to the choice of γ. Hence, β + γ = α. The uniqueness
of γ follows from the fact that the function γ ↦ β + γ is injective. ◻
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The next lemma summarises the laws of ordinal addition.

Lemma 4.9. Let α, β, γ ∈ On.

(a) α + (β + γ) = (α + β) + γ.

(b) α + β = α + γ implies β = γ.

(c) α ≤ β implies α + γ ≤ β + γ.

(d) If X ⊆ On is nonempty and bounded then

α + sup X = sup{ α + β ∣ β ∈ X } .

(e) β ≤ α if, and only if, α = β + γ, for some γ ∈ On.

(f) β < α if, and only if, α = β + γ, for some γ ∈ On ∖ {0}.

Proof. Fix representatives α = ord(A), β = ord(B) and γ = ord(C).
(a) follows from Lemma 4.2; (b) follows from Lemma 4.8 ; and (d)

follows from Corollary 4.7.
(c) We prove the claim by induction on γ. For γ = 0, we have

α + 0 = α ≤ β = β + 0 .

For the successor step, note that α ≤ β implies α+ ≤ β+. Hence, it follows
that

α + γ+ = (α + γ)+ ≤ (β + γ)+ = β + γ+ .

It remains to consider the limit step. For every η < γ, the inductive
hypothesis yields

α + η ≤ β + η < β + γ .

Therefore, Lemma 4.6 (c) implies that

α + γ = sup{ α + η ∣ η < γ } ≤ β + γ .
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(e) If β < α, we obtain by Lemma 4.8 some γ ∈ On with α = β + γ.
Conversely, if β + γ = α then there exists an isomorphism

f ∶ B ⊍ C → A .

We can define an isomorphism g ∶ B → I ⊆ A by

g(b) ∶= f (⟨0, b⟩) .

This implies that B ≤ A.
(f) follows immediately from (e). ◻

Ordinal multiplication
After addition we turn to ordinal multiplication. The development is
analogous to the one above. First, we show that the function β ↦ αβ is
strictly increasing.

Lemma 4.10. Let α, β, γ ∈ On. If α ≠ 0 and β < γ then αβ < αγ.

Proof. Fix representatives α = ord(A), β = ord(B), and γ = ord(C).
By assumption, there exists an isomorphism f ∶ B → I ⊂ C between
B and a proper initial segment of C. We can define an isomorphism
g ∶ A× B → A× I by

g(⟨a, b⟩) ∶= ⟨a, f (b)⟩ .

SinceA×I is a proper initial segment ofA×C it follows that αβ < αγ. ◻

Again the inductive definition coincides with the official one.

Lemma 4.11. Let α, β ∈ On.

(a) α ⋅ 0 = 0 .

(b) αβ+ = αβ + α .

(c) αδ = sup{ αβ ∣ β < δ } , for limit ordinals δ.
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Proof. Fix representatives α = ord(A) and β = ord(B).
(a) follows immediately from the fact that A ⋅ ⟨∅,∅⟩ = ⟨∅,∅⟩.
(b) The canonical bijection

A× (B ⊍ [1])→ (A× B) ⊍ A

given by

⟨a, ⟨0, b⟩⟩↦ ⟨0, ⟨a, b⟩⟩ ,
⟨a, ⟨1, 0⟩⟩↦ ⟨1, a⟩ ,

induces an isomorphism

A ⋅ (B + ⟨[1], ≤⟩)→ A ⋅B + A .

(c) Let X ∶= { αβ ∣ β < δ } and set γ ∶= sup X. By Lemma 4.10, we
have αβ < αδ, for all β < δ. Hence, γ = sup X ≤ αδ.

For a contradiction suppose that γ < αδ. Fix representatives γ =
ord(C) and δ = ord(D). Since γ < αδ there exists an isomorphism
f ∶ C → I, for some proper initial segment ∅ ⊂ I ⊂ A × D. Let ⟨a, d⟩
be the minimal element of A× D ∖ I. Then I = (A× ↓d) ∪ (↓a × {d}),
which implies that

γ = α ⋅ ord(↓d) + ord(↓a) .

Since ord(↓a) < α and β ∶= ord(↓d) < δ it follows that

γ < αβ + α = αβ+ ≤ sup X .

Contradiction. ◻

Corollary 4.12. The function fα ∶ On→ On with fα(β) ∶= αβ is strictly
continuous, for every α > 0.

Proof. The claim follows immediately from the preceding lemma and
Lemma 1.13. ◻
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We can also show that ordinals allow a limited form of division.

Lemma 4.13. For all ordinals α, β ∈ On with β ≠ 0, there exist unique
ordinals γ and ρ < β such that α = βγ + ρ.

Proof. ByCorollary 4.12 and Lemma 1.14, there exists a greatest ordinal γ
such that βγ ≤ α, and, by Lemma 4.8, there exists some ordinal ρ such
that βγ + ρ = α. By choice of γ, we have

βγ + β = β(γ + 1) > α = βγ + ρ ,

which implies that ρ < β.
Suppose there exist ordinals δ ≠ γ and σ < β such that βδ + σ = α.

Since βδ ≤ α we have δ < γ, which implies that

α = βγ + ρ ≥ βδ+ = βδ + β > βδ + σ = α .

A contradiction. It follows that γ is unique. Hence, the uniqueness of ρ
follows from Lemma 4.8. ◻

Lemma 4.14. α is a limit ordinal if, and only if, α = ωβ, for some β > 0.

Proof. (⇒) By Lemma 4.13, we have α = ωβ + n for some β ∈ On and
n < ω. Suppose that n ≠ 0. Then n = m + 1, for some m < ω, and

α = ωβ + (m + 1) = (ωβ +m) + 1 .

Consequently, α is a successor ordinal. Contradiction.
(⇐) Suppose that ωβ is a successor ordinal. That is, ωβ = γ + 1, for

some γ. By Lemma 4.13, we can write γ as γ = ωη + n, for some n < ω.
Hence,

ωβ = γ + 1 = ωη + (n + 1) .

By Lemma 4.13, it follows that β = η and 0 = n + 1. Contradiction. ◻

The laws of ordinal multiplication are summarised in the following
lemma.
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Lemma 4.15. Let α, β, γ ∈ On.

(a) α(βγ) = (αβ)γ.

(b) α(β + γ) = αβ + αγ.

(c) If α ≠ 0 and αβ = αγ then β = γ.

(d) α ≤ β implies αγ ≤ βγ.

(e) If X ⊆ On is nonempty and bounded then

α ⋅ sup X = sup{ αβ ∣ β ∈ X } .

Proof. (b) We prove the claim by induction on γ. For γ = 0, we have

α(β + 0) = αβ = αβ + 0 = αβ + α0 .

For the successor step, we have

α(β + γ+) = α(β + γ)+

= α(β + γ) + α
= αβ + αγ + α
= αβ + αγ+ .

Finally, if γ is a limit ordinal then

α(β + γ) = α ⋅ sup{ β + ρ ∣ ρ < γ }
= sup{ α(β + ρ) ∣ ρ < γ }
= sup{ αβ + αρ ∣ ρ < γ }
= αβ + sup{ αρ ∣ ρ < γ }
= αβ + αγ .

(a) and (d) can also be proved by induction on γ. We leave the details
as an exercise to the reader.

(c) and (e) follow immediately from Corollary 4.12. ◻
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Ordinal exponentiation
Finally, we consider ordinal exponentiation. Again, the basic steps are
the same as for addition and multiplication.

Lemma 4.16. Let α, β, γ ∈ On. If α > 1 and β < γ then α(β) < α(γ).

Proof. Fix representatives α = ord(A), β = ord(B), and γ = ord(C).
There exists an isomorphism f ∶ B → I ⊂ C between B and a proper
initial segment I of C. The desired isomorphism

A(B) → A(I) ⊂ A(C)

is given by the mapping g ↦ g ○ f −1. ◻

Ordinal exponentiation can also be defined inductively.

Lemma 4.17. Let α, β ∈ On.
(a) α(0) = 1 .
(b) α(β

+) = α(β)α .
(c) α(δ) = sup{ α(β) ∣ β < δ } , for limit ordinals δ.

Proof. Fix representatives α = ord(A) and β = ord(B).
(a) Since ∅ is the only function with empty domain we have A(∅) =

A∅ = {∅}.
(b) There is a canonical bijection A(B⊍[1]) → A(B) × A given by

f ↦ ⟨ f ′ , f (⟨1, 0⟩)⟩

where the function f ′ ∶ B → A is defined by f ′(b) ∶= f (⟨0, b⟩). This
bijection induces the desired isomorphism

A(B+⟨[1],≤⟩) → A(B) ⋅ A .

(c) If α < 2, the claim is trivial. Hence, we may assume that α > 1.
Let X ∶= { α(β) ∣ β < δ } and set γ ∶= sup X. By Lemma 4.16, we have
α(β) < α(δ), for all β < δ. Hence, γ = sup X ≤ α(δ).
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For a contradiction suppose that γ < α(δ). Fix representatives γ =
ord(C) and δ = ord(D). Since γ < α(δ), there exists an isomorphism
f ∶ C → I, for some proper initial segment I ⊂ A(D). Let g be theminimal
element of A(D) ∖ I and let d0 < ⋅ ⋅ ⋅ < dn be the enumeration of the set
{ d ∈ D ∣ g(d) ≠ 0}. We can decompose I as I = In ∪ ⋅ ⋅ ⋅ ∪ I0 where, for
each i ≤ n,

I i ∶= { h ∈ AD ∣ h(d i) < g(d i) and h(x) = g(x) , for x > d i } .

Set β i ∶= ord(↓d i) < δ and η i ∶= ord(↓g(d i)). It follows that

γ = α(βn) ⋅ ηn + ⋅ ⋅ ⋅ + α(β0) ⋅ η0

< α(βn)α +⋯ + α(β0)α

≤ α(βn)α +⋯ + α(βn)α

= α(βn+1)(n + 1) .

Since α > 1 there is somefinite ordinal m such that α(m) ≥ n+1. Therefore,
it follows by (b) that

γ < α(βn+1)α(m) = α(βn+m+1) ≤ sup X .

Contradiction. ◻

Corollary 4.18. The function fα ∶ On→ On with fα(β) ∶= α(β) is strictly
continuous, for every α > 1.

Proof. The claim follows immediately from the preceding lemma and
Lemma 1.13. ◻

Besides subtraction and division we can also take a limited form of
logarithms.

Lemma 4.19. For all ordinals α, β ∈ On with α > 0 and β > 1, there
exist unique ordinals γ, η, and ρ with 0 < γ < β and ρ < β(η) such that
α = β(η)γ + ρ.
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Proof. ByCorollary 4.18 and Lemma 1.14, there exists a greatest ordinal η
such that β(η) ≤ α, and, by Lemma 4.13, there exist ordinals γ and
ρ < β(η) such that β(η)γ+ρ = α. If γ = 0,wewouldhave ρ = α ≥ β(η) > ρ.
A contradiction. And, if γ ≥ β, we would have

α < β(η+1) = β(η)β ≤ β(η)γ ≤ β(η)γ + ρ = α .

Again a contradiction. Therefore, 0 < γ < β.
Suppose there exist ordinals µ ≠ η, δ, and σ such that β(µ)δ + σ = α.

Since β(µ) ≤ α we have µ < η, which implies that

α = β(η)γ + ρ ≥ β(µ
+) = β(µ)β ≥ β(µ)(δ + 1) = β(µ)δ + β(µ)

> β(µ)δ + σ = α .

A contradiction. It follows that η is unique. Hence, the uniqueness of
γ and ρ follows from Lemma 4.8. ◻

Let us summarise the laws of ordinal exponentiation.

Lemma 4.20. Let α, β, γ ∈ On.
(a) α(β+γ) = α(β)α(γ).
(b) α(βγ) = (α(β))(γ).
(c) α > 1 implies β ≤ α(β).
(d) If α > 1 and α(β) = α(γ) then β = γ.
(e) α ≤ β implies α(γ) ≤ β(γ).
(f) If α > 1 then we have β < γ if, and only if, α(β) < α(γ).
(g) If X ⊆ On is nonempty and bounded then we have

α(sup X) = sup{ α(β) ∣ β ∈ X } .

Proof. (a), (b) and (e) can be proved by a simple induction on γ. (c) fol-
lows from Lemma 1.7, while (d), (f) and (g) are immediate consequences
of Corollary 4.18. ◻
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Cantor normal form

We can apply the logarithm to decompose every ordinal in a canonical
way.

Theorem 4.21. For all ordinals α, β ∈ On with β > 1, there are unique
finite sequences (γ i)i<n and (η i)i<n of ordinal numbers such that

α = β(η0)γ0 +⋯ + β(ηn−1)γn−1 ,

η0 > ⋯ > ηn−1 , and 0 < γ i < β , for i < n .

Proof. We decompose α successively with the help of Lemma 4.19. We
start by writing α = β(η0)γ0 + ρ0. Applying the lemma to ρ0 we get
ρ0 = β(η1)γ1 + ρ1. By induction on i, we obtain ρ i = β(η i+1)γ i+1 + ρ i+1. If
this process did not terminate thenwewould get an infinite decreasing se-
quence α > ρ0 > ρ1 > . . . of ordinals which is impossible. Consequently,
there is some number n such that ρn = 0 and we have

α = β(η0)γ0 +⋯ + β(ηn−1)γn−1 . ◻

Definition 4.22. Let α be an ordinal. The unique decomposition

α = ω(η0)γ0 +⋯ + ω(ηn)γn ,

with η0 > ⋯ > ηn and 0 < γ i < ω , for i ≤ n .

is called the Cantor normal form of α.

The Cantor normal form is very convenient for ordinal calculations.
Let us see how this is done. We start with addition.

Lemma 4.23. α < β implies ω(α) + ω(β) = ω(β).
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Proof. Suppose that β = α + γ, for γ > 0. We have

ω(α) + ω(β) = ω(α) + ω(α+γ)

= ω(α) + ω(α)ω(γ)

= ω(α)(1 + ω(γ))

= ω(α)ω(γ)

= ω(α+γ) = ω(β) . ◻

Corollary 4.24. Let α, β ∈ On be ordinals with Cantor normal form

α = ω(η0)k0 +⋯ + ω(ηm−1)km−1 ,

β = ω(γ0) l0 +⋯ + ω(γn−1) ln−1 .

If i is the maximal index such that η i ≥ γ0 then we have

α + β =ω(η0)k0 +⋯ + ω(η i)k i + ω(γ0) l0 +⋯ + ω(γn−1) ln−1 .

Lemma 4.25. An ordinal α > 0 is of the form α = ω(η), for some η, if,
and only if, β + γ < α, for all β, γ < α.

Proof. (⇒) Let

β = ω(ρm)km + ⋅ ⋅ ⋅ + ω(ρ0)k0 and γ = ω(σn) ln + ⋅ ⋅ ⋅ + ω(σ0) l0

be the Cantor normal forms of β and γ. If β, γ < ω(η) then ρm , σn < η.
By symmetry, we may assume that γ ≤ β. Thus,

β + γ ≤ β + β

= ω(ρn)(km + km) + ω(ρm−1)km−1 + ⋅ ⋅ ⋅ + ω(ρ0)k0
< ω(η) .

(⇐) Suppose that α = ω(η)k + ρ where k < ω and ρ < ω(η). We have
to show that k = 1 and ρ = 0.
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If k > 1, we set β ∶= ω(η)(k − 1) + ρ < α. It follows that

β + β = ω(η)(k + (k − 2)) + ρ ≥ ω(η)k + ρ = α .

Contradiction.
Suppose that k = 1 but ρ > 0. In this case we can set β ∶= ω(η) and we

have

β + β = ω(η) + ω(η) > ω(η) + ρ = α .

Again a contradiction. ◻

The next two lemmas provide the laws of multiplication and exponen-
tiation of ordinals in Cantor normal form.

Lemma 4.26. If γ > 0, 0 ≤ ρ < ω(η), and 0 < k < ω then

(ω(η)k + ρ)ω(γ) = ω(η+γ) .

Proof. We have

ω(η)ω(γ) ≤ (ω(η)k + ρ)ω(γ)

≤ (ω(η)(k + 1))ω(γ)

= ω(η)((k + 1)ω(γ)) = ω(η)ω(γ) . ◻

Lemma 4.27. If γ, η > 0, 0 ≤ ρ < ω(η), and 0 < k < ω then

(ω(η)k + ρ)(ω
(γ)) = ω(ηω(γ)) .

Proof. We have

ω(ηω(γ)) = (ω(η))(ω
(γ))

≤ (ω(η)k + ρ)(ω
(γ))

≤ (ω(η+1))(ω
(γ))

= ω((η+1)ω(γ)) = ω(ηω(γ)) . ◻
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Example. By the above lemmas we have

(ω(ω
(5)+ω4+2) + ω(5))(ω

(2)2+ω+1)

= (ω(ω
(5)+ω4+2) + ω(5))

(ω(2)2)
⋅ (ω(ω

(5)+ω4+2) + ω(5))
(ω)

⋅

⋅ (ω(ω
(5)+ω4+2) + ω(5))

= (ω((ω
(5)+ω4+2)ω(2)))

(2)
⋅ ω((ω

(5)+ω4+2)ω) ⋅ (ω(ω
(5)+ω4+2) + ω(5))

= (ω(ω
(7)))

(2)
⋅ ω(ω

(6)) ⋅ (ω(ω
(5)+ω4+2) + ω(5))

= ω(ω
(7)2) ⋅ ω(ω

(6)) ⋅ (ω(ω
(5)+ω4+2) + ω(5))

= ω(ω
(7)2+ω(6)) ⋅ (ω(ω

(5)+ω4+2) + ω(5))

= ω(ω
(7)2+ω(6)) ⋅ ω(ω

(5)+ω4+2) + ω(ω
(7)2+ω(6)) ⋅ ω(5)

= ω(ω
(7)2+ω(6)+ω(5)+ω4+2) + ω(ω

(7)2+ω(6)+5) .

Exercise 4.5. Compute the cantor normal form of

(ω(ω
(2)7+ω3+4)3 + ω(ω6+3)4 + ω(4)3 + 1)

(ω(2)5+ω7+2)

Remark. We will prove in Lemma a4.5.6 that we can find, for every β,
arbitrarily large ordinals α0 , α1 , α2 such that

α0 = β + α0 , α1 = βα1 , and α2 = β(α2) .

In particular, there are ordinals ε such that ε = ω(ε). By εα we denote the
α-th ordinal such that β(εα) = εα , for all β < εα . Note that the Cantor
normal form of εα is εα = ω(εα).

Let us summarise the picture of On that we have obtained. The first
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ordinals are

0, 1, 2, 3, . . .
. . . ,ω,ω + 1,ω + 2, . . .
. . . ,ω2,ω2 + 1,ω2 + 2, . . .

. . . ,ω3, . . . ,ω4, . . . ,ω(2) , . . . ,ω(3) , . . .

. . . ,ω(ω) , . . . ,ω(ω
(ω)) , . . .

. . . , ε0 , . . . , ε(ε0)0 , . . . , ε1 , . . . , ε2 , . . . , εω , . . .

. . . ,ω1 , . . . ,ω2 , . . . ,ωω , . . .

The ordinals ωα will be defined in Section a4.2.
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1. The Axiom of Choice
We have seen that induction is a powerful technique to prove statements
and to construct objects. But in order to use this tool we have to relate
the sets we are interested in to ordinals. In basic set theory this is not
always possible. Therefore, we will introduce a new axiom which states
that, for every set A, there is a well-order over A. Before doing so, let us
present several statements that are equivalent to this axiom. We need
two new notions.

Definition 1.1. A set F ⊆ ℘(A) has finite character if, for all sets x ⊆ A,
we have

x ∈ F iff x0 ∈ F , for every finite set x0 ⊆ x .

Lemma 1.2. Suppose that F ⊆ ℘(A) has finite character.

(a) F is an initial segment of ℘(A).

(b) If X ⊆ F is nonempty then ⋂X ∈ F.

(c) If C ⊆ F is a chain and ⋃C is a set then ⋃C ∈ F.

Proof. (a) follows immediately from the definition and (b) is a conse-
quence of (a). For (c), let C ⊆ F be a chain such that X ∶= ⋃C is a set.
If X0 ⊆ X is finite, there exists some element Z ∈ C with X0 ⊆ Z ∈ F.
Hence, X0 ∈ F, for all finite subsets X0 ⊆ X. This implies that X ∈ F. ◻

Lemma 1.3. If F has finite character then ⟨F , ⊆⟩ is inductively ordered.
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a4. Zermelo-Fraenkel set theory

Proof. Let C ⊆ F be a linearly ordered subset of F. By Corollary a2.3.10
and Lemma 1.2 (c), it follows that supC = ⋃C ∈ F. ◻

Example. Let V be a vector space over the field K. The set

F ∶= {B ⊆ V ∣ B is linearly independent}

has finite character.

The second notion we need is that of a choice function. Intuitively, a
choice function is a function that, given some set A, selects an element
of A.

Definition 1.4. A function f is a choice function if f (a) ∈ a, for all
a ∈ dom f .

Exercise 1.1. Let I be the set of all open intervals (a, b) of real numbers
a, b ∈ R with a < b. Define a choice function I → R.

Lemma 1.5. Let A be a set and C the set of all choice functions f with
dom f ⊆ ℘(A).

(a) C has finite character.

(b) If f is a ⊆-maximal element of C then dom f = ℘(A) ∖ {∅}.

Proof. (a) Suppose that f is a binary relation such that every finite f0 ⊆ f
is a choice function. If ⟨a, b⟩, ⟨a, c⟩ ∈ f then {⟨a, b⟩, ⟨a, c⟩} ∈ C implies
that b = c. Hence, f is a partial function. Furthermore, if ⟨a, b⟩ ∈ f then
{⟨a, b⟩} ∈ C implies that b ∈ a. Consequently, f is a choice function.

(b) Let f ∈ C be ⊆-maximal. Since f is a choice function we have
∅ ∉ dom f . Therefore, dom f ⊆ ℘(A)∖ {∅}. Suppose that there is some
element B ∈ (℘(A) ∖ {∅}) ∖ dom f . Since B ≠ ∅ we can choose some
element b ∈ B. The relation f ∪ {⟨B, b⟩} ⊃ f is again a choice function
in contradiction to the maximality of f . ◻

Lemma 1.6. Let A be a set. Given a choice function f ∶ ℘(A) ∖ {∅}→ A
we can define a well-order R on A.
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Proof. Let f ∶ ℘(A) ∖ {∅} → A be a choice function. We define a
function g ∶ ℘(A)→ ℘(A) by

g(X) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

A if X = A ,
X ∪ { f (A∖ X)} if X ≠ A .

Since g(X) ⊇ X this function is inflationary. Furthermore, the partial
order ⟨℘(A), ⊆⟩ is complete.ByTheorem a3.3.14, g has an inductive fixed
point. Since g(X) ≠ X, for X ≠ A, it follows that this fixed point is A. Let
G ∶ On → ℘(A) be the fixed-point induction of g over ∅ and let α be
the closure ordinal. For every β < α, there exists a unique element aβ
such that G(β + 1) ∖G(β) = {aβ}. We define a function, h ∶ ↓α → A by
h(β) ∶= aβ . Since G(0) = ∅ it follows that rng h = G(∞) = A. Hence,
h ∶ ↓α → A is bijective andwe can define the desiredwell-order R over A
by

R ∶= { ⟨a, b⟩ ∣ h−1(a) ≤ h−1(b) } . ◻

Each of the following statements cannot be proved in basic set theory.

Theorem 1.7. The following statements are equivalent :
(1) For every set A, there exists a well-order R over A.
(2) For every set A, there exists a choice function f ∶ ℘(A) ∖ {∅}→ A.
(3) If (A i)i∈I is a sequence of nonempty sets then∏i∈I A i ≠ ∅.
(4) If (A i)i∈I is a sequence of disjoint nonempty sets then∏i∈I A i ≠ ∅.
(5) Every inductively ordered partial order has a maximal element.
(6) If F is a set of finite character and A ∈ F, there exists a maximal

element B ∈ F with A ⊆ B.
(7) For all sets A and B, there exists an injective function f ∶ A→ B or

an injective function f ∶ B → A.
(8) For every surjective function f ∶ A→ B where A is a set, there exists

a function g ∶ B → A such that f ○ g = idB .
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Proof. (2)⇒ (3) If∏i∈I A i is a proper class, it is nonempty and we are
done. Hence, we may assume that it is a set. Then A ∶= ⋃{A i ∣ i ∈ I } is
also a set. By (2) there exists a choice function f ∶ ℘(A) ∖ {∅}→ A. Let
g ∶ I → A be the function defined by g(i) ∶= f (A i). Since g(i) ∈ A i it
follows that g ∈∏i∈I A i ≠ ∅.

(3)⇒ (4) is trivial.
(4)⇒ (2) Let I ∶= ℘(A)∖{∅} and set AX ∶= X ×{X}, for X ∈ I. Since
∏X∈I AX ≠ ∅ there exists some element f ∈∏X∈I AX . We can define the
desired choice function g ∶ ℘(A) ∖ {∅}→ A by

g(X) = a : iff f (X) = ⟨a, X⟩ .

(2)⇒ (1) was proved in Lemma 1.6.
(1) ⇒ (5) Suppose that ⟨A, ≤⟩ is inductively ordered, but A has no

maximal element. For every a ∈ A, we can find some b ∈ Awith b > a.
By assumption, there exists a well-order R over A. Let f ∶ A→ A be the
function such that f (a) is the R-minimal element b ∈ Awith b > a. By
definition, we have f (a) > a, for all a ∈ A. Hence, f is inflationary and,
by Theorem a3.3.14, f has a fixed point a. But f (a) = a contradicts the
definition of f .

(5)⇒ (6) Let F be a set of finite character and A ∈ F. It is sufficient
to prove that the subset F0 ∶= {X ∈ F ∣ A ⊆ X } is inductively ordered
by ⊆. By Lemma 1.3, we know that ⟨F , ⊆⟩ is inductively ordered. Let C be
a chain in F0. Then C ⊆ F0 ⊆ F and C is also a chain in F. Consequently,
it has a least upper bound B ∈ F. Since A ⊆ X, for all X ∈ C, it follows
that A ⊆ B, that is, B ∈ F0 and B is also the least upper bound of C in F0.

(6)⇒ (2) Let A be a set. By Lemma 1.5 (a), the set C of choice func-
tions f with dom f ⊆ ℘(A) ∖ {∅} has finite character and, therefore,
there is a maximal element f ∈ C. By Lemma 1.5 (b), it follows that f is
the desired choice function.

(1)⇒ (7) Fix well-orders R and S on, respectively, A and B. By Corol-
lary a3.1.12, exactly one of the following conditions is satisfied:

⟨A, R⟩ < ⟨B, S⟩ or ⟨A, R⟩ ≅ ⟨B, S⟩ or ⟨A, R⟩ > ⟨B, S⟩.
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In the first two cases there exists an injection A→ B and in the second
and third case there exists an injection B → A in the other direction.

(7)⇒ (1) Let A be a set. By Theorem a3.2.12, there exists an ordinal α
such that there is no injective function ↓α → A. Consequently, there
exists an injective function f ∶ A→ ↓α. We define a relation R on A by

R ∶= { ⟨a, b⟩ ∣ f (a) < f (b) } .

Since f is injective and rng f ⊆ ↓α is well-ordered it follows that R is the
desired well-order on A.

(2)⇒ (8) Let h ∶ ℘(A)∖{∅}→ A be a choice function. We can define
g ∶ B → A by

g(b) ∶= h( f −1(b)) .

(8)⇒ (4) Let (A i)i∈I be a family of disjoint nonempty sets. We define
a function f ∶ ⋃{A i ∣ i ∈ I }→ I by

f (a) = i : iff a ∈ A i .

Since the A i are disjoint and nonempty it follows that f is well-defined
and surjective. Hence, there exists a function g ∶ I → ⋃{A i ∣ i ∈ I }
such that f (g(i)) = i, for all i ∈ I. By definition of f , this implies that
g(i) ∈ A i . Hence, g ∈∏i∈I A i ≠ ∅. ◻

Axiom of Choice. For every set A there exists a well-order R over A.

Lemma 1.8. A left-narrow partial order (A, ≤) is well-founded if, and
only if, there exists no infinite strictly decreasing sequence a0 > a1 > . . . .

Proof. One direction was already proved in Lemma a3.1.3. For the other
one, fix a choice function f ∶ ℘(A) ∖ ∅ → A. Suppose that there exists
a nonempty set A0 ⊆ A without minimal element. We can define a
descending chain a0 > a1 > . . . by induction. Let a0 ∶= f (A0) and, for
k > 0, set

ak ∶= f ({ b ∈ A0 ∣ b < ak−1 }) .
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Note that ak is well-defined since ak−1 is not a minimal element of A0.
◻

Exercise 1.2. We call a set a countable if there exists a bijection ↓ω → a.
Prove that a left-narrow partial order ⟨A, ≤⟩ is well-founded if, and only
if, every countable nonempty subset X ⊆ A has a minimal element.

Exercise 1.3. Let ⟨A, R⟩ be a well-founded partial order that is a set.
Prove that there exists a well-order ≤ on Awith R ⊆ ≤.

The following variant of the Axiom of Choice (statement (5) in the
above theorem) is known as ‘Zorn’s Lemma’.

Lemma 1.9 (Kuratowski, Zorn). Every inductively ordered partial order
has a maximal element.

Example. We have seen that the system of all linearly independent sub-
sets of a vector spaceV is inductively ordered. It follows that every vector
space contains a maximal linearly independent subset, that is, a basis.

This example can be generalised to a certain kind of closure operators.

Definition 1.10. Let c be a closure operator on A.
(a) c has the exchange property if

b ∈ c(X ∪ {a}) ∖ c(X) implies a ∈ c(X ∪ {b}) .

(b) A set I ⊆ A is c-independent if

a ∉ c(I ∖ {a}) , for all a ∈ I .

We call D ⊆ A c-dependent if it is not c-independent.
(c) Let X ⊆ A. A set I ⊆ X is a c-basis of X if I is c-independent and

c(I) = c(X).

Lemma 1.11. Let c be a closure operator on A and let F ⊆ ℘(A) be the
class of all c-independent sets. If c has finite character then F has finite
character.
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Proof. Let I ∈ F and I0 ⊆ I. For every a ∈ I0, we have

a ∉ c(I ∖ {a}) ⊇ c(I0 ∖ {a}) .

Hence, I0 is c-independent. Conversely, suppose that I ∉ F. Then there
is some a ∈ I with

a ∈ c(I ∖ {a}) .

Since c has finite characterwe can find a finite subset I0 ⊆ I∖{a}with a ∈
c(I0). Thus, I0∪{a} is a finite subset of I that is not c-independent. ◻

Before proving the converse let us show with the help of the Axiom
of Choice that there is always a c-basis. We start with an alternative
description of the exchange property.

Lemma 1.12. Let c be a closure operator on A with the exchange property.
If D ⊆ A is a minimal c-dependent set then

a ∈ c(D ∖ {a}) , for all a ∈ D .

Proof. Let a ∈ D. SinceD is c-dependent there exists some element b ∈ D
with b ∈ c(D ∖ {b}). If b = a then we are done. Hence, suppose that
b ≠ a and let D0 ∶= D ∖ {a, b}. By minimality of D we have b ∉ c(D0).
Hence, b ∈ c(D0 ∪{a})∖ c(D0) and the exchange property implies that
a ∈ c(D0 ∪ {b}). ◻

Proposition 1.13. Let c be a closure operator on A that has finite character
and the exchange property. Every set X ⊆ A has a c-basis.

Proof. The family F of all c-independent subsets of X has finite character.
By the Axiom of Choice, there exists a maximal c-independent set I ⊆ X.
We claim that c(I) = c(X), that is, I is a c-basis of X.

Clearly, c(I) ⊆ c(X). If X ⊆ c(I), it follows that

c(X) ⊆ c(c(I)) = c(I)
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and we are done. Hence, it remains to consider the case that there is
some element a ∈ X ∖ c(I). We derive a contradiction to the maximality
of I by showing that I ∪ {a} is c-independent.

Suppose that I∪{a} is not c-independent. Since F has finite character
there exists a finite c-dependent subset D ⊆ I ∪ {a} with a ∈ D. Suppose
that D is chosen minimal.By Lemma 1.12, it follows that a ∈ c(D∖{a}) ⊆
c(I). A contradiction. ◻

Proposition 1.14. Let c be a closure operator on A with the exchange
property and let F ⊆ ℘(A) be the class of all c-independent sets. Then
c has finite character if, and only if, F has finite character.

Proof. (⇒) has already been proved in Lemma 1.11.
(⇐) For a contradiction, suppose that there is a set X ⊆ A such that

Z ∶=⋃{ c(X0) ∣ X0 ⊆ X is finite}

is a proper subset of c(X). Fix some element a ∈ c(X) ∖ Z. By Propos-
ition 1.13 there exists a c-basis I for X. It follows that a ∈ c(X) = c(I).
Since F has finite character we can find a finite subset I0 ⊆ I such that
I0 ∪ {a} is c-dependent. By Lemma 1.12, it follows that a ∈ c(I0) ⊆ Z.
A contradiction. ◻

A more extensive treatment of closure operators with the exchange
property will be given in Section f1.1.

2. Cardinals
The notion of the cardinality of a set is a very natural one. It is based on
the same ideawhich led to the definition of the order type of awell-order.
But instead of well-orders we consider just sets without any relation.
Although conceptually simpler than ordinals we introduce cardinals
quite late in the development of our theory sincemost of their properties
cannot be provedwithout resorting to ordinals and the Axiom of Choice.

112



2. Cardinals

Intuitively, the cardinality of a set A measures its size, that is, the
number of its elements. So,howdowe count the elements of a set?We can
say that ‘A has α elements’ if there exists an enumeration of A of length α,
that is, a bijection ↓α → A. For infinite sets, such an enumeration is not
unique. We can find several sequences ↓α → Awith different values of α.
To get a well-defined number we therefore pick the least one.

Definition 2.1. The cardinality ∣A∣ of a class A is the least ordinal α
such that there exists a bijection ↓α → A. If there exists no such ordinal
then we write ∣A∣ ∶= ∞. Let Cn ∶= rng ∣ ⋅ ∣ ⊆ On be the range of this
mapping. (We do not consider ∞ to be an element of the range.) We set
Cn ∶= ⟨Cn, ≤⟩. The elements of Cn are called cardinals.

Remark. Clearly, if ∣A∣, ∣B∣ <∞ then we have ∣A∣ = ∣B∣ iff there exists a
bijection A→ B.

Lemma 2.2. Every set A has a cardinality and we have ∣A∣ <∞.

Proof. Let A be a set. By the Axiom ofChoice,we can find awell-order R
over A. Set α ∶= ord ⟨A, R⟩. By definition of an ordinal, there exists a
bijection ↓α → A. In particular, the class of all ordinals β such that there
exists a bijection ↓β → A is nonempty and, therefore, there exists a least
such ordinal. ◻

Lemma 2.3. Let A and B be nonempty sets. The following statements are
equivalent :

(1) ∣A∣ ≤ ∣B∣

(2) There exists an injective function A→ B.

(3) There exists an surjective function B → A.

Proof. Set κ ∶= ∣A∣ and λ ∶= ∣B∣ and let g ∶ ↓κ → A and h ∶ ↓λ → B be the
corresponding bijections.

(1) ⇒ (2) Since κ ≤ λ there exists an isomorphism f ∶ ↓κ → I
between ↓κ and an initial segment I ⊆ ↓λ. In particular, f is injective.
The composition h ○ f ○ g−1 ∶ A→ B is the desired injective function.
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(2)⇒ (1) For a contradiction, suppose that there exists an injective
function A→ B but we have ∣A∣ > ∣B∣. By (1)⇒ (2), the latter implies that
there is an injective function B → A. Hence, applying Theorem a2.1.12
we find a bijection A→ B. It follows that ∣A∣ = ∣B∣. Contradiction.

(2)⇒ (3) Let f ∶ A → B be injective. By Lemma a2.1.10 (b), there
exists a function g ∶ B → A such that g ○ f = idA. Furthermore, it follows
by Lemma a2.1.10 (d) that g is surjective.

(3)⇒ (2) As above, given a surjective function f ∶ B → A we can
apply Lemma a2.1.10 (and the Axiom of Choice) to obtain an injective
function g ∶ A→ B with f ○ g = idB . ◻

For every cardinal, there is a canonical set with this cardinality.

Lemma 2.4. For every cardinal κ ∈ Cn, we have κ = ∣↓κ∣. It follows that
Cn = { α ∈ On ∣ ∣↓α∣ = α }.

Exercise 2.1. Let α and β be ordinals such that ∣α∣ ≤ β ≤ α. Show that
∣α∣ = ∣β∣.

Exercise 2.2. Prove that α ∈ Cn, for every ordinal α ≤ ω. Hint. Show,
by induction on α, that there is no surjective function ↓α → ↓β with
α < β ≤ ω.

Using the notion of cardinality we can restate Theorem a2.1.13 in the
following way.

Theorem 2.5. We have ∣A∣ < ∣℘(A)∣ , for every set A.

Proof. By Theorem a2.1.13, there exists an injective function A→ ℘(A)
but no surjective one. By Lemma 2.3, it follows that ∣A∣ ≤ ∣℘(A)∣ and
∣℘(A)∣ ≰ ∣A∣. ◻

Cn is a proper class since it is an unbounded subclass of On.

Lemma 2.6. Cn is a proper class.
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2. Cardinals

Proof. For a contradiction, suppose otherwise. By Lemma a3.2.8, it fol-
lows that there is some α ∈ On such that κ < α, for all cardinals κ. But,
by Theorem a3.2.12, there exists some ordinal β such that λ ∶= ∣↓β∣ > ∣↓α∣,
which implies that λ > α. A contradiction. ◻

Lemma 2.7. On0 ≤ Cn ≤ On .

Proof. Since Cn ⊆ On it follows that Cn is a well-order. Therefore, there
exists an isomorphism h ∶ Cn→ I, for some initial segment I ⊆ On.
By Theorem 2.5 we know that the function f ∶ On0 → Cn with

f (α) ∶= ∣Sα ∣ is strictly increasing. Consequently, we have On0 ≤ Cn,
by Lemma a3.2.11. ◻

Remark. With the Axiom of Replacement which we will introduce in
Section 5 we can actually prove that ⟨On0 , ∈⟩ ≅ ⟨On, <⟩. Therefore, all
three orders are isomorphic.

Definition 2.8. (a) By the preceding lemma and Lemma a3.1.10, there
exists a unique isomorphism h ∶ I → Cn where I is an initial segment
of On. We define ℵα ∶= h(ω + α) (‘aleph alpha’), for all α such that
ω + α ∈ I. Furthermore, we denote by ωα the minimal ordinal such that
∣ωα ∣ = ℵα .

(b) A set A is finite if ∣A∣ < ℵ0. Otherwise, A is called infinite. Similarly,
we say that A is countable if ∣A∣ ≤ ℵ0, and A is uncountable, if ∣A∣ > ℵ0.
A countable set that is not finite is called countably infinite.

(c) For cardinals κ, we will denote by κ+ the minimal infinite cardinal
greater than κ.

Note that, by our definition of a cardinal, we have ωα = ℵα and ℵ0 =
ω0 = ω. Furthermore,ℵ+α = ℵα+1. Sincewe have defined the operation κ+
differently for cardinals and ordinals we will use this notation only for
cardinals in the remainder of this book. If we consider the successor of
an ordinal α we will write α + 1.
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3. Cardinal arithmetic
Similarly to ordinals we can define arithmetic operations on cardinals.
Note that, except for finite cardinals, these operations are different from
the ordinal operations. Therefore, we have chosen different symbols to
denote them.

Definition 3.1. Let κ, λ ∈ Cn be cardinals. We define

κ ⊕ λ ∶= ∣↓κ ⊍ ↓λ∣ , κ ⊗ λ ∶= ∣↓κ × ↓λ∣ , κλ ∶= ∣↓κ↓λ ∣ .

The following lemmas follows immediately from the definition if one
recalls that, for κ ∶= ∣A∣ and λ ∶= ∣B∣, there exist bijections A→ ↓κ and
B → ↓λ.

Lemma 3.2. Let A and B be sets.

∣A⊍ B∣ = ∣A∣⊕ ∣B∣ , ∣A× B∣ = ∣A∣⊗ ∣B∣ , ∣AB ∣ = ∣A∣∣B∣ .

Corollary 3.3. For all α, β ∈ On, we have

∣↓(α + β)∣ = ∣↓α∣⊕ ∣↓β∣ and ∣↓(αβ)∣ = ∣↓α∣⊗ ∣↓β∣ .

The corresponding equation for ordinal exponentiation will be delayed
until Lemma 4.4.

Exercise 3.1. Prove that, if A is a set then ∣℘(A)∣ = 2∣A∣. Hint. Take the
obvious bijection ℘(A)→ 2A.

For finite cardinals these operations coincide with the usual ones.

Lemma 3.4. For m, n < ω, we have

m ⊕ n = m + n , m ⊗ n = mn , mn = mn ,

where the operations on the left are the ones defined above while those on
the right are the usual arithmetic operations.
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Let us summarise the basic properties of cardinal arithmetic. The
proofs are similar to, but much simpler than, the corresponding ones
for ordinal arithmetic.

Lemma 3.5. Let κ, λ, µ ∈ Cn.
(a) (κ ⊕ λ)⊕ µ = κ ⊕ (λ ⊕ µ)
(b) κ ⊕ λ = λ ⊕ κ
(c) κ ⊕ 0 = κ
(d) κ ≤ λ if, and only if, there is some µ with λ = κ ⊕ µ.
(e) λ ≤ µ implies κ ⊕ λ ≤ κ ⊕ µ.
(f) κ ≥ ℵ0 if, and only if, κ ⊕ 1 = κ

Proof. (a) There is a canonical bijection (A⊍B)⊍C → A⊍ (B⊍C) with

⟨0, ⟨0, a⟩⟩↦ ⟨0, a⟩ ,
⟨0, ⟨1, b⟩⟩↦ ⟨1, ⟨0, b⟩⟩ ,
⟨1, c⟩↦ ⟨1, ⟨1, c⟩⟩ .

(b) There is a canonical bijection A⊍ B → B ⊍ Awith ⟨0, a⟩↦ ⟨1, a⟩
and ⟨1, b⟩↦ ⟨0, b⟩.

(c) A ⊍ ∅ = {0} × A. We can define a bijection A → {0} × A by
a ↦ ⟨0, a⟩.

(d) If κ ≤ λ, there exists an injective function f ∶ ↓κ → ↓λ. Let
X ∶= ↓λ ∖ rng f and µ ∶= ∣X∣. We can define a bijection ↓κ ⊍ X → ↓λ by

⟨0, a⟩↦ f (a) and ⟨1, a⟩↦ a .

(e) If there is an injective function f ∶ B → C, we can define an
injective function A⊍ B → A⊍ C by

⟨0, a⟩↦ ⟨0, a⟩ and ⟨1, b⟩↦ ⟨1, f (b)⟩ .

(f) If κ ≥ ℵ0 = ω then κ = ω + α, for some α ∈ On. We can define a
bijection ↓ω → ↓(ω+ 1) by 0↦ ω and n ↦ n− 1, for n > 0. This function
can be extended to a bijection ↓ω ⊍ ↓α → ↓ω ⊍ ↓α ⊍ [1]. Conversely, if
κ < ω then κ ⊕ 1 = κ + 1 > κ. ◻
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Lemma 3.6. Let κ, λ, µ ∈ Cn.

(a) (κ ⊗ λ)⊗ µ = κ ⊗ (λ ⊗ µ)

(b) κ ⊗ λ = λ ⊗ κ

(c) κ ⊗ 0 = 0, κ ⊗ 1 = κ, κ ⊗ 2 = κ ⊕ κ.

(d) κ ⊗ (λ ⊕ µ) = (κ ⊗ λ)⊕ (κ ⊗ µ)

(e) λ ≤ µ implies κ ⊗ λ ≤ κ ⊗ µ.

Proof. (a) There is a canonical bijection (A×B)×C → A× (B×C) with
⟨⟨a, b⟩, c⟩↦ ⟨a, ⟨b, c⟩⟩.

(b) There is a canonical bijection A× B → B × Awith ⟨a, b⟩↦ ⟨b, a⟩.
(c) A× ∅ = ∅. There are canonical bijections

A× {0}→ A and A⊍ A = [2] × A→ A× [2] .

(d) There exists a bijection A× (B ⊍ C)→ (A× B) ⊍ (A× C) with

⟨a, ⟨0, b⟩⟩↦ ⟨0, ⟨a, b⟩⟩ and ⟨a, ⟨1, c⟩⟩↦ ⟨1, ⟨a, c⟩⟩ .

(e) Given an injective function f ∶ B → C we define an injective
function A× B → A× C by ⟨a, b⟩↦ ⟨a, f (b)⟩. ◻

Lemma 3.7. Let κ, λ, µ, ν ∈ Cn.

(a) (κλ)µ = κλ⊗µ

(b) (κ ⊗ λ)µ = κµ ⊗ λµ

(c) κλ⊕µ = κλ ⊗ κµ

(d) κ0 = 1, κ1 = κ, κ2 = κ ⊗ κ.

(e) If κ ≤ λ and µ ≤ ν then κµ ≤ λν .

(f) κ < 2κ

Proof. (a) There is a canonical bijection (AB)C → AB×C given by f ↦ g
where g(b, c) ∶= f (c)(b).
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(b) We define a bijection AC × BC → (A× B)C by

⟨g , h⟩↦ f where f (c) ∶= ⟨g(c), h(c)⟩ .

(c) We define a bijection AB⊍C → AB × AC by f ↦ ⟨g , h⟩ where

g(b) ∶= f (⟨0, b⟩) and h(c) ∶= f (⟨1, c⟩) .

(d) A∅ = {∅}. A bijection A[1] → A is given by f ↦ f (0), and a
bijection A[2] → A× A by f ↦ ⟨ f (0), f (1)⟩.

(e) Suppose that f ∶ A→ B and g ∶ C → D are injective. According to
Lemma a2.1.10 (b), there exists a surjective function g′ ∶ D → C such
that g′ ○ g = idC . We define an injection AC → BD by h ↦ f ○ h ○ g′. To
show that this mapping is injective consider functions h, h′ ∈ AC with
h ≠ h′. Fix some some c ∈ C with h(c) ≠ h′(c) and set d ∶= g(c). Then
g′(d) = g′(g(c)) = idC(c) = c. Since f is injective it follows that

( f ○ h ○ g′)(d) = f (h(c)) ≠ f (h′(c)) = ( f ○ h′ ○ g′)(d) .

Consequently, f ○ h ○ g′ ≠ f ○ h′ ○ g′.
(f) follows immediately from Theorem 2.5. ◻

We will show that addition and multiplication of infinite cardinals is
especially simple since they just consist of taking the maximum of the
operands. In particular, we have κ ⊕ λ = κ ⊗ λ if at least one operand is
infinite.

Exercise 3.2. Prove that ℵ0 ⊗ ℵ0 = ℵ0 by showing that the function

↓ω × ↓ω → ↓ω ∶ ⟨i , k⟩↦ (i + k)(i + k + 1) + k

is bijective.

We start by computing κ ⊗ κ by induction on κ ≥ ℵ0.

Theorem 3.8. If κ ≥ ℵ0 then κ ⊗ κ = κ.
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Figure 1.. Ordering on ↓κ × ↓κ

Proof. We have κ = κ ⊗ 1 ≤ κ ⊗ κ. For the converse, we prove that
κ ⊗ κ ≤ κ by induction on κ.

Note that, since κ is a cardinal we have α < κ if, and only if, ∣↓α∣ < κ,
for all ordinals α. We define an order on K ∶= ↓κ × ↓κ by

⟨β0 , β1⟩ < ⟨γ0 , γ1⟩

: iff max {β0 , β1} < max {γ0 , γ1} , or
max {β0 , β1} = max {γ0 , γ1} and β0 < γ0 , or
max {β0 , β1} = max {γ0 , γ1} and β0 = γ0 and β1 < γ1 .

One can check easily that this order is a well-order. For every ordinal
α ≤ κ, the set

I(α) ∶= ↓α × ↓α

is an initial subset of K. If ω ≤ α < κ, it follows by inductive hypothesis
that

∣I(α)∣ = ∣↓α × ↓α∣ = ∣↓α∣⊗ ∣↓α∣ = ∣↓α∣ < κ .

Similarly, if α < ω then we have

∣I(α)∣ = ∣↓α∣⊗ ∣↓α∣ = ∣↓α∣2 = α2 < ℵ0 ≤ κ .
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Hence, we have ord I(α) < κ, for all ordinals α < κ.
We claim that K = ⋃{ I(α) ∣ α < κ }. Let ⟨α, β⟩ ∈ K. Since α, β < κ

and κ is a limit ordinal we have γ ∶= max {α + 1, β + 1} < κ and ⟨α, β⟩ ∈
I(γ). It follows that

ord ⟨K , ≤⟩ = sup{ord ⟨I(α), ≤⟩ ∣ α < κ } ≤ κ .

In particular, there exists an isomorphism between K and some initial
segment of κ. This implies that κ ⊗ κ = ∣K∣ ≤ κ. ◻

The general case now follows easily.

Lemma 3.9. If κ > 0 and λ ≥ ℵ0 then κ ⊕ λ = κ ⊗ λ = max {κ, λ}.

Proof. By symmetry, we may assume that κ ≤ λ. For κ = 1, the claim
follows from Lemmas 3.5 and 3.6. Suppose that κ > 1. Then

λ ≤ κ ⊕ λ ≤ λ ⊕ λ = 2⊗ λ ≤ κ ⊗ λ ≤ λ ⊗ λ = λ . ◻

Corollary 3.10. If κ ≥ ℵ0 then κn = κ, for all n < ω.

Example. We have

ℵℵ3
4 ⊗ (ℵ5 ⊕ ℵ

ℵ7
4 )

ℵ2 = ℵℵ3
4 ⊗ (ℵℵ7

4 )
ℵ2 = ℵℵ3

4 ⊗ ℵℵ7⊗ℵ2
4

= ℵℵ3
4 ⊗ ℵℵ7

4 = ℵ
ℵ3⊕ℵ7
4 = ℵℵ7

4 .

4. Cofinality
Frequently, we will construct objects as the union of an increasing se-
quence A0 ⊆ A1 ⊆ . . . of sets. In this section wewill study the cardinality
of such unions.

Definition 4.1. For a sequence (κ i)i<α of cardinals, we define

∑
i<α

κ i ∶= ∣⊍
i<α
↓κ i ∣ and ∏

i<α
κ i ∶= ∣∏

i<α
↓κ i ∣ .
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Lemma 4.2. If κ ≥ ℵ0 and λ i ≥ 1, for i < κ, then

∑
i<κ

λ i = κ ⊗ sup{ λ i ∣ i < κ } .

Proof. Let µ ∶= sup{ λ i ∣ i < κ }. Note that

κ = ∑i<κ 1 ≤ ∑i<κ λ i and µ = sup{ λ i ∣ i < κ } ≤ ∑i<κ λ i

implies κ ⊗ µ = max {µ, κ} ≤ ∑i<κ λ i ≤ ∑i<κ µ = κ ⊗ µ . ◻

Corollary 4.3. If κ ≥ ℵ0 and λ i ≤ κ, for i < κ, then∑i<κ λ i ≤ κ.

We have seen in Lemma 3.7 (f) that κλ > κ, for infinite λ. Ordinal
exponentiation, on the other hand, does not increase the cardinality.

Lemma 4.4. If α and β > 0 are ordinals and at least one of them is infinite
then

∣↓(α(β))∣ = ∣↓α∣⊗ ∣↓β∣ .

Proof. If α = 0 then ∣↓(α(β))∣ = 0 = ∣↓α∣⊗ ∣↓β∣. Otherwise, we obviously
have ∣↓α∣ ≤ ∣↓(α(β))∣ and ∣↓β∣ ≤ ∣↓(α(β))∣. Conversely,

↓(α(β)) = ⋃
n<ω
⋃{ (↓α)X ∣ X ⊆ ↓β , ∣X∣ = n } .

Since ∣(↓α)n ∣ ≤ ∣↓α∣⊕ ℵ0, for n < ω, it follows from Corollary 4.3 that

∣↓(α(β))∣ ≤ ∑
n<ω

∑
i<∣(↓β)n ∣

∣(↓α)n ∣

≤ ∑
n<ω
∣(↓β)n ∣⊗ ∣↓α∣⊗ ℵ0

= ∑
n<ω
∣↓α∣⊗ ∣↓β∣⊗ ℵ0

= ℵ0 ⊗ ∣↓α∣⊗ ∣↓β∣⊗ ℵ0

= ∣↓α∣⊗ ∣↓β∣ . ◻
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Corollary 4.5. Let Aand B ≠ ∅ be sets, at least one of them infinite. There
are exactly ∣A∣⊕ ∣B∣ functions p ∶ A0 → B with finite domain A0 ⊆ A.

Theorem 4.6 (Kőnig). If κ i < λ i , for i < α, then

∑
i<α

κ i <∏
i<α

λ i .

Proof. We show that there is no surjective function

f ∶ ⊍i<α ↓κ i →∏i<α ↓λ i .

For a contradiction, suppose such a function exists and define

Zk ∶= { βk < λk ∣ (β i)i = f ⟨k, γ⟩ for some γ < κk } .

Then ∣Zk ∣ ≤ κk < λk . Hence, ↓λk ∖ Zk ≠ ∅ and there is some se-
quence (β i)i ∈ ∏i<α(↓λ i ∖ Z i). As f is surjective there must be some
element ⟨k, γ⟩ with f ⟨k, γ⟩ = (β i)i . But this implies that βk ∈ Zk . A con-
tradiction. ◻

Consider some set A of cardinality ∣A∣ = κ. What is the shortest se-
quence of sets (Bα)α<λ of cardinality ∣Bα ∣ < κ such that A = ⋃α<λ Bα ?
This question leads to the notion of cofinality.

Definition 4.7. (a) Let ⟨A, ≤⟩ be a linear order. A subset X ⊆ A is cofinal
in A if, for every a ∈ A, there is some element x ∈ X with a ≤ x.

We call a function f ∶ B → A cofinal if rng f is cofinal in A.
(b) The cofinality cf α of an ordinal α is the minimal ordinal β such

that there exists a cofinal function f ∶ ↓β → ↓α.

Exercise 4.1. Prove that every linear order ⟨A, ≤⟩ contains a cofinal
subset X ⊆ A such that ⟨X , ≤⟩ is well-ordered.

Lemma 4.8. Let ⟨A, ≤⟩ be a linear order. If X is cofinal in A and Y is
cofinal in X then Y is cofinal in A.

We can restate the definition of the cofinality in a more useful form
as follows.
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Lemma 4.9. If (α i)i<λ is a sequence of ordinals α i < κ of length λ < cf κ
then

sup{ α i ∣ i < λ } < κ .

Exercise 4.2. Prove that cf ω = ω and cf ℵω = ω.

The following lemmas provide tools to compute the cofinality of an
ordinal.

Lemma 4.10. For every ordinal α, we have

cf α ≤ α and cf(α + 1) = 1 .

Proof. For the first inequality, it is sufficient to note that the identity
function id↓α ∶ ↓α → ↓α is cofinal. The second claim follows from the
fact that the function f ∶ [1]→ ↓(α + 1) with f (0) ∶= α is cofinal. ◻

Lemma 4.11. If there exists a cofinal function f ∶ ↓β → ↓α, we can
construct such a function that is strictly increasing.

Proof. The function g ∶ ↓β → ↓α with

g(γ) = max{ f (γ), sup{ g(η) + 1 ∣ η < γ }}

is cofinal and increasing. ◻

Lemma 4.12. If f ∶ ↓α → ↓β is strictly increasing and cofinal then cf α =
cf β.

Proof. Let g ∶ ↓ cf α → ↓α and h ∶ ↓ cf β → ↓β be strictly increasing
cofinal maps. Since the composition f ○ g ∶ ↓ cf α → ↓β is cofinal we
have cf α ≤ cf β.

For the converse, we distinguish two cases. If α = α0 + 1 is a successor,
then cf α = 1 and { f (0)} is cofinal in ↓β. Hence, β = f (0) + 1 is a
successor and cf β = 1. If α is a limit ordinal, we define a function
k ∶ ↓ cf β → ↓α by

k(γ) ∶= min{ η ∣ f (η) > h(γ) } .
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This function is cofinal since, given η < α, there is some γ < cf β with
h(γ) ≥ f (η). It follows that k(γ) ≥ η since f (k(γ)) > h(γ) ≥ f (η) and
f is strictly increasing. ◻

Corollary 4.13. cf(cf α) = cf α, for every α ∈ On.

We will see many examples showing that cardinals κ with cf κ = κ
behave in a sane way while, for other cardinals, we might have to deal
with pathological cases. Cardinals of the first kind are therefore called
regular, the other ones are singular.

Definition 4.14. An ordinal α is called regular if α is a limit ordinal and
cf α = α. A cardinal which is not regular is called singular.

Remark. In Corollary 4.13 we have shown that every ordinal of the form
cf α is regular. It follows that the class of all regular ordinals is precisely
the range rng(cf) of the function cf .

Example. ω and ℵ1 are regular while ℵω is singular.

The next lemma indicates that the notion of cofinality is mainly inter-
esting for cardinals.

Lemma 4.15. Every regular ordinal is a cardinal.

Proof. Let α ∈ On ∖ Cn be an ordinal that is not a cardinal and set
κ ∶= ∣α∣ < α. By definition, there exists a bijection f ∶ ↓κ → ↓α. This
function is surjective and, hence, cofinal. Consequently, we have cf α ≤
κ < α. ◻

It turns out that all successor cardinals are regular while most limit
cardinals are singular.

Lemma 4.16. Every successor cardinal is regular.

Proof. Suppose there exists a cardinal κ ∈ Cn such that α ∶= cf κ+ < κ+.
Let f ∶ ↓α → ↓κ+ be a cofinal map. Since κ+ is a limit ordinal we have

↓κ+ =⋃{ ↓ f (β) ∣ β < α } .
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By Corollary 4.3, it follows that

κ+ = ∣↓κ+∣ = ∣⋃{ ↓ f (β) ∣ β < α }∣ ≤ ∑
β<α

κ = κ .

A contradiction. ◻

Lemma 4.17. If δ is a limit ordinal then cf ℵδ = cf δ.

Proof. We can define a strictly increasing cofinal function f ∶ ↓δ → ↓ℵδ
by f (α) ∶= ℵα . Hence, the claim follows from Lemma 4.12. ◻

It follows that regular limit cardinals are quite rare.

Corollary 4.18. If δ is a limit ordinal such that ℵδ is regular then ℵδ = δ.

Cardinal exponentiation is the least understood operation of those
introduced so far. There are many open questions that the usual axioms
of set theory are not strong enough to answer. For example, we do not
know what the value of 2ℵ0 is. Given an arbitrary model of set theory we
can construct a new model where 2ℵ0 = ℵ1, but we can also find models
where 2ℵ0 equals ℵ2 or ℵ3.

In the remainder of this section we present some elementary results
that can be proved. The notion of cofinality appears at several places in
these proofs. First, let us compute the cardinality of all stages Sα , by a
simple induction.

Definition 4.19. We define the cardinal ℶα(κ) (‘beth alpha’), for α ∈ On
and κ ∈ Cn, recursively by

ℶ0(κ) ∶= κ ,

ℶα+1(κ) ∶= 2ℶα(κ) ,
and ℶδ(κ) ∶= sup{ℶα(κ) ∣ α < δ } , for limit ordinals δ .

Further, let ℶα ∶= ℶα(ℵ0).
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Lemma 4.20. For α ∈ On0, we have

∣Sα ∣ = ℶα(0) and ∣Sω+α ∣ = ℶα .

The next lemma shows that most questions about cardinal exponen-
tiation can be reduced to the computation of the cardinality of power
sets.

Lemma 4.21. If 2 ≤ κ ≤ 2λ and λ ≥ ℵ0 then κλ = 2λ .

Proof. 2λ ≤ κλ ≤ (2λ)λ = 2λ⊗λ = 2λ . ◻

What is the value of κλ , for λ < κ ? We can give only partial answers.

Lemma 4.22. If κ ≥ ℵ0 and λ ≥ cf κ then κλ > κ. In particular, κcf κ > κ.

Proof. Fix a cofinal function f ∶ ↓λ → ↓κ. By Theorem 4.6, we have

κλ = ∣(↓κ)↓λ ∣ = ∣∏
α<λ
↓κ∣ > ∣⊍

α<λ
↓ f (α)∣ ≥ ∣↓κ∣ = κ .

◻

Corollary 4.23. cf 2κ > κ.

Proof. cf 2κ ≤ κ would imply (2κ)cf 2κ
≤ (2κ)κ = 2κ⊗κ = 2κ < (2κ)cf 2κ

.
Contradiction. ◻

The next theorem summarises the extend of our knowledge about
cardinal exponentiation. First, we introduce some abbreviations.

Definition 4.24. For cardinals κ and λ we set

(<κ)λ ∶= sup{ µλ ∣ µ < κ } and κ<λ ∶= sup{ κµ ∣ µ < λ } .

Lemma 4.25. cf (<κ)λ ≤ cf κ and cf κ<λ ≤ cf λ.

Theorem 4.26. Let κ ≥ 2 and λ ≥ ℵ0.
(a) If 2 < κ ≤ λ then κλ = 2λ = (<κ)λ .
(b) If cf κ ≤ λ < κ then κ < κλ = ((<κ)λ)cf κ ≤ 2κ .
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(c) If λ < cf κ then κλ = κ ⊕ (<κ)λ .

Proof. (a) The first equality was proved in Lemma 4.21. For the second
one, note that κ > 2 implies 2λ ≤ (<κ)λ ≤ κλ .

(b) By (a) and Corollary 4.22, it follows that κ < κλ ≤ 2κ . Further,
(<κ)λ ≤ κλ implies that

((<κ)λ)cf κ ≤ (κλ)cf κ = κλ⊗cf κ = κλ .

For the converse, fix a cofinal function f ∶ ↓ cf κ → ↓κ. We have

κλ ≤ ∣ ⊍
α<cf κ

↓ f (α)∣
λ
≤ ∣ ∏

α<cf κ
↓ f (α)∣

λ

= ∣ ∏
α<cf κ

↓ f (α)↓λ ∣

≤ ∣ ∏
α<cf κ

↓(<κ)λ ∣ ≤ ((<κ)λ)cf κ .

(c) If λ < cf κ then

(↓κ)↓λ =⋃{ (↓µ)↓λ ∣ µ < κ } ,

since the range of every function ↓λ → ↓κ is bounded by some µ < κ.
Hence,

κλ ≤ ∑
µ<κ

µλ ≤ ∑
µ<κ
(<κ)λ = κ ⊗ (<κ)λ .

If κ = µ+ then (<κ)λ = µλ and

κλ ≤ κ ⊗ (<κ)λ = κ ⊗ µλ ≤ κλ .

Otherwise, κ is a limit and (<κ)λ ≥ sup{ µ ∣ µ < κ } = κ, which implies
that

κλ ≤ κ ⊗ (<κ)λ = (<κ)λ ≤ κλ . ◻

128



4. Cofinality

Corollary 4.27. If κ and λ are cardinals such that 2µ = µ+, for all µ ≤ κ,
then

κλ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2λ if κ ≤ λ ,
κ+ if cf κ ≤ λ < κ ,
κ if λ < cf κ .

Lemma 4.28. Let κ be a cardinal.We have κ = ℶδ , for some limit ordinal δ,
if and only if κ > ℵ0 and 2λ < κ, for all λ < κ.

Proof. (⇒)We have ℶδ > ℶ0 = ℵ0. If λ < ℶδ then λ ≤ ℶα , for some
α < δ. Hence, 2λ ≤ 2ℶα = ℶα+1 < ℶδ .
(⇐) Let A ∶= { α + 1 ∣ ℶα < κ } and δ ∶= supA. By definition of A, it

follows that ℶδ ≥ κ. On the other hand,

κ = sup{ 2λ ∣ λ < κ }
≥ sup{ 2ℶα ∣ ℶα < κ } = sup{ℶα ∣ α ∈ A} = ℶδ .

Hence, κ = ℶδ . Since ℶδ = κ > ℵ0 we have δ > 0. To show that δ is
a limit suppose that δ = α + 1. Then ℶα < κ implies ℶδ = 2ℶα < κ.
Contradiction. ◻

We conclude this section with some results about sets of sequences
indexed by ordinals. As we will see in Section b2.1, such a set forms the
domain of a tree. Recall that a sequence indexed by an ordinal α is just a
function ↓α → A.

Definition 4.29. If A is a set and α ∈ On, we define

Aα ∶= A↓α and A<α ∶= ⋃
β<α

Aβ .

Let us compute the cardinality of A<α . We are especially interested in
the case where α = ω, i.e., in the set of all finite sequences.

Lemma 4.30. If ∣A∣ > 1 then ∣A<α ∣ = ∣A∣<∣α∣.
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Lemma 4.31. If κ > 0 then κ<ℵ0 = κ ⊕ ℵ0.

Proof. If κ ≥ ℵ0 then

κ<ℵ0 = sup{ κn ∣ n < ℵ0 } = sup{κ} = κ = κ ⊕ ℵ0 .

For κ = 1, we can define a bijection [1]<ω → ↓ω by

⟨0, . . . , 0⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

↦ n .

Hence, 1<ℵ0 = ℵ0. If 1 < κ < ℵ0, it follows that

ℵ0 = 1<ℵ0 ≤ κ<ℵ0 ≤ ℵ<ℵ0
0 = ℵ0 . ◻

Corollary 4.32. κ<κ ≥ κ, for all κ > 0. If κ ≥ ℵ0 then κ ≤ 2<κ ≤ κ<κ .

Proof. If κ ≥ ℵ0 then 2<κ = sup{ 2λ ∣ λ < κ } ≥ sup{ λ+ ∣ λ < κ } ≥ κ .
◻

Lemma 4.33. If κ is an infinite regular cardinal then κ<κ = 2<κ .

Proof. For ℵ0 ≤ λ, µ < κ we have

λµ ≤ (λ ⊕ µ)λ⊕µ = 2λ⊕µ ≤ 2<κ .

If cf κ = κ, it follows by Theorem 4.26 and Corollary 4.32 that

κµ = κ ⊕ (<κ)µ = κ ⊕ sup{ λµ ∣ λ < κ } ≤ 2<κ , for all µ < κ .

Consequently, κ<κ ≤ 2<κ . ◻

Corollary 4.34. Let κ be an infinite cardinal. We have κ<κ = κ if, and
only if, κ is regular and 2<κ = κ.

Proof. One direction follows from the preceding lemma. For the other
one, note that cf κ < κ implies κ<κ ≥ κcf κ > κ, and 2<κ > κ implies
κ<κ ≥ 2<κ > κ. ◻
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5. The Axiom of Replacement
At several times when mappings between classes were concerned we re-
marked that we need an additional axiom to prove the desired statement.
This axiom is the generalisation of the following lemma to functions that
are proper classes.

Lemma 5.1. Let f be a function. If f is a set then so is f [A], for all
A ⊆ dom f .

Proof. Since f is a set so is rng f . Therefore,

f [A] = { y ∈ rng f ∣ y = f (x) for some x ∈ A}

is a set. ◻

Before stating the axiom let us collect several equivalent formulations
of it.

Theorem 5.2. The following statements are equivalent :

(1) If F is a function and A ⊆ dom F is a set then F[A] is also a set.

(2) If F is a function and dom F is a set then so is rng F.

(3) A function F is a set if, and only if, dom F is a set.

(4) There exists no bijection F ∶ a → B between a set a and a proper
class B.

(5) A class A is a set if, and only if, ∣A∣ <∞.

(6) If α ∈ On is an ordinal and (A i)i<α a sequence of sets then the
class ⋃i<α A i is also a set.

Proof. (3)⇒ (2) Let F be a function and suppose that dom F is a set.
Then F is a set and so is rng F.

(2)⇒ (3) Clearly, if F is a set then so is dom F. For the converse, let
F be a function such that dom F is a set. By assumption, then rng F is
also a set. Since F ⊆ dom F × rng F it follows that F is a set.
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(2)⇒ (1) Let F be a function and A ⊆ dom F a set. Let G ∶= F↾Abe the
restriction of F to A. We apply the assumption to G. Since dom G = A is
a set so is rng G = F[A].

(1)⇒ (6) Let F ∶ ↓α → S be the function with F(i) = A i , for i < α. By
assumption, B ∶= F[↓α] is a set. Hence, so is

⋃B = ⋃
i<α

A i .

(6)⇒ (2) Let F ∶ A→ B be a function and A = dom F a set. Let κ ∶= ∣A∣
and fix a bijection g ∶ ↓κ → A. We define a sequence (B i)i<κ of sets by
B i ∶= S(F(g(i))). By assumption, C ∶= ⋃i<κ B i is a set. For every a ∈ A,
we have S(F(a)) ⊆ C or, equivalently, S(F(a)) ∈ ℘(C). It follows that
S(rng F) = S(F[A]) ⊆ ℘(C). In particular, rng F is a set.

(2)⇒ (5) If A is a set then ∣A∣ <∞, by Lemma 2.2. For the converse,
suppose that κ ∶= ∣A∣ <∞ and let F ∶ ↓κ → A be a bijection. Since κ is a
set it follows by assumption that A = rng F is also a set.

(5)⇒ (4) Let F ∶ a → B be a bijection where a is a set. Then ∣B∣ = ∣a∣ <
∞. Hence, B is also a set.

(4) ⇒ (2) Let F ∶ A → B be a function where A = dom F is a set.
Let B0 ∶= rng F. Since the function F ∶ a → B0 is surjective there
exists a function G ∶ B0 → a such that F ○ G = idB0 . Let A0 ∶= rng G.
The restriction F ∶ A0 → B0 is a bijection. Since A0 ⊆ A is a set so is
B0 = rng F. ◻

Axiom of Replacement. If F is a function and dom F is a set then so is
rng F.

Let us finally prove the results we promised in the preceding sections.
First, up to isomorphism, On is the only well-order that is a proper class.

Lemma 5.3. Let A = ⟨A, ≤A⟩ and B = ⟨B, ≤B⟩ be well-orders. If A and B
are proper classes then A ≅ B.

Proof. Suppose that A ≇ B. By Theorem a3.1.11, there either exists an
isomorphism f ∶ A → ↓b, for some b ∈ B, or some isomorphism g ∶
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↓a → B, for some a ∈ A. By symmetry, we may assume w.l.o.g. the latter.
↓a is a set since ≤A is left-narrow. Hence, by the Axiom of Replacement,
B = g[↓a] is also a set. Contradiction. ◻

It follows that it does not matter which of the two definitions of an
ordinal we adopt.

Corollary 5.4. On0 ≅ Cn ≅ On.

Finally, we state the general form of the Principle of Transfinite Recur-
sion.

Theorem 5.5 (Principle of Transfinite Recursion). If H ∶ A<∞ → A is
a total function that defines the function F by transfinite recursion then
dom F = On.

Proof. For a contradiction, suppose that dom F = ↓α ⊂ On. In particular,
dom F is a set. By the Axiom of Replacement, it follows that rng F is
also a set. Since rng F ⊆ A we therefore have F ∈ A<∞ = dom H in
contradiction to Theorem a3.3.4. ◻

Lemma 5.6. Every strictly continuous function f ∶ On → On has arbit-
rarily large fixed points.

Proof. For every α ∈ On we have to find a fixed point γ ≥ α. If F is the
fixed-point induction of f over α then F[↓ω] exists. By Lemma a3.3.13
it follows that γ ∶= F(∞) = F(ω) ≥ α is a fixed point of f . ◻

Corollary 5.7. There are arbitrarily large cardinals κ such that cf κ = ℵ0
and either ℵκ = κ or ℶκ = κ.

Proof. The functions f ∶ α ↦ ℵα and g ∶ α ↦ ℶα are strictly continuous.
Furthermore, they are defined by transfinite recursion. Therefore, The-
orem 5.5 implies that their domain is all of On. By Lemma a3.3.13 and
Lemma 5.6, it follows that f and g have arbitrarily large inductive fixed
points κ, and these fixed points are of the form

κ = sup{ f n(α) ∣ n < ω } , for some α .
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In particular, cf κ = ℵ0. ◻

Exercise 5.1. Prove that Sω2 satisfies all axioms of set theory except for
the Axiom of Replacement.

6. Stationary sets
There are many places in mathematics where one wants to argue that
there are ‘many’ objects with a certain property. This has lead to several
notions of ‘large’ and ‘small’ sets, for instance, being dense, being cofinite,
having measure 1, or belonging to a given ultrafilter.

Example. Let κ be a regular cardinal and A a set of size ∣A∣ = κ. We call
a subset X ⊆ A large if it has size κ. A subset X ⊆ A is very large if its
complement A ∖ X is not large. It is straightforward to check that the
classes of large and very large sets have the following properties :

(a) Every very large set is large.

(b) A set X is large if, and only if, it has a non-empty intersection with
every very large set.

(c) The intersection of less than κ very large sets is very large.

(d) The intersection of a very large set and a large one is large.

(e) Every large set can be partitioned into κ disjoint large subsets.

(f) If f ∶ X → Y is a function from a large set X into a set Y that is
not large, there is some element y ∈ Y such that the fibre f −1(y)
is large.

In this section we introduce two notions of ‘largeness’ for sets of
ordinals which exhibit the same properties as the large and very large
sets of the above example: closed unbounded sets correspond to the very
large sets and stationary sets correspond to the large one. We will prove
analogues to all of the above properties. We start with closed unbounded
sets.
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Definition 6.1. Let κ be a cardinal. A subset C ⊆ κ is closed unbounded if
it is cofinal in κ and, for every non-empty subset X ⊆ C with sup X < κ,
we have sup X ∈ C.

Example. For every ordinal α < κ, the set ⇑α is obviously closed un-
bounded. Another example of a closed unbounded set is the set of all
limit ordinals α < κ.

Before verifying the above properties let us present two ways to con-
struct closed unbounded subsets of a given closed unbounded set.

Lemma 6.2. Let κ be an uncountable regular cardinal and C ⊆ κ closed
unbounded.

(a) The set C′ ∶= { α ∈ C ∣ C ∩ α is cofinal in α } is closed unbounded.
(b) For every cardinal λ such that C ∩ λ is cofinal in λ, the set C ∩ λ is

closed unbounded in λ.

Proof. (a) To show that C′ is cofinal, let α < κ. Since C is cofinal, we
can construct an increasing sequence α < β0 < β1 < . . . of elements
βn ∈ C, for n < ω. Since C is closed and κ is regular, it follows that
δ ∶= supn<ω βn ∈ C. Furthermore, the fact that all βn belong to C ∩ δ
implies that C ∩ δ is cofinal in δ. Hence, δ ∈ C′.

It remains to show that C′ is closed. Consider a set X ⊆ C′ such that
δ ∶= sup X < κ. If δ ∈ X ⊆ C′, we are done. Hence, we may assume that
δ ∉ X. Note that X ⊆ C implies that δ ∈ C. Furthermore, X ⊆ C ∩ δ
implies that C ∩ δ is cofinal in δ. Consequently, δ ∈ C′.

(b) By assumption, C ∩ λ is cofinal in λ. To show that it is also closed,
let X ⊆ C∩ λ be a set with sup X < λ. Then X ⊆ C implies that sup X ∈ C.
Hence, sup X ∈ C ∩ λ. ◻

The first property we check is that closed unbounded sets are closed
under intersections. We consider two variants : ordinary intersections
and so-called diagonal intersections.

Lemma 6.3. Let κ be an uncountable regular cardinal. If C ,D ⊆ κ are
closed unbounded then so is C ∩ D.
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Proof. If X ⊆ C ∩ D and sup X < κ then X ⊆ C implies sup X ∈ C and
X ⊆ D implies sup X ∈ D. Consequently, we have sup X ∈ C ∩ D.

To show that C ∩ D is cofinal let α < κ. Then there is some element
β0 ∈ C with α ≤ β0. Similarly, there is some element γ0 ∈ D with β0 ≤ γ0.
Continuing in this way we obtain an increasing sequence

α ≤ β0 ≤ γ0 ≤ β1 ≤ γ1 ≤ . . .

where β i ∈ C and γ i ∈ D. Since cf κ > ω it follows that

δ ∶= supi β i = supi γ i < κ .

As C and D are closed unbounded we have δ ∈ C and δ ∈ D. Thus, we
have found an element δ ∈ C ∩ D with α ≤ δ. ◻

Exercise 6.1. Show that this lemma fails for closed unbounded subsets
of ℵ0.

Proposition 6.4. Let κ be an uncountable regular cardinal. If C ⊆ ℘(κ) is a
family of closed unbounded sets with ∣C∣ < κ then⋂C is closed unbounded.

Proof. Let (C i)i<α be a sequence of closed unbounded subsets of κ with
α < κ. By induction on α, we prove that ⋂i<α C i is closed unbounded.

For α = 1 there is nothing to do and the successor step follows imme-
diately from the preceding lemma. Hence, we may assume that α is a
limit ordinal. Furthermore, we know by inductive hypothesis that the
sets ⋂i<β C i , for β < α are closed unbounded. Therefore, replacing Cβ
by ⋂i≤β C i we may assume that C0 ⊇ C1 ⊇ . . . .

Let C ∶= ⋂i<α C i . If X ⊆ C is a set with sup X < κ, then X ⊆ C i implies
that sup X ∈ C i , for all i. Consequently, we have sup X ∈ C.

To show that C is cofinal let β < κ. We construct an increasing se-
quence (γ i)i<α as follows. Choose some γ0 ∈ C0 with β ≤ γ0. For
0 < i < α, let γ i ∈ C i be some element with γ i ≥ sup{ γk ∣ k < i }. Since
κ is regular it follows that δ ∶= supi γ i < κ. For i < α, let

X i ∶= { γk ∣ i ≤ k < α } .
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Then X i ⊆ C i . Since C i is closed unbounded it follows that δ = sup X i ∈
C i . Consequently, we have found an element δ ∈ C with β ≤ δ. ◻

The second variant of intersectionwe consider has no correspondence
in the above example since it relies on the presence of a linear order.

Definition 6.5. The diagonal intersection of a sequence (Cα)α<κ of sub-
sets Cα ⊆ κ is the set

D ∶= { β < κ ∣ β ∈ Cα for all α < β } .

α

β

Cα

Remark. Note that, if D is the diagonal intersection of (Cα)α<κ , then
D ∖ (α + 1) ⊆ Cα , for all α.

Proposition 6.6. Let κ be an uncountable regular cardinal. The diagonal
intersection of a sequence (Cα)α<κ of closed unbounded sets is closed
unbounded.

Proof. Let (Cα)α<κ be a sequence of closed unbounded sets and let D be
their diagonal intersection. By Proposition 6.4, the intersections C′α ∶=
⋂β<α Cβ are closed unbounded. Furthermore, the diagonal intersection
of (C′α)α<κ is also equal to D. Replacing Cα by C′α , we may therefore
assume that the sequence (Cα)α<κ is decreasing.

To show that D is closed, let X ⊆ D be a set with δ ∶= sup X < κ. For
α < δ, consider the set Yα ∶= { β ∈ D ∣ α < β < δ }. By the definition of
the diagonal intersection,we have Yα ⊆ D∖(α+1) ⊆ Cα . As Cα is closed,
it follows that δ = supYα ∈ Cα , for all α < δ. Consequently, δ ∈ D.

To show that D is unbounded, let α < κ. To find a bound δ ∈ D
with α < δ, we construct an increasing sequence (βn)n<ω of ordinals
as follows. Choose some element β0 ∈ C0 with β0 > α. If βn is already
defined, we choose an element βn+1 ∈ Cβn with βn+1 > βn . We claim that
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δ ∶= supn<ω βn ∈ D. Hence, let γ < δ. Then there is some n < ω with
γ < βn . Since βk ∈ Cβk−1 ⊆ Cβn , for k > n, it follows that δ = supk>n βk ∈
Cβn ⊆ Cγ . Hence, δ ∈ Cγ , for all γ < δ. This implies that δ ∈ D. ◻

Our secondnotion of a large set is that of a stationary one.Asdefinition
we use the analogue of Property (b) from the above example.

Definition 6.7. Let κ be a cardinal. A set S ⊆ κ is stationary if S ∩C ≠ ∅,
for every closed unbounded set C ⊆ κ.

We start by constructing several kinds of stationary sets.

Lemma 6.8. Let κ be an uncountable regular cardinal.

(a) The set { α < κ ∣ cf α = λ } is stationary, for every regular λ < κ.

(b) Every closed unbounded set is stationary.

(c) If S is stationary and C closed unbounded, then S ∩ C is stationary.

Proof. (a) Let C ⊆ κ be closed unbounded.We have to find some element
γ ∈ C with cofinality λ. Let f ∶ ⟨κ, ≤⟩→ ⟨C , ≤⟩ be an order isomorphism
and set γ ∶= sup f [λ]. Since C is closed unbounded, we have γ ∈ C. As
the function f ↾ λ ∶ λ → γ is a strictly increasing and cofinal, it follows
by Lemma 4.12 that cf γ = cf λ = λ.

(b) Let C be closed unbounded. For every closed unbounded set D, it
follows by Lemma 6.3 that the intersection C ∩ D is also closed unboun-
ded. In particular, C ∩ D ≠ ∅.

(c) If there were a closed unbounded set D with (S ∩ C) ∩ D = ∅,
then S would not be stationary since C ∩ D is closed unbounded, by
Lemma 6.3. ◻

Note that it follows from Lemma 6.8 (a) that there are disjoint station-
ary sets. Hence, the intersection of two stationary sets is not necessarily
stationary.

The next theorem is a very strong version of Property (f) from the
example.
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Theorem 6.9 (Fodor). Let κ be an uncountable regular cardinal, S ⊆ κ
stationary, and f ∶ S → κ a function with f (α) < α, for all α ∈ S. Then
there exists an ordinal γ < κ such that f −1(γ) is stationary.

Proof. For a contradiction, suppose that f −1(γ) is non-stationary, for
every γ < κ. For each γ < κ, choose a closed unbounded set Cγ ⊆ κ such
that Cγ ∩ f −1(γ) = ∅. By Proposition 6.6, the diagonal intersection D
of (Cγ)γ<κ is closed unbounded. Consequently, Lemma 6.8 (c) implies
that S ∩ D is stationary. Fix an element α ∈ S ∩ D. Then α ∈ Cγ , for all
γ < α. Since Cγ ∩ f −1(γ) = ∅, it follows that α ∉ f −1(γ). Thus, f (α) ≠ γ,
for all γ < α, which implies that f (α) ≥ α. A contradiction. ◻

Corollary 6.10. Let κ be an uncountable regular cardinal, S ⊆ κ stationary,
and f ∶ S → λ a function with λ < κ. Then there exists an ordinal γ < λ
such that f −1(γ) is stationary.

Proof. By Lemma 6.8 (c), the set S′ ∶= S∖ λ is stationary. Since f (α) < α,
for α ∈ S′,we can apply the Theorem of Fodor to f ↾S′ to find the desired
ordinal γ. ◻

As an application, we prove the existence of so-called sunflowers.

Lemma 6.11 (Sunflower lemma). Let κ be a regular cardinal and λ a
cardinal such that µ<λ < κ, for all µ < κ.

For every family (Sα)α<κ of sets of size ∣Sα ∣ < λ, there exists a set U and
a subset I ⊆ κ of size ∣I∣ = κ such that

Sα ∩ Sβ = U , for all distinct α, β ∈ I .

Proof. First, we consider the case where κ = ℵ0. Then λ is finite and we
can prove the claim by induction on λ. We distinguish two cases. If there
is no element a that belongs to infinitely many sets Sα , we can choose a
set I ⊆ κ such that

Sα ∩ Sβ = ∅ , for all distinct α, β ∈ I .
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Otherwise, choose such an element a and set K ∶= { α < κ ∣ a ∈ Sα }.
Applying the inductive hypothesis to the family (Sα∖{a})α∈K ,we obtain
an infinite set I ⊆ K and some set U ′ such that

(Sα ∖ {a}) ∩ (Sβ ∖ {a}) = U ′ , for all distinct α, β ∈ I .

Consequently, the sets I and U ∶= U ′ ∪ {a} have the desired properties.
It remains to consider the case where κ is uncountable. Note that

λ ≤ κ. Hence, by choosing some injective function⋃α<κ Sα → κ we may
assume that Sα ⊆ κ, for every α. According to Lemma 6.8 (a), the set

E ∶= { α < κ ∣ cf α ≥ λ }

is stationary. We define a function f ∶ E → κ by

f (α) = sup (Sα ∩ α) .

Note that cf α ≥ λ ≥ ∣Sα ∣ implies that

f (α) = sup (Sα ∩ α) < α , for all α ∈ E .

Consequently, we can use the Theorem of Fodor to find a stationary
subset W ⊆ E and an ordinal γ such that

f (α) = γ , for all α ∈W .

Since there are at most ∣γ∣<λ < κ sets of the form Sα ∩ γ, we can use
Corollary 6.10 to find a stationary subset W ′ ⊆W and some set U ⊆ γ
such that

Sα ∩ γ = U , for all α ∈W ′ .

We construct a strictly increasing sequence (ξα)α<κ of ordinals ξα ∈W ′

as follows. Let ξ0 be the minimal element of W ′. For the inductive step,
suppose that we have already defined ξα for all α < β. Then we chose
some element ξβ ∈W ′ such that

ξβ > ξα and ξβ > sup Sξα , for all α < β .
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Note that such an element exists since κ is regular.
Having constructed (ξα)α<κ , it follows for α < β < κ that

Sξα ∩ Sξβ = (Sξα ∩ ξβ) ∩ Sξβ = Sξα ∩ (Sξβ ∩ γ) = U .

Consequently, the set I ∶= { ξα ∣ α < κ } has the desired properties. ◻

Exercise 6.2. Let k,m, n < ω be finite numbers with n > k!(m − 1)k+1.
Prove that, for every family (S i)i<n of sets of size ∣S i ∣ = k, there exists a
subset I ⊆ [n] of size ∣I∣ = m and some set U such that

S i ∩ S j = U , for all distinct i , j ∈ I .

We conclude this section by proving that every stationary set can be
partitioned into κ disjoint stationary subsets. We start with two technical
lemmas.

Lemma 6.12. Let κ be an uncountable regular cardinal and S ⊆ κ a
stationary set every element of which is an uncountable regular cardinal.
Then the set

W ∶= { λ ∈ S ∣ S ∩ λ is not stationary in λ }

is stationary.

Proof. To show that W is stationary, let C ⊆ κ be closed unbounded. By
Lemma 6.2 (a) , the set

C′ ∶= { α ∈ C ∣ C ∩ α is cofinal in α } .

is closed unbounded. Hence, S∩C′ ≠ ∅. Let λ be theminimal element of
S∩C′. Then λ is a regular cardinal andC∩λ is cofinal in λ. Consequently,
it follows by Lemma 6.2 (b) that C ∩ λ is a closed unbounded subset
of λ. Hence, Lemma 6.2 (a) implies that C′ ∩ λ is also closed unbounded.
Since, by choice of λ, the sets C′ ∩ λ and S ∩ λ are disjoint, it follows that
S ∩ λ is not stationary. Consequently, λ ∈W ∩ C, as desired. ◻
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Lemma 6.13. Let κ be an uncountable regular cardinal, S ⊆ κ stationary,
and, for every α ∈ S, let γα ∶ cf α → α be a cofinal and strictly increasing
function. If either

(i) there is an infinite cardinal λ such that cf α = λ, for all α ∈ S, or
(ii) every α ∈ S is a regular cardinal, the functions γα are continuous,

and S ∩ rng γα = ∅,
then there exists an ordinal β < κ such that, for every ξ < κ, the set

Uξ ∶= { α ∈ S ∣ cf α > β and γα(β) ≥ ξ }

is stationary.

Proof. For a contradiction, suppose otherwise. Then we can find, for
every β < κ, an ordinal ξβ and a closed unbounded set Cβ such that
Uξβ ∩ Cβ = ∅, that is,

γα(β) < ξβ , for all α ∈ S ∩ Cβ such that cf α > β .

In Case (i) we set ζ ∶= supβ<λ ξβ and D ∶= ⋂β<λ Cβ . Then γα(β) < ζ,
for all β < λ and α ∈ S ∩ D. Choosing α ∈ S ∩ D with α > ζ it follows
that supβ<λ γα(β) ≤ ζ < α. A contradiction to the cofinality of γα .

It remains to consider Case (ii). Let D be the diagonal intersection of
(Cβ)β<κ . Then α ∈ S ∩ D implies that α ∈ S ∩ Cβ , for all β < α. Hence,

γα(β) < ξβ , for β < α .

The set

E ∶= { α ∈ D ∣ ξβ < α for all β < α }

is closed unbounded since it can be written as the intersection of D and
the diagonal intersection of the sets ↑ξβ , β < κ, which are clearly closed
unbounded. Hence, it follows by Lemma 6.8 (c) that S ∩ E is stationary.
Let δ < ε be two elements of S ∩ E. Then

β < δ implies γε(β) < ξβ < δ ,
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where the first inequality follows since ε ∈ S ∩ D and the second one
follows since δ ∈ E. By continuity of γε ,

γε(δ) = sup
β<δ

γε(β) ≤ δ .

Since γε is strictly increasing, it therefore follows by Lemma a3.1.7 that
γε(δ) = δ. But δ ∈ S and γε(δ) ∈ rng γε ⊆ κ ∖ S. A contradiction. ◻

The first step in partitioning a stationary set into κ many stationary
subsets consists in finding a decreasing chain of stationary subsets.

Lemma 6.14. Let κ be an uncountable regular cardinal. For every sta-
tionary set S ⊆ κ, there exists a stationary subset U ⊆ S and a function
f ∶ U → κ such that f (α) < α, for all α ∈ U , and

f −1[⇑ξ] is stationary, for all ξ < κ .

Proof. Consider the function

g ∶ S ∖ {0}→ κ ∶ α ↦
⎧⎪⎪
⎨
⎪⎪⎩

cf α if cf α < α ,
0 if cf α = α .

Then g(α) < α, for all α ∈ S ∖ {0}, and we can use the Theorem of
Fodor to obtain a cardinal λ < κ such that T ∶= g−1(λ) is stationary. We
distinguish two cases.

First, suppose that λ > 0. Note that the set T contains a limit ordinal,
as the set of all limit ordinals is closed unbounded. This implies that
λ is infinite. Therefore, for every α ∈ T , we can choose by Lemma 4.11, a
cofinal, strictly increasing function γα ∶ λ → α. By Lemma 6.13 , there
exists an ordinal β < λ such that, for every ξ < κ, the set

Uξ ∶= { α ∈ T ∣ γα(β) ≥ ξ }

is stationary. Hence, we can set U ∶= T and define f ∶ T → κ by

f (α) ∶= γα(β) .
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If λ = 0, the set T consists of regular cardinals and Lemma 6.12 implies
that the set

W ∶= { α ∈ T ∣ T ∩ α is not stationary in α }

is stationary. For every α ∈ W , we fix a closed unbounded set Cα ⊆ α
with (T ∩ α) ∩ Cα = ∅. Since Cα is well-ordered, there exists an order-
isomorphism γα ∶ β → Cα , for some ordinal β. Note that β cannot be
smaller than α, because γα is cofinal in α and α is regular. Therefore,
γα ∶ α → Cα . Furthermore, supβ<δ γα(β) ∈ Cα , for each limit ordinal
δ < α, since Cα is closed unbounded. Consequently, supβ<δ γα(β) is the
least element of Cα that is larger than every γα(β) with β < δ. As this
element is γα(δ), we obtain

sup
β<δ

γα(β) = γα(δ) .

Hence, each γα is a strictly continuous function with W ∩ rng γα = ∅.
We can therefore use Lemma 6.13 to find an ordinal β < κ such that, for
every ξ < κ, the set

Uξ ∶= { α ∈W ∣ α > β and γα(β) ≥ ξ }

is stationary. Thus, we can set U ∶= W ∩ ↑β and define f ∶ U → κ by
f (α) ∶= γα(β). ◻

Theorem 6.15 (Solovay). Let κ be an uncountable regular cardinal. Every
stationary set S ⊆ κ can be written as a disjoint union of κ stationary
subsets of κ.

Proof. By Lemma 6.14, there exists a stationary subset U ⊆ S and a
function f ∶ U → κ such that f (α) < α and the sets Uξ ∶= f −1[⇑ξ]
are stationary, for all ξ < κ. Applying the Theorem of Fodor to each
restriction f ↾ Uξ , we obtain ordinals αξ < κ such that the sets Wξ ∶=
( f ↾Uξ)

−1(αξ) are stationary, for all ξ < κ. Note that Wξ ∩Wζ = ∅, if

144



7. Conclusion

αξ ≠ αζ . Furthermore,Wξ ≠ ∅ implies that αξ ≥ ξ. Hence, supξ<κ αξ = κ
and it follows by regularity of κ that

∣{Wξ ∣ ξ < κ }∣ = ∣{ αξ ∣ ξ < κ }∣ = κ .

Thus, we have found a family of κ disjoint stationary subsets of S. Since
every superset of a stationary set is also stationary, we can enlarge these
subsets to obtain the desired partition of S. ◻

7. Conclusion
With the Axiom of Replacement we have introduced our final axiom.
The theory consisting of the six axioms

◆ Extensionality ◆ Separation ◆ Infinity
◆ Creation ◆ Choice ◆ Replacement

is called Zermelo-Fraenkel set theory, ZFC for short.
We can classify these axioms into three parts. The Axioms of Exten-

sionality and Creation specify what we mean by a set. They postulate
that every set is uniquely determined by its elements and that the mem-
bership relation is well-founded. The remaining axioms speak about
the existence of certain sets. Infinity and Replacement ensure that the
cumulative hierarchy is long enough. There are as many stages as there
are ordinals. The Axioms of Separation and Choice on the other hand
make the hierarchy wide by ensuring that the power-set operation yields
enough subsets. In particular, every definable subset exists and on every
set there exists a well-ordering.

Finally, let us note that the usual definition of ZFC is based on a dif-
ferent axiomatisation where the Axiom of Creation is replaced by four
other axioms and the Axiom of Infinity is stated in a slightly different
way. Nevertheless, we are justified in calling the above theory ZFC since
the two variants are equivalent : every model satisfying one of the axiom
systems also satisfies the other one, and vice versa.
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1. Structures

We have seen how to define graphs and partial orders in set theory. By
a straightforward generalisation, we obtain other such structures like
groups, fields, or vector spaces. A graph is a set equippedwith one binary
relation. In general, we allow arbitrary many relations and functions
of arbitrary arities. To keep track of which relations and functions are
present in a given structure we assign a name to each of them. These
names are called symbols, the set of all symbols is called a signature.

Definition 1.1. A signature Σ is a set of relation symbols and function
symbols each of which has a fixed (finite) arity. We call Σ relational if it
contains only relation symbols and it is functional or algebraic if all of
its elements are function symbols. A function symbol of arity 0 is also
called a constant symbol.

Definition 1.2. Let Σ be a signature. A Σ-structure A consists of

◆ a set A called the universe of A,

◆ an n-ary relation RA ⊆ An , for each relation symbol R ∈ Σ of
arity n, and

◆ an n-ary function f A ∶ An → A, for each function symbol f ∈ Σ
of arity n.

Formally, we can define a structure to be a pair ⟨A, σ⟩ where A is the
universe and σ a function ξ ↦ ξA mapping each symbol ξ ∈ Σ to the
relation or function it denotes. But usually, in particular if the signature
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is finite, we will write structures simply as tuples

A = ⟨A, RA
0 , RA

1 , . . . , f A
0 , f A

1 , . . . ⟩ .

Wewill denote structures by fraktur letters A,B,C,. . . and their universes
by the corresponding roman letters A, B, C,. . . .

Example. (a) A group G can be seen as structure ⟨G , ⋅⟩where the binary
function ⋅ ∶ G × G → G denotes the group multiplication. Another
possibility would be to take the richer structure ⟨G , ⋅ , −1 , e⟩ where e is
the unit of G and −1 ∶ G → G the inverse.

(b) Similarly, a field K corresponds to a structure ⟨K ,+, ⋅ , 0, 1⟩ with
two binary functions and two constants.

The above definition of a structure is still not quite general enough. For
instance, vector spaces fit only with some acrobatics into this framework.

Example. When we want to model a K-vector space V as a structure
we face the problem of which set should be taken for the universe. One
possibility is to define the structure ⟨V ,+, (λa)a∈K⟩ where the universe
just consists of the vectors and, for each field element a ∈ K, we add a
function λa ∶ V → V ∶ v ↦ av for scalar multiplication with a. This
formalism is mainly suited if one is interested in K-vector spaces for a
fixed field K.

Another way of encoding vector spaces that treats K and V equally is
to choose the structure ⟨V ∪K ,V ,K ,A, M⟩ where the universe consists
of the union of K and V , we have two unary predicates V and K that
can be used to determine which elements are vectors and which are
field elements, and there are two ternary relations A ⊆ V × V × V and
M ⊆ K × V × V for vector addition and scalar multiplication. Note that
we cannot use functions in this case since thosewould have to be defined
for all elements of (V ∪ K) × (V ∪ K).

To make such codings unnecessary we extend the definition to allow
structures that contain elements of different sorts like vectors and scalars.
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Definition 1.3. Let S be a set and suppose that, for each s ∈ S, we are
given some set As such that As andAt are disjoint, for s ≠ t. The elements
of S will be called sorts.

(a) For s̄ ⊆ S, we write As̄ ∶=∏i As i .
(b) The type of an n-ary relation R ⊆ As̄ is the sequence s̄ ∈ Sn .
(c) The type of an n-ary function f ∶ As̄ → At is the pair ⟨s̄, t⟩ ∈ Sn × S

which we will write more suggestively as s̄ → t.
(d) If A = ⊍s∈S As and B = ⊍s∈S Bs are sets that are partitioned into

sorts, we denote by BA the set of all functions f ∶ A → B such that
f [As] ⊆ Bs , for all s ∈ S.

(e) An S-sorted signature Σ is a set of relation symbols and function
symbols to each of which is assigned some type.

Definition 1.4. Let Σ be an S-sorted signature. A Σ-structure A consists
of

◆ a family of sets As , for s ∈ S,
◆ a relation RA ⊆ As̄ for each relation symbol R ∈ Σ of type s̄, and
◆ a function f A ∶ As̄ → At for every function symbol f ∈ Σ of

type s̄ → t.
We call As the domain of sort s. The disjoint union A ∶= ⊍s∈S As of all
domains is the universe of A.

Example. We can model a K-vector space V as {s, v}-sorted structure

⟨K ,V ,+, ⋅ , 0V , 0K , 1K⟩

where
◆ + ∶ V × V → V of type vv → v is the addition of vectors,
◆ ⋅ ∶ K × V → V of type sv → v is scalar multiplication, and
◆ 0V ∈ V and 0K , 1K ∈ K are constants of type v, s, and s, respectively.

We could also add field addition and multiplication.

Lemma 1.5. Let Σ be a signature and κ ≥ ℵ0. Up to isomorphism there
are at most 2κ⊕∣Σ∣ different Σ-structures A of size ∣A∣ = κ.
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Proof. For every n, there are at most 2κn
= 2κ n-ary relations R ⊆ An

and at most κκn
= 2κ n-ary functions f ∶ An → A. Hence, the number of

different Σ-structures is at most (2κ)∣Σ∣ = 2κ⊕∣Σ∣. ◻

Many results in algebra and logic try to shed light on the ‘internal
structure’ of some given Σ-structureA. A typical result of this kind could,
for instance, state that every structure in a given class is built up from
smaller structures in a certain way. In the remainder of this section we
look at a given structure and try to find all structures that are contained
in it.

Definition 1.6. Let Σ be an S-sorted signature andA andB Σ-structures.
(a) We write A ⊆ B if

As ⊆ Bs , for each sort s ∈ S ,

RA = RB ∩ An , for every n-ary relation symbol R ∈ Σ ,
and f A = f B ∩ An+1 , for every n-ary function symbol f ∈ Σ .

If A ⊆ B then we say that A is a substructure of B and that B is an
extension of A. The set of all substructures of A is denoted by Sub(A),
and we set

Sub(A) ∶= ⟨Sub(A), ⊆⟩ .

(b) Let X ⊆ A. If there is a substructure B ⊆ A with universe B = X
then we say that X induces the substructure B. We denote this substruc-
ture by A∣X .

Example. N = ⟨N,+, 0⟩ is a substructure of Z = ⟨Z,+, 0⟩.

Remark. (a) Note that the preceding example shows that if G = ⟨G , ⋅ ⟩ is
a group and H ⊆ G a substructure then H is not necessarily a subgroup
of G. If, on the other hand, we consider groups with the richer signature
⟨G , ⋅ , −1 , e⟩ then every substructure is also a subgroup.

(b) If the signature is relational then every set induces a substructure.
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(c) Since a substructure is uniquely determined by its universe we
will not always distinguish between substructures and the sets inducing
them.
What substructures does a given structure A have?

Lemma 1.7. Let A be a Σ-structure. A set X ⊆ A induces a substructure
of A if and only if X is closed under all functions of A, that is, we have

f A(ā) ∈ X , for every n-ary function f ∈ Σ and all ā ∈ Xn .

Proof. Suppose that X induces the substructure A0 ⊆ A. For f ∈ Σ and
ā ∈ Xn = An

0 it follows that

f A(ā) = f A0(ā) ∈ A0 = X .

Conversely, if X is closed under functions then we can define the desired
substructure A0 by setting

RA0 ∶= RA ∩ Xn , for every n-ary relation R ∈ Σ ,

f A0 ∶= f A ∩ Xn+1 , for every n-ary function f ∈ Σ . ◻

Lemma 1.8. Let A be a Σ-structure and Z ⊆ ℘(A). If every element of Z
induces a substructure of A then so does ⋂ Z.

Proof. Let f ∈ Σ be an n-ary relation symbol and ā ∈ (⋂ Z)n . Since
every element X ∈ Z induces a substructure of A it follows that ā ⊆ X
implies f A(ā) ∈ X. Hence, f A(ā) ∈ ⋂ Z. By Lemma 1.7, it follows that
⋂ Z induces a substructure. ◻

Since the family of substructures is closed under intersection we can
use Lemma a2.4.8 to characterise Sub(A) via a closure operator.

Definition 1.9. Let A be a Σ-structure.
(a) The substructure of A generated by a set X ⊆ A is ⟪X⟫A ∶= A∣Z

where

Z ∶=⋂{B ∣ B ⊇ X induces a substructure of A} .
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(b) If⟪X⟫A = A thenwe say that X generates A andwe call the elements
of X generators of A. If A is generated by a finite set then we call A finitely
generated.

Example. (a) The structure N = ⟨N,+, 0⟩ is finitely generated by {1}.
(b) Let Z = ⟨Z,+,−⟩ be the additive group of the integers. The set

X ∶= {5} generates the substructure

A ∶= ⟪X⟫Z = ⟨A,+,−⟩ with A = { 5k ∣ k ∈ Z} .

Note that X does not induce A since A ⊃ X.
If we consider the structure Z′ = ⟨Z,+⟩ without negation then X gen-

erates the substructure

B ∶= ⟪X⟫Z′ = ⟨B,+⟩ with B = { 5k ∣ k ∈ Z, k > 0} .

(c) Let V = ⟨V ,+, (λa)a∈K⟩ be a vector space encoded as untyped
structure. If X ⊆ V then ⟪X⟫V is the subspace spanned by X. If, instead,
we encode V as two-sorted structure

V = ⟨K ,V ,+V , ⋅V ,+K , ⋅K , 0V , 0K , 1K⟩ ,

where +V is vector addition, ⋅V scalar multiplication, and +K and ⋅K the
field operations, then ⟪X⟫V just consists of all linear combinations

λ0v0 + ⋅ ⋅ ⋅ + λn−1vn−1

where v0 , . . . , vn−1 ∈ X and λ0 , . . . , λn−1 ∈ N.

Lemma 1.10. Let A be a Σ-structure. The function c ∶ X ↦ ⟪X⟫A is a
closure operator on Awith finite character.

Proof. It follows from Lemma a2.4.8 that c is a closure operator. It re-
mains to prove that it has finite character. Let

Z ∶=⋃{⟪X0⟫A ∣ X0 ⊆ X is finite} .
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To prove that c(X) = Z it is sufficient to show that Z induces a substruc-
ture of A. We use Lemma 1.7. Let f be an n-ary function symbol and
ā ∈ Zn . Then there exists a finite set X0 ⊆ X with ā ⊆ ⟪X0⟫A. Since
⟪X0⟫A induces a substructure of A it follows that

f A(ā) ∈ ⟪X0⟫A ⊆ Z . ◻

Corollary 1.11. Let A be a structure.

(a) Sub(A) forms a complete partial order.

(b) If Z ⊆ Sub(A) then ⋂ Z ∈ Sub(A).

(c) If C ⊆ Sub(A) is a chain then ⋃C ∈ Sub(A).

So far, we have considered structures obtained by removing elements
from a given structure. Instead,we can also remove relations or functions.

Definition 1.12. (a) Let Σ and Σ+ be signatures with Σ ⊆ Σ+, and let
A be a Σ+-structure. The Σ-reduct A∣Σ of A is the Σ-structure B with the
same universe as A where ξB = ξA, for all symbols ξ ∈ Σ. If B = A∣Σ we
call A an expansion of B.

(b) Let Σ be an S-sorted signature, T ⊆ S, and A a Σ-structure. Let
Γ ⊆ Σ be the T sorted signature consisting of all elements of Σ whose type
only contains sort from T . By A∣T we denote the Γ-structure obtained
from A by removing all domains As with s ∈ S ∖ T and all relations and
function from Σ ∖ Γ.

Example. ⟨G , ⋅ ⟩ is a reduct of ⟨G , ⋅ , −1 , e⟩. In general, a Σ-structure has
2∣Σ∣ reducts.

Remark. If A ⊆ B then A∣Σ ⊆ B∣Σ .

Remark. Let S ⊆ T be sets of sorts. Every S-sorted signature Σ is also
T-sorted. Similarly, every S-sorted structure A can be turned into a T-
sorted structure by setting At ∶= ∅, for t ∈ T ∖ S. In the following wewill
not distinguish between an S-sorted structure A and the corresponding
T-sorted one obtained in that way.
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2. Homomorphisms
Similarly to graphs and partial orders we can compare two structures
by defining a map between them. The notions of an increasing func-
tion and an isomorphism can be extended in a straightforward way to
arbitrary structures. Since now we have several relations we need the
symbols of the signature in order to knowwhich relation of one structure
corresponds to a given relation of the other structure.

In the following, given ā ∈ An and h ∶ A → B we will abbreviate
⟨h(a0), . . . , h(an−1)⟩ by h(ā).

Definition 2.1. Let A and B be Σ-structures.
(a)Amapping h ∶ A→ B is a homomorphism if it satisfies the following

conditions :

◆ h(As) ⊆ Bs , for every sort s .

◆ If ā ∈ RA then h(ā) ∈ RB , for all ā ⊆ A and every R ∈ Σ .

◆ h( f A(ā)) = f B(h(ā)) , for all ā ⊆ A and every f ∈ Σ .

(b) A homomorphism h ∶ A→ B is strict if it further satisfies

◆ ā ∈ RA iff h(ā) ∈ RB , for all ā ⊆ A and every R ∈ Σ .

(c) A homomorphism h ∶ A→ B is semi-strict if,whenever h(ā) ∈ RB

then there is some ā′ ∈ RA with h(ā′) = h(ā).
(d) An embedding is an injective strict homomorphism and an iso-

morphism is a bijective strict homomorphism.WewriteA ≅ B to indicate
that there exists an isomorphism A→ B. Finally, an isomorphism A→ A
is called an automorphism of A.

(e) If there exists a surjective homomorphism A → B, B is called a
weak homomorphic image of A. It is a homomorphic image of A if the
homomorphism is semi-strict.

Example. (a) Let A and B be partial orders. A function f ∶ A→ B is a
homomorphism if and only if it is increasing, and f is a strict homo-
morphism if and only if it is strictly increasing.
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(b) The function ⟨ω,+⟩→ ⟨ω, ⋅ ⟩ with n ↦ 2n is an embedding.
(c) The function ⟨ω,+⟩→ ⟨[5],+⟩ with n ↦ n mod 5 is a strict homo-

morphism.
(d) If K = ⟨K ,+, ⋅⟩ is a field andK[x] = ⟨K[x],+, ⋅⟩ the corresponding

ring of polynomials then we have a homomorphism

f ∶ K[x]→ K ∶ p(x)↦ p(0)

mapping a polynomial to its value at x = 0.

Remark. A homomorphism h ∶ A→ B is strict if and only if

h−1[RB] = RA , for every relation R .

Similarly, h is semi-strict if and only if

h[RA] = RB , for every relation R .

Exercise 2.1. Let N = ⟨ω, ⋅ ⟩. Construct an automorphism f ∶ N → N
with f (2) = 3.

Lemma 2.2. If g ∶ A → B and h ∶ B → C are isomorphisms then so are
the functions g−1 ∶ B→ A and h ○ g ∶ A→ C.

Lemma 2.3. Every injective semi-strict homomorphism h ∶ A → B is
strict.

Proof. Suppose that h(ā) ∈ RB. Then there is some tuple ā′ ∈ RA with
h(ā′) = h(ā). Since h is injective, it follows that ā′ = ā and, hence,
ā ∈ RA. ◻

Definition 2.4. Let f ∶ A → B be a function. The kernel of f is the
relation

ker f ∶= { ⟨a, b⟩ ∈ A2 ∣ f (a) = f (b) } .

Remark. The kernel of a function is obviously an equivalence relation.
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Lemma 2.5 (Factorisation Lemma). Let f ∶ A → B, g ∶ B → C, and
h ∶ A→ C be functions.

A rng f

C

A B

C

f

h
φ

ψ

h
g

(a) There exists at most one function φ ∶ rng f → C with h = φ ○ f .

(b) If g is injective then there exists at most one function ψ ∶ A → B
with h = g ○ ψ.

(c) There exists a function φ ∶ rng f → C with h = φ ○ f if and only if
ker f ⊆ ker h.

(d) There exists a function ψ ∶ A → B with h = g ○ ψ if and only if
rng h ⊆ rng g.

Proof. (a) If φ, φ′ ∶ rng f → C are functions such that φ ○ f = g = φ′ ○ f
then, since f ∶ A→ rng f is surjective, it follows by Lemma a2.1.10 that
φ = φ′.

(b) If ψ,ψ′ ∶ A → B are functions such that g ○ ψ = h = g ○ ψ′ then,
since g ∶ B → C is injective, it follows by Lemma a2.1.10 that ψ = ψ′.

(c) (⇒) If ⟨a, a′⟩ ∈ ker f then we have

h(a) = φ( f (a)) = φ( f (a′)) = h(a′) ,

which implies that ⟨a, a′⟩ ∈ ker h.
(⇐) For b ∈ rng f , select an arbitrary element a ∈ f −1(b) and set

φ(b) ∶= g(a). We claim that φ ○ f = g. Let a ∈ A and set b ∶= f (a).
By definition of φ, we have φ(b) = g(a′), for some element a′ ∈ A
with f (a′) = b. Hence, ⟨a, a′⟩ ∈ ker f ⊆ ker g , which implies that
g(a) = g(a′). Consequently, we have

φ( f (a)) = φ(b) = g(a′) = g(a) .
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(d) (⇒) If c ∈ rng h then there is some element a ∈ Awith c = h(a)
and g(ψ(a)) = h(a) = c implies that c ∈ rng g.
(⇐) For a ∈ A, we have h(a) ∈ rng h ⊆ rng g. Hence, we can select

some element b ∈ g−1(h(a)) and we set ψ(a) ∶= b. Then g(ψ(a)) =
g(b) = h(a). ◻

Lemma 2.6. Let g ∶ A→ B and h ∶ B→ C be functions.

A B

C

g

hh ○ g

(a) Suppose that g is a surjective semi-strict homomorphism.

(i) If h ○ g is a homomorphism then so is h.
(ii) If h ○ g is a semi-strict homomorphism then so is h.

(iii) If h ○ g is a strict homomorphism then so is h.

(b) Suppose that h is an injective semi-strict homomorphism.

(i) If h ○ g is a homomorphism then so is g.
(ii) If h ○ g is a semi-strict homomorphism then so is g.

(iii) If h ○ g is a strict homomorphism then so is g.

Proof. (a) (i) Let b̄ ∈ Bn and a i ∈ g−1(b i), for i < n. For an n-ary
function symbol f , we have

f C(h(b̄)) = f C(h(g(ā))) = (h ○ g)( f A(ā))

= h( f B(g(ā))) = h( f B(b̄)) .

If R is an n-ary relation symbol with b̄ ∈ RB then, since g is semi-strict,
we can find elements a i ∈ g−1(b i) such that ā ∈ RA. This implies that
h(b̄) = (h ○ g)(ā) ∈ RC.

(ii) For every relation R, we have h[RB] = h[g[RA]] = RC.
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(iii) Since g is surjective we have g[g−1[X]] = X, for every X ⊆ B. It
follows that

h−1[RC] = g[g−1[h−1[RC]]] = g[RA] = RB .

(b) (i) Let ā ∈ An and f an n-ary function symbol. Then we have

h(g( f A(ā)) = f C((h ○ g)(ā)) = h( f B(g(ā))) .

Since h is injective it follows that g( f A(ā)) = f B(g(ā)).
If R is an n-ary relation symbolwith ā ∈ RA thenwe have (h ○ g)(ā) ∈

RC and, since h is semi-strict, there is some tuple b̄ ∈ RB with h(b̄) =
h(g(ā)). Since h is injective it follows that g(ā) = b̄ ∈ RB.

(ii) Since h is injective we have h−1[h[X]] = X, for every X ⊆ B.
Furthermore, injective semi-strict homomorphisms are strict. Therefore,
we have

g[RA] = h−1[h[g[RA]]] = h−1[RC] = RB .

(iii) As in (ii) we have

g−1[RB] = g−1[h−1[h[RB]]] = (h ○ g)−1[RC] = RA . ◻

Corollary 2.7. If g ∶ A→ B and h ∶ A→ C are surjective semi-strict ho-
momorphisms with ker g = ker h then there exists a unique isomorphism
φ ∶ B→ C with h = φ ○ g.

A B

C

g

h
ψ φ

Proof. ByLemmas 2.5 and 2.6 there exist unique semi-strict homomorph-
isms

φ ∶ B→ C and ψ ∶ C → B
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such that h = φ ○ g and g = ψ ○ h. In the same way, ker g = ker g
implies that there exists a unique homomorphism η ∶ B→ B with with
g = η ○ g. Since id and ψ ○ φ both satisfy this equation it follows that
ψ ○ φ = id. In the same way we obtain φ ○ ψ = id. Consequently, φ is an
isomorphism. ◻

We can use a homomorphism h ∶ A → B to compare the family of
substructures of A to that of B.

Lemma 2.8. Let A and B be Σ-structures and h ∶ A→ B a homomorph-
ism.

(a) If A0 ⊆ A then h[A0] induces a substructure of B.
(b) If B0 ⊆ B then h−1[B0] induces a substructure of A.
(c) If X ⊆ A then h[⟪X⟫A] = ⟪h[X]⟫B.

Proof. (a)We have to show that B0 ∶= h[A0] is closed under all functions
of B. Let f ∈ Σ be n-ary and b0 , . . . , bn−1 ∈ B0. There exist elements
a0 , . . . , an−1 ∈ A0 such that b i = h(a i), for i < n. Since A0 is closed
under f we have f A(ā) ∈ A0, which implies that

f B(b0 , . . . , bn−1) = f B(ha0 , . . . , han−1)

= h( f A(a0 , . . . , an−1)) ∈ B0 .

(b) Set A0 ∶= h−1[B0]. By (a) and Corollary 1.11, we know that the
sets C ∶= rng h and B1 ∶= B0 ∩ C induce substructures of B. Note that
we have A0 = h−1[B1]. Let f ∈ Σ be n-ary and a0 , . . . , an−1 ∈ A0. Then
h(a i) ∈ B1 implies f B(h(a0), . . . , h(an−1)) ∈ B1. Since

h( f A(a0 , . . . , an−1)) = f B(ha0 , . . . , han−1) ∈ B1

it follows that f A(ā) ∈ h−1[B1] = A0.
(c) By (a) we know that h[⟪X⟫A] induces a substructure of B con-

taining h[X]. Hence,

⟪h[X]⟫B ⊆ h[⟪X⟫A] .
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Conversely, set Y ∶= ⟪h[X]⟫B. By (b), h−1[Y] induces a substructure
of A with X ⊆ h−1[Y]. Consequently, we have ⟪X⟫A ⊆ h−1[Y], which
implies that

h[⟪X⟫A] ⊆ h[h−1[Y]] = Y = ⟪h[X]⟫B . ◻

Corollary 2.9. Let A and B be Σ-structures. If h ∶ A → B is a homo-
morphism then rng h induces a substructure of B.

Definition 2.10. Let h ∶ A→ B be a homomorphism between Σ-struc-
tures A and B. For a substructure A0 ⊆ A, we denote by h(A0) the
substructure of B induced by h[A0].

3. Categories

Many algebraic properties can be expressed in terms of homomorphisms
between structures. Category theory provides a general framework for
doing so.

Definition 3.1. A category C consists of

◆ a class Cobj of objects,

◆ for each pair of objects a, b ∈ Cobj, a set C(a, b) of morphisms
from a to b, and

◆ for all a, b, $ ∈ Cobj, an operation

○ ∶ C(b, $) × C(a, b)→ C(a, $) ,

such that the following conditions are satisfied:

(1) If f ∈ C($, d), g ∈ C(b, $), h ∈ C(a, b) then

f ○ (g ○ h) = ( f ○ g) ○ h .
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3. Categories

(2) For every a ∈ Cobj, there is a morphism ida ∈ C(a, a) such that

ida ○ f = f , for all f ∈ C(b, a) ,
f ○ ida = f , for all f ∈ C(a, b) .

We call ida the identity morphism of a.

If the category is understood we will write f ∶ a → b to indicate
that f ∈ C(a, b). By Cmor we denote the class of all morphisms of C,
irrespective of their end-points. Instead of a ∈ Cobj, we also simply write
a ∈ C.

Example. (a) The category Set consists of all sets where

Set(A, B) ∶= BA

and ○ is the usual composition of functions.
(b) Hom(Σ) is the category of all Σ-structures whereHom(Σ)(A,B) is

the set of homomorphisms A→ B. Similarly, we can form the category
Homs(Σ) of all Σ-structureswhere themorphisms are strict homomorph-
isms, and the category Emb(Σ) of embeddings.

(c) Grp is the subcategory of Hom( ⋅ , −1 , e) consisting of all groups.
(d) In the category Set∗ of pointed sets the objects are pairs ⟨A, a⟩

where A is a set and a ∈ A. A morphism f ∶ ⟨A, a⟩→ ⟨B, b⟩ is a function
f ∶ A→ B such that f (a) = b.

(e) Similarly, in the category Set2 the objects are pairs ⟨A,A0⟩ of
sets with A0 ⊆ A and a morphism f ∶ ⟨A,A0⟩ → ⟨B, B0⟩ is a function
f ∶ A→ B such that f [A0] ⊆ B0.

(f) We have categories Top and Top2 of topological spaces and pairs of
such spaces where the morphisms are continuous functions.

(g) We can consider every partial order A = ⟨A, ≤⟩ as a category where
the objects are the elements of A and the morphisms are

A(a, b) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

{⟨a, b⟩} if a ≤ b ,
∅ otherwise .
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Almost all statements in category theory involve equations of the form
f ○ g = h ○ k. When there are many of them a graphical presentation
comes handy. Usually, we will use diagrams of the form

a b $

d e

e

f

g

h i

k

We say that such a diagram commutes if, for every pair of paths starting
at the same object and ending at the same one, the equation

fm ○ ⋅ ⋅ ⋅ ○ f0 = gn ○ ⋅ ⋅ ⋅ ○ g0

holds,where f0 , . . . , fm and g0 , . . . , gn are the respective labels along the
two paths. For example, the above diagram commutes if the following
equations hold:

h ○ e = f , i ○ g = k ○ h , i ○ g ○ e = k ○ f .

(The last one is actually redundant.)

Lemma 3.2. Let C be a category. For each object a ∈ Cobj, there is a unique
identity morphism ida ∈ C(a, a).

Proof. If ida and id′a are identity morphisms of a then

ida = ida ○ id′a = id′a . ◻

Although the morphisms of a category need not to be functions we
can generalise many concepts from functions to arbitrary categories. For
instance, we can use the characterisation of Lemma a2.1.10 to generalise
the notion of injectivity and surjectivity.
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Definition 3.3. (a) A morphism f ∶ a→ b is a monomorphism if, for all
morphisms g and h,

f ○ g = f ○ h implies g = h .

And f is an epimorphism if

g ○ f = h ○ f implies g = h .

(b) If f ∶ a→ b and g ∶ b→ a are morphisms with g ○ f = ida, we call
g a left inverse of f and f a right inverse of g. In this situation we also say
that f is a section and g is a retraction. An inverse of f is a morphism g
that is both a left and a right inverse of f . If f ∶ a→ b has an inverse, we
denote it by f −1 ∶ b→ a and we call f an isomorphism between a and b.

Example. In many categories where the morphisms are actual functions,
monomorphisms correspond to injective functions and epimorphisms
correspond to surjective functions. For instance, in Set and in Hom(Σ)
this is the case. But there are also examples where monomorphisms
are not injective or epimorphisms are not surjective. For instance, in
the category of all rings the inclusion homomorphism h ∶ Z→ Q is an
epimorphism since a homomorphism f ∶ Q→ R is uniquely determined
by its restriction f ↾Z. Similarly, in the category of all Hausdorff spaces
with continuous maps as morphisms a morphism f ∶ X → Y is an
epimorphism if, and only if, its image rng f is dense in Y .

Lemma 3.4. (a) Every section is a monomorphism.

(b) Every retraction an epimorphism.

(c) Every epimorphism with a left inverse is an isomorphism.

(d) Every monomorphism with a right inverse is an isomorphism.

(e) If a morphism f has a left inverse g and a right inverse h then f is
an isomorphism and g = h.

Proof. (a) and (b) are left as an exercise.
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(c) Let f ∶ a→ b be an epimorphism with left inverse g ∶ b→ a. Then
g ○ f = ida implies that f ○ g ○ f = f = idb ○ f . As f is an epimorphism,
this implies that f ○ g = idb. Hence, g is an inverse of f .

(d) follows in the same way as (c).
(e) We have g = g ○ idb = g ○ ( f ○ h) = (g ○ f ) ○ h = ida ○ h = h. ◻

Exercise 3.1. Let f ∶ a→ b and g ∶ b→ $ be morphisms. Show that

(a) if f and g are monomorphisms then so is g ○ f ;

(b) if f and g are epimorphisms then so is g ○ f .

Most statements of category theory also hold if every morphism is
reversed. To avoid duplicating proofs we introduce the notion of the
opposite of a category.

Definition 3.5. Let C be a category. The opposite of C is the category Cop

with the same objects as C. For each morphism f ∶ a→ b of C there exists
the morphism f op ∶ b→ a in Cop. The composition of such morphisms
is defined by

gop ○ f op ∶= ( f ○ g)op .

Definition 3.6. An object a ∈ C is initial if, for every b ∈ C, there exists
a unique morphism a → b. Similarly, we call a terminal if there exist
unique morphisms b→ a, for all b ∈ C.

Example. (a) Set contains one initial object ∅, while every singleton
{x} is terminal.

(b) The trivial group {e} is both initial and terminal in Grp.

The importance of initial and terminal objects stems from the fact
that, up to isomorphism, they are unique.

Lemma 3.7. Let C be a category. All initial objects of C are isomorphic
and all terminal objects are isomorphic.
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Proof. Note that a terminal object in C is an initial object in Cop. There-
fore, it is sufficient to prove the claim for initial objects. Suppose that
a and b are initial objects in C. Then there exist unique morphisms
f ∶ a → b and g ∶ b → a. Let h ∶= g ○ f . Then h ∶ a → a and h is the only
morphism a→ a since a is initial. It follows that h = ida. By a symmetric
argument, it follows that f ○ g = idb. Consequently, g is an inverse of f
and f is an isomorphism. ◻

To compare two categories we need the notion of a ‘homomorphism’
between categories.

Definition 3.8. (a) A (covariant) functor F from a category C to a cat-
egoryD consists of two functions

Fobj ∶ Cobj → Dobj and Fmor ∶ Cmor → Dmor

such that the following conditions are satisfied:
◆ Fmor maps each morphism f ∶ a→ b in C to a morphism

Fmor( f ) ∶ Fobj(a)→ Fobj(b) inD .

◆ Fmor(ida) = idFobj(a) , for all a ∈ Cobj.

◆ Fmor(g ○ f ) = Fmor(g) ○ Fmor( f ) , for all f ∶ a→ b and
g ∶ b→ $ in Cmor.

Usually we will omit the superscripts and just write F instead of Fobj and
Fmor.

(b) A functor F ∶ C → D is called faithful if, for every pair a, b ∈ C, the
induced map

F ∶ C(a, b)→ D(F(a), F(b))

is injective. Similarly, F ∶ C → D is called full if, for every pair a, b ∈ C,
the induced map

F ∶ C(a, b)→ D(F(a), F(b))
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is surjective.
(c) A contravariant functor form C toD is a covariant functor from

Cop toD.
(d) The opposite of a functor F ∶ C → D is the functor Fop ∶ Cop → Dop

with

Fop(a) ∶= F(a) , for a ∈ Cobj ,
Fop( f op) ∶= F( f )op , for f ∈ Cmor .

Example. (a) For a signature Σ, the forgetful functor F ∶ Hom(Σ)→ Set
maps every structure A to its universe A and every homomorphism
h ∶ A → B to the corresponding function h ∶ A → B between the
universes. This functor is faithful, but in general not full.

(b) Let G ∶ Set → Hom(∅) be the functor mapping a set X to the
structure ⟨X⟩ over the empty signature. This functor is full and faithful.
The forgetful functor F ∶ Hom(∅) → Set is an inverse of G. It follows
that the categories Set and Hom(∅) are isomorphic.

Definition 3.9. Let F ∶ C → D be a functor and let P be a property of
objects or morphisms.

(a) We say that F preserves P if, whenever x is an object or morphism
with property P, then F(x) also has this property.

(b) We say that F reflects P if, whenever x is an object or morphism
such that F(x) has property P, x also has this property.

Lemma 3.10. (a) Every functor preserves sections, retractions, and iso-
morphisms.

(b) Faithful functors reflect monomorphisms and epimorphisms.
(c) Full and faithful functors reflect sections, retractions, and isomorph-

isms.

Proof. Let F ∶ C → D be a functor.
(a) Let f ∶ a→ b and g ∶ b→ a be morphisms of C such that g ○ f = ida.

Then

F(g) ○ F( f ) = F(g ○ f ) = F(ida) = idF(a) .
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Hence, F(g) is a left inverse of F( f ) and F( f ) is a right inverse of F(g).
(b) Suppose that F is faithful and let f ∶ a → b be a morphism such

that F( f ) is a monomorphism. To show that f is also a monomorphism,
consider morphisms g , h ∶ $→ a with f ○ g = f ○ h. Then

F( f ) ○ F(g) = F( f ○ g) = F( f ○ h) = F( f ) ○ F(h) .

Since F( f ) is a monomorphism, it follows that F(g) = F(h). Because
F is faithful, this implies that g = h.

In the same way it follows that F reflects epimorphisms.
(c) Suppose that F is faithful and full and let F( f ) ∶ F(a)→ F(b) be

a section with left inverse g ∶ F(b) → F(a). As F is full, there exists a
morphism g0 ∶ b→ a with F(g0) = g. Hence,

F(ida) = idF(a) = F(g0) ○ F( f ) = F(g0 ○ f ).

Since F is faithful, this implies that g0 ○ f = ida. Consequently, f is a
section. The cases where f is a retraction or an isomorphism follow in
the same way. ◻

Let us briefly present some operations on categories.

Definition 3.11. Let C andD be categories.
(a) C is a subcategory ofD if

◆ Cobj ⊆ Dobj and Cmor ⊆ Dmor,

◆ the identity morphisms of C are the identity morphisms ofD,

◆ the composition g ○ h of two morphisms of C gives the same result
in both categories.

A subcategory C ⊆ D is full if

C(a, b) = D(a, b) , for all a, b ∈ Cobj .

The inclusion functor I ∶ C → D from a subcategory C to D maps each
object and morphism of C to itself.
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(b) The product of C andD is the category C ×D where

(C ×D)obj ∶= Cobj ×Dobj ,

and (C ×D)(⟨a0 , a1⟩, ⟨b0 , b1⟩) ∶= C(a0 , b0) ×D(a1 , b1) ,

for objects ⟨a0 , a1⟩, ⟨b0 , b1⟩ ∈ C ×D. The composition of morphisms is
defined componentwise:

⟨ f0 , f1⟩ ○ ⟨g0 , g1⟩ ∶= ⟨ f0 ○ g0 , f1 ○ g1⟩ .

With each product C ×D are associated two projection functors

P0 ∶ C ×D → C and P1 ∶ C ×D → D ,

where Pi maps an object ⟨a0 , a1⟩ to ai and a morphism ⟨ f0 , f1⟩ to f i .
(c) Given an object a ∈ D and a functor F ∶ C → D, we define the

comma category (a ↓ F) whose objects are all pairs ⟨ f , b⟩ consisting
of an object b ∈ C and a morphism f ∶ a → F(b) of D. A morphism
h ∶ ⟨ f , b⟩ → ⟨ f ′ , $⟩ from f ∶ a → F(b) to f ′ ∶ a → F($) is a morphism
h ∶ b→ $ of C such that

f ′ = F(h) ○ f .

F(b)

F($)

a F(h)

f

f ′

Similarly, we can define the comma category (F ↓ a) consisting of all
pairs ⟨b, f ⟩ consisting of an object b ∈ C and a morphism f ∶ F(b) → a
of D, where a morphism h ∶ ⟨b, f ⟩ → ⟨$, f ′⟩ consists of a morphism
h ∈ Cmor such that f = f ′ ○ F(h).

F(b)

F($)

aF(h)

f

f ′
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More generally, given two functors F ∶ I → D and G ∶ J → D, we
define the comma category (F ↓ G) of all triples ⟨a, f , b⟩ where a ∈ I ,
b ∈ J , and f ∶ F(a) → G(b). A morphism φ ∶ ⟨a, f , b⟩ → ⟨a′ , f ′ , b′⟩
from f ∶ F(a)→ G(b) to f ′ ∶ F(a′)→ G(b′) consists of a pair φ = ⟨g , h⟩
of morphisms g ∶ a→ a′ and h ∶ b→ b′ such that

F(h) ○ f = f ′ ○ F(g) .

F(a) F(b)

F(a′) F(b′)

F(g) F(h)

f

f ′

To simplify notation, we will usually just write f ∶ F(a)→ G(b) for an
object ⟨a, f , b⟩.

Example. Consider the identity functor I ∶ Emb(Σ) → Emb(Σ). For
A ∈ Emb(Σ), the comma category (I ↓ A) consists of all embeddings
C → A of a substructure into A.

Remark. The general definition of a comma category (F ↓G) covers the
special cases (a ↓ F) and (F ↓ a) by using the functor G ∶ [1]→ D from
the single object category [1] toD which maps the unique object of [1]
to a.

Exercise 3.2. Prove that the product C ×D of two categories is universal
in the sense that, given any category E and two functors F ∶ E → C and
G ∶ E → D, there exists a functor H ∶ E → C ×D such that F = P0 ○ H
and G = P1 ○H. (For sets we have proved a corresponding statement in
Lemma a2.2.2).

To compare two functors we define the notion of a ‘homomorphism
between functors’. In particular, we want to define when two functors
are ‘basically the same’.
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Definition 3.12. (a) Let F and G be two functors from C toD. A natural
transformation from F to G is a family η = (ηa)a∈Cobj of morphisms

ηa ∈ D(F(a),G(a)) , for a ∈ Cobj ,

such that, for every morphism f ∶ a→ b of C, the diagram

F(a) F(b)

G(a) G(b)

F( f )

ηa ηb

G( f )

commutes. If each ηa is an isomorphism we call the transformation a
natural isomorphism. In this case we write η ∶ F ≅ G.

(b) A functor F ∶ C → D is an equivalence between the categories
C and D if there exist a functor G ∶ D → C and natural isomorphisms
η ∶ idD ≅ F ○G and ρ ∶ G ○F ≅ idC ,where id denotes the identity functor.
In this case we call C andD equivalent. If C is equivalent toDop, we say
that the categories C andD are dual.

Example. Let V be a finite dimensional K-vector space. The dual V∨

of V consists of all linear maps V → K. V∨ is again a K-vector space
and we have (V∨)∨ ≅ V . For every linear map h ∶ V →W , we obtain a
linear map h∨ ∶W∨ → V∨ by setting h∨(λ) ∶= λ ○ h. Consequently, the
mapping F ∶ V ↦ V∨ forms a contravariant functor from the category
of all finite dimensional K-vector spaces into itself. Furthermore, the
family of isomorphisms πV ∶ (V∨)∨ → V forms a natural isomorphism
between F ○ F and the identity functor. Hence, we can say that ‘up to
isomorphism’ F = F−1.

Lemma 3.13. An equivalence F ∶ C → D preserves and reflects mono-
morphisms, epimorphisms, initial objects, and terminal objects.

Exercise 3.3. Prove the preceding lemma.
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The next theorem provides an alternative characterisation of equi-
valences between categories. It also contains an important relationship
between the two natural isomorphisms η and ρ associated with an equi-
valence.

Theorem 3.14. Let F ∶ C → D be a functor. The following statements are
equivalent :

(1) F is an equivalence.

(2) F is full and faithful, and every object ofD is isomorphic to one in
rng Fobj.

(3) There exist a functor G ∶ D → C and two natural isomorphisms
η ∶ idD ≅ F ○G and ρ ∶ G ○ F ≅ idC satisfying

F(ρa) = η−1
F(a) and G(ηb) = ρ−1

G(b) .

Proof. (3)⇒ (1) is trivial.
(1) ⇒ (2) Suppose that there exist a functor G ∶ D → C and two

natural isomorphisms η ∶ idD ≅ F ○G and ρ ∶ G ○F ≅ idC with the above
properties. For every object b ∈ D, we have the isomorphism

ηb ∶ b ≅ F(G(b)) ∈ rng Fobj .

To show that F is faithful, let f , f ′ ∶ a→ b be morphisms with F( f ) =
F( f ′). Then

f = f ○ ρa ○ ρ−1
a = ρb ○G(F( f )) ○ ρ−1

a

= ρb ○G(F( f ′)) ○ ρ−1
a = f ′ ○ ρa ○ ρ−1

a = f ′ .

In the same way, it follows that G is faithful.
It remains to show that F is full. Let f ∶ F(a)→ F(b) be a morphism

ofD. Setting

g ∶= ρb ○G( f ) ○ ρ−1
a ,
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we have

ρb ○G( f ) ○ ρ−1
a = g = g ○ ρa ○ ρ−1

a = ρb ○G(F(g)) ○ ρ−1
a .

As ρb and ρa are isomorphisms, this implies that G( f ) = G(F(g)).
We have shown above that G is faithful. Consequently, it follows that
f = F(g) ∈ rng Fmor.

(2) ⇒ (3) By (2), we can choose, for every b ∈ Dobj, some object
G(b) ∈ C and an isomorphism ηb ∶ b ≅ F(G(b)). This defines the object
part of the functor G.

It remains to define the morphism part Gmor. Since F is full and
faithful, it induces bijections

ψa,b ∶= F ↾ C(a, b) ∶ C(a, b)→ D(F(a), F(b)) , for a, b ∈ C .

For a morphism f ∶ a→ b ofD, we set

G( f ) ∶= ψ−1
G(a),G(b)(ηb ○ f ○ η−1

a ) .

Since F(g ○ f ) = F(g) ○ F( f ), we have

ψ−1
a,$(g ○ f ) = ψ−1

b,$(g) ○ ψ−1
a,b( f ) ,

for f ∶ F(a)→ F(b) and g ∶ F(b)→ F($). Consequently,

G(g ○ f ) = ψ−1
G(a),G($)(η$ ○ g ○ f ○ η−1

a )

= ψ−1
G(a),G($)(η$ ○ g ○ η−1

b ○ ηb ○ f ○ η−1
a )

= ψ−1
G(b),G($)(η$ ○ g ○ η−1

b ) ○ ψ−1
G(a),G(b)(ηb ○ f ○ η−1

a )

= G(g) ○G( f ) ,

and G is a functor.
We have choosen each morphism ηa to be an isomorphism. Hence,

to show that η is a natural isomorphism, it is sufficient to prove that

F(G( f )) ○ ηa = ηb ○ f , for all f ∶ a→ b inDmor .
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For a morphism f ∶ a→ b, we have

F(G( f )) ○ ηa = F(ψ−1
G(a),G(b)(ηb ○ f ○ η−1

a )) ○ ηa

= ηb ○ f ○ η−1
a ○ ηa

= ηb ○ f ,

as desired.
To conclude the proof, we define

ρa ∶= ψ−1
G(F(a)),a(η

−1
F(a)) , for a ∈ C .

Then ρ ∶= (ρa)a∈C is a natural transformation since, for f ∶ a→ b in C,

ρb ○G(F( f ))
= ψ−1

G(F(b)),b(η
−1
F(b)) ○ ψ−1

G(F(a)),G(F(b))(ηF(b) ○ F( f ) ○ η−1
F(a))

= ψ−1
G(F(a)),b(η

−1
F(b) ○ ηF(b) ○ F( f ) ○ η−1

F(a))

= ψ−1
a,b(F( f )) ○ ψ−1

G(F(a)),a(η
−1
F(a))

= f ○ ρ−1
a .

Furthermore, each component ρa is an ismorphism since F(ρa) = η−1
F(a)

is an isomorphism and the functor F is full and faithful. Finally, note
that

G(ηb) = ψ−1
G(b),G(F(G(b)))(ηF(G(b)) ○ ηb ○ η−1

b )

= ψ−1
G(b),G(F(G(b)))(ηF(G(b)))

= (ψ−1
G(F(G(b))),G(b)(η

−1
F(G(b))))

−1
= ρ−1

G(b) . ◻

4. Congruences and quotients
Sometimes we do not want to distinguish between certain elements of a
structure. In these situations we can use congruences to obtain a more
abstract view of the given structure.
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b1. Structures and homomorphisms

Definition 4.1. Let A be a Σ-structure.
(a) An equivalence relation ∼ on the universe A is a weak congruence

relation if it satisfies the following properties :
◆ If a ∼ b then there is some sort s such that a, b ∈ As .
◆ If f ∈ Σ is an n-ary function and a0 ∼ b0,. . . , an−1 ∼ bn−1 then

f A(a0 , . . . , an−1) ∼ f A(b0 , . . . , bn−1) .

(b) A (strong) congruence relation is a weak congruence relation ∼
with the additional property that

◆ if R ∈ Σ is an n-ary relation and a0 ∼ b0,. . . , an−1 ∼ bn−1 then

⟨a0 , . . . , an−1⟩ ∈ RA iff ⟨b0 , . . . , bn−1⟩ ∈ RA .

(c) We denote the set of all congruence relations of A by Cong(A),
and we set

Cong(A) ∶= ⟨Cong(A), ⊆⟩ .

Similarly, Congw(A) is the set of all weak congruences and

Congw(A) ∶= ⟨Congw(A), ⊆⟩

is the corresponding partial order.

Example. (a) If A = ⟨A, ≤⟩ is a linear order then Cong(A) = {id} while
Congw(A) contains all equivalence relations over A.

(b) Let V = ⟨V ,+, (λa)a⟩ be a vector space. If ∼ is a congruence of V
then [0]∼ forms a linear subspace of V. Conversely, if U ⊆ V is a linear
subspace then the relation

a ∼ b : iff a − b ∈ U

is a congruence of V with [0]∼ = U . It follows that the map ∼↦ [0]∼ is
an isomorphism between Cong(V) and the class of all linear subspaces
of V ordered by inclusion.
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4. Congruences and quotients

(c) Let Z = ⟨Z,+⟩ and D = ⟨N, ⊑⟩ where

x ⊑ y : iff y ∣ x

is the reverse divisibility order. We claim that Cong(Z) ≅ D. For k ∈ N,
set

x ∼k y : iff x − y = kz for some z ∈ Z .

We show that Cong(Z) = {∼k ∣ k ∈ N}. Since

∼k ⊆ ∼m iff m ∣ k

it then follows that the function ∼k ↦ k is the desired isomorphism.
Clearly, every relation ∼k is a congruence of Z. Conversely, let ≈ be

a congruence of Z. If ≈ ≠ ∼0 then there are numbers x < y with x ≈ y.
Since −x ≈ −x it follows that

0 = x + −x ≈ y + −x > 0 .

Let k be the minimal number such that k > 0 and 0 ≈ k. We claim
that ≈ = ∼k . Since 0 ≈ k we have 0 ≈ kz, for all z ∈ Z. Hence, ∼k ⊆ ≈.
Conversely, if x ≈ y then we have seen that ∣y − x∣ ≈ 0. Suppose that

∣y − x∣ ≡ m (mod k) , for 0 ≤ m < k .

Since 0 ≈ k it follows that m ≈ 0. By choice of k, we have m = 0. Hence,
x ∼k y.

Before turning to quotients let us take a closer look at the structure of
Cong(A).

Lemma 4.2. Cong(A) is an initial segment of Congw(A).

Proof. Let ≈ ∈ Cong(A) and ∼ ∈ Congw(A) with ∼ ⊆ ≈. Let R be an n-
ary relation symbol of A. If a0 ∼ b0 , . . . , an−1 ∼ bn−1 then ∼ ⊆ ≈ implies
a i ≈ b i , for all i. Hence, we have

ā ∈ RA iff b̄ ∈ RA .

Consequently, ∼ ∈ Cong(A). ◻
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b1. Structures and homomorphisms

Lemma 4.3. Let A be a Σ-structure and X ⊆ Congw(A) nonempty. Set

E− ∶= ⋂X and E+ ∶= TC(⋃X) .

(a) E− and E+ are weak congruence relations on A.
(b) If X ⊆ Cong(A) then we have E− , E+ ∈ Cong(A).

Proof. We have already seen in Corollary a2.4.17 that E− and E+ are
equivalence relations. It remains to prove that they are (weak) congru-
ences.

Suppose that ⟨a i , b i⟩ ∈ E−, for i < n, and fix some F ∈ X. Let f be an
n-ary function. Since ⟨a i , b i⟩ ∈ F it follows that

⟨ f (ā), f (b̄)⟩ ∈ F .

Hence, ⟨ f (ā), f (b̄)⟩ ∈ ⋂X.
For (b), we also have to consider n-ary relations R. Fix a congruence

F ∈ X ⊆ Cong(A). Then ⟨a i , b i⟩ ∈ F implies

⟨a0 , . . . , an−1⟩ ∈ R iff ⟨b0 , . . . , bn−1⟩ ∈ R .

The proof for E+ is slightly more involved. Suppose that ⟨a i , b i⟩ ∈ E+,
for i < n. For every i < n, there is a sequence c i

0 , . . . , c i
l i
, with l i < ω,

such that

c i
0 = a i , c i

l i
= b i , and ⟨c i

j , c
i
j+1⟩ ∈ ⋃X , for all j < l i .

Let f be an n-ary function. For every i < n and all j < l i , we have

⟨ f (b0 , . . . , b i−1 , c i
j , a i+1 , . . . , an−1),

f (b0 , . . . , b i−1 , c i
j+1 , a i+1 , . . . , an−1)⟩ ∈ ⋃X .

This implies that

⟨ f (b0 , . . . , b i−1 , a i , a i+1 , . . . , an−1),

f (b0 , . . . , b i−1 , b i , a i+1 , . . . , an−1)⟩ ∈ TC(⋃X) ,
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4. Congruences and quotients

and, by induction, it follows that

⟨ f (ā), f (b0 , a1 , a2 , . . . , an−1)⟩ ∈ E+ ,

⟨ f (ā), f (b0 , b1 , a2 , . . . , an−1)⟩ ∈ E+ ,

. . .

⟨ f (ā), f (b0 , . . . , bn−2 , an−1)⟩ ∈ E+ ,

⟨ f (ā), f (b0 , . . . , bn−2 , bn−1)⟩ ∈ E+ .

Similarly, if R is an n-ary relation then we have, for all i < n and j < l i ,

⟨b0 , . . . , b i−1 , c i
j , a i+1 , . . . , an−1⟩ ∈ R

iff ⟨b0 , . . . , b i−1 , c i
j+1 , a i+1 , . . . , an−1⟩ ∈ R ,

and it follows that

⟨b0 , . . . , b i−1 , a i , a i+1 , . . . , an−1⟩ ∈ R
iff ⟨b0 , . . . , b i−1 , b i , a i+1 , . . . , an−1⟩ ∈ R .

As above we can conclude that ā ∈ R iff b̄ ∈ R . ◻

Theorem 4.4. Let A be a structure. Congw(A) andCong(A) form complete
partial orders where, for every nonempty set X, we have

inf X = ⋂X and sup X = TC(⋃X) .

Proof. We have seen in Corollary a2.4.17 that the partial order of equi-
valence relations on A is complete. Consequently, the claim follows from
Lemma 4.3 and Corollary a2.3.11. ◻

Every weak congruence defines an abstraction operation on structures.

Definition 4.5. Let A be a Σ-structure and ∼ a weak congruence of A.
(a) The quotient A/∼ of A is the Σ-structurewhere the domain of sort s

is As/∼, for each n-ary relation symbol R ∈ Σ, we have the relation

RA/∼ ∶= { ⟨[a0]∼ , . . . , [an−1]∼⟩ ∣ ⟨a0 , . . . , an−1⟩ ∈ RA } ,
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b1. Structures and homomorphisms

A A/∼

and, for every n-ary function symbol f ∈ Σ, the function

f A/∼([a0]∼ , . . . , [an−1]∼) ∶= [ f A(a0 , . . . , an−1)]∼ .

We also say that we obtain A/∼ from A by factorisation by ∼.
(b) The function π ∶ A→ A/∼with π(a) ∶= [a]∼ is called the canonical

projection.

Remark. The structure A/∼ is well-defined since, by definition, if we
have a0 ∼ b0,. . . , an−1 ∼ bn−1 then

f A(a0 , . . . , an−1) ∼ f A(b0 , . . . , bn−1) ,

which implies that

[ f A(a0 , . . . , an−1)]∼ = [ f A(b0 , . . . , bn−1)]∼ .

Example. On = ⟨Wo, ≤⟩/≅ and ord ∶ ⟨Wo, ≤⟩→ On is a homomorphism.

There is a strong connection between congruence relations and ho-
momorphisms.

Lemma 4.6. Let A be a Σ-structure, ∼ a weak congruence on A, and
π ∶ A→ A/∼ the canonical projection.

(a) π is a surjective semi-strict homomorphism with ker π = ∼.

(b) If ∼ is a congruence then π is a surjective strict homomorphism.
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Proof. (a) π is surjective since

A/∼ = { [a]∼ ∣ a ∈ A} = { π(a) ∣ a ∈ A} = rng π .

It is a homomorphism since, for all n-ary functions symbols f ∈ Σ, we
have

π f A(a0 , . . . , an−1) = [ f A(a0 , . . . , an−1)]∼

= f A/∼([a0]∼ , . . . , [an−1]∼)

= f A/∼(πa0 , . . . , πan−1) ,

and, for each n-ary relation symbols R ∈ Σ,

⟨a0 , . . . , an−1⟩ ∈ RA ⇒ ⟨[a0]∼ , . . . , [an−1]∼⟩ ∈ RA/∼

⇒ ⟨πa0 , . . . , πan−1⟩ ∈ RA/∼ .

To show that π is semi-strict let ⟨[a0], . . . , [an−1]⟩ ∈ RA/∼. By definition
of A/∼ there are elements b i ∼ a i , i < n, with b̄ ∈ RA. This implies that
π(b̄) = π(ā).

(b) We have already seen in (a) that π is a surjective homomorphism.
It is strict since, for each n-ary relation symbols R ∈ Σ, we have

⟨a0 , . . . , an−1⟩ ∈ RA iff ⟨[a0]∼ , . . . , [an−1]∼⟩ ∈ RA/∼

iff ⟨πa0 , . . . , πan−1⟩ ∈ RA/∼ . ◻

Lemma 4.7. Let h ∶ A→ B be a function.
(a) If h is a homomorphism then ker h is a weak congruence of A.
(b) If h is a strict homomorphism then ker h is a congruence.

Proof. (a) ker h is an equivalence relation since = is reflexive, symmetric,
and transitive. Furthermore, h(a) = h(b) implies that a and b are of the
same sort. Suppose that ⟨a0 , b0⟩,. . . , ⟨an−1 , bn−1⟩ ∈ ker h. If f ∈ Σ is an
n-ary function symbol then

h( f A(ā)) = f B(h(ā)) = f B(h(b̄)) = h( f A(b̄))
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b1. Structures and homomorphisms

implies that ⟨ f A(ā), f A(b̄)⟩ ∈ ker h.
(b) If R ∈ Σ is an n-ary relation symbol then we have

ā ∈ RA iff h(ā) ∈ RB iff h(b̄) ∈ RB iff b̄ ∈ RA . ◻

Corollary 4.8. Let A be a Σ-structure and ∼ ⊆ A× A a binary relation.
(a) ∼ is a weak congruence relation if and only if there exists a homo-

morphism h ∶ A→ B such that ∼ = ker h.
(b) ∼ is a congruence relation if and only if there exists a strict homo-

morphism h ∶ A→ B such that ∼ = ker h.
(c) Let B be a Σ-structure. There exists a weak congruence ∼ such that

B ≅ A/∼ if and only if B is a homomorphic image of A.

Proof. We prove all three claims simultaneously. The direction (⇐)
follows immediately from Lemma 4.7. For (⇒) we can take B ∶= A/∼
and h ∶ a ↦ [a]∼, by Lemma 4.6. ◻

Definition 4.9. Let h ∶ A → B be a homomorphism and ∼ a weak
congruence on B. We set

h−1(∼) ∶= { ⟨a, b⟩ ∈ A× A ∣ h(a) ∼ h(b) } .

Lemma 4.10. Let h ∶ A→ B be a homomorphism and ∼ a weak congru-
ence on B.

(a) h−1(∼) is a weak congruence on A.
(b) If h is strict and ∼ ∈ Cong(B) then h−1(∼) ∈ Cong(A).

Proof. If π ∶ B→ B/∼ is the canonical projection then we have

h−1(∼) = ker(π ○ h) .

Hence, the claims follow from Lemma 4.7. ◻

Theorem 4.11. (a) There exists a contravariant functor

F ∶ Hom(Σ)→ Hom(⊆) ∶ A↦ Congw(A)
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with F( f ) ∶ ∼↦ f −1(∼), for homomorphisms f ∶ A→ B.
(b) There exists a contravariant functor

G ∶ Homs(Σ)→ Hom(⊆) ∶ A↦ Cong(A)

with G( f ) ∶ ∼↦ f −1(∼), for strict homomorphisms f ∶ A→ B.

Proof. (a) If f ∶ A→ B is a homomorphism and ∼ ⊆ ≈ are weak congru-
ences of B then we have

F( f )(∼) = f −1(∼) ⊆ f −1(≈) = F( f )(≈) .

Hence, F( f ) is a homomorphism. Furthermore, we have

F(idA)(∼) = ∼ , for all ∼ ∈ Congw(A) ,

which implies that F(idA) = idCongw(A). Finally, if f ∶ A → B and g ∶
B→ C are homomorphisms then we have

F(g ○ f )(∼) = (g ○ f )−1(∼)

= f −1(g−1(∼)) = (F( f ) ○F(g))(∼) .

(b) is shown in exactly the same way replacing ‘homomorphism’ by
‘strict homomorphism’ and ‘weak congruence’ by ‘congruence’. ◻

Theorem 4.12 (Homomorphism Theorem). For every semi-strict homo-
morphism h ∶ A→ B, there exists a unique isomorphism

φ ∶ A/ker h → h(A)

such that the following diagram commutes.

A B

A/ker h h(A)

h

π h ⊆

ψ

φ
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Proof. Let π ∶ A→ A/ker h be the canonical projection. The existence of
φ ∶ A/ker h → h(A) follows immediately from Corollary 2.7 since both
homomorphisms π and h ∶ A→ h(A) are semi-strict and surjective and
we have ker π = ker h. ◻

Corollary 4.13. Every strict homomorphism h ∶ A→ B can be factorised
as h = φ ○ π where π is a surjective strict homomorphism and φ is an
injective strict homomorphism.

Example. Let h ∶ G → H be a homomorphism between groups. Let
N ∶= ker h be the (normal subgroup corresponding to the) kernel of h.
Then there exists a homomorphism φ ∶ G/N → H such that h = φ ○ π
where π ∶ G→ G/N is the canonical projection.

Corollary 4.14. Let A and B be structures.
(a) There exists a surjective strict homomorphism A→ B if and only if

B ≅ A/∼, for some congruence relation ∼.
(b) There exists a strict homomorphism A→ B if and only if there is a

substructure B0 ⊆ B and a congruence relation ∼ on A such that
B0 ≅ A/∼.

We conclude this section with an investigation of the relationship
between quotients A/∼ and A/≈ of the same structures.
Remark. For weak congruences ∼ ⊆ ≈, we have [a]∼ ⊆ [a]≈. Hence,
every ≈-class is partitioned by ∼ into one or several ∼-classes.

Definition 4.15. For weak congruences ∼ ⊆ ≈ on A we define

≈/∼ ∶= { ⟨[a]∼ , [b]∼⟩ ∈ A/∼ × A/∼ ∣ a ≈ b } .

Remark. If ∼ ⊆ ≈ are weak congruences on A then ∼ is also a weak
congruence of ⟨A, ≈⟩ and we have

⟨A, ≈⟩/∼ = ⟨A/∼, ≈/∼⟩ .

Furthermore, if ∼ is a congruence on A then ∼ is also a congruence of
⟨A, ≈⟩.
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A

A/∼

A/≈

π∼

π≈

φ

Lemma 4.16. Let ∼ ⊆ ≈ be weak congruences on A and let π∼ ∶ A→ A/∼
and π≈ ∶ A→ A/≈ be the corresponding canonical projections.
We have ≈/∼ = ker φ where φ ∶ A/∼ → A/≈ is the unique semi-strict

homomorphism with π≈ = φ ○ π∼.

Proof. Since ker π∼ = ∼ ⊆ ≈ = ker π≈ it follows by Lemmas 2.5 and 2.6
that there exists a unique semi-strict homomorphism φ ∶ A/∼ → A/≈
with π≈ = φ ○ π∼. For [a]∼ , [b]∼ ∈ A/∼, we have

φ[a]∼ = φ[b]∼ iff (φ ○ π∼)(a) = (φ ○ π∼)(b)
iff π≈(a) = π≈(b)
iff a ≈ b
iff [a]∼ ≈/∼ [b]∼ . ◻

Corollary 4.17. Let ∼ ⊆ ≈ be weak congruences on A.

(a) ≈/∼ is a weak congruence on A/∼.

(b) If ≈ is a congruence then so is ≈/∼.

Proof. (a) follows immediately from Lemma 4.16. For (b) note that, if
≈ is a congruence then π≈ is strict and it follows by Lemma 2.6 that φ is
a strict homomorphism. ◻
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Theorem 4.18. Let ∼ ⊆ ≈ be weak congruences on A. There exists an
isomorphism

(A/∼)/(≈/∼) ≅ A/≈ .

Proof. According to Lemma 4.16 there exists a semi-strict homomorph-
ism φ ∶ A/∼→ A/≈ with ker φ = ≈/∼. By the Homomorphism Theorem,
it follows that there exists an isomorphism

ψ ∶ (A/∼)/(≈/∼)→ A/≈ . ◻

Example. Let N ⊆ U ⊆ G be normal subgroups of G. Then N is also a
normal subgroup of U and we have

G/U ≅ (G/N)/(U/N) .

Theorem 4.19. Let A be a structure and ∼ ∈ Cong(A). The function

h ∶ ⇑∼→ Cong(A/∼) with h(≈) ∶= ≈/∼

defines an isomorphism between Cong(A/∼) and the final segment ⇑∼
of Cong(A).

Proof. Let ρ, σ ∈ ⇑∼. It follows immediately from the definition that we
have

ρ/∼ ⊆ σ/∼ iff ρ ⊆ σ .

Therefore, h is a strict homomorphism.
It remains to show that it is bijective. Suppose that ρ ≠ σ . By symmetry,

we may assume that there is some pair ⟨a, b⟩ ∈ ρ ∖ σ . It follows that

⟨[a]∼ , [b]∼⟩ ∈ ρ/∼ = h(ρ) and ⟨[a]∼ , [b]∼⟩ ∉ σ/∼ = h(σ) .

Hence, we have h(ρ) ≠ h(σ) and h is injective. For surjectivity, let
ρ ∈ Cong(A/∼) and define

σ ∶= { ⟨a, b⟩ ∈ A× A ∣ ⟨[a]∼ , [b]∼⟩ ∈ ρ } .

Then we have h(σ) = ρ. ◻

186



b2. Trees and lattices

1. Trees
Recall that, for an ordinal α, we denote by A<α the set of all sequences
f ∶ β → Awith β < α. To simplify notation we will write finite sequences
ā = ⟨a0 , . . . , an⟩ without braces and commas as ā = a0 . . . an . We can
equip A<α with the following operations.

Definition 1.1. Let x , y ∈ A<α .
(a) The length of x is the ordinal ∣x∣ ∶= dom x.
(b) The concatenation x ⋅ y of x and y is the sequence z ∶ ∣x∣ + ∣y∣→ A

with

zβ ∶=
⎧⎪⎪
⎨
⎪⎪⎩

xβ if β < ∣x∣ ,
yγ if β = ∣x∣ + γ .

Usually, we omit the dot and simply write xy instead of x ⋅ y. For sets
X ,Y ⊆ A<α , we introduce the usual abbreviations

XY ∶= { xy ∣ x ∈ X , y ∈ Y } and xY ∶= { xy ∣ y ∈ Y } .

(c) The prefix order ⪯ on A<α is defined by

x ⪯ y : iff ∣x∣ ≤ ∣y∣ and y ↾ ∣x∣ = x .

If x ⪯ y then x is called a prefix of y.
(d) If we are given a linear order ⊑ on A then we can define the lexico-

graphic order ≤lex on A<α by

x ≤lex y : iff x ⪯ y or there are z ∈ A<α and a ⊏ b ∈ A
such that za ⪯ x and zb ⪯ y .
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⟨⟩

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Figure 1.. ⟨2<4 , ⪯⟩

Example. (a) If x = a0 . . . am−1 and y = b0 . . . bn−1 then

xy = a0 . . . am−1b0 . . . bn−1 .

In particular, x ⪯ xy.
(b) We have x ⋅ ⟨⟩ = x = ⟨⟩ ⋅ x, for all x ∈ A<α .
(c) The prefix order ⟨2<4 , ⪯⟩ is depicted in Figure 1, while the lexico-

graphic ordering ⟨2<4 , ≤lex⟩ is

⟨⟩ <  <  <  <  <  <  < 
<  <  <  <  <  <  <  .

This order corresponds to a so-called ‘pre-order’ or ‘depth-first’ traversal
of the tree ⟨2<4 , ⪯⟩.

Exercise 1.1. Prove that x ⪯ y iff there exists some z such that y = xz.

Note that, if x , y ∈ A<α then xy ∈ A<α2, but it might be the case that
xy ∉ A<α . Since dom xy = dom x + dom y we can use Lemma a3.4.25 to
obtain a characterisation of all ordinals α such that A<α is closed under
concatenation.

Lemma 1.2. Let α ∈ On. The set A<α is closed under concatenation if and
only if α = 0 or α = ω(η), for some η.
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Remark. It follows that, for every α, the structure ⟨A<ω(α), ⋅ , ⟨⟩⟩ forms a
monoid.

Trees play a prominent role in mathematics and computer science.
Firstly, they have many pleasant algebraic and algorithmic properties,
and secondly, many processes and structures can be modelled as a tree.
For instance, consider an inductive fixed-point iteration that, starting
with some basic elements, combines them in every step to form new
elements. Every element is built up from one or several other elements
that, in turn, consist of even more primitive elements, and so on until a
basic element is reached. To model such hierarchical dependencies we
will frequently use families (av)v∈T indexed by a tree T .

Definition 1.3. (a) A tree is a partial order T = ⟨T , ≤⟩ such that
◆ the set ↓v is well-ordered, for every v ∈ T , and
◆ each pair u, v ∈ T has a greatest lower bound u ⊓ v ∶= inf {u, v}.

(b) The elements of a tree are usually called nodes or vertices. A max-
imal element of a tree is called a leaf, all other elements of T are inner
vertices, and the least element is the root.

(c) A vertex v is a successor of the vertex u if u < v and there is no
vertex w with u < w < v.

(d) A chain C ⊆ T is a path if u, v ∈ C implies that w ∈ C, for all
u ≤ w ≤ v. A maximal path is called a branch.

Remark. (a) Note that every tree is a well-founded partial order.
(b) By convention, we will usually depict trees upside down with the

root at the top.
The partial order ⟨2<4 , ⪯⟩ in Figure 1 is a tree. In fact, the prefix order ⪯

always forms a tree and we will see below that every tree can be obtained
in this way.

Lemma 1.4. ⟨A<α , ⪯⟩ is a tree, for all A and α.

The only thing preventing a tree from being a complete partial order
is the lack of a greatest element.
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Lemma 1.5. Let T = ⟨T , ≤⟩ be a tree. If X ⊆ T is nonempty then there are
elements a, b ∈ X with inf X = a ⊓ b. In particular, X has an infimum.

Proof. Fix some element a ∈ X. The set

Y ∶= { a ⊓ x ∣ x ∈ X }

is a nonempty subset of ⇓a. Hence, it has a least element c ∈ Y . This
element is a lower bound of X since we have

c ≤ a ⊓ x ≤ x , for every x ∈ X .

Fix some element b ∈ X with c = a ⊓ b. If d is another lower bound of X
then d ≤ a and d ≤ b implies d ≤ a ⊓ b = c. Consequently, we have
c = a ⊓ b = inf X. ◻

Definition 1.6. Let T = ⟨T , ≤⟩ be a tree and v ∈ T a vertex.
(a) The subtree of T rooted at v is the substructure Tv ∶= T∣⇑v induced

by ⇑v.
(b) The level of a vertex v is the ordinal

∣v∣ ∶= ord ⟨↓v , ≤⟩ .

The height of T is the least ordinal greater than all levels

sup{ ∣v∣ + 1 ∣ v ∈ T } .

Example. Let T = ⟨A<α , ⪯⟩. The level of v ∈ A<α is the length of v. (That
is the reason why we denote both by ∣v∣.) It follows that the height of T
is α.

Lemma 1.7. For every tree T = ⟨T , ≤⟩ of height α, there exists an initial
segment X ⊆ ∣T ∣<α such that T ≅ ⟨X , ⪯⟩.

Proof. For β ∈ On, define Tβ ∶= { v ∈ T ∣ ∣v∣ < β }. Let α be the minimal
ordinal such that Tα = T and set κ ∶= ∣T ∣. To prove the claim it is
sufficient to define an embedding h ∶ T → κ<α such that X ∶= rng h

190



1. Trees

forms an initial segment. By induction on β, we construct an increasing
sequence h1 ⊆ h2 ⊆ . . . of embeddings hβ ∶ Tβ → κ<β . The desired
function h ∶ T → κ<α will be obtained as the limit h ∶= ⋃β<α hβ .

Let v be the root of T . Since v is the only vertex of length 0 we can set

h1 ∶ {v}→ {⟨⟩} ∶ v ↦ ⟨⟩ .

For the inductive step, suppose that hγ is already defined for all γ < β.
If β is a limit ordinal then we can set hβ ∶= ⋃γ<β hγ . Therefore, suppose
that β = γ + 1 is a successor. For every vertex v ∈ T of length ∣v∣ < γ,
we set hβ(v) ∶= hγ(v). It remains to consider the case that ∣v∣ = γ. First,
suppose that γ = η + 1 is a successor. For each vertex u ∈ T of length
∣u∣ = η, we fix an injective function gu ∶ Su → κ from the set Su of
successors of u into κ. If ∣v∣ = γ then v ∈ Su , for some u, and we can set

hβ(v) ∶= hγ(u) ⋅ ⟨gu(v)⟩ .

Finally, suppose that γ is a limit ordinal. We set hβ(v) ∶= x where x ∶
γ → κ<γ+1 is the sequence with

xη ∶= hγ(u) , for the vertex u ≤ v with ∣u∣ = η . ◻

We conclude this section with an investigation of the connection
between trees and fixed-point inductions. First, we characterise those
trees that contain an infinite path. Then we show that those without can
be generated bottom-up in a recursive way.

Definition 1.8. The branching degree of a tree T is theminimal cardinal κ
such that there exists an embedding of T into κ<α , for some ordinal α.
We say that T is finitely branching if every vertex v ∈ T has only finitely
many successors.

Example. The branching degree of ⟨A<α , ⪯⟩ is ∣A∣.

Remark. (a) Note that there are finitely branching trees of branching
degree ℵ0. For instance, the tree ⟨T , ⪯⟩ with

T ∶= { ā ∈ ℵ<ω
0 ∣ an ≤ n for n < ω } ,
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is finitely branching. Every vertex ā of length ∣ā∣ = n has n+ 1 successors.
(b) The branching degree of a tree T is at most ∣T ∣, by the above lemma.

Lemma 1.9 (Kőnig). Every infinite tree that is finitely branching contains
an infinite branch.

Proof. By induction, we construct an infinite branch v0 < v1 < . . . such
that ⇑vn is infinite, for all n. Let v0 be the root of T. By assumption,
⇑v0 = T is infinite. For the inductive step, suppose that we have already
defined the path v0 < ⋅ ⋅ ⋅ < vn such that ⇑vn is infinite. Since vn has only
finitely many successors u0 , . . . , uk and

⇑vn = {vn} ∪ ⇑u0 ∪ ⋅ ⋅ ⋅ ∪ ⇑uk ,

there must be at least one successor u i such that ⇑u i is infinite. We set
vn+1 ∶= u i . ◻

If we compute a set X as the inductive fixed point of some operation
then we can associate with the elements of X a rank that measures at
which stage of the induction the element entered the fixed point.

Definition 1.10. Let f ∶ ℘(A) → ℘(A) be a function that is inductive
over ∅ and let F ∶ On → ℘(A) be the corresponding fixed-point in-
duction. We associate with every element a ∈ A a rank as follows. For
elements a ∈ F(∞), we define the rank of a as the ordinal α such that
a ∈ F(α + 1) ∖ F(α). For a ∉ F(∞), we set the rank of a to ∞.

Example. The power-set operation ℘ ∶ S → S is inductive over ∅. The
corresponding notion of rank coincides with the rank ρ(a) introduced
in Definition a3.2.24.

Let us define a rank for trees.

Definition 1.11. Let T = ⟨T , ≤⟩ be a tree. The foundation rank frk(v)
of a vertex v ∈ T is the rank corresponding to the fixed-point operator
f ∶ ℘(T)→ ℘(T) with

f (X) ∶= { v ∈ T ∣ ↑v ⊆ X } .

The rank frk(T) of T is the rank of its root.
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Remark. We have frk(v) = 0 if and only if v is a leaf of T .
In the course of this book we will introduce several ranks. Since it

is cumbersome to define them in terms of fixed-point operations we
will usually give more informal definitions. For a given ordinal α, we
will just specify all elements a such that a ∉ F(α). For instance, for the
foundation rank the definition would have the following format :

◆ frk(v) ≥ 0, for all v ∈ T .
◆ For successor ordinals, we have frk(v) ≥ α + 1 if and only if there

is some u ≻ v with frk(u) ≥ α.
◆ If δ is a limit ordinal then frk(v) ≥ δ iff frk(v) ≥ α, for all α < δ.

Example. (a) The tree
5

2 4

0 1 3

0

1

0 0

1 2

0 1

00

has foundation rank 5.
(b) For every ordinal α, we can construct a tree Tα of foundation

rank α. T0 consists just of a single vertex. If α > 0 then we can construct
Tα by taking the disjoint union of all Tβ , β < α, and adding a new vertex
as the root :

Tα+1

. . .T0 T1 Tα

Lemma 1.12. Let T be a tree and u, v ∈ T. If u < v then we have

frk(u) > frk(v) or frk(u) = frk(v) =∞ .
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Lemma 1.13. Let T be a tree and v ∈ T.

(a) frk(v) = sup{ frk(u) + 1 ∣ u is a successor of v } .

(b) We have frk(v) =∞ if and only if ⇑v contains an infinite path.

Proof. (a) Let F be the fixed point induction used to define frk(v). If u is
a successor of v then u ∈ F(frk(u) + 1) ∖ F(frk(u)) and u ∈ ↑v implies
that v ∉ F(frk(u) + 1). Hence, frk(v) ≥ frk(u) + 1. For the converse,
suppose that frk(v) > α, i.e., v ∉ F(α + 1). There exists some vertex
w > v with w ∉ F(α). Let u be the successor of v such that v < u ≤ w. If
u < w then, by definition of F(α+ 1), it follows that u ∉ F(α+ 1) ⊇ F(α).
Otherwise, we have u = w ∉ F(α). Consequently, for every α < frk(v),
there exists some successor u with frk(u) ≥ α.

(b) If frk(v) =∞ then (a) implies that there is some successor u of v
with frk(u) =∞. Hence, we can inductively construct an infinite path
v = v0 < v1 < . . . such that frk(vn) =∞, for all n.
Conversely, if v0 < v1 < . . . is an infinite path then it follows by

induction on α that vn ∉ F(α), for all n. Therefore, we have frk(vn) =
∞. ◻

Corollary 1.14. Let T = ⟨T , ≤⟩. We have frk(T) < ∞ if and only if the
partial order Top ∶= ⟨T , ≥⟩ is well-founded.

Lemma 1.15. Let T ⊆ κ<α . If frk(T) <∞ then frk(T) < κ+.

Proof. Suppose, for a contradiction that κ+ ≤ frk(T) <∞. By the pre-
ceding corollary, we know that the inverse ordering ≥ is well-founded.
Hence, there exists a maximal vertex v ∈ T such that frk(v) ≥ κ+. Let
S be the set of successors of v. By maximality and Lemma 1.13, it follows
that

κ+ = frk(v) = sup{ frk(u) + 1 ∣ u ∈ S } ,

where frk(u) < κ+. Hence, κ+ is the supremum of a set of ∣S∣ < κ+
ordinals each of which is less then κ+. This contradicts the fact that every
successor cardinal is regular. ◻
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2. Lattices
Lattices are partial orders that, although not necessarily complete, enjoy
a certain weak completeness property. Instead of requiring that every
subset has a supremum and an infimum we only do so for all finite sets.

Definition 2.1. (a) A partial order L = ⟨L, ⊑⟩ is a lower semilattice if
every pair a, b ∈ L has a greatest lower bound inf {a, b}. Analogously
we call L an upper semilattice if every pair a, b ∈ L has a least upper
bound sup{a, b}.

(b) A lattice is a structure L = ⟨L,⊔,⊓, ⊑⟩ where ⊑ is a partial order
and

a ⊓ b = inf {a, b} and a ⊔ b = sup{a, b} , for a, b ∈ L .

A lattice L is bounded if it has a least element � and a greatest element ⊺.

Remark. (a) If ⟨L, ⊑⟩ is both an upper and a lower semilattice then there
exists a unique expansion ⟨L,⊓,⊔, ⊑⟩ to a lattice. Informallywewill there-
fore also call the order ⟨L, ⊑⟩ a lattice. But note that by a homomorphism
between lattices we always mean a homomorphism with respect to the
full signature.

Similarly, we will also call structures of the form ⟨L,⊓, ⊑⟩ with

a ⊓ b = inf {a, b}

a lower semilattice, and structures ⟨L,⊔, ⊑⟩ with

a ⊔ b = sup{a, b}

an upper semilattice.
(b) All complete partial orders and all linear orders are lattices.

Example. (a) The divisibility order ⟨N, ∣ ⟩ is a lattice where m ⊓ n is the
greatest common divisor of m and n and m ⊔ n is their least common
multiple.
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b2. Trees and lattices

(b) Cong(A) and Sub(A) are lattices.
(c) Let A be a structure and S the family of all finitely generated

substructures of A. Then ⟨S , ⊆⟩ is a lattice.

Exercise 2.1. (a) Let L be a lattice and a, b ∈ L. Prove that the interval
[a, b] induces a sublattice.

(b) Prove that every substructure of a lattice is a lattice.

The ordering ⊑ is actually redundant since it can be defined with the
help of ⊓ or ⊔.

Lemma 2.2. Let L = ⟨L,⊓,⊔, ⊑⟩ be a lattice.

(a) For a, b ∈ L, we have

a ⊑ b iff a ⊓ b = a iff a ⊔ b = b .

(b) If b ⊑ c then

a ⊓ b ⊑ a ⊓ c and a ⊔ b ⊑ a ⊔ c .

Proof. (a) is trivial. For (b), we have

a ⊓ b = a ⊓ (b ⊓ c) = (a ⊓ a) ⊓ (b ⊓ c) = (a ⊓ b) ⊓ (a ⊓ c),

by (a). Again by (a), it follows that a ⊓ b ⊑ a ⊓ c. The other inequality is
proved in the same way. ◻

Lemma 2.3. A structure L = ⟨L,⊓, ⊑⟩ is a lower semilattice if and only if,
for all a, b, c ∈ L, we have

a ⊑ b iff a ⊓ b = a ,

a ⊓ a = a , (idempotence)
a ⊓ b = b ⊓ a , (commutativity)

a ⊓ (b ⊓ c) = (a ⊓ b) ⊓ c . (associativity)
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Proof. (⇒) If L is a lower semilattice then the above conditions follow
immediately from the definition of the infimum.
(⇐) Suppose that L satisfies the above conditions. First we show that

⊑ is a partial order. It is reflexive since a ⊓ a = a implies that a ⊑ a. For
antisymmetry, note that a ⊑ b and b ⊑ a implies that

a = a ⊓ b = b ⊓ a = b .

Finally, for transitivity suppose that a ⊑ b and b ⊑ c. Then we have
a ⊓ b = a and b ⊓ c = b. It follows that

a ⊓ c = (a ⊓ b) ⊓ c = a ⊓ (b ⊓ c) = a ⊓ b = a .

Hence, we have a ⊑ c.
It remains to prove that a ⊓ b = inf {a, b}. We have

(a ⊓ b) ⊓ b = a ⊓ (b ⊓ b) = a ⊓ b ,

which implies that a⊓b ⊑ b. Similarly,we obtain a⊓b ⊑ a. Consequently,
a ⊓ b is a lower bound of {a, b}. Furthermore, if c is some element with
c ⊑ a and c ⊑ b then we have c ⊓ a = c and c ⊓ b = c and it follows that

c ⊓ (a ⊓ b) = (c ⊓ a) ⊓ b = c ⊓ b = c .

Hence, c ⊑ a ⊓ b and a ⊓ b is the greatest lower bound of {a, b}. ◻

As an immediate consequence we obtain the following characterisa-
tion of lattices.

Lemma 2.4. A structure L = ⟨L,⊓,⊔, ⊑⟩ is a lattice if and only if, for all
a, b, c ∈ L, we have

a ⊑ b iff a ⊓ b = a
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and a ⊓ a = a a ⊔ a = a (idempotence)

a ⊓ b = b ⊓ a a ⊔ b = b ⊔ a (commutativity)

a ⊓ (a ⊔ b) = a a ⊔ (a ⊓ b) = a (absorption)

a ⊓ (b ⊓ c) = (a ⊓ b) ⊓ c (associativity)
a ⊔ (b ⊔ c) = (a ⊔ b) ⊔ c

We conclude this section with a look at three important subclasses of
lattices.

Definition 2.5. Let L = ⟨L,⊓,⊔, ⊑⟩ be a lattice.
(a) L is modular if, for all a, b, c ∈ L, we have that

a ⊑ b implies a ⊔ (b ⊓ c) = b ⊓ (a ⊔ c) .

(b) L is distributive if, for all a, b, c ∈ L, we have

a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c)
and a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ (a ⊔ c) .

(c) L is boolean if it is distributive, bounded, and, for every a ∈ L there
is some element a∗ ∈ L such that

a ⊓ a∗ = � and a ⊔ a∗ = ⊺ .

The element a∗ is called the complement of a. If L is a boolean lattice
then we call the structure ⟨L,⊓,⊔, ∗⟩ a boolean algebra.

Example. For every set A, ⟨℘(A),∩,∪, ∗⟩ forms a boolean algebra with
X∗ ∶= A∖ X.

Remark. Note that every sublattice of a power-set lattice ⟨℘(A), ⊆⟩ is
distributive.

Exercise 2.2. Prove that every sublattice of a distributive lattice is dis-
tributive and that every sublattice of a modular lattice is modular.
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b ⊔ c

b a ⊔ c

b ⊓ (a ⊔ c)
c

a ⊔ (b ⊓ c)
a

b ⊓ c
a ⊓ c

Figure 2.. The general situation

To better understand the modularity condition we have shown in
Figure 2 the corresponding situation in an arbitrary lattice. (Some of the
depicted elements might coincide.)

Lemma 2.6. If a ⊑ b then we have

a ⊑ a ⊔ (b ⊓ c) ⊑ b ⊓ (a ⊔ c) ⊑ b .

Proof. The first and the last inequality follow immediately from the
definition of ⊔ and ⊓. For the remaining inequality, note that

a ⊑ b and b ⊓ c ⊑ b implies a ⊔ (b ⊓ c) ⊑ b ,
and a ⊑ a ⊔ c and b ⊓ c ⊑ c ⊑ a ⊔ c implies a ⊔ (b ⊓ c) ⊑ a ⊔ c .◻

In general the distributive laws also hold only in one direction.

Lemma 2.7. In every lattice L, we have

a ⊓ (b ⊔ c) ⊒ (a ⊓ b) ⊔ (a ⊓ c)
and a ⊔ (b ⊓ c) ⊑ (a ⊔ b) ⊓ (a ⊔ c) ,

for all a, b, c ∈ L.

Lemma 2.8. Every distributive lattice is modular.

Proof. a ⊑ b implies a ⊔ b = b. Consequently, we have

a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ (a ⊔ c) = b ⊓ (a ⊔ c) . ◻
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Lemma 2.9. A lattice L is modular if, and only if,

a ⊑ b and a ⊔ c = b ⊔ c implies a ⊔ (b ⊓ c) = b .

Proof. (⇒) If a ⊑ b and a ⊔ c = b ⊔ c, modularity implies that

b = b ⊓ (b ⊔ c) = b ⊓ (a ⊔ c) = a ⊔ (b ⊓ c) .

(⇐) Suppose that a ⊑ b. To show that

a ⊔ (b ⊓ c) = b ⊓ (a ⊔ c)

we consider the element x ∶= b ⊓ (a ⊔ c). Note that a ⊑ x ⊑ a ⊔ c implies
a ⊔ c = x ⊔ c. By assumption, it therefore follows that

a ⊔ (x ⊓ c) = x .

Furthermore, by Lemma 2.6 we have

b ⊓ c ⊑ a ⊔ (b ⊓ c) ⊑ x ⊑ b ,

which implies that x ⊓ c = b ⊓ c. Hence,

a ⊔ (b ⊓ c) = a ⊔ (x ⊓ c) = x . ◻

Distributive and modular lattices can be characterised in terms of
forbidden configurations.

Definition 2.10. Let M5 and N5 be the following lattices :

M5 : N5 :
⊺

a b c

�

⊺

b

a
c

�

Theorem 2.11. Let L be a lattice.
(a) L is modular iff there exists no embedding N5 → L.
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(b) L is distributive iff there exists neither an embedding M5 → L nor
an embedding N5 → L.

Proof. (a) (⇒) Suppose that h ∶ N5 → L is an embedding. Then h(a) ⊑
h(b) but

h(a) ⊔ (h(b) ⊓ h(c)) = h(a) ⊔ h(�) = h(a)
≠ h(b) = h(b) ⊓ h(⊺)
= h(b) ⊓ (h(a) ⊔ h(c)) .

Hence, L is not modular.
(⇐) Suppose that L is not modular. Then there exist elements x , y, z ∈

L, such that x ⊑ y but x ⊔ (y ⊓ z) ≠ y ⊓ (x ⊔ z). Set

a ∶= x ⊔ (y ⊓ z) , d ∶= b ⊔ z ,
b ∶= y ⊓ (x ⊔ z) , e ∶= a ⊓ z .

We claim that the inclusion map {a, b, z, d , e} → L is the desired em-
bedding.

Note that x ⊑ y and x ⊑ x ⊔ z implies

a = x ⊔ (y ⊓ z) ⊑ x ⊔ (y ⊓ (x ⊔ z)) = y ⊓ (x ⊔ z) = b .

Hence, we have e ⊑ a ⊏ b ⊑ d and e ⊑ z ⊑ d. It remains to prove that
a ⋢ z ⋢ b. If a ⊑ z then we have

z = a ⊔ z = (x ⊔ (y ⊓ z)) ⊔ z = x ⊔ ((y ⊓ z) ⊔ z) = x ⊔ z

which implies that

a ⊏ b = y ⊓ (x ⊔ z) = y ⊓ z ⊑ x ⊔ (y ⊓ z) = a .

A contradiction. The assumption that z ⊑ b leads to a similar contradic-
tion.

(b) By (a) it is sufficient to prove that a modular lattice L is distributive
if and only if there is no embedding M5 → L.
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(⇒) Suppose that h ∶ M5 → L is an embedding. Then we have

h(a) ⊔ (h(b) ⊓ h(c)) = h(a) ⊔ h(�) = h(a)
≠ h(⊺) = h(⊺) ⊓ h(⊺)
= (h(a) ⊔ h(b)) ⊓ (h(a) ⊔ h(c)) .

Hence, L is not distributive.
(⇐) Suppose that L is not distributive. Then we can find elements

x , y, z ∈ L such that

x ⊔ (y ⊓ z) ⊏ (x ⊔ y) ⊓ (x ⊔ z) .

Set

d ∶= (x ⊓ y) ⊔ (x ⊓ z) ⊔ (y ⊓ z) , a ∶= (x ⊓ e) ⊔ d ,
e ∶= (x ⊔ y) ⊓ (x ⊔ z) ⊓ (y ⊔ z) , b ∶= (y ⊓ e) ⊔ d ,

c ∶= (z ⊓ e) ⊔ d .

By definition we have d ⊑ a, b, c ⊑ e. We claim that {a, b, c, d , e} induce
a copy of M5. By absorption, we have

x ⊔ d = x ⊔ x ⊔ (y ⊓ z) = x ⊔ (y ⊓ z) .

On the other hand, since L is modular and x ⊑ (x ⊔ y)⊓ (x ⊔ z) we have

x ⊔ e = x ⊔ [(x ⊔ y) ⊓ (x ⊔ z) ⊓ (y ⊔ z)]
= [(x ⊔ y) ⊓ (x ⊔ z)] ⊓ [x ⊔ (y ⊔ z)]
= (x ⊔ y) ⊓ (x ⊔ z) .

Hence, x ⊔ d ⊏ x ⊔ e which implies that d ⊏ e. It remains to prove that

a ⊓ b = a ⊓ c = b ⊓ c = d ,
and a ⊔ b = a ⊔ c = b ⊔ c = e .
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By symmetry and duality, we only need to show that a⊓ b = d. Applying
the absorption law twice we have

(a ⊓ b) ⊓ d = ((x ⊓ e) ⊔ d) ⊓ ((y ⊓ e) ⊔ d) ⊓ d
= ((x ⊓ e) ⊔ d) ⊓ d = d .

Finally, note that the elements a, b, c are distinct since a = b would imply
that d = a ⊓ b = a = a ⊔ b = e. ◻

3. Ideals and filters
The notions of a normal subgroup or an ideal of a ring can be generalised
to lattices.

Definition 3.1. Let L = ⟨L,⊓,⊔, ⊑⟩ be a lattice.
(a) A nonempty initial segment a ⊆ L is an ideal if a, b ∈ a implies

a ⊔ b ∈ a. Similarly, we call a nonempty final segment u ⊆ L a filter if
a, b ∈ u implies a ⊓ b ∈ u.

(b) An ideal or filter is proper if it is a proper subset of L. A proper
ideal or filter a is maximal if there exists no proper ideal or filter b such
that a ⊂ b ⊂ L. Ideals of the form ⇓a, for some a ∈ L, and filters of the
form ⇑a are called principal.

Example. (a) In every bounded lattice we have the trivial ideal {�} and
the trivial filter {⊺}.

(b) Consider ⟨℘(A), ⊆⟩. We can define an ideal a and a filter u by

a ∶= {X ⊆ A ∣ X is finite} ,
u ∶= {X ⊆ A ∣ A∖ X is finite} .

They are proper if and only if A is infinite.
(c) Let K be a field and consider the lattice of all polynomials over K

with leading coefficient 1 ordered by the inverse divisibility relation

p ⊑ q : iff q ∣ p .
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We have � = 0 and ⊺ = 1. p ⊓ q is the least common multiple of p and q
and p ⊔ q is their greatest common divisor. For every subset A ⊆ K, we
obtain the ideal

I(A) ∶= { p ∈ K[x] ∣ p(a) = 0 for all a ∈ A} .

Remark. To every lattice L = ⟨L,⊓,⊔, ⊑⟩ we can associate the opposite
lattice Lop = ⟨L,⊔,⊓, ⊒⟩ where the order is reversed. Obviously, this
functions maps filters of L to ideals of Lop and ideals of L to filters.
Therefore, we will state and prove many results only in one version,
either for filters or for ideals. The other half can be obtained by duality.

Ideal and filters can be characterised in terms of a suitable closure
operator.

Definition 3.2. Let L be a lattice and X ⊆ L. We define

cl↓(X) ∶= { b ∈ L ∣ b ⊑ a0 ⊔ ⋅ ⋅ ⋅ ⊔ an for some a0 , . . . , an ∈ X , n < ω },
cl↑(X) ∶= { b ∈ L ∣ b ⊒ a0 ⊓ ⋅ ⋅ ⋅ ⊓ an for some a0 , . . . , an ∈ X , n < ω }.

Lemma 3.3. Let L be a lattice.
(a) If L is bounded then cl↓ and cl↑ are closure operators on L with finite

character.
(b) A nonempty set X ⊆ L is an ideal if and only if it is cl↓-closed.
(c) A nonempty set X ⊆ L is a filter if and only if it is cl↑-closed.

Corollary 3.4. The set of all ideals of a bounded lattice L forms a complete
partial order. It is closed under arbitrary intersections and under unions
of chains.

Corollary 3.5. Let L be a lattice. If a is a proper ideal and u a proper filter
with a ∩ u = ∅ then the set

I ∶= { b ∣ b a proper ideal with a ⊆ b and b ∩ u = ∅}

contains a maximal element.
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3. Ideals and filters

Proof. We show that I is inductively ordered. Then it contains amaximal
element by Zorn’s Lemma. Let C ⊆ I be a chain. Then $ ∶= ⋃C is an
ideal. Since a ∩ u = ∅, for all a ∈ I , we have $ ∩ u = ∅. In particular, $ is
proper. Consequently, $ ∈ I . ◻

Lemma 3.6. Let L be a lattice. The following statements are equivalent :
(1) Every ideal of L is principal.
(2) Every strictly increasing sequence a0 ⊂ a1 ⊂ . . . of ideals of L is

finite.
(3) The inverse subset relation is a well-order on the set of all ideals of L.

Proof. Clearly, (2) is equivalent to (3). Let us prove that (2) implies (1).
Suppose that there exists an ideal a that is not principal. We select a
sequence (an)n<ω of elements of a as follows. Let a0 ∈ a be arbitrary. If
a0 , . . . , an ∈ a have already been chosen then, since a is not principal,
we can find an element an+1 ∈ a ∖ ⇓(a0 ⊔ ⋅ ⋅ ⋅ ⊔ an) ≠ ∅. This way we
obtain an infinite strictly increasing sequence of ideals

⇓a0 ⊂ ⇓(a0 ⊔ a1) ⊂ ⋅ ⋅ ⋅ ⊂ ⇓(a0 ⊔ ⋅ ⋅ ⋅ ⊔ an) ⊂ . . . ,

as desired.
It remains to prove the converse. Suppose that a0 ⊂ a1 ⊂ . . . is an

infinite strictly increasing sequence of ideals. Their union b ∶= ⋃n an is
again an ideal. We claim that b is not principal. Suppose otherwise. Then
b = ⇓b, for some b ∈ b. Since b = ⋃n an there is some index n such that
b ∈ an . It follows that b = ⇓b ⊆ an ⊂ an+1 ⊆ b. Contradiction. ◻

Ideals and filters in lattices play the same role with regard to homo-
morphisms and congruences as normal subgroups in group theory or
ideals in ring theory. The main difference is that, since the lattice oper-
ations are not invertible, there might be several congruences inducing
the same ideal.

Lemma 3.7. Let h ∶ L→ K be a homomorphism between lattices and let
a ⊆ K be an ideal of K. If h−1[a] is nonempty then it is an ideal of L.
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Proof. Suppose that a ∈ h−1[a] and b ⊑ a. Since h is a homomorphism
it follows that h(b) ⊑ h(a) ∈ a. Consequently, we have h(b) ∈ a and
b ∈ h−1[a].

Similarly, if a, b ∈ h−1[a] then h(a), h(b) ∈ a implies that h(a ⊔ b) =
h(a) ⊔ h(b) ∈ a. Hence, we have a ⊔ b ∈ h−1[a]. ◻

Corollary 3.8. Let h ∶ L → K be a surjective homomorphism between
lattices where K is bounded.

(a) h−1(�) is an ideal.
(b) h−1(⊺) is a filter.

Corollary 3.9. Let L be a bounded lattice. If ∼ is a congruence of L then
[�]∼ is an ideal and [⊺]∼ is a filter.

There are important cases where we would like to apply lattice theory
but which do not fall under the above definition of a lattice because the
underlying ‘order’ ⊑ fails to be a partial order. A prominent example is
given by rings like ⟨Z, ∣ ⟩ and ⟨R[x], ∣ ⟩where the divisibility relation ∣
is not antisymmetric. In the ring of integers, for instance, we have

1 ∣ −1 and −1 ∣ 1 .

Definition 3.10. A graph ⟨V , E⟩ is a preorder if E is reflexive and transit-
ive.

Example. If R is a ring then the divisibility relation

x ∣ y : iff y = axb , for some a, b ∈ R

forms a preorder on R.

Every preorder has a quotient that is a partial order.

Lemma 3.11. Let P = ⟨P, ⪯⟩ be a preorder and define

x ∼ y : iff x ⪯ y and y ⪯ x .

∼ is a congruence on P and the quotient ⟨P, ⪯⟩/∼ is a partial order.
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Proof. By definition, ∼ is symmetric. And since ⪯ is a preorder it follows
that ∼ is reflexive and transitive. Therefore, ∼ is an equivalence relation.
Suppose that x ∼ x′ and y ∼ y′. If x ⪯ y then x′ ⪯ x ⪯ y ⪯ y′ implies
x′ ⪯ y′. Hence, ∼ is a congruence.

It is easy to see that P/∼ is a preorder. It remains to show that it is also
antisymmetric. Let [x]∼ , [y]∼ ∈ P/∼ with [x]∼ ⪯ [y]∼ and [y]∼ ⪯ [x]∼.
Then x ⪯ y and y ⪯ x implies x ∼ y. Hence, [x]∼ = [y]∼. ◻

We can generalise many concepts of lattice theory to preorders.

Definition 3.12. (a) A prelattice is a preorder ⟨L, ⪯⟩ such that the corres-
ponding partial order ⟨L, ⪯⟩/∼ is a lattice.

(b) Let L be a prelattice and π ∶ L→ L/∼ the canonical projection to
the corresponding lattice. An ideal of L is a set of the form π−1[a] where
a is an ideal of L/∼. Similarly, if u is a filter of L/∼ then we call the set
π−1[u] a filter of L. In the same way we can generalise other notions to
prelattices, like proper and principal ideals.

Example. Let ⟨R,+,−, ⋅, 0, 1⟩ be a commutative factorial ring. The divis-
ibility order ⟨R, ∣ ⟩ is a prelattice and a subset I ⊆ R is a ring-theoretic
ideal if, and only if, it is a filter of ⟨R, ∣ ⟩.

4. Prime ideals and ultrafilters

Definition 4.1. A proper ideal a is a prime ideal if

x ⊓ y ∈ a implies x ∈ a or y ∈ a .

Similarly, we call a proper filter u an ultrafilter if

x ⊔ y ∈ u implies x ∈ u or y ∈ u .

In the special case that the lattice in question is the power-set algebra
⟨℘(X),∪,∩, ⊆⟩ we call u an ultrafilter on X.
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Example. (a) Let N ∶= ⟨N, ∣ ⟩. A filter u ⊆ N is an ultrafilter if, and only
if, either u = {0} or there exists a prime number p such that

u = { kp ∣ k ∈ N} .

(b) Let F = ⟨F , ⊆⟩ where

F ∶= {X ⊆ ω ∣ X or ω ∖ X is finite} .

Then F is a lattice and we have the following ultrafilters :

un ∶= ⇑{n} , for n < ω ,
u∞ ∶= {X ⊆ ω ∣ ω ∖ X is finite} .

Lemma 4.2. A set X ⊆ L is a prime ideal if, and only if, its complement
L ∖ X is an ultrafilter.

Proof. By duality it is sufficient to prove one direction. Let a ⊆ L be a
prime ideal. We claim that u ∶= L ∖ a is an ultrafilter. Since a is proper
and nonempty so is u. If a ⊑ b then b ∈ a implies a ∈ a. Consequently,
a ∈ u implies b ∈ u and u is a final segment. If a ⊓ b ∈ a then we have
a ∈ a or b ∈ a since a is prime. Thus, a, b ∈ u implies a ⊓ b ∈ u and u is a
filter. Finally, a, b ∈ a implies a ⊔ b ∈ a. Hence, if a ⊔ b ∈ u then we have
a ∈ u or b ∈ u. ◻

Prime ideals can be characterised in terms of homomorphisms.

Definition 4.3. Let B2 denote the lattice with universe [2] and ordering
0 ≤ 1. And B2×2 is the lattice with universe [2] × [2] and ordering

⟨i , k⟩ ≤ ⟨ j, l⟩ : iff i ≤ j and k ≤ l .

Remark. B2 and B2×2 are boolean lattices.

Lemma 4.4. Let h ∶ L→ B2 be a surjective lattice homomorphism.

(a) h−1(0) is a prime ideal.
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(b) h−1(1) is an ultrafilter.

Proof. Let a ∶= h−1(0). We have already seen in Lemma 3.8 that a is an
ideal. To show that it is prime suppose that a⊓b ∈ a. Then h(a)⊓h(b) =
h(a ⊓ b) = 0 implies that h(a) = 0 or h(b) = 0. Hence, a ∈ a or
b ∈ a. ◻

Lemma 4.5. Let L be a lattice, a a prime ideal, and u an ultrafilter with
a ∩ u = ∅.

(a) There exists a homomorphism h ∶ L→ B2 with h−1(0) = a.
(b) There exists a homomorphism h ∶ L→ B2 with h−1(1) = u.
(c) There exists a homomorphism h ∶ L → B2×2 with h−1(⟨0, 0⟩) = a

and h−1(⟨1, 1⟩) = u.

Proof. (a) We claim that the function

h(x) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

0 if x ∈ a ,
1 if x ∉ a .

is the desired homomorphism. By definition we have a = h−1(0). There-
fore, we only need to check that h is indeed a homomorphism.

If x , y ∉ a then we have x ⊓ y ∉ a since a is prime. It follows that

h(x ⊓ y) = 1 = 1 ⊓ 1 = h(x) ⊓ h(y) .

Otherwise, we may assume, by symmetry, that x ∈ a. Since x ⊓ y ⊑ x we
have x ⊓ y ∈ a and

h(x ⊓ y) = 0 = 0 ⊓ h(y) = h(x) ⊓ h(x) .

The claim that h(x⊔ y) = h(x)⊔h(y) is shown analogously. If x , y ∈ a
then x ⊔ y ∈ a and we have h(x ⊔ y) = 0 = h(x) ⊔ h(y). Otherwise, by
symmetry, we may assume that x ∉ a. Hence, x ⊔ y ∉ a which implies
that h(x ⊔ y) = 1 = h(x) ⊔ h(y).

(b) follows from (a) by duality.
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(c) Let h0 , h1 ∶ L→ B2 be the homomorphisms from (a) and (b) with
h−1
0 (0) = a and h−1

1 (1) = u. We define

h(x) ∶= ⟨h0(x), h1(x)⟩ .

Since a ∩ u = ∅ it follows that h−1(⟨0, 0⟩) = a and h−1(⟨1, 1⟩) = u.
Furthermore, h is a homomorphism since

h(x) ⊔ h(y) = ⟨h0(x), h1(x)⟩ ⊔ ⟨h0(y), h1(y)⟩

= ⟨h0(x) ⊔ h0(y), h1(x) ⊔ h1(y)⟩ = h(x ⊔ y) ,

and similarly for ⊓. ◻

Corollary 4.6. Let L be a lattice. A subset X ⊆ L is a prime ideal if and
only if X = h−1(0) for some surjective homomorphism h ∶ L→ B2.

The prime ideals in distributive and boolean lattices are especially
well-behaved. We will show that for these lattices every maximal ideal is
prime and that, for boolean lattices, the converse also holds. Note that
in general there may be non-prime maximal ideals. For instance, the
lattice M5 has three maximal ideals none of which is prime.

Theorem 4.7. Let L be a distributive lattice, a an ideal, and u a filter with
a∩ u = ∅. There exists a maximal ideal b ⊇ a with b∩ u = ∅ and this ideal
is prime.

Proof. The existence of b was already proved in Corollary 3.5. It remains
to show that it is prime. Suppose otherwise. Then there are elements
x , y ∈ L ∖ b with x ⊓ y ∈ b. By maximality of b, it follows that

cl↓(b ∪ {x}) ∩ u ≠ ∅ and cl↓(b ∪ {y}) ∩ u ≠ ∅ .

Therefore, there are elements a, b ∈ b with a ⊔ x ∈ u and b ⊔ y ∈ u.
Consequently,

z ∶= (a ⊔ x) ⊓ (b ⊔ y) ∈ u .
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On the other hand, by distributivity we have

z = (a ⊓ b)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
∈b

⊔ (a ⊓ y)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
∈b

⊔ (x ⊓ b)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
∈b

⊔ (x ⊓ y)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
∈b

.

Thus, z ∈ b ∩ u ≠ ∅. Contradiction. ◻

Corollary 4.8. Every maximal ideal in a distributive lattice is prime.

As a consequence of Theorem 4.7 we obtain a simple condition for
the existence of ultrafilters containing given elements.

Definition 4.9. A set X ⊆ L has the finite intersection property if

⊓X0 ≠ � , for all finite X0 ⊆ X .

If L has no least element then every subset has the finite intersection
property.

Corollary 4.10. Let L be a bounded distributive lattice and X ⊆ L. There
exists an ultrafilter u ⊇ X if, and only if, X has the finite intersection
property.

Proof. X has the finite intersection property if and only if � ∉ cl↑(X).
By (the dual of) Theorem 4.7, � ∉ cl↑(X) implies that there exists an
ultrafilter u ⊇ cl↑(X). ◻

In boolean lattices the structure of the prime ideals is especially simple.

Theorem 4.11. Let B be a boolean lattice and a ⊆ B an ideal. The following
statements are equivalent :

(1) a is maximal.

(2) a is prime.

(3) For every x ∈ B, we have either x ∈ a or x∗ ∈ a.
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Proof. (1)⇒ (2) was shown in Corollary 4.8.
(2)⇒ (3) We have x ⊓ x∗ = � ∈ a. Since a is a prime ideal it follows

that x ∈ a or x∗ ∈ a. Clearly, we cannot have both since, otherwise,
⊺ = x ⊔ x∗ ∈ a and a would not be proper.

(3)⇒ (1) Let b ⊃ a be an ideal. We have to show that b is nonproper.
Fix some x ∈ b∖ a. By assumption, x∗ ∈ a ⊆ b. Hence, ⊺ = x ⊔ x∗ ∈ b and
b = B is nonproper. ◻

Corollary 4.12. A bounded distributive lattice L is boolean if, and only if,
there are no prime ideals a, b with a ⊂ b.

Proof. (⇒) By Theorem 4.11, every prime ideal is maximal.
(⇐)We have to show that every element a ∈ L has a complement a∗.

Suppose that some element a has none. The sets

u ∶= { b ∈ L ∣ a ⊔ b = ⊺} ,
v ∶= { b ∈ L ∣ b ⊒ a ⊓ d for some d ∈ u}

are filters. If � ∈ v then � = a⊓ d for some d with a⊔ d = ⊺, and d would
be a complement of a. Consequently, v is proper. By Theorem 4.7 it
follows that there exists a prime ideal a with a ∩ v = ∅. The ideal

b ∶= { b ∈ L ∣ b ⊑ a ⊔ c for some c ∈ a}

is proper since ⊺ = a ⊔ c, for some c ∈ a would imply that c ∈ a ∩ u ≠
∅. Choose some prime ideal $ ⊇ b. Since b ⊃ a we have found two
comparable prime ideals a ⊂ $. Contradiction. ◻

Let us compute the number of ultrafilters in a boolean lattice of the
form ⟨℘(A), ⊆⟩.

Theorem 4.13. For every infinite set A there are 22∣A∣ ultrafilters on A.

Proof. Set κ ∶= ∣A∣. As every ultrafilter is a subset of ℘(A), there are at
most ∣℘(℘(A))∣ = 22κ

ultrafilters on A. Thus, we only need to prove a
lower bound.

212



4. Prime ideals and ultrafilters

We call a family F ⊆ ℘(A) independent if every non-trivial finite
boolean combination of sets in F has cardinality ∣A∣, that is, for all pair-
wise distinct sets X0 , . . . , Xm−1 ,Y0 , . . . ,Yn−1 ∈ F, m, n < ω, we have

∣X0 ∩ ⋅ ⋅ ⋅ ∩ Xm−1 ∩ (A∖ Y0) ∩ ⋅ ⋅ ⋅ ∩ (A∖ Yn−1)∣ = ∣A∣ .

Wewill prove below that there exists an independent family F ⊆ ℘(A)
of size ∣F∣ = 2κ . Using such a family F we can construct 22κ

ultrafilters as
follows. For each subset K ⊆ F, set

SK ∶= K ∪ {A∖ X ∣ X ∈ F ∖ K } .

Note that SK ⊆ F has the finite intersection property since F is independ-
ent. Therefore, we can use Corollary 4.10 to extend SK to an ultrafilter
uK ⊇ SK .

Since ∣℘(F)∣ = 2∣F∣ = 22κ
, it remains to prove that uK ≠ uL for K ≠ L.

Thus, let K ≠ L. By symmetry, we may assume that there is some set
X ∈ K ∖ L. Then X ∈ SK ⊆ uK and A ∖ X ∈ SL ⊆ uL . Consequently,
uK ≠ uL .

It remains to construct the desired family F ⊆ ℘(A). Let W be the
set of all pairs ⟨B,H⟩ where B ⊆ A is finite and H is a finite set of finite
subsets of A. Then ∣W ∣ = ∣A∣<ℵ0 ⊗ (∣A∣<ℵ0)<ℵ0 = ∣A∣ and there exists
a bijection φ ∶ W → A. It is sufficient to find an independent family
F ⊆ ℘(W) of size 2κ since we can apply φ to F to obtain the desired
subsets of ℘(A). For s ⊆ A, let

Ps ∶= { ⟨B,H⟩ ∈W ∣ B ∩ s ∈ H } .

We claim that

F ∶= { Ps ∣ s ⊆ A}

is the desired independent family.
To show that it has size 2κ , consider distinct subsets s, t ⊆ A. By

symmetry we may assume that s ⊈ t. Fixing some element a ∈ s ∖ t, it
follows that

⟨{a}, {{a}}⟩ ∈ Ps ∖ Pt , which implies that Ps ≠ Pt .

213



b2. Trees and lattices

To show that F is independent, let s0 , . . . , sm−1 , t0 , . . . , tn−1 ⊆ A be
pairwise distinct. For every pair ⟨i , k⟩ ∈ [m] × [n], we fix some element

a i k ∈ (s i ∖ tk) ∪ (tk ∖ s i) .

Let Q be the set of all finite subsets of A that contain all chosen ele-
ments a i k , for i < m, k < n. By choice of a i k we have

B ∩ s i ≠ B ∩ tk , for all B ∈ Q .

Setting HB ∶= {B ∩ s i ∣ i < m } this implies that

⟨B,HB⟩ ∈ Ps i and ⟨B,HB⟩ ∉ Ptk , for all i < m and k < n .

Consequently,

⟨B,HB⟩ ∈ Ps0 ∩ ⋅ ⋅ ⋅ ∩ Psm−1 ∩ (W ∖ Pt0) ∩ ⋅ ⋅ ⋅ ∩ (W ∖ Ptn−1) ,

for all B ∈ Q. This implies that

∣Ps0 ∩ ⋅ ⋅ ⋅ ∩ Psm−1 ∩ (W ∖ Pt0) ∩ ⋅ ⋅ ⋅ ∩ (W ∖ Ptn−1)∣

≥ ∣Q∣ = κ = ∣W ∣ . ◻

Exercise 4.1. How many ultrafilters are there on a finite set A?

We conclude this section with a result stating that ultrafilters of a
subalgebra have several extensions to ultrafilters of the whole algebra.

Proposition 4.14. Let A ⊆ B be boolean algebras. If, for every ultrafilter u
of A, there exists a unique ultrafilter v of B with u ⊆ v, then A = B.

Proof. Let A ⊆ B be boolean algebras such that every ultrafilter of A can
be extended to a unique ultrafilter of B. Consider some element b ∈ B.
In order to show that b ∈ A, we prove the following statements.

(1) For every ultrafilter v of B with A∩ ⇑b ⊆ v, the set (v ∩ A) ∪ {b}
has the finite intersection property.
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(2) There is no ultrafilter v of B containing A∩ ⇑b and b∗.

(3) There is some element a ∈ A∩ ⇑b with a ⊑ b.

Note that the proposition follows from (3) since a ∈ ⇑b implies b ⊑ a.
Hence, b = a ∈ A. It remains to prove the claims.

(1) For a contradiction, suppose that there is some ultrafilter v such
that A∩ ⇑b ⊆ v, but (v ∩ A) ∪ {b} does not have the finite intersection
property. Since v∩A is closed under the infimum operation ⊓, it follows
that there is some element a ∈ v ∩ A such that a ⊓ b = �. Hence, b ⊑ a∗,
which implies that a∗ ∈ A∩ ⇑b ⊆ v and � = a ⊓ a∗ ∈ v. A contradiction.

(2) For a contradiction, suppose that there is some ultrafilter v of B
with (A ∩ ⇑b) ∪ {b∗} ⊆ v. By (1) and Corollary 4.10, there is some
ultrafilter v′ containing (v ∩ A) ∪ {b}. By assumption, v′ ∩ A = v ∩ A
implies v′ = v. But b ∈ v′ while b∗ ∈ v. A contradiction.

(3) According to (2) there is no ultrafilter containing (A∩ ⇑b)∪ {b∗}.
By Corollary 4.10, it follows that this set does not have the finite inter-
section property. Since A∩ ⇑b is closed under the infimum operation ⊓,
we can therefore find an element a ∈ A ∩ ⇑b such that a ⊓ b∗ = �.
Consequently, a ⊑ b. ◻

5. Atomic lattices and partition rank
In this section we take a closer look at those elements of a lattice that are
near to the bottom. The distance of an element from � can be measured
in different ways. A simple but coarsemeasure is the height of an element.

Definition 5.1. Let L be a lattice.
(a) The height of an element a ∈ L is

ht(a) ∶= sup{ ∣C∣ ∣ C ⊆ ↓a is a chain} .

Elements of height 1 are called atoms.
(b) L is atomless if it has no atoms. It is atomic if ⇓a contains an atom,

for every element a ≠ �.
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Example. Let V be a vector space and let L be the set of all linear sub-
spaces of V. Note that L consists of all fixed points of the closure operator
mapping a set X ⊆ V to the subspace spanned by X. Hence, L forms a
complete lattice where U ⊓W = U ∩W and U ⊔W = U ⊕W is the
subspace spanned by U ∪W . This lattice is atomic. The height of an
element U ∈ L coincides with its dimension.

The notion of height is mainly meaningful for modular lattices where
it is well-behaved, at least for elements of finite height.

Lemma 5.2. Let L be a modular lattice and a, b ∈ L. The function

φ ∶ [a ⊓ b, b]→ [a, a ⊔ b] ∶ x ↦ a ⊔ x

is strictly increasing and surjective. Its inverse is given by the function

φ ∶ [a, a ⊔ b]→ [a ⊓ b, b] ∶ x ↦ b ⊓ x .

a ⊔ b

ba

a ⊓ b

a ⊔ x

x

ψ
φ

Proof. Clearly, φ and ψ are increasing and we have rng φ ⊆ ⇑a and
rng ψ ⊆ ⇓b. Furthermore, x ⊑ b ⊑ a⊔b implies that φ(x) = a⊔x ⊑ a⊔b.
Hence, rng φ ⊆ ⇓(a ⊔ b). Similarly, it follows that rng ψ ⊆ ⇑(a ⊓ b).

It remains to show that ψ is the inverse of φ. Note that if L is modular
then so is Lop. It is therefore sufficient to prove that φ ○ ψ = id, the
equation ψ○φ = id then follows by duality. For a ⊑ x ⊑ a⊔b,modularity
implies that

φ(ψ(x)) = a ⊔ (b ⊓ x) = x ⊓ (a ⊔ b) = x ,

as desired. ◻
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a

cn−1 bm−1

dcn−2 bm−2

c1 b1

�

C

Figure 3.. Proof of Lemma 5.3

Lemma 5.3. Let L be a modular lattice and a ∈ L an element of height
n < ℵ0. Every maximal chain in ⇓a has size n + 1.

Proof. We prove by induction on n that, if b0 ⊏ ⋅ ⋅ ⋅ ⊏ bm is a maximal
chain with bm = a, then m = n. Since a has height n, there exists a chain
c0 ⊏ ⋅ ⋅ ⋅ ⊏ cn of size n + 1 with c0 = � and cn = a. If bm−1 = cn−1 then
the claim follows by inductive hypothesis. Suppose that bm−1 ≠ cn−1.
Set d ∶= bm−1 ⊓ cn−1 and let C ⊆ ⇓d be a maximal chain. Then ∣C∣ =
ht(d) + 1 < ht(cn−1) + 1 = n.
By Lemma 5.2, there is no element x with d ⊏ x ⊏ cn−1 because,

otherwise, we would have cn−1 ⊏ cn−1 ⊔ x ⊏ cn in contradiction to the
minimality of n. Consequently, C ∪ {cn−1} is a maximal chain in ⇓cn−1
and, by inductive hypothesis, it follows that ∣C∣ + 1 = n.

Similarly, there is no element x with d ⊏ x ⊏ bm−1. Hence, C∪{bm−1}
is a maximal chain in ⇓bm−1 and we have ∣C∣ + 1 = m. It follows that
m = ∣C∣ + 1 = n, as desired. ◻

Example. For infinite heights the lemma fails. Consider the real interval
I ∶= [0, 1] and its subset K ∶= I ∩Q. We order the product L ∶= I × K
by (a, b) ≤ (c, d) iff a ≤ b and c ≤ d. Then L is a modular lattice with
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maximal chains

C ∶= ({0} × K) ∪ (I × {1}) and C′ ∶= { (x , x) ∣ x ∈ K } .

But ∣C∣ = 2ℵ0 while ∣C′∣ = ℵ0.

Lemma 5.4. Let L be a modular lattice and a ⊑ b elements of finite height.
The size of a maximal chain C ⊆ [a, b] is ht(b) − ht(a) + 1.

Proof. Every chain in C ⊆ [a, b] can be extended to a chain in ⇓b
of size ∣C∣ + ht(a). Therefore, the size of such chains is bounded by
ht(b) − ht(a) + 1. Conversely, fix maximal chains C′ ⊆ [a, b] and
C′′ ⊆ [�, a]. Then C′ ∪C′′ is also maximal. By Lemma 5.3, it follows that
∣C′∪C′′∣ = ht(b)+ 1. Since ∣C′′∣ = ht(a)+ 1 and C′∩C′′ = {a} it follows
that ∣C′∣ = ht(b) − ht(a) + 1. ◻

Theorem 5.5. Let L be a modular lattice. If a, b ∈ L are elements with
ht(a ⊔ b) < ℵ0 then

ht(a) + ht(b) = ht(a ⊔ b) + ht(a ⊓ b) .

Proof. Set I0 ∶= [a ⊓ b, a] and I1 ∶= [b, a ⊔ b]. The partial orders J0 ∶=
⟨I0 , ⊑⟩ and J1 ∶= ⟨I1 , ⊑⟩ are modular lattices and, by Lemma 5.2, there
exists an isomorphism φ ∶ J0 → J1. By Lemma 5.4, the height of the top
element of J0 is ht(a) − ht(a ⊓ b) + 1 and the height of the top element
of J1 is ht(a ⊔ b) − ht(b) + 1. Since J0 ≅ J1 it follows that

ht(a) − ht(a ⊓ b) + 1 = ht(a ⊔ b) − ht(b) + 1 . ◻

Remark. The above equation is called the modular law. It can be used
to characterise modular lattices. If L is a lattice where every element
has finite height then L is modular if and only if every pair a, b ∈ L of
elements satisfies the modular law.

Example. For the subspace lattice of a vector space, we obtain the well-
known dimension formula:

dim U + dimW = dim(U ∩W) + dim(U ⊕W) .
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For boolean algebras the structure of the elements of finite height is
especially simple.

Lemma 5.6. Let B be a boolean algebra. If b ⊏ c are elements of finite
height then there exists an atom a ∈ ⇓c ∖ ⇓b.

Proof. Let b′ ∶= c ⊓ b∗. Since c has finite height there exists a finite chain
C ⊆ ⇓b′ of maximal size. This chain contains an atom a. Note that a ⊑ b
would imply a ⊑ b⊓b′ = �which is impossible since a is an atom. Hence,
a ∈ ⇓c ∖ ⇓b. ◻

Lemma 5.7. Let B be a boolean algebra and a ∈ B an element of height
n < ℵ0. Then there are exactly n atoms in ⇓a.

Proof. By Lemma 5.6, if c0 ⊏ ⋅ ⋅ ⋅ ⊏ cn is a chain of length n + 1 with
cn = a then there are at least n atoms below cn . Conversely, suppose
that b0 , . . . , bn−1 ∈ ⇓a are atoms. Set c0 ∶= � and c i+1 ∶= c i ⊔ b i . Then
c0 ⊏ ⋅ ⋅ ⋅ ⊏ cn forms a chain of length n+1 in ⇓a. Consequently, the height
of a is at least n. ◻

Corollary 5.8. Let B be a boolean algebra. Every element a ∈ B with
finite height is the supremum of finitely many atoms.

Proof. Let P be the set of all atoms in ⇓a. It is sufficient to show that
a = sup P. Suppose otherwise. Then c ∶= sup P ⊏ a. By Lemma 5.6, there
exists an atom b ∈ ⇓a ∖ ⇓c. By definition of P, it follows that b ∈ P. But
b ⋢ c = sup P. Contradiction. ◻

Example. The previous lemma cannot be generalised to infinite heights.
Let A be an uncountable set and define

F ∶= {X ⊆ A ∣ X or A∖ X is finite} .

Then ⟨F , ⊑⟩ is a boolean algebra and we have

ht(X) =
⎧⎪⎪
⎨
⎪⎪⎩

∣X∣ if X is finite ,
ℵ0 otherwise .
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But every infinite set X ∈ F is uncountable. Hence, there are uncountably
many atoms below X.

Let us introduce a second measure of the distance between an element
and � that allows a finer classification of elements of infinite height.
Basically, instead of considering all chains in ⇓a we only look at strictly
decreasing sequences.

Definition 5.9. Let L be a lattice with least element �.
(a) A partition of an element a ∈ L is a set P ⊆ ⇓a with � ∉ P such that

p ⊓ q = �, for all p, q ∈ P with p ≠ q.
(b) The partition rank of an element a ∈ L is defined as follows :
◆ rkP(a) = −1 iff a = � .
◆ rkP(a) ≥ 0 iff a ≠ � .
◆ rkP(a) ≥ α + 1 iff there exists an infinite partition P of a such that

rkP(p) ≥ α, for all p ∈ P.
◆ For limit ordinals δ,we set rkP(a) ≥ δ iff rkP(a) ≥ α, for all α < δ.

Exercise 5.1. Let B be a boolean algebra and a ∈ B an element of height
0 < ht(a) < ℵ0. Show that rkP(a) = 1.

Lemma 5.10. a ⊑ b implies rkP(a) ≤ rkP(b).

Lemma 5.11. If L is a distributive lattice then

rkP(a ⊔ b) = max {rkP(a), rkP(b)} .

Proof. By the preceding lemma,we have rkP(a⊔b) ≥ rkP(a), rkP(b). It
remains to show that rkP(a ⊔ b) ≥ α implies rkP(a) ≥ α or rkP(b) ≥ α.
We proceed by induction on α.

If α = −1 then a ⊔ b = � implies a = � and b = �. For limit ordinals α,
there is nothing to do. Suppose that rkP(a⊔ b) ≥ α + 1. Then there exists
an infinite partition P of a ⊔ b such that rkP(p) ≥ α, for all p ∈ P. For
p ∈ P, set ap ∶= a ⊓ p and bp ∶= b ⊓ p. Then

ap ⊔ bp = (a ⊓ p) ⊔ (b ⊓ p) = (a ⊔ b) ⊓ p = p .
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By inductive hypothesis, we know that

rkP(ap ⊔ bp) = rkP(p) ≥ α

implies that rkP(ap) ≥ α or rkP(bp) ≥ α. Set

Pa ∶= { p ∈ P ∣ rkP(ap) ≥ α }
and Pb ∶= { p ∈ P ∣ rkP(bp) ≥ α } .

Then Pa ∪ Pb = P and at least one of the sets is infinite. By symmetry, let
us assume that Pa is infinite. Then Pa is an infinite partition of a with
rkP(q) ≥ α, for all q ∈ Pa . Consequently, rkP(a) ≥ α + 1. ◻

Lemma 5.12. Let h ∶ A → B be an injective homomorphism between
boolean algebras. Then

rkP(a) ≤ rkP(h(a)) , for all a ∈ A .

Proof. If A ⊆ B then it follows immediately from the definition that
the rank of an element a ∈ A in A is less than or equal to its rank in B.
Therefore, it is sufficient to prove that every injective homomorphism
between boolean algebras is an embedding.

Suppose that h(a) ≤ h(b). Then � = h(a)⊓h(b)∗ = h(a⊓b∗). Since
h is injective it follows that a ⊓ b∗ = �. Hence, a ≤ b. ◻

As usual for ranks defined by inductive fixed points the maximal
non-infinite rank is bounded by the cardinality of the underlying set.

Lemma 5.13. Let L be a lattice. rkP(a) ≥ ∣L∣+ implies that rkP(a) =∞.

Proof. Let κ ∶= ∣L∣ and set Xα ∶= { a ∈ L ∣ rkP(a) ≥ α }. Then Xα ⊇ Xβ ,
for α ≤ β. Consequently, there is some α < κ+ such that Xα = Xα+1. This
implies that Xα = Xκ+ = X∞. ◻

The next lemma shows that it is possible to split elements of infinite
rank into an arbitrary number of elements whose rank is again infinite.
This will be useful to prove the existence of many different ultrafilters in
Corollary b5.7.4 below.
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b2. Trees and lattices

Definition 5.14. Let L be a lattice with least element �, and let κ be
a cardinal and α an ordinal. An embedding of the tree κ<α is a family
(aw)w∈κ<α of elements aw ∈ L such that

� ⊏ aw ⊏ au for all u ≺ w ,
au ⊓ aw = � for all u,w with u ⪯̸ w and w ⪯̸ u .

(Note that the ordering is reversed.)

Lemma 5.15. Let L be a lattice and a ∈ L. The following statements are
equivalent :

(1) rkP(a) =∞.

(2) There exists an embedding (bw)w∈2<ω of 2<ω into L with b⟨⟩ = a.

(3) There exists an embedding (bw)w∈ℵ<ω
0

of ℵ<ω
0 into L with b⟨⟩ = a.

Proof. (3)⇒ (2) is trivial.
(1)⇒ (3) Let κ ∶= ∣L∣+. We construct the family (bw)w by induction

on w such that rkP(bw) = ∞. We start with b⟨⟩ = a. If bw has been
defined then rkP(bw) ≥ κ + 1 implies that there exists an infinite parti-
tion P of bw with rkP(p) ≥ κ, for all p ∈ P. By Lemma 5.13, it follows that
rkP(p) =∞, for each p ∈ P. Select distinct elements bwk ∈ P, for k < ω.
Then we have bwk ⊓ bwn = � for k ≠ n and rkP(bw i) =∞, as desired.
(2)⇒ (1) Let (bw)w be an embedding of 2<ω into L with b⟨⟩ = a. By

induction on α, we prove that rkP(bw) ≥ α, for all w. Since bw0 ⊏ bw
we have bw ≠ � and rkP(bw) ≥ 0. For limit ordinals, the claim follows
immediately from the inductive hypothesis. Hence, it remains to consider
the successor step. Suppose that rkP(bw) ≥ α, for all w. The set { bw0n 1 ∣
n < ω } is an infinite partition of bw where each element has rank at
least α. Therefore, rkP(bw) ≥ α + 1. ◻

In contrast to the preceding result, it turns out that we can split ele-
ments of non-infinite rank only a finite number of times into elements
of the same rank.
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Lemma 5.16. Let B be a boolean algebra. For every element a ∈ B with
rkP(a) <∞, there exists a finite partition P of a such that

a = sup P and rkP(p) = rkP(a) , for all p ∈ P .

Furthermore, if Q is any other partition of a with

rkP(q) = rkP(a) , for all q ∈ Q ,

then ∣Q∣ ≤ ∣P∣.

Proof. Let α ∶= rkP(a). To find P we construct a tree T ⊆ 2<ω and
elements bw ∈ B, for w ∈ T , with rkP(bw) = α as follows. We start with
b⟨⟩ ∶= a. If bw is already defined and there is some element c ∈ B such
that rkP(bw ⊓ c) = α and rkP(bw ⊓ c∗) = α, then we addw0 andw1 to T
and we set bw0 ∶= bw ⊓ c and bw1 ∶= bw ⊓ c∗. Otherwise, w becomes a
leaf of T .
We claim that any such tree T is finite. For a contradiction, suppose

there exists an infinite tree T as above. Since T is binary it contains an
infinite path β ∈ 2ω , by Lemma 1.9. Let wn ∶= β ↾ n be the prefix of β
of length n. For n < ω, set cn ∶= bwn ⊓ b∗wn+1

. Then we have cn ⊑ a and
rkP(cn) = α. Furthermore, bwn ⊑ bwk+1 , for k < n, implies that

ck ⊓ cn = bwk ⊓ b∗wk+1
⊓ bwn ⊓ b∗wn+1

= � .

Consequently, rkP(a) ≥ α. Contradiction.
Let T be a tree as above and let P ⊆ T be the set of its leaves. Set

m ∶= ∣P∣ and let p0 , . . . , pm−1 be an enumeration of P. Then rkP(pn) = α,
pk ⊓ pn = �, for k ≠ n, and a = p0 ⊔ ⋅ ⋅ ⋅ ⊔ pm−1.

Let Q be another partition of a with rkP(q) = α, for q ∈ Q. We claim
that n ≤ m. By construction of P, there exists, for every p ∈ P, at most
one q ∈ Q with rkP(p ⊓ q) = α. Hence, if n > m then we can find some
element q ∈ Q such that rkP(p ⊓ q) < α, for all p ∈ P. But

q = (q ⊓ p0) ⊔ ⋅ ⋅ ⋅ ⊔ (q ⊓ pn−1)

implies, by Lemma 5.11, that rkP(q) < α. Contradiction. ◻
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Definition 5.17. Let B be a boolean algebra.
(a) Let a ∈ B be an element with rkP(a) < ∞. The partition de-

gree degP(a) of a is the maximal cardinality of a partition P of a with
rkP(p) = rkP(a), for all p ∈ P. If rkP(a) =∞ then we set degP(a) ∶=∞.

(b) Let u be an ultrafilter of B. The partition rank of u is

rkP(u) ∶= min{ rkP(a) ∣ a ∈ u} ,

and its partition degree is

degP(u) ∶= min{degP(a) ∣ a ∈ u with rkP(a) = rkP(u) } .

We say that an element a ∈ u has minimal rank and degree if

rkP(a) = rkP(u) and degP(a) = degP(u) .

Example. Let A be a set and F ∶= ⟨F , ⊆⟩ where

F ∶= {X ⊆ A ∣ X or A∖ X is finite} .

For X ∈ F, we have

rkP(X) =
⎧⎪⎪
⎨
⎪⎪⎩

0 if X is finite ,
1 otherwise .

and

degP(X) =
⎧⎪⎪
⎨
⎪⎪⎩

∣X∣ if X is finite ,
1 otherwise .

For the ultrafilters

ua ∶= ⇑{a} and u∞ ∶= {X ⊆ A ∣ A∖ X is finite} ,

we have

rkP(ua) = 0 degP(ua) = 1 ,
rkP(u∞) = 1 degP(u∞) = 1 .
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Remark. If P is a maximal partition of a with rkP(p) = rkP(a), for
all p ∈ P, then it follows that degP(p) = 1, for every p ∈ P. For a proof,
suppose that p is an elementwith degP(p) > 1. Then there is a partition Q
of p with ∣Q∣ > 1 and we could enlarge P by replacing p by Q.

Lemma 5.18. Let B be a boolean algebra and 0 < n < ℵ0. An element
a ∈ B has height n if, and only if, rkP(a) = 0 and degP(a) = n.

Proof. If rkP(a) = 0 then ⇓a contains only finitely many atoms since,
otherwise, thesewould form an infinite partition of a. Hence, a has finite
height.

Conversely, if rkP(a) > 0 then there exists an infinite partition P of a
such that rkP(p) ≥ 0, for all p ∈ P. For every p ∈ P, there is some atom
in ⇓p. Since ⇓p ∩ ⇓q = {�}, for p ≠ q in P, it follows that there are
infinitely many atoms below a. By Lemma 5.7, it follows that ht(a) ≥ ℵ0.
Consequently, we have rkP(a) = 0 if and only if 0 < ht(a) < ℵ0. It

remains to prove that degP(a) = ht(a), for such elements a. We proceed
by induction on n ∶= ht(a). If a is an atom then we have degP(a) = 1
since {a} and ∅ are the only partitions of a. For the inductive step,
suppose that n > 1. Let P be the set of atoms in ⇓a. Then ∣P∣ = n and
a = sup P. Furthermore, by inductive hypothesis,

P = { b ∈ ⇓a ∣ degP(b) = 1} .

Let Q be a partition of a such that ∣Q∣ = degP(a) and rkP(q) = 0, for all
q ∈ Q. By maximality of ∣Q∣ it follows that degP(q) = 1, for q ∈ Q. Hence,
Q ⊆ P, which implies that Q = P and degP(a) = ∣P∣ = n. ◻

Lemma 5.19. If u is an ultrafilter with rkP(u) <∞ then degP(u) = 1 .

Proof. Let a ∈ u be an element of minimal rank and degree and let P be
a maximal partition of a such that a = sup P and rkP(p) = rkP(a), for
all p ∈ P. Since u is an ultrafilter and P is finite, it follows that sup P ∈ u
implies that p ∈ u, for some p ∈ P. Bymaximality of P we have degP(p) =
1. This implies that degP(u) = 1. ◻
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Lemma 5.20. rkP(a ⊓ c) = rkP(a) = rkP(a ⊓ c∗) < ∞ implies that
degP(a ⊓ c) < degP(a).

Exercise 5.2. Prove the preceding lemma.

Every ultrafilter of non-infinite partition rank can be characterised by
any of its elements of minimal rank and degree.

Proposition 5.21. Let B be a boolean algebra and u, v distinct ultrafilters
of B with rkP(u), rkP(v) <∞. If a ∈ u and b ∈ v are elements of minimal
rank and degree then a ≠ b.

Proof. Since u ≠ v there is some element c ∈ u∖v. It follows that a⊓ c ∈ u
and

rkP(a ⊓ c) ≤ rkP(a) = rkP(u) .

Since a is of minimal rank we therefore have

rkP(a ⊓ c) = rkP(a) .

Analogously, we can conclude that

rkP(b ⊓ c∗) = rkP(b) .

If a = b then it would follow that

rkP(a ⊓ c) = rkP(a) = rkP(a ⊓ c∗) .

This implies that degP(a ⊓ c) < degP(a) in contradiction to the minim-
ality of a. ◻

In particular, the number of such ultrafilters is bounded by the size of
the boolean algebra.

Corollary 5.22. Let B be a boolean algebra. There are at most ∣B∣ ultrafil-
ters u ⊆ B with rkP(u) <∞.

Proof. For every ultrafilter u ⊆ B, choose an element au ∈ u of minimal
rank and degree. By Proposition 5.21, it follows that au ≠ av, for u ≠ v.
Consequently, there are at most ∣B∣ such ultrafilters. ◻
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1. Terms and term algebras
We can compose the operations of a structure to build new operations. In
the sameway as the signature provides names for the basic operations we
can associate a name with each of these derived operation. A canonical
way of doing so is to name each operation by a description of how it is
build up from the given operations. These canonical names are called
terms.

Definition 1.1. (a) A term domain is an initial segment T ⊆ κ<ω such
that, if α < β < κ then xβ ∈ T implies xα ∈ T . In particular, every term
domain forms a tree.

(b) A term is a function t ∶ T → Λ where T is a term domain and
Λ a set of function symbols. The domain of t is the set dom t ∶= T . If
t(v) = λ then we say that v is labelled by λ.

(c) Let Σ be a signature and X a set of variables. We denote the set of
all function symbols of Σ by Σfun. A Σ-term is a term t ∶ T → Σfun ∪ X
satisfying the following properties :

◆ All inner vertices v ∈ dom t are labelled by elements of Σfun.
◆ If the function symbol t(v) = f ∈ Σfun is of type s0 . . . sn−1 → s′

then v has exactly n successors u0 , . . . , un−1 and, for all i < n,
either t(u i) ∈ Xs i is a variable of type s i or t(u i) = g ∈ Σfun is a
function symbol of type r̄ → s i , for some r̄.

The set of all finite Σ-terms with variables from X is denoted by T[Σ, X].
By Ts[Σ, X] we denote the subset of all terms t ∈ T[Σ, X] whose root is
labelled by a function symbol of type r̄ → s, for some r̄.
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⟨⟩

0 1

00 01 10 11

000 001 010 011 100 101

00000001 0110 0111

+

+ −

⋅ ⋅ ⋅ 8

⋅ x 3 ⋅ 6 x

x x x x

Figure 1.. Domain and labelling of t.

Remark. The difference between a general term and a Σ-term is that the
symbols of the former need not to have an arity. In particular, a Σ-term is
always finitely branching since, by definition, all symbols in a signature
have finite arity.

Example. The polynomial

((x ⋅ x) ⋅ x + 3 ⋅ (x ⋅ x)) + (6 ⋅ x − 8)

corresponds to a Σ-term t ∶ T → Σ where Σ = { ⋅ ,+,−, 3, 6, 8}. (Note that
we need to include the coefficients as constant symbols.) The domain T
of t and its labelling are shown in Figure 1.

Definition 1.2. Let t be a term and v ∈ dom t. By tv we denote the term
with domain

dom tv ∶= { x ∣ vx ∈ dom t }

and labelling

tv(x) ∶= t(vx) .

A subterm of t is a term of the form tv , for some v ∈ dom t.

Terms as defined above are cumbersome to write down. Therefore, we
represent terms t ∈ T[Σ, X] by sequences y(t) ∈ (Σ ∪ X)<ω .
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Definition 1.3. We define the function y ∶ T[Σ, X]→ (Σ ∪ X)<ω by

y(t) ∶= t(x0)⋯t(xn)

where x0 <lex ⋯ <lex xn is an enumeration of dom t in lexicographic
order.

Remark. Equivalently, we can define y(t) recursively as follows. If the
root ⟨⟩ of t has exactly n successors ⟨0⟩, . . . , ⟨n − 1⟩ then we set

y(t) ∶= t(⟨⟩) ⋅ y(t⟨0⟩) ⋅ ⋯ ⋅ y(t⟨n−1⟩) .

Example. If t is the term
f

g h

x h c

y

then y(t) = fgxhyhc.

The next lemma shows that it is save to identify t and y(t). Below we
will therefore not distinguish between the tree t and the sequence y(t)
encoding it, and we will use whatever formalism is the most convenient
one at the time.

Lemma 1.4. The function y is injective.

Proof. Let s and t be terms and u and v arbitrary sequences. We prove
by induction on ∣y(s)∣ that

y(s)u = y(t)v implies s = t and u = v .

For the special case that u = ⟨⟩ = v it follows that y is injective.
Let f ∶= s(⟨⟩) and g ∶= t(⟨⟩) be the function symbols at the roots of

s and t, respectively. Then y(s) = f x and y(t) = gz, for some sequences
x and z. Since

f xu = y(s)u = y(t)v = gzv
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it follows that f = g. Let n be the arity of f . If n = 0 then x = ⟨⟩ and
z = ⟨⟩ and we have f u = f v which implies u = v. Otherwise, let s i ∶= s⟨i⟩
and t i ∶= t⟨i⟩ be the subterms of s and t rooted at the successors of the
root. By definition, we have

y(s) = f y(s0)⋯y(sn−1) and y(t) = f y(t0)⋯y(tn−1) .

Hence, y(s)u = y(t)v implies

y(s0)⋯y(sn−1)u = y(t0)⋯y(tn−1)v .

Since ∣y(s0)∣ < ∣y(s)∣we can apply the inductivehypothesis and it follows
that

s0 = t0 and y(s1)⋯y(sn−1)u = y(t1)⋯y(tn−1)v .

Applying the inductive hypothesis n− 1 more times we can conclude that

s1 = t1 , . . . , sn−1 = tn−1 and u = v . ◻

We can use the function y to obtain a simple upper bound on the
number of finite Σ-terms.

Lemma 1.5. ∣T[Σ, X]∣ ≤ ∣Σ∣⊕ ∣X∣⊕ ℵ0.

Proof. Since y ∶ T[Σ, X]→ (Σ ∪ X)<ω is injective we have

∣T[Σ, X]∣ ≤ ∣(Σ ∪ X)<ω ∣ = ∣Σ ∪ X∣⊕ ℵ0 = ∣Σ∣⊕ ∣X∣⊕ ℵ0 ,

by Lemma a4.4.31. ◻

Remark. Note that, for finite terms t ∈ T[Σ, X], we can perform proofs
and definitions by induction on ∣dom(t)∣. Usually such proofs proceed
in two steps. First, we show the desired property for all terms consisting
of a single variable. Then we prove, for every n-ary function symbol,
that, if the terms t0 , . . . , tn−1 have the desired property then so does
f t0 . . . tn−1.
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1. Terms and term algebras

We have introduced terms as names for derived operations, but we
have yet to define which operation a term denotes.

Definition 1.6. Let t ∈ T[Σ, X] be a Σ-term.
(a) The set of free variables of t is

free(t) ∶= rng t ∩ X .

(b) Let A be a Σ-structure, t ∈ T[Σ, X] a Σ-term, and β ∶ X0 → A a
function with domain free(t) ⊆ X0 ⊆ X. The value tA[β] of t in A is
defined inductively by the following rules.

◆ If t = x ∈ X is a variable then tA[β] ∶= β(x).

◆ If t = f t0 . . . tn−1 with f ∈ Σ then

tA[β] ∶= f A(tA
0 [β], . . . , tA

n−1[β]) .

Example. Consider the ring of integers Z = ⟨Z,+, ⋅ ⟩ and let t be the
term

+

⋅ x
y x

If β ∶ X → Z maps x ↦ 3 and y ↦ 5 then tZ[β] = 18.

A trivial induction on the size of a term t shows that its value tA[β]
depends only on those variables that appear in t.

Lemma 1.7 (Coincidence Lemma). Let t ∈ T[Σ, X] be a Σ-term and A a
Σ-structure. If β, γ ∶ X → A are variable assignments with

β ↾ free(t) = γ ↾ free(t)

then tA[β] = tA[γ].
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Remark. We write t(x0 , . . . , xn−1) to indicate that

free(t) ⊆ {x0 , . . . , xn−1} .

For such a term, we set

tA(a0 , . . . , an−1) ∶= tA[β]

where β ∶ X → A is any function with β(x i) = a i . By the Coincidence
Lemma, this is well-defined.

The function symbols of Σ operate in a natural way on Σ-terms. A
function symbol f ∈ Σ of type s0 . . . sn−1 → r maps terms t0 , . . . , tn−1 of
sort s0 , . . . , sn−1, respectively, to the term f t0 . . . tn−1.

Definition 1.8. For an S-sorted signature Σ and a set of variables X, the
term algebra T[Σ, X] is the S-sorted Σ-structure defined as follows.

◆ The domain of sort s ∈ S is Ts[Σ, X].
◆ For each n-ary function symbol f ∈ Σ, we have the function

f T[Σ ,X] with

f T[Σ ,X](t0 , . . . , tn−1) ∶= f t0 . . . tn−1 .

◆ For each relation symbol R ∈ Σ, we have RT[Σ ,X] ∶= ∅.

Example. If T = T[Σ, X] is a term algebra and β ∶ X → X the identity
function then tT[β] = t, for all t ∈ T[Σ, X].

The term algebra T = T[Σ, X] is also called the free algebra over X
since the only equations sT = tT that hold in T are the trivial ones of the
form t = t. This fact is used in the following lemma which states that
T is a universal object in the category of all Σ-structures.

Theorem 1.9. Let A be a Σ-structure and β ∶ X → Aan arbitrary function.
There exists a unique homomorphism

h ∶ T[Σ, X]→ A with h ↾ X = β .

The range of h is the set rng h = ⟪rng β⟫A.
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1. Terms and term algebras

Proof. We define h(t) ∶= tA[β]. For x ∈ X, it follows that

h(x) = xA[β] = β(x) .

We claim that h is a homomorphism. Since all relations of T[Σ, X] are
empty we only need to verify that h commutes with functions. Let f ∈ Σ
be an n-ary function symbol and t0 , . . . , tn−1 ∈ T[Σ, X]. We have

h( f t0 . . . tn−1) = ( f t0 . . . tn−1)
A[β]

= f A(tA
0 [β], . . . , tA

n−1[β])

= f A(h(t0), . . . , h(tn−1)) ,

as desired.
Suppose that g ∶ T[Σ, X]→ A is a homomorphism with g ↾ X = β. By

induction on t ∈ T[Σ, X], we prove that g(t) = h(t). If x ∈ X then, by
assumption, g(x) = β(x) = h(x). For the inductive step, let f ∈ Σ be an
n-ary function symbol and t0 , . . . , tn−1 ∈ T[Σ, X]. We have

g( f t0 . . . tn−1) = f A(g(t0), . . . , g(tn−1))

= f A(h(t0), . . . , h(tn−1)) = h( f t0 . . . tn−1) .

Consequently, g = h.
It remains to prove that rng h = ⟪rng β⟫A. By Lemma b1.2.9, rng h in-

duces a substructure of A. Since rng β ⊆ rng h it follows that ⟪rng β⟫A ⊆
rng h.

To show that rng h ⊆ B ∶= ⟪rng β⟫A we prove, by induction on t ∈
T[Σ, X], that h(t) ∈ B. For x ∈ X,we have h(x) = β(x) ∈ rng β ⊆ B. Let
f ∈ Σ be an n-ary function symbol and t0 , . . . , tn−1 ∈ T[Σ, X]. Setting
a i ∶= h(t i), for i < n, it follows that

h( f t0 . . . tn−1) = f A(h(t0), . . . , h(tn−1)) = f A(a0 , . . . , an−1) .

By inductive hypothesis,we know that a0 , . . . , an−1 ∈ B. Since B is closed
under all functions of A we have f A(a0 , . . . , an−1) ∈ B, as desired. ◻
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Remark. We can rephrase the theorem in the following way : For every
S-sorted signature Σ and each Σ-structure A, there exists a bijection

Homs(Σ)(T[Σ, X],A)→ SetS(X ,A) ∶ h ↦ h ↾ X ,

where SetS is the category of S-sorted sets. In category theoretical terms
this means that the term-algebra functor

SetS → Homs(Σ) ∶ X ↦ T[Σ, X]

and the forgetful functor

Homs(Σ)→ SetS ∶ A↦ A

form an adjunction.

Corollary 1.10. Let A be a Σ-structure and X ⊆ A a subset. We have
⟪X⟫A = rng h where h is the unique homomorphism h ∶ T[Σ, X] → A
with h ↾ X = idX .

Corollary 1.11. If A is a Σ-structure and X ⊆ A then

∣⟪X⟫A∣ ≤ ∣T[Σ, X]∣ ≤ ∣X∣⊕ ∣Σ∣⊕ ℵ0 .

If s and t are terms and x a free variable of s then we can construct
the term s[x/t] by replacing every occurrence of x by the term t.

Definition 1.12. (a) Let Σ be an S-sorted signature and t ∈ T[Σ, X] a
term. If, for all i < n, x i ∈ Xs i is a variable of sort s i and t i ∈ Ts i [Σ, X] a
term of the same sort then we define the substitution

t[x0/t0 , . . . , xn−1/tn−1] ∶= tT[Σ ,X][β]

where β ∶ X → T[Σ, X] is the function with β(x i) ∶= t i , for i < n, and
β(x) ∶= x, for all other variables x ∈ X.

(b) Similarly, if β ∶ A → B is some function and a and b elements,
then we denote by β[a/b] the function A∪ {a}→ B ∪ {b} with

β[a/b](x) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

b if x = a ,
β(x) otherwise .
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The next lemma states the trivial fact that, when computing the value
of a term s[x/t] it does not matter whether we substitute t for x first and
then evaluate the whole term, or whether we compute the value of t first
and then evaluate s with the corresponding value for x. For instance, if
s = x + y and t = y + y then s[x/t] = (y + y) + y and the lemma claims
that s[x/t](1) = (1 + 1) + 1 = 3 coincides with s(2, 1) = 2 + 1 = 3.

Lemma 1.13 (Substitution Lemma). Let s, t ∈ T[Σ, X] be terms, x ∈ X a
variable, A a Σ-structure, and β ∶ X → A function. We have

(s[x/t])A[β] = sA[β′] where β′ ∶= β[x/tA[β]] .

Proof. We prove the claim by induction on the term s. If s = x then

(x[x/t])A[β] = tA[β] = β′(x) = xA[β′] .

If s = y ≠ x then

(y[x/t])A[β] = yA[β] = β(y) = β′(y) = yA[β′] .

Finally, if s = f s0 . . . sn−1 then we have by inductive hypothesis

( f s0 . . . sn−1)[x/t]A[β] = f A(s0[x/t]A[β], . . . , sn−1[x/t]A[β])

= f A(sA
0 [β

′], . . . , sA
n−1[β

′])

= ( f s0 . . . sn−1)
A[β′] . ◻

The operations T[Σ, X] and T[Σ, X] assigning to a signature Σ and a
set X of variables, respectively, the set of terms and the term algebra can
be seen as functors between suitable categories.

Definition 1.14. (a) Let SigVar be the category consisting of all triples
⟨S , Σ, X⟩ where S is a set of sorts, Σ an S-sorted signature, and X an
S-sorted set of variables. The morphisms

⟨χ, φ,ψ⟩ ∶ ⟨S , Σ, X⟩→ ⟨T , Γ ,Y⟩

are triples of functions χ ∶ S → T , φ ∶ Σ → Γ, and ψ ∶ X → Y with the
following properties :
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◆ A relation symbol R ∈ Σ of type s0 . . . sn−1 is mapped to a relation
symbol φ(R) ∈ Γ of type χ(s0) . . . χ(sn−1).

◆ A function symbol f ∈ Σ of type s0 . . . sn−1 → t is mapped to a
function symbol φ( f ) ∈ Γ of type χ(s0) . . . χ(sn−1)→ χ(t).

◆ A variable x ∈ X of type s is mapped to a variable ψ(x) ∈ Y of
type χ(s).

Since the set of sorts S is determined by the signature Σ we will usually
omit it from ⟨S , Σ, X⟩ and just write ⟨Σ, X⟩.

(b) We define two subcategories of SigVar. The category Sig consists
of all triples ⟨S , Σ, X⟩ ∈ SigVarwith X = ∅ and the categoryVar consists
of all ⟨S , Σ, X⟩ ∈ SigVar with Σ = ∅.

(c) A morphism α = ⟨χ, φ,ψ⟩ ∈ SigVar(⟨Σ, X⟩, ⟨Γ ,Y⟩) induces the
map

T[α] ∶ T[Σ, X]→ T[Γ ,Y]

which assigns to a term t ∈ Ts[Σ, X] the term T[α](t) ∈ Tχ(s)[Γ ,Y]
with

T[α](t)(x) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

φ(t(x)) if t(x) ∈ Σ ,
ψ(t(x)) if t(x) ∈ X .

Let Term denote the category with objects T[Σ, X], for all Σ, X, and
morphisms

Term(T[Σ, X], T[Γ ,Y]) ∶= {T[α] ∣ α ∈ SigVar(⟨Σ, X⟩, ⟨Γ ,Y⟩) } .

Example. Let Σ ∶= {○, −1 , e} be the signature of multiplicative groups
and Γ ∶= {+,−, 0} the signature of additive groups. Since there exists an
isomorphism Σ → Γ in Sig these signatures are interchangeable.

Remark. It follows immediately from the definition of Term that the
operation

⟨Σ, X⟩↦ T[Σ, X] and α ↦ T[α]

forms a functor T ∶ SigVar→ Term.
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1. Terms and term algebras

We can also define corresponding categories of structures.

Definition 1.15. (a) Let µ = ⟨χ, φ⟩ ∶ ⟨S , Σ⟩ → ⟨T , Γ⟩ be a morphism
of Sig. The µ-reduct A∣µ of a Γ-structure A is the Σ-structure B where
the domain of sort s ∈ S is Bs ∶= Aχ(s) and the relations and functions
are defined by

ξB ∶= φ(ξ)A , for ξ ∈ Γ .

(b) For a signature Σ, we denote by Str[Σ] the class of all Σ-structures
and by Str[Σ, X] the class of all pairs ⟨A, β⟩ where A is a Σ-structure and
β ∶ X → A a variable assignment.
Every morphism µ = ⟨χ, φ,ψ⟩ ∶ ⟨T , Γ ,Y⟩ → ⟨S , Σ, X⟩ of SigVar

induces a function

Str[µ] ∶ Str[Σ, X]→ Str[Γ ,Y] ∶ ⟨A, β⟩↦ ⟨A∣µ , β ○ ψ⟩ .

(c) In the category StrVar the objects are the classes Str[Σ, X] and the
morphisms are all mappings Str[Σ, X]→ Str[Γ ,Y] induced by a morph-
ism ⟨Γ ,Y⟩→ ⟨Σ, X⟩ of SigVar. As above we define the subcategory Str
where the objects are those classes Str[Σ, X] with X = ∅.

(d) The canonical functor Str ∶ SigVar → StrVar maps a pair ⟨Σ, X⟩
to the class Str[Σ, X] and a morphism ⟨Σ, X⟩→ ⟨Γ ,Y⟩ to the function
Str[Γ ,Y] → Str[Σ, X] it induces. By abuse of notation we denote the
corresponding functor Str ∶ Sig → Str by the same symbol. Note that
Str is contravariant.

Remark. Suppose that Σ ⊆ Γ and let A be a Γ-structure. If µ ∶ Σ → Γ is
inclusion map then A∣µ = A∣Σ is the ordinary Σ-reduct of A.

The next lemma relates the structures A and Str[µ](A). It follows
immediately from the respective definitions.

Lemma 1.16. Let µ ∶ ⟨Σ, X⟩→ ⟨Γ ,Y⟩ be a morphism of SigVar. For all
interpretations ⟨A, β⟩ ∈ Str[Γ ,Y] and terms t ∈ T[Σ, X], we have

(T[µ](t))
A
[β] = tB[γ] where ⟨B, γ⟩ = Str[µ](A, β) .
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b3. Universal constructions

T[Σ, X] T[Γ ,Y]

B A

T[µ]

Example. Let Σ = {○, −1 , e} and Γ = {+,−, 0} be signatures of groups
and X = {x} and Y = {y} sets of variables. Consider the morphism

µ = ⟨id, φ,ψ⟩ ∶ ⟨Σ, X⟩→ ⟨Γ ,Y⟩
with φ(○) = + , φ(−1) = − , φ(e) = 0 , and ψ(x) = y .

Let Z = ⟨Z,+,−, 0⟩ be the additive group of the integers and β ∶ y ↦ 3 a
variable assignment. Then Str[µ]⟨Z, β⟩ = ⟨Z′ , γ⟩ where Z′ = ⟨Z, ○, −1 , e⟩
and γ ∶ x ↦ 3. For the term t(x) = x ○ e ○ x−1 the lemma states that

tZ′[γ] = (x ○ e ○ x−1)Z
′

[γ] = 3 + 0 − 3 = 0

equals

(T[µ](t))
Z
[β] = (y + 0 + (−y))Z[β] = 3 + 0 − 3 = 0 .

2. Direct and reduced products
Products are a common construction in algebra since many important
classes, such as groups and rings, are closed under products. In this
section we will introduce products of arbitrary structures and prove
some of their basic properties.
Below we will frequently deal with tuples of sequences of the form

ā = ⟨(a i
0)i∈I , . . . , (a i

n−1)i∈I⟩ ∈ (A
I)n .

To simplify notation we define

ā i ∶= ⟨a i
0 , . . . , a i

n−1⟩ ∈ A
n and āk ∶= (a i

k)i∈I ∈ A
I .
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Definition 2.1. Let (Ai)i∈I be a sequence of Σ-structures.
(a) Their direct product is the Σ-structure

B ∶=∏
i∈I

Ai ,

where the domain of sort s is Bs ∶= ∏i∈I Ai
s , for every n-ary relation

R ∈ Σ, we have

RB = { ā ∈ Bn ∣ ā i ∈ RAi
for all i ∈ I } ,

and, for each function f ∈ Σ,

f B(ā) ∶= ( f Ai
(ā i))i∈I .

If Ai = A, for all i ∈ I, we usually write AI instead of∏i∈I A.
(b) Recall that the k-th projection is the function

prk ∶∏
i∈I

Ai → Ak ∶ (a i)i∈I ↦ ak .

Example. (a) Let U = ⟨U ,+, (λa)a∈K⟩ be a K-vector space of dimen-
sion 1. Every K-vector space V = ⟨V ,+, (λa)a⟩ of dimension n < ω is
isomorphic to Un .

(b) Let B2 = ⟨[2],⊔,⊓, 0, 1, ∗ , ≤⟩ be the two-element boolean algebra
and A = ⟨℘(X),∪,∩,∅, X , ∗ , ⊆⟩ the power-set algebra of a set X. Then
A ≅∏i∈X B2 = BX

2 .

Analogously to products of sets we can characterise products of struc-
tures as terminal objects in a suitable category.

Lemma 2.2. Let prk ∶∏i∈I Ai → Ak be a projection.

(a) prk is a surjective homomorphism.

(b) prk is semi-strict if and only if, for every relation symbol R, the set
{ i ∈ I ∣ RAi

= ∅} contains k or it equals either ∅ or I.
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Lemma 2.3. Let (Ai)i∈I be a sequence of Σ-structures. For every struc-
ture B and all homomorphisms hk ∶ B→ Ak , k ∈ I, there exists a unique
homomorphism φ ∶ B→∏i∈I Ai with hk = prk ○ φ, for all k.

Exercise 2.1. Prove the preceding lemmas.

Exercise 2.2. Prove that the direct product of groups is again a group
and that the direct product of rings is a ring.

Given a class K of structures that is closed under products one can
try to classifyK by isolating a subclassK0 ⊆ K such that every structure
inK can be expressed as product of elements ofK0. The classification
of finitely generated abelian groups is of this kind. IfK is furthermore
closed under substructures thenwe can also try to find a subclassK1 such
that every structure in K is the substructure of a product of elements
ofK1. For instance, everyK-vector space of dimension κ is a substructure
of Kκ . This motivates an investigation of substructures of products.

Definition 2.4. Let (Ai)i∈I be a sequence of Σ-structures.
(a) A Σ-structure B is a subdirect product of (Ai)i if there exists an

embedding g ∶ B→∏i∈I Ai such that prk○g is surjective and semi-strict,
for all k ∈ I.

(b) A structure B is subdirectly irreducible if, for every sequence (Ai)i
of which B is a subdirect product, there exists an index k with B ≅ Ak .

Lemma 2.5. Let B be a subdirect product of (Ai)i∈I and g ∶ B→∏i Ai

the corresponding embedding. If s, t ∈ T[Σ, X] are terms, β ∶ X → B a
variable assignment, and β i ∶= pri ○ g ○ β then we have

sB[β] = tB[β] iff sAi
[β i] = tAi

[β i] , for all i ∈ I .

Proof. The lemma follows immediately if we can show that

g(tB[β]) = (tAi
[β i])i .

We proceed by induction on the size of t. For t = x ∈ X, we have

g(xB[β]) = g(β(x)) = (β i(x))i .
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If t = f s0 . . . sn−1 then

g(( f s0 . . . sn−1)
B[β]) = g( f B(sB

0 [β], . . . , sB
n−1[β]))

= f∏i Ai
(g(sB

0 [β]), . . . , g(sB
n−1[β]))

= f∏i Ai
((sAi

0 [β i])i , . . . , (sAi

n−1[β i])i)

= ( f Ai
(sAi

0 [β i], . . . , sAi

n−1[β i]))i

= (( f s0 . . . sn−1)
Ai
[β i])i . ◻

An important special case of a subdirect product are reduced products
which are obtained from a product by factorising over a filter. To define
what we mean by ‘factorising over a filter’ we need some preliminaries.

Definition 2.6. Let (Ai)i∈I be a sequence of Σ-structures and u ⊆ ℘(I)
a filter. Let S be the set of sorts of Σ and set

B ∶= ⋃
s∈S
w∈u

Bw
s where Bw

s ∶=∏
i∈w

Ai
s .

For ā, b̄ ∈ Bw0
s0 × ⋅ ⋅ ⋅ × Bwn−1

sn−1 , we define

⟦ā i = b̄ i⟧i ∶= { i ∈ w0 ∩ ⋅ ⋅ ⋅ ∩wn−1 ∣ ā i = b̄ i } ,

⟦ā i ∈ R⟧i ∶= { i ∈ w0 ∩ ⋅ ⋅ ⋅ ∩wn−1 ∣ ā i ∈ RAi
} ,

and ā ∼u b̄ : iff ⟦ā i = b̄ i⟧i ∈ u .

We denote the ∼u-class of a tuple ā ∈ B by [ā]u.

Lemma 2.7. Let (Ai)i∈I be a sequence of Σ-structures and u ⊆ ℘(I) a
filter.

(a) ∼u is an equivalence relation.

(b) ā ∼u b̄ implies ⟦ā i ∈ R⟧i ∈ u iff ⟦b̄ i ∈ R⟧i ∈ u .

(c) ā ∼u b̄ implies f B(ā) ∼u f B(b̄) .
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Proof. (a) We have (a i)i∈I ∼u (a i)i∈I since I ∈ u. Furthermore, since = is
symmetric it follows that so is ∼u. Finally, suppose that

(a i)i∈I ∼u (b i)i∈I and (b i)i∈I ∼u (c i)i∈I .

Since ⟦(a i)i = (c i)i⟧i ⊇ ⟦(a i)i = (b i)i⟧i ∩ ⟦(b i)i = (c i)i⟧i ∈ u

it follows that (a i)i∈I ∼u (c i)i∈I .
(b) We have ⟦ā i = b̄ i⟧i ∈ u and, by symmetry, we may assume that
⟦ā i ∈ R⟧i ∈ u. Hence, ⟦b̄ i ∈ R⟧i ⊇ ⟦ā i ∈ R⟧i ∩ ⟦ā i = b̄ i⟧i ∈ u and it
follows that ⟦b̄ i ∈ R⟧i ∈ u.

(c) follows immediately from ⟦ f (ā i) = f (b̄ i)⟧i ⊇ ⟦ā i = b̄ i⟧i ∈ u. ◻

Definition 2.8. Let u be a filter over I and J ⊆ I. The restriction of u to J
is the set

u∣J ∶= { s ∩ J ∣ s ∈ u} .

Lemma 2.9. Let u be a filter over I and S ∈ u.
(a) u∣S is a filter over S.
(b) If u is an ultrafilter then so is u∣S .

Definition 2.10. Let (Ai)i∈I be a sequence of Σ-structures and u ⊆ ℘(I)
a filter.

(a) The reduced product of (Ai)i∈I over u is the structure

B ∶=∏
i∈I

Ai/u

defined as follows. For each sort s, let

Is ∶= { i ∈ I ∣ Ai
s ≠ ∅} .

The domain of sort s is

Bs ∶=

⎧⎪⎪
⎨
⎪⎪⎩

(∏i∈Is
Ai

s)/∼u∣Is
if Is ∈ u ,

∅ otherwise .
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For every n-ary relation R ∈ Σ, we have

RB ∶= { [ā]u ∈ Bn ∣ ⟦ā i ∈ R⟧i ∈ u} ,

and, for each function f ∈ Σ,

f B([ā]u) ∶= [(b i)i]u where b i ∶= f Ai
(ā i) .

(b) If u is an ultrafilter then∏i∈I Ai/u is also called an ultraproduct.
In the special case that Ai = A, for all i, we call∏i∈I A/u the ultrapower
of A over u and we simply write Au.

Remark. Note that∏i∈I Ai/u is well-defined by Lemma 2.7.

Lemma 2.11. Let B =∏i∈I Ai/u. If s, t ∈ T[Σ, X] are terms, β ∶ X → B a
variable assignment, and β i ∶= pri ○ β then we have

sB[β] = tB[β] iff { i ∈ I ∣ sAi
[β i] = tAi

[β i] } ∈ u .

Proof. By induction on t one can show that tB[β] = [(tAi
[β i])i]u. Con-

sequently, the claim follows by definition of ∼u. ◻

Exercise 2.3. Prove that an ultraproduct of linear orders is again a linear
order and that an ultraproduct of fields is a field.

Lemma 2.12. Let A be a Σ-structure and u a proper filter. There exists an
embedding h ∶ A→ Au.

Proof. Suppose that u is a filter over I. We denote by ā= the constant
sequence (ā i)i with ā i ∶= ā, for all i. We claim that h ∶ a ↦ [a=]u is the
desired embedding.

h is injective since, if a ≠ b then ⟦(a=)i = (b=)i⟧i = ∅ ∉ u, which
implies that h(a) ≠ h(b). If R ∈ Σ is an n-ary relation then we have

⟦(ā=)i ∈ R⟧i =
⎧⎪⎪
⎨
⎪⎪⎩

I ∈ u if ā ∈ RA ,
∅ ∉ u if ā ∉ RA .

243



b3. Universal constructions

Therefore, we have ā ∈ RA iff h(ā) ∈ RAu

. Finally, if f ∈ Σ is an n-ary
function then we have

f Au

(h(ā)) = f Au

([ā=]u) = [ f AI
(ā=)]

u

= [( f A(ā))=]
u
= h( f A(ā)) .

It follows that h is the desired injective strict homomorphism. ◻

Example. Let R = ⟨R,+,−, ⋅ , 0, 1, ≤⟩ be the ordered field of real numbers
and u a non-principal ultrafilter on ω. The ultrapower Ru is again an
ordered field with R ⊆ Ru. Let (a i)i<ω ∈ Rω , be the sequence with
a i = i, and let a ∶= [(a i)i]u be its ∼u-class. It follows that a > x, for
every real number x ∈ R. Hence, Ru contains an infinite number a.
The element a−1 is positive but smaller than every positive real number.
Thus, we have constructed an extension of R containing infinite and
infinitesimal elements.

In the definition of a reduced product we have neglected those factors
with empty domains. This choice is motivated by the following obser-
vation which is an immediate consequence of Lemma ?? below. For
simplicity, we only treat the case that all domains are nonempty.

Lemma 2.13. Let (Ai)i∈I be a family of Σ-structures whose domains are
all nonempty and let u be a filter over I. For every J ∈ u, we have

∏
i∈I

Ai/u ≅∏
j∈J

A j/u∣J .

Proof. To simplify notation set v ∶= u∣J and define

AI ∶=∏i∈I Ai , AI/u ∶=∏i∈I Ai/u ,
and AJ ∶=∏ j∈J A j , AJ/v ∶=∏ j∈J A j/v .

For sequences (ā i)i∈I set ā ↾ J ∶= (ā j) j∈J . Let

φ ∶ AI → AI/u ∶ (a i)i ↦ [(a i)i]u

ψ ∶ AJ → AJ/v ∶ (a j) j ↦ [(a j) j]v

π ∶ AI → A j ∶ ā ↦ ā ↾ J
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2. Direct and reduced products

AI AJ

AI/u AJ/v

π

φ ψ

η

be the canonical homomorphisms. For sequences (a i)i∈I and (b i)i∈I ,
we have

⟨(a i)i , (b i)i⟩ ∈ ker φ iff ⟦a i = b i⟧i ∈ u

iff ⟦a i = b i⟧i ∩ J ∈ v

iff ⟨(a i)i∈I , (b i)i∈I⟩ ∈ ker(ψ ○ π) .

By the Factorisation Lemma, it follows that there exists a unique bijection
η ∶ φ(AI)→ (ψ ○ π)(AI) with ψ ○ π = η ○ φ, i.e.,

η([ā]u) = [ā ↾ J]v .

It remains to prove that this function is an isomorphism. (Note that, if
φ and ψ are semi-strict then we can apply Corollary b1.2.7.)

For a function symbol f , we have

η( f AI/u([ā]u)) = η([ f AI(ā)]u)

= [ f AJ(ā ↾ J)]
v

= f AJ/v([ā ↾ J]v) = f AJ/v(η([ā]u)) ,

and, for a relation symbol R, we have

[ā]u ∈ RAI/u iff ⟦ā i ∈ R⟧i ∈ u

iff ⟦ā i ∈ R⟧i ∩ J ∈ u

iff η([ā]u) = [ā ↾ J]v ∈ RAJ/v . ◻

245



b3. Universal constructions

Corollary 2.14. Let (Ai)i∈I be a family of Σ-structures. If u = ⇑J is a
principal filter over I then

∏
i∈I

Ai/u ≅∏
j∈J

A j .

In particular, if J = { j} then∏i∈I Ai/u ≅ A j .

3. Directed limits and colimits
With each structureAwe can associate the family of its finitely generated
substructures, ordered by inclusion. Conversely, given such a partially
ordered family of structures, we can try to assemble them into a single
structure. This leads to the notion of a directed colimit. Not every family
of structures arises from a superstructure A. Before introducing directed
colimits, we therefore isolate the key property of those families that do.

Definition 3.1. Let κ be a cardinal. We call a partial order J = ⟨I, ≤⟩
κ-directed if every subset X ⊆ I of size ∣X∣ < κ has an upper bound. For
κ = ℵ0, we simply speak of directed sets.

Example. (a) Every ideal is directed.
(b) An infinite cardinal κ is regular if, and only if, the linear order

⟨κ, ≤⟩ is κ-directed.
(c) Let A be a set, κ a regular cardinal, and F ∶= {X ⊆ A ∣ ∣X∣ < κ }.

The order ⟨F , ⊆⟩ is κ-directed.
(d) Let A be a Σ-structure and S the class of all substructures of A

that are generated by a set of size less than κ. If κ is regular, the order
(S , ⊆) is κ-directed.

Let us show that, if we partition a directed set into finitely many parts,
at least one of them is again directed.

Definition 3.2. Let ⟨I, ≤⟩ be a directed partial order. A subset D ⊆ I is
dense if ⇑i ∩ D ≠ ∅, for all i ∈ I.
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3. Directed limits and colimits

Lemma 3.3. Let ⟨I, ≤⟩ be a κ-directed partial order. If D ⊆ I is dense then
⟨D, ≤⟩ is κ-directed.

Proof. Let X ⊆ D be a set of size ∣X∣ < κ. Since I is κ-directed, it contains
an upper bound l of X. As D is densewe can find an element m ∈ ⇑l ∩D.
Hence, D contains an upper bound m of X. ◻

If we partition a κ-directed set into less than κ pieces, one of them is
dense and, hence, κ-directed.

Proposition 3.4. Let ⟨I, ≤⟩ be a κ-directed partial order. If (Jα)α<λ is a
family of subsets Jα ⊆ I of size λ < κ such that ⋃α<λ Jα = I, then at least
one set Jα is dense.

Proof. For i ∈ I, set

A i ∶= { α < λ ∣ ⇑i ∩ Jα ≠ ∅} ,
U i ∶= { α < λ ∣ α ∈ A l , for all l ≥ i } .

Clearly, if there is some index α < λ such that α ∈ U i , for every i, then
the set Jα is dense in I.

To find such an index we first prove that U i ≠ ∅, for all i. For a
contradiction, suppose that there is some i ∈ I with U i = ∅. Then we
can find, for every α < λ, an element lα ≥ i such that ⇑lα ∩ Jα = ∅.
Let m be an upper bound of { lα ∣ α < λ } in I. Then m ∉ Jα , for all α.
A contradiction.

To conclude the proof it is sufficient to show that U i = U j , for all
i , j ∈ I. Fix some l ≥ i , j. Then we have

U i = ⋂
m∈⇑i

Am ⊆ ⋂
m∈⇑l

Am = U l .

Conversely, suppose that there were an element α ∈ U l ∖U i . Then we
could find some m ≥ i such that ⇑m ∩ Jα = ∅. For s ≥ m, l , this would
imply that α ∉ As ⊇ U l . A contradiction. Hence, we have U i = U l = U j ,
as desired. ◻
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b3. Universal constructions

Directed sets can be regarded as generalisations of chains. Surprisingly
in many cases it suffices to consider chains even if the use of a directed
set might be more convenient. Before giving examples, let us present
two technical results. The first one allows us to extend an arbitrary set to
a directed one. In Section b4.4 below we will generalise this lemma to
κ-directed sets, where the situation is more complicated.

Lemma 3.5. Let ⟨I, ≤⟩ be a directed partial order. For every X ⊆ I there
exists a directed subset D ⊆ I with X ⊆ D and ∣D∣ ≤ ∣X∣⊕ ℵ0.

Proof. Set

F ∶= { s ⊆ X ∣ s ≠ ∅ finite} .

For every s ∈ F,we choose elements as ∈ I, by induction on ∣s∣, as follows.
Let

us ∶= s ∪ { av ∣ v ⊂ s } .

If us has a greatest element b then we set as ∶= b. Otherwise, since us is
finite and I is directed we can find an element as ∈ I with us ⊆ ⇓as .
After having defined the elements as we can set

D ∶= X ∪ { as ∣ s ∈ F } . ◻

Proposition 3.6. Let J be an infinite directed set of cardinality κ ∶= ∣I∣.
There exists a chain (Hα)α<κ of directed subsets Hα ⊆ I of size ∣Hα ∣ < κ
such that I = ⋃α<κ Hα .

Proof. Fix an enumeration (iα)α<κ of I.We define Hα by induction on α.
Set H0 ∶= ∅ and Hδ ∶= ⋃α<δ Hα , for limit ordinals δ. For the successor
step, we use Lemma 3.5 to choose a directed set Hα+1 ⊇ Hα ∪ {iα} of
size ∣Hα+1∣ ≤ ∣Hα ∣⊕ ℵ0.

Each set Hα is directed. Furthermore, iα ∈ Hα+1 implies⋃α Hα = I. It
remains to show that ∣Hα ∣ < κ. By induction on α, we prove the stronger
claim that ∣Hα ∣ ≤ ∣α∣, for every infinite ordinal α.
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3. Directed limits and colimits

For α = ω, we have

∣Hω ∣ = sup{ ∣Hn ∣ ∣ n < ω } ≤ ℵ0 .

Analogously, for limit ordinals δ,

∣Hδ ∣ = sup{ ∣Hα ∣ ∣ α < δ } ≤ ∣δ∣ .

Finally,we have ∣Hα+1∣ ≤ ∣Hα ∣⊕ℵ0 ≤ ∣α∣⊕ℵ0 = ∣α+1∣ , for ω ≤ α < κ. ◻

We will give several examples of how to use Proposition 3.6 to replace
directed sets by chains.

Proposition 3.7. Let ⟨A, ≤⟩ be a partial order. The following statements
are equivalent :

(1) A is inductively ordered.
(2) Every nonempty directed set I ⊆ A has a supremum.

Proof. The direction (2)⇒ (1) is trivial since every chain is directed. We
prove the converse by induction on κ ∶= ∣I∣. Since every finite directed set
has a greatest element we may assume that I is infinite. Let (Hα)α be the
sequence of directed sets from Proposition 3.6. By inductive hypothesis,
the suprema aα ∶= sup Hα exist. Since (aα)α<κ is a chain it follows that
sup I = supα aα exists as well. ◻

Lemma 3.8. Let c be a closure operator on A. The following statements
are equivalent :

(1) c has finite character.
(2) c(⋃C) = ⋃C, for every chain C ⊆ fix c.
(3) c(⋃ I) = ⋃ I, for every directed set I ⊆ fix c.

Proof. (1)⇒ (2) was proved in Lemma a2.4.6.
(2)⇒ (3) We prove the claim by induction on κ ∶= ∣I∣. If I is finite then
⋃ I = X, for some X ∈ I, andwe are done. Hence,wemay assume that I is
infinite. Let (Hα)α be the sequence of directed sets from Proposition 3.6.
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b3. Universal constructions

By inductive hypothesis,we know that Xα ∶= ⋃Hα ∈ fix c. Since (Xα)α<κ
is a chain it follows that ⋃ I = ⋃α Xα ∈ fix c, as desired.

(3)⇒ (1) Let X ⊆ A and set I ∶= { c(X0) ∣ X0 ⊆ X is finite}. We have
to show that c(X) = ⋃ I. For one direction, note that X0 ⊆ X implies
that c(X0) ⊆ c(X). Consequently, we have ⋃ I ⊆ c(X).

For the converse, note that I is directed since c(X0), c(X1) ∈ I implies
that c(X0 ∪ X1) ∈ I and we have c(X i) ⊆ c(X0 ∪ X1). By (3), it follows
that ⋃ I ∈ fix c. Therefore,

X = ⋃{X0 ∣ X0 ⊆ X is finite}
⊆ ⋃{ c(X0) ∣ X0 ⊆ X is finite} = ⋃ I

implies that c(X) ⊆ c(⋃ I) = ⋃ I. ◻

Lemma 3.9. Let f ∶ A→ B a function between partial orders where A is
complete. The following statements are equivalent :

(1) f is continuous.
(2) sup f [I] = f (sup I), for every directed set I ⊆ A.

Proof. Again the direction (2)⇒ (1) is trivial. We prove the converse
by induction on κ ∶= ∣I∣. Since every finite directed set has a greatest
element we may assume that I is infinite. Let (Hα)α be the sequence of
directed sets from Proposition 3.6. The set

C ∶= { sup Hα ∣ α < κ }

is a chain with supC = sup I. Since f is continuous it follows that

sup f [I] = sup f [C] = f (supC) = f (sup I) . ◻

Having defined directed sets, we can introduce directed colimits. The
systems wewant to map to their colimit consist of a directed partial order
of Σ-structures where each inclusion is labelled by a homomorphism spe-
cifying how the smaller structure is included in the larger one. Although
we will mainly be interested in Σ-structures, we give the definition in a
general category-theoretic setting.
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3. Directed limits and colimits

Definition 3.10. Let I be a small category and C an arbitrary category. A
diagram over I is a functor D ∶ I → C. If I is a κ-directed partial order,
we call D a κ-directed diagram. The size of D is the cardinal ∣Imor∣.

Remark. In the case where the index category I is a partial order, a
diagramD ∶ I → C consists of objects D(i) ∈ C, for i ∈ I, andmorphisms

D(i , k) ∶ D(i)→ D(k) , for i ≤ k ,

such that

D(i , i) = idD(i) and D(k, l) ○ D(i , k) = D(i , l) ,

for all i ≤ k ≤ l .
Before giving the general category-theoretic definition of a κ-directed

colimit, let us present the special case of Σ-structures.

Definition 3.11. Let D ∶ J→ Hom(Σ) be a directed diagram. The directed
colimit of D is the Σ-structure

lim
Ð→

D

where the domain of sort s is the set (∑i D(i)s)/∼ obtained from the
disjoint union of the domains D(i)s by factorising by the relation

⟨i , a⟩ ∼ ⟨ j, b⟩ : iff D(i , k)(a) = D( j, k)(b)
for some k ≥ i , j .

That is, we identify a ∈ D(i) and b ∈ D( j) iff they are mapped to the
same element in some D(k).
We denote by [i , a] the ∼-class of ⟨i , a⟩. The relations and functions

are defined by

R ∶= { ⟨[i , a0], . . . , [i , an−1]⟩ ∣ ⟨a0 , . . . , an−1⟩ ∈ RD(i) } ,

and f ([i , a0], . . . , [i , an−1]) ∶= [i , f D(i)(a0 , . . . , an−1)] .

(Note that is it sufficient to consider elements [i0 , a0], . . . , [in−1 , an−1]
where i0 = ⋅ ⋅ ⋅ = in−1.)
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b3. Universal constructions

Remark. Directed colimits are also called direct limits in the literature.
We will not use this term to avoid confusion with directed limits, which
we will introduce below.

Example. Let Z ∶= ⟨Z,+⟩ be the group of integers.
(a) We define a directed diagram D ∶ ω → Hom(+) by D(n) ∶= Z, for

all n, and

D(k, n) ∶ Z→ Z ∶ z ↦ 2n−kz , for k ≤ n .

Its colimit is the structure lim
Ð→

D = ⟨Q2 ,+⟩ where

Q2 ∶= {m/2k ∣ m ∈ Z , k ∈ N}

is the set of dyadic numbers.
(b) If, instead, we use the homomorphisms

D(k, n) ∶ Z→ Z ∶ z ↦
n!
k!
z , for k ≤ n ,

then the colimit lim
Ð→

D = ⟨Q,+⟩ is the group of rationals.

Remark. If the directed set J has a greatest element k, then we have
lim
Ð→

D ≅ D(k).

Exercise 3.1. Let D ∶ J→ Hom(Σ) be a directed diagram and S ⊆ I dense.
Prove that

lim
Ð→

D ≅ lim
Ð→
(D ↾ S) ,

where D ↾ S ∶ J∣S → Hom(Σ) is the restriction of D to S.

Directed colimits can also be characterised in category-theoretical
terms via so-called limiting cocones. We use this property to define
directed colimits in an arbitrary category.
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3. Directed limits and colimits

Definition 3.12. Let D ∶ I → C be a diagram.
(a) A cocone from D to an object a ∈ C is a family µ = (µi)i∈Iobj of

morphisms µi ∶ D(i)→ a such that

µk ○ D( f ) = µi ,

for all f ∶ i→ k in Imor.

D(i)

D(k)

D(l)

a

D( f )

D( f ′)

µi

µk

µl

(b) A cocone λ from D to a is limiting if, for every cocone µ from D
to some object b, there exists a unique morphism h ∶ a→ b with

µi = h ○ λi , for all i ∈ I .

D(i)

D(k)

a bD( f )
λi

λk

µi

µk

h

(Thus, limiting cocones are precisely the initial objects in the category
of all cocones of D.)

(c) An object a ∈ C is a colimit of D if there exists a limiting cocone
from D to a. We denote the colimit of D by lim

Ð→
D.

(d) We say that a category C has κ-directed colimits if all κ-directed
diagrams D ∶ J→ C have a colimit.

Example. Let L be a partial order and D ∶ I → L a diagram.

(a) There exists a cocone from D to an element a ∈ L if, and only if,
a is an upper bound of rngD.

(b) An element a ∈ L is a colimit of D if, and only if, a = sup rngD.

Remark. (a) Equivalently, we could define a cocone from D to a to be a
natural transformation µ from D to the diagonal functor ∆(a) ∶ I → C
with
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∆(a)(i) = a , for all i ∈ Iobj ,
and ∆(a)( f ) = ida , for all f ∈ Imor .

D(i)

D(k)

D(l)

a

a

a

D( f )

D( f ′)

hi

hk

hl

ida

ida

(b) Not that, by the uniqueness of h in the definition of a limiting
cocone, colimits are unique up to isomorphism. As limiting cocones are
initial objects in the category of all cocones, this also follows directly
from Lemma b1.3.7.

According to the next lemma, the colimit lim
Ð→

D of a directed diagram
D ∶ J→ Hom(Σ) of Σ-structures coincides with the category-theoretical
notion of a colimit.

Lemma 3.13. Every κ-directed diagram D ∶ J→ Hom(Σ) has a limiting
cocone λ from D to lim

Ð→
D.

Proof. Let A ∶= lim
Ð→

D and [i , a] be the ∼-class of ⟨i , a⟩. We claim that
the functions

λ i ∶ D(i)→ A ∶ a ↦ [i , a] , for i ∈ I ,

form a limiting cocone. Let a ∈ D(i) and j ≥ i. By definition, we have
⟨ j,D(i , j)(a)⟩ ∼ ⟨i , a⟩. Hence,

λ i(a) = [i , a] = [ j,D(i , j)(a)] = λ j(D(i , j)(a)) ,

and (λ i)i∈I is a cocone.
To show that it is limiting, suppose that µ is a cocone from D to B.

We define the desired homomorphism h ∶ A→ B by

h[i , a] ∶= µ i(a) .
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3. Directed limits and colimits

h is obviously the unique function such that h ○ λ i = µ i . Therefore, it
remains to show that h is well-defined. Suppose that ⟨i , a⟩ ∼ ⟨ j, b⟩. Then
there is some k ≥ i , j with D(i , k)(a) = D( j, k)(b). Hence, we have

h[i , a] = µ i(a) = (µk ○ D(i , k))(a)
= (µk ○ D( j, k))(b) = µ j(b) = h[ j, b] . ◻

Corollary 3.14. Hom(Σ) has κ-directed colimits, for all infinite cardinals κ.

Exercise 3.2. Prove that the functions λ i and h defined in the proof
above are homomorphisms.

Let us give several applications of the notion of a directed colimit.

Definition 3.15. Let A be a structure and κ a cardinal. A substructure
A0 ⊆ A is κ-generated if A0 = ⟪X⟫A, for some set X of size ∣X∣ < κ.

Proposition 3.16. Let κ be a regular cardinal. Every structure A is the
κ-directed colimit of its κ-generated substructures.

Proof. Let I ∶= {⟪X⟫A ∣ ∣X∣ < κ } be the set of all κ-generated substruc-
tures of A. If (⟪X i⟫A)i≤α ∈ Iα , for α < κ, then ⟪⋃i X i⟫A ∈ I since κ is
regular. Consequently, ⟨I, ⊆⟩ is κ-directed.

For C ∈ I, set D(C) ∶= C and let D(B,C) ∶ B→ C, for B ⊆ C in I, be
the inclusion map. Then

A ≅ lim
Ð→

D . ◻

Lemma 3.17. Every reduced product∏i∈I Ai/u is the directed colimit of
products∏i∈s Ai with s ∈ u.

Proof. For s ∈ u, set D(s) ∶= ∏i∈s Ai . We order u by inverse inclusion.
For s ⊇ t in u, let

D(s, t) ∶ D(s)→ D(t) ∶ (a i)i∈s ↦ (a i)i∈t
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b3. Universal constructions

by the canonical projection. We claim that

lim
Ð→

D ≅∏
i∈I

Ai/u .

Note that, if (a i)i∈I ∈∏i∈I Ai and s, t ∈ u then we have

[s, (a i)i∈s] = [t, (a i)i∈s]

since (a i)i∈s∩t = (a i)i∈s∩t and s ∩ t ∈ u. Consequently, we can define a
function φ ∶∏i Ai/u→ lim

Ð→
D by

φ([(a i)i]u) ∶= [s, (a i)i∈s] , for some/all s ∈ u .

It is easy to check that φ is the desired isomorphism. ◻

The dual notion to a directed colimit is a directed limit.

Definition 3.18. Let J be a directed partial order.
(a) An inverse diagram over J is a functor D ∶ Jop → C.
(b) The directed limit of an inverse diagram D ∶ Jop → Hom(Σ) is the

Σ-structure

lim
←Ð

D ∶= (∏i Ai)∣U

obtained from the product of the Ai by restriction to the set

U ∶= { (a i)i ∈∏i Ai ∣ a i = D(i , j)(a j) for all i ≤ j } .

Remark. Directed limits are also called inverse limits.

Example. (a) Let D ∶ J→ Hom(Σ) be a chain. If we reverse the order of
the index set I, this chain becomes an inverse diagram whose limit is
isomorphic to the intersection of the D(i), that is,

lim
←Ð

D ≅ D(k)∣C

where C ∶= ⋂i D(i) and k ∈ I is arbitrary.
(b) Let K be a field and D(n) ∶= K[x]/(xn), for n < ω, the ring of

polynomials over K of degree less than n. The directed limit lim
←Ð

D ≅
K[[x]] is isomorphic to the ring of formal power series over K.
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3. Directed limits and colimits

As above we can characterise inverse limits in category-theoretical
terms.

Definition 3.19. Let D ∶ Iop → C be an inverse diagram.
(a) A cone from an object a ∈ C to D is a family µ = (µi)i∈Iobj of

morphisms µi ∶ a→ D(i) such that

D( f ) ○ µk = µi ,

for all f ∶ i→ k in Imor.

D(i)

D(k)

D(l)

a

D( f )

D( f ′)

µi

µk

µl

(b) A cone λ to a is limiting if, for every cone µ from some object b
to D, there exists a unique morphism h ∶ b→ a with

µi = λi ○ h , for all i ∈ I .

D(i)

D(k)

ab D( f )
λi

λk

µi

µk

h

(Thus, limiting cones are precisely the terminal objects in the category
of all cones of D.)

(c) An object a ∈ C is a limit of D if there exists a limiting cone from a
to D.

Lemma 3.20. Every κ-directed inverse diagram D ∶ Jop → Hom(Σ) has a
limiting cone from lim

←Ð
D to D.

Exercise 3.3. Prove Lemma 3.20.

Exercise 3.4. Let I be a category where the only morphisms are the
identity morphisms. Show that the limit of a diagram D ∶ I → Hom(Σ)
is isomorphic to the direct product

∏
i∈I

D(i) .
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4. Equivalent diagrams

In this section we study the question of when two diagrams have the
same colimit. Our aim is, given a diagram D ∶ I → C to find a diagram
E ∶ J → C with the same colimit where the index category J is simpler
in one way or another. We start by developing methods to prove that
two diagrams have the same colimit. These methods are based on the
notion of a cocone functor.

Definition 4.1. Let C be a category.
(a) Let µ be a cocone fromD ∶ I → C to some object a. For amorphism

f ∶ a→ b, we define

f ∗ µ ∶= ( f ○ µi)i∈I .

(b) The cocone functor Cone(D,−) ∶ C → Set associated with a dia-
gram D ∶ I → C maps

◆ objects a to the set Cone(D, a) of all cocones from D to a, and

◆ morphisms f ∶ a→ b to the function

Cone(D, f ) ∶ Cone(D, a)→ Cone(D, b) ∶ µ ↦ f ∗ µ .

(c) The covariant hom-functor associated with an object a ∈ C is the
functor

C(a,−) ∶ C → Set

mapping an object b ∈ C to the set C(a, b) of all morphisms from a to b
and mapping a morphism f ∶ b→ $ to the function

C(a, f ) ∶ C(a, b)→ C(a, $) ∶ g ↦ f ○ g .

Given a functor F ∶ C → D and an object b ∈ D, we will abbreviate
D(b,−) ○ F byD(b, F−).
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4. Equivalent diagrams

Remark. In this terminology a limiting cocone of D is an element λ ∈
Cone(D, a) such that, for every µ ∈ Cone(D, b), there exists a unique
morphism f ∶ a→ b with µ = f ∗ λ.
We start with a characterisation of limiting cocones in terms of the

cocone functor.

Lemma 4.2. Let D ∶ I → C be a diagram. A cocone λ ∈ Cone(D, a) is
limiting if, and only if, the family η = (ηb)b∈C of morphisms defined by

ηb ∶ C(a, b)→ Cone(D, b) ∶ f ↦ f ∗ λ

is a natural isomorphism η ∶ C(a,−) ≅ Cone(D,−).

Proof. (⇐) Suppose that η is a natural isomorphism. To show that λ is
limiting, consider a cocone µ ∈ Cone(D, b). Setting h ∶= η−1

b (µ), we
obtain the desired equation

µ = ηb(h) = h ∗ λ .

To conclude the proof, let h′ ∶ a → b be a second morphism with
µ = h′ ∗ λ. Then ηb(h′) = µ = ηb(h) implies, by injectivity of ηb, that
h′ = h.
(⇒)We start by showing that η is a natural transformation. Let f ∶

a→ b and g ∶ b→ $ be morphisms. Then

ηb(C(a, g)( f )) = ηb(g ○ f )
= (g ○ f ) ∗ λ
= g ∗ ( f ∗ λ) = Cone(D, g)(ηb( f )) .

Now, suppose that λ is limiting. We claim that ηb is bijective. For
surjectivity, let µ ∈ Cone(D, b). As λ is limiting, there exists a unique
morphism h ∶ a→ b such that µ = h ∗ λ. Hence, µ = ηb(h) ∈ rng ηb.

For injectivity, let f , f ′ ∶ a → b be morphisms with ηb( f ) = ηb( f ′).
We set µ ∶= ηb( f ). Since λ is limiting, there exists a unique morphism
h ∶ a→ b such that µ = h ∗ λ. As

f ∗ λ = ηb( f ) = µ = ηb( f ′) = f ′ ∗ λ ,
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it follows by uniqueness of h that f = h = f ′. ◻

The following lemma is our main tool to prove that two diagrams have
the same colimit.

Lemma 4.3. Let D ∶ I → C and E ∶ J → C be diagrams. Every natural
isomorphism η ∶ Cone(D,−) ≅ Cone(E ,−)maps limiting cocones of D
to limiting cocones of E.

Proof. Let λ ∈ Cone(D, a) be a limiting cocone of D. Then ηa(λ) ∈
Cone(E , a) is a cocone from E to a. It remains to prove that it is limiting.
Given an arbitrary cocone µ ∈ Cone(E , b), the preimage η−1

b (µ) is a
cocone from D to b. As λ is limiting, there exists a unique morphism
h ∶ a→ b such that

η−1
b (µ) = h ∗ λ = Cone(D, h)(λ) .

Applying ηb to this equation, we obtain

µ = ηb(Cone(D, h)(λ)) = Cone(E , h)(ηa(λ)) = h ∗ ηa(λ) ,

as desired. Furthermore, if h′ ∶ a → b is another morphism satisfying
µ = h′ ∗ ηa(λ), then

η−1
b (µ) = η−1

b (Cone(E , h′)(ηa(λ))) = Cone(D, h′)(λ) = h′ ∗ λ ,

and it follows by uniqueness of h that h′ = h. ◻

Below we will frequently simplify a diagram D ∶ I → C by finding a
functor F ∶ J → I such that D○F has the same colimit as D and the index
category J is simpler than I . To study the colimit of such a composition
D ○ F, we introduce two natural transformations πD ,F and τD ,F .

Definition 4.4. Let D ∶ I → C be a diagram.
(a) The projection πD ,F along a functor F ∶ J → I is the function

mapping a cocone µ of D to the family (µF(j))j∈J .
(b) The translation τG ,D by a functor G ∶ C → D is the function

mapping a cocone µ of D to the family G[µ] ∶= (G(µi))i∈I .
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Lemma 4.5. Let D ∶ I → C be a diagram.
(a) The projection along a functor F ∶ J → I is a natural transforma-

tion

πD ,F ∶ Cone(D,−)→ Cone(D ○ F ,−) .

(b) The translation by a functor G ∶ C → D is a natural transformation

τG ,D ∶ Cone(D,−)→ Cone(G ○ D,G−) .

(c) For diagrams F ∶ J → I and G ∶ K → J ,

πD ,F○G = πD○F ,G ○ πD ,F .

Proof. (a) Given a cocone µ from D to a, the image πD ,F(µ) is clearly a
cocone from D ○ F to a. Hence, it remains to prove that πD ,F is natural.
Let f ∶ a→ b be a morphism of C and µ ∈ Cone(D, a) a cocone. Then

πD ,F(Cone(D, f )(µ)) = πD ,F(( f ○ µi)i∈I)

= ( f ○ µF(j))j∈J

= Cone(D ○ F , f )(πD ,F(µ)) .

(b) Given a cocone µ from D to a, the image τG ,D(µ) is clearly a
cocone from G ○ D to G(a). Hence, it remains to prove that τG ,D is
natural. Let f ∶ a→ b be a morphism of C and µ ∈ Cone(D, a) a cocone.
Then

τG ,D(Cone(D, f )(µ)) = τG ,D(( f ○ µi)i∈I)

= (G( f ) ○G(µi))i∈I
= G( f ) ∗G[µ]
= Cone(G ○ D,G( f ))(τG ,D(µ)) .

(c) For µ ∈ Cone(D, a), we have

πD○F ,G(πD ,F(µ)) = πD○F ,G((µF(i))i∈I)

= (µF(G(k)))k∈K = πD ,F○G(µ) . ◻
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We extend the terminology of Definition b1.3.9 as follows.

Definition 4.6. Let F ∶ C → D be a functor and let P be a class of
diagrams.

(a) We say that F preserves P-colimits if, whenever λ is a limiting
cocone of a diagram D ∈ P , then F[λ] is a limiting cocone of F ○ D.

(b) We say that F reflects P-colimits if, whenever λ is a cocone of a
diagram D ∈ P such that F[λ] is limiting, then λ is also limiting.

(c) Analogously, we define when F preserves or reflects P-limits.

Lemma 4.7. Let F ∶ C → D be full and faithful.
(a) For every diagram D ∶ I → C,

τF ,D ∶ Cone(D,−)→ Cone(F ○ D, F−)

is a natural isomorphism.
(b) F reflects all limits and colimits.

Proof. (a) For injectivity, suppose that µ, µ′ ∈ Cone(D, a) are cocones
with F[µ] = F[µ′]. As F is faithful, F(µi) = F(µ′i ) implies that µi = µ′i ,
for all i ∈ I .

For surjectivity, let µ ∈ Cone(F ○ D, F(a)). As F is full, we can find
morphisms λi ∶ D(i) → a, for every i ∈ I , such that F(λi) = µi. Then
F[λ] = µ where λ ∶= (λi)i∈I . Hence, it remains to prove that λ is a cocone
of D. Let f ∶ i→ j be a morphism of I . Then

F(λj ○ D( f )) = F(λj) ○ F(D( f )) = µj ○ F(D( f )) = µi = F(λi)

implies, by faithfulness of F, that λj ○ D( f ) = λi.
(b) Let D ∶ I → C be a diagram and λ ∈ Cone(D, a) a cocone such

that F[λ] is limiting. Let

η ∶ D(F(a),−) ≅ Cone(F ○ D,−) ∶ f ↦ f ∗ F[λ]

be the natural isomorphism of Lemma 4.2. As F is full and faithful, the
natural transformation

ζ ∶ C(a,−)→ D(F(a), F−) ∶ f ↦ F( f )
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is also a natural isomorphism. By (a), it follows that the composition

τ−1
F ,D ○ η ○ ζ ∶ C(a,−)→ Cone(D,−)

is a natural isomorphism that maps a morphism f ∶ a→ b to

(τ−1
F ,D ○ η ○ ζ)( f ) = (τ−1

F ,D ○ η)(F( f ))
= τ−1

F ,D(F( f ) ∗ F[λ])
= τ−1

F ,D(F[ f ∗ λ]) = f ∗ λ .

Consequently, it follows by Lemma 4.2 that λ is limiting. ◻

Equivalences and skeletons
As a first application we show that isomorphic and equivalent diagrams
have the same colimit.

Lemma 4.8. Every natural isomorphism η ∶ D ≅ E between two diagrams
D, E ∶ I → J , induces a natural isomorphism

ζ ∶ Cone(D,−) ≅ Cone(E ,−) ∶ µ ↦ (µi ○ η−1
i )i∈I .

Proof. We define ζ and its inverse ξ by

ζ(µ) ∶= (µi ○ η−1
i )i∈I , for µ ∈ Cone(D, a) ,

ξ(µ) ∶= (µi ○ ηi)i∈I , for µ ∈ Cone(E , a) .

To show that ζ and ξ are well-defined, let µ ∈ Cone(D, a) and let
f ∶ i→ j be a morphism of I . Then

ζ(µ)j ○ E( f ) = µj ○ η−1
j ○ E( f )

= µj ○ D( f ) ○ η−1
i = µi ○ η−1

i = ζ(µ)i .

Hence, ζ(µ) is a cocone of E. In the same way, one can check that

ξ(µ)j ○ D( f ) = ξ(µ)i , for µ ∈ Cone(E , a) and f ∶ i→ j .
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Furthermore, ζ is a natural transformation since, for µ ∈ Cone(D, a)
and f ∶ a→ b,

ζ(Cone(D, f )(µ)) = ζ(( f ○ µi)i∈I)

= ( f ○ µi ○ η−1
i )i∈I

= Cone(E , f )((µi ○ η−1
i )i∈I)

= Cone(E , f )(ζ(µ)) .

Finally, note that

ξ(ζ(µ)) = ξ((µi ○ η−1
i )i∈I) = (µi ○ η−1

i ○ ηi)i∈I = µ ,

and, similarly, ζ(ξ(µ)) = µ. ◻

Proposition 4.9. Let F ∶ I → J be an equivalence between two small
categories I and J and let D ∶ J → C be a diagram. The projection

πD ,F ∶ Cone(D,−)→ Cone(D ○ F ,−)

along F is a natural isomorphism.

Proof. By Theorem b1.3.14, there exist a functor G ∶ J → I and natural
isomorphisms ρ ∶ G ○ F ≅ idI and η ∶ idJ ≅ F ○G such that

F(ρi) = η−1
F(i) and G(ηj) = ρ−1

G(j) .

It follows that D[η−1] is a natural isomorphism D ○ F ○G ≅ D which, by
Lemma 4.8, induces a natural isomorphism

ζ ∶ Cone(D ○ F ○G ,−)→ Cone(D,−) ∶ µ ↦ (µj ○ D(ηj))j∈J .

We claim that ζ ○ πD○F ,G is an inverse of πD ,F .

Cone(D,−) Cone(D ○ F ,−)

Cone(D ○ F ○G ,−)

πD ,F

πD○F ,Gζ
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For µ ∈ Cone(D, a), µF(G(j)) ○ D(ηj) = µj implies that

(ζ ○ πD○F ,G ○ πD ,F)(µ) = (ζ ○ πD○F ,G)((µF(i))i∈I)

= ζ((µF(G(j)))j∈J )

= (µF(G(j)) ○ D(ηj))j∈J = (µj)j∈J .

Similarly, let µ ∈ Cone(D ○ F , a). Then µi ○D(F(ρi)) = µG(F(i)) implies
that

(πD ,F ○ ζ ○ πD○F ,G)(µ) = (πD ,F ○ ζ)((µG(j))j∈J )

= πD ,F((µG(j) ○ D(ηj))j∈J )

= (µG(F(i)) ○ D(ηF(i)))i∈I

= (µG(F(i)) ○ D(F(ρi)
−1))

i∈I
= (µi)i∈I . ◻

Corollary 4.10. Let F ∶ I → J be an equivalence between two small
categories I and J . Then

lim
Ð→
(D ○ F) = lim

Ð→
D , for every diagram D ∶ J → C .

As an application of this corollary, we show how to get rid of iso-
morphic copies in the index category of a diagram.

Definition 4.11. A skeleton of a category C is a full subcategory C0 ⊆ C
such that

◆ every object of C is isomorphic to some object of C0,
◆ no two objects of C0 are isomorphic.

Example. A skeleton of Set is given by the full subcategory induced by
the class Cn of all cardinals.

We will prove in the next two lemmas that skeletons are unique up
to isomorphism, and that they are equivalent to the original category.
Consequently, given a diagram D ∶ I → C, we can replace the index
category I by its skeleton without changing the colimit.
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Lemma 4.12. If C0 and C1 are skeletons of C, there exists an isomorphism
C0 ≅ C1.

Proof. We define functors Fi ∶ Ci → C1−i , for i < 2, as follows. For
a ∈ Ci , let a(1−i) be the unique element of C1−i isomorphic to a. We fix
isomorphisms π0

a ∶ a→ a(1), for a ∈ Cobj
0 , and we set π1

a ∶= (π0
a(0)
)−1. We

define

F i(a) ∶= a(1−i) , for a ∈ Cobj
i ,

F i( f ) ∶= π i
b ○ f ○ (π i

a)
−1 , for f ∶ a→ b in Cmor

i .

We claim that F 1−i ○ F i = id. For a ∈ Cobj
i , we have

F 1−i(F i(a)) = F 1−i(a(1−i)) = (a(1−i))(i) = a .

For f ∶ a→ b in Cmor
i , we have

F 1−i(F i( f )) = F 1−i(π i
b ○ f ○ (π i

a)
−1)

= π1−i
b(1−i) ○ π i

b ○ f ○ (π i
a)
−1 ○ (π1−i

a(1−i))
−1

= (π i
b)
−1 ○ π i

b ○ f ○ (π i
a)
−1 ○ π i

a

= f . ◻

Lemma 4.13. Every skeleton C0 of a category C is equivalent to C.

Proof. Let I ∶ C0 → C be the inclusion functor. We define a functor
Q ∶ C → C0 as follows. For each a ∈ Cobj, let a! be the unique element
of C0 isomorphic to a and let πa ∶ a→ a! be an isomorphism. We set

Q(a) ∶= a! , for a ∈ Cobj ,
Q( f ) ∶= πb ○ f ○ π−1

a , for f ∶ a→ b in Cmor .

We claim that the families η ∶= (πa)a∈C0 and ρ ∶= (πa)a∈C are natural
isomorphisms η ∶ Q ○ I ≅ id and ρ ∶ I ○ Q ≅ id. Since each component
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of η and ρ is an isomorphism, it is sufficient to prove that η and ρ are
natural transformations. For η, let f ∶ a→ b be a morphism of C0. Then

Q(I( f )) ○ ηa = πb ○ f ○ π−1
a ○ πa = ηa ○ f .

For ρ, let f ∶ a→ b be a morphism of C. Then

I(Q( f )) ○ ρa = πb ○ f ○ π−1
a ○ πa = ρa ○ f . ◻

By Corollary 4.10, we obtain the following result.

Corollary 4.14. Let I0 ⊆ I be a skeleton of I and F ∶ I0 → I the inclusion
functor. Then

lim
Ð→

D = lim
Ð→
(D ○ F) , for every diagram D ∶ I → C .

Chains
As a second application we show how to reduce directed diagrams to
diagrams where the index category is a linear order.

Definition 4.15. A diagram D ∶ I → C is a chain if I is a linear order.

Proposition 4.16. Let C be a category with directed colimits, D ∶ J→ C a
directed diagram, and set κ ∶= ∣I∣. There exists a chain C ∶ κ → C such that

lim
Ð→

C = lim
Ð→

D

and, for every α < κ,

C(α) = lim
Ð→
(D ↾Hα) , for some directed subset Hα ⊆ I of

size ∣Hα ∣ < ∣I∣ .

Proof. By Proposition 3.6, there exists a chain (Hα)α<κ of directed sub-
sets Hα ⊆ I of size ∣Hα ∣ < κ such that I = ⋃α<κ Hα . For α < β < κ, let
λα be a limiting cocone of D ↾Hα and let

πα ∶ Cone(D,−)→ Cone(D ↾Hα ,−) ,
πα ,β ∶ Cone(D ↾Hβ ,−)→ Cone(D ↾Hα ,−) ,
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be the projections along the inclusion functors Hα → I and Hα → Hβ ,
respectively. We define Cobj by

C(α) ∶= lim
Ð→
(D ↾Hα) , for α < κ .

To define Cmor, let α < β. Since λα is limiting and πα ,β(λβ) is a cocone
of D ↾Hα , there exists a unique morphism

C(α, β) ∶ lim
Ð→
(D ↾Hα)→ lim

Ð→
(D ↾Hβ) ,

such that

πα ,β(λβ) = C(α, β) ∗ λα .

To prove that C is the desired chain, it is sufficient, by Lemma 4.3, to
find a natural isomorphism

η ∶ Cone(D,−) ≅ Cone(C ,−) .

By Lemma 4.2, there are natural isomorphisms

τα ∶ Cone(D ↾Hα ,−) ≅ C(C(α),−) , for α < κ ,

such that

µ = τα(µ) ∗ λα , for cocones µ of D ↾Hα ,
f = τα( f ∗ λα) , for all f ∶ C(α)→ a .

For a cocone µ of D, we set

η(µ) ∶= (τα(πα(µ)))α<κ .

First, let us show that η(µ) is indeed a cocone of C. For indices α < β,
Lemma 4.5 (c) implies that

τα(πα(µ)) = τα(πα ,β(πβ(µ)))

= τα(πα ,β(τβ(πβ(µ)) ∗ λβ))

= τα(τβ(πβ(µ)) ∗ πα ,β(λβ))

= τα((τβ(πβ(µ)) ○ C(α, β)) ∗ λα)

= τβ(πβ(µ)) ○ C(α, β) .
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Hence, (τα(πα(µ)))α<κ is a cocone from C to a.
To see that η is a natural transformation, let µ ∈ Cone(D, a) and

f ∶ a→ b. Then

ηb(Cone(D, f )(µ)) = (τα(πα( f ∗ µ)))α<κ

= (τα( f ∗ πα(µ)))α<κ

= (C(C(α), f )(τα(πα(µ))))α<κ

= f ∗ (τα(πα(µ)))α<κ

= Cone(C , f )(ηa(µ)) .

It remains to show that η is a natural isomorphism. We define an
inverse ζ of η as follows. Given µ ∈ Cone(D, a) and i ∈ I, we set

(ζ(µ))i ∶= µα ○ λα
i , for some α < κ such that i ∈ Hα .

First, we have to show that the value of ζ(µ) does not depend on the
choice of the ordinals α. For i ∈ Hα and α < β,

πα ,β(λβ) = C(α, β) ∗ λα

implies that

µα ○ λα
i = µβ ○ C(α, β) ○ λα

i = µβ ○ λβ
i .

To show that ζ is an inverse of η, we fix, for every i ∈ I, some ordinal
α i < κ with i ∈ Hα i . For µ ∈ Cone(D, a), it follows that

ζ(η(µ)) = ζ((τα(πα(µ)))α<κ)

= (τα i (πα i (µ)) ○ λα i
i )i∈I

= ((τα i (πα i (µ)) ∗ λα i )i)i∈I
= (πα i (µ)i)i∈I
= (µ i)i∈I .
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Conversely, for µ ∈ Cone(C , a), we have

η(ζ(µ)) = η((µα i ○ λα i
i )i∈I)

= (τβ(πβ((µα i ○ λα i
i )i∈I)))β<κ

= (τβ((µα i ○ λα i
i )i∈Hβ))β<κ

= (τβ((µβ ○ λβ
i )i∈Hβ))β<κ

= (τβ(µβ ∗ λβ))β<κ = (µβ)β<κ . ◻

Proposition 4.17. Let C be a category with directed colimits. A classK ⊆ C
is closed under arbitrary directed colimits if, and only if, it is closed under
colimits of chains.

Proof. (⇒) is trivial since every chain is directed. For (⇐), suppose that
K is closed under colimits of chains. Let D ∶ I → C be a directed diagram
such that D(i) ∈ K, for all i. We prove by induction on ∣I∣ that lim

Ð→
D ∈ K.

If I is finite then lim
Ð→

D = D(k) ∈ K, for some k. Hence, we may suppose
that I is infinite. Let C ∶ κ → C be the chain from Proposition 4.16. By
inductive hypothesis, it follows that C(α) ∈ K, for every α < κ. Since
C is a chain, it follows lim

Ð→
D = lim
Ð→

C ∈ K. ◻

5. Links and dense functors
There is a large class of cases where the projection πD ,F along a functor F
is a natural isomorphism. As we have seen, this implies that D ○ F has
the same colimit as D.

Alternating paths

Before introducing this class of functors,we develop several technical res-
ults to compare two functors. We start with the notion of an alternating
path.
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Definition 5.1. Let C be a category.
(a) For n < ω, we denote by Zn = ⟨Zn , ≤⟩ the partial order on the

elements

Zn ∶= {0∨ , . . . , n∨ , 0∧ , . . . , (n − 1)∧}

that is defined by

x < y : iff x = i∨ and y = k∧ for k ≤ i ≤ k + 1 .

1∨ 2∨ . . . (n − 1)∨ n∨0∨

1∧ 2∧ . . . (n − 1)∧0∧

And we write Z�n for the extension of Zn by a bottom element.

�

1∨ 2∨ . . . (n − 1)∨ n∨0∨

1∧ 2∧ . . . (n − 1)∧0∧

(b) A alternating path from a ∈ C to b ∈ C is a diagram P ∶ Zn → C, for
some n, such that P(0∨) = a and P(n∨) = b.

(c) We say that C is connected if, for every pair of objects a, b ∈ C, there
exists an alternating path from a to b.

Remark. We will frequently be interested in alternating paths in comma
categories (a ↓ F). In this case, an alternating path P ∶ Zn → (a ↓ F) from
f ∶ a→ F(i) to g ∶ a→ F(k) corresponds to a diagram P� ∶ Z�n → C with
P�(�, 0∨) = f and P�(�, n∨) = g.

a

F(i) F(k)

f g

Definition 5.2. Let F ∶ I → C a functor.
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(a) For two morphisms f , g ∈ (a ↓ F), we write

f ⩕F g : iff (a ↓ F) contains an alternating path
from f to g.

If f ⩕F g, we call f and g alternating-path equivalent, or a.p.-equivalent
for short. We denote the a.p.-equivalence class of f by [ f ]⩕F .

(b) For families f = ( f i)i∈I and g = (g i)i∈I of morphisms, we set

f ⩕F g : iff f i ⩕F g i for all i ∈ I .

Again, we denote the a.p.-equivalence class of f by [ f ]⩕F .

The following lemma collects the basic properties of the relation ⩕F .

Lemma 5.3. Let F ∶ I → C be a functor and f , g ∈ (a ↓ F).
(a) ⩕F is an equivalence relation.
(b) For every morphism h ∶ b→ a,

f ⩕F g implies f ○ h ⩕F g ○ h .

(c) For all functors D ∶ C → D,

f ⩕F g implies D( f ) ⩕D○F D(g) .

(d) For all functors G ∶ J → I and morphisms h, h′ ∈ Imor,

F(h) ○ f ⩕F○G F(h′) ○ g implies f ⩕F g .

Proof. (a) ⩕F is reflexive since, for every morphism f ∶ a→ F(i), there
is an alternating path P ∶ Z0 → (a ↓ F) of length 0 with P(0∨) = f . For
symmetry, note that, if there is an alternating path from f to g, we can
reverse it to obtain one from g to f . For transitivity, suppose that f ⩕F g
and g ⩕F h. Then we can find alternating paths P ∶ Zm → (a ↓ F) and
Q ∶ Zn → (a↓F) from f to g and from g to h, respectively.Concatenating
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5. Links and dense functors

these paths,we obtain the desired alternating path Zm+n → (a↓F) from f
to h.

(b) Let P ∶ Zn → (a ↓ F) be an alternating path from f to g. We obtain
an alternating path Q ∶ Zn → (b ↓ F) from f ○ h to g ○ h by setting

Q(x) ∶= P(x) ○ h and Q(x , y) ∶= P(x , y) , for x , y ∈ Zn .

(c) If P ∶ Zn → (a ↓ F) is an alternating path from f to g, then D ○ P ∶
Zn → (D(a) ↓ D ○ F) is an alternating path from D( f ) to D(g).

(d) Let P ∶ Zn → (a ↓ F ○G) be an alternating path from F(h) ○ f to
F(h′) ○ g. We can define an alternating path Q ∶ Zn → (a ↓ F) from f
to g by

Q(x) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

f if x = 0∨ ,
g if x = n∨ ,
P(x) otherwise .

Q(i∨ , k∧) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

G(P(0∨ , 0∧)) ○ h if (i , k) = (0, 0) ,
G(P(n∨ , (n − 1)∧)) ○ h′ if (i , k) = (n, n − 1) ,
G(P(i∨ , k∧)) otherwise .

a

F(i)

F(j)

F(G(k0))

F(G(k2))

F(G(k1))

F(G(l0))

F(G(l1))

f

g

P(1∨)

F(h)

F(h′)

F(G(P(0∨ , 0∧)))

F(G(P(1∨ , 0∧)))

F(G(P(1∨ , 1∧)))

F(G(P(2∨ , 1∧)))

◻
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The main reason why we are interested in alternating paths is the next
lemma.

Lemma 5.4. Let D ∶ I → C be a diagram and f ∶ a→ D(i), g ∶ a→ D(j)
morphisms. Then

f ⩕D g implies µi ○ f = µj ○ g , for all cocones µ of D .

Proof. Let P ∶ Zn → (a↓D) be an alternating path from f to g. We prove
the claim by induction on its length n.

For n = 0, we have f = g and there is nothing to do. If n > 1, we can
use the inductive hypothesis twice to obtain

µi ○ f = µk ○ P(1∨) = µj ○ g ,

where k ∈ I is the index such that P(1∨) ∶ a→ D(k).
Hence, it remains to prove the case where n = 1. Let h ∶ i → k and

h′ ∶ j→ k be morphisms of I such that

P(0∨ , 0∧) = D(h) and P(1∨ , 0∧) = D(h′) .

It follows that

µi ○ f = µi ○ P(0∨) = µk ○ D(h) ○ P(0∨)
= µk ○ D(h′) ○ P(1∨) = µj ○ P(1∨) = µj ○ g .

a

D(j)

D(i)

D(k) b

g

f

D(h′)

D(h)

µj

µi

µk

◻
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Links
The second technical notion we introduce is that of a link, which gener-
alises the notion of a natural transformation.

Definition 5.5. Let D ∶ I → C and E ∶ J → C be diagrams. A link
from D to E is a family t = (ti)i∈Iobj of morphisms

ti ∶ D(i)→ E(θ(i)) , for some function θ ∶ Iobj → J obj ,

satisfying

ti ⩕E tj ○ D( f ) ,

for all f ∶ i→ j in I . D(i) E(θ(i))

D(j) E(θ(j))

D( f )

ti

tj

We call θ the index map of the link.

Example. (a) Every natural transformation η ∶ D → E is a link from D
to E with index map θ(i) ∶= i.

(b) Every cocone µ ∈ Cone(D, a) is a link from D to the singleton
functor [1]→ C mapping the unique object 0 ∈ [1] to a. The indexmap is
θ(i) ∶= 0. Alternatively, we can regard µ as a link from D to the identity
functor idC ∶ C → C with index map θ(i) ∶= a.

(c) Every morphism f ∶ a → b can be regarded as a link from the
functor [1]→ C ∶ 0↦ a to the functor [1]→ C ∶ 0↦ b.

We extend the componentwise composition operation ∗ and the pro-
jection transformation from cocones to links as follows.

Definition 5.6. Let D ∶ I → C, E ∶ J → C, and F ∶ K → C be diagrams,
s a link from E to F, t a link from D to E.

(a) The composition of s and t is the family

s ∗ t ∶= (sθ(i) ○ ti)i∈I ,

where θ is the index map of t.
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b3. Universal constructions

(b) The projection along t is the function πt mapping a cocone µ of E
to µ ∗ t.

(c) The inclusion link associated with D is the family

inD ∶= (idD(i))i∈I .

Lemma 5.7. Let D ∶ I → C, E ∶ J → C, and F ∶ K → C be diagrams,
s, s′ links from E to F, and t, t′ links from D to E.

(a) s ∗ t is a link from D to F.

(b) If s ⩕E s′ and t ⩕F t′, then s ∗ t ⩕F s′ ∗ t′.

(c) For morphisms f ∶ a→ D(i) and g ∶ a→ D(j),

f ⩕D g implies ti ○ f ⩕E tj ○ g .

(d) The inclusion link inE associated with E is a link from E to the
identity functor idC ∶ C → C such that

inE ∗ t = t and s ∗ inE = s .

Proof. We start with (c), which generalises Lemma 5.4. Choose an al-
ternating path P ∶ Zn → (a ↓ D) from f to g, and suppose that

P(k∨ , k∧) = hk ∶ mk → nk

and P((k + 1)∨ , k∧) = h′k ∶ mk+1 → nk .

As t is a link, we have

tmk ⩕E tnk ○ D(hk) and tmk+1 ⩕E tnk ○ D(h
′
k) ,

which implies that

tmk ○ P(k∨) ⩕E tnk ○ D(hk) ○ P(k∨)
= tnk ○ D(h

′
k) ○ P((k + 1)∨) ⩕E tmk+1 ○ P((k + 1)∨) .
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5. Links and dense functors

a

D(mk)

D(mk+1)

D(nk)

E(θ(mk))

E(θ(mk+1))

E(θ(nk))

P(k∨)

P((k + 1)∨)

D(hk)

D(h′k)

tmk

tmk+1

tnk

Consequently, it follows by transitivity that

ti ○ f = tm0 ○ P(0∨) ⩕E tmn ○ P(n∨) = tj ○ g .

(a) Let f ∶ i→ j be a morphism of I . Since t is a link, we have

ti ⩕E tj ○ D( f ) ,

which, by (c), implies that

sθ(i) ○ ti ⩕F sθ(j) ○ tj ○ D( f ) .

Hence, s ∗ t is a link from D to F.
(b) Let θ and θ′ be the index maps of t and t′, respectively. For every

i ∈ I , it follows by (c) that

ti ⩕E t′i implies sθ(i) ○ ti ⩕E sθ′(i) ○ t′i .

Furthermore,

sθ′(i) ⩕F s′θ′(i) implies sθ′(i) ○ t′i ⩕F s′θ′(i) ○ t′i .

By transitivity, it follows that

sθ(i) ○ ti ⩕F s′θ′(i) ○ t′i .

(d) For every morphism f ∶ i→ j of I , we have

E( f ) ○ idE(i) = E( f ) = idE(j) ○ idE(j) ○ E( f ) .
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b3. Universal constructions

Hence, the morphisms E( f ) and idE(j) form an alternating path from
idE(i) to idE(j) ○ E( f ) in (E(i) ↓ idC). Furthermore,

inE ∗ t = (idE(θ(i)) ○ ti)i∈I = (ti)i∈I = t
and s ∗ inE = (sj ○ idE(j))j∈J = (sj)j∈J = s . ◻

The concept of a link being quite weak, we cannot prove many state-
ments about links in general. Their main property is the fact that they
allow us to transfer cocones of E to cocones of D. In light of Lemma 5.9
below, the following lemma is a generalisation of Lemma 4.5 (a).

Lemma 5.8. Let t be a link from D ∶ I → C to E ∶ J → C.
(a) The projection πt along t is a natural transformation

πt ∶ Cone(E ,−)→ Cone(D,−) .

(b) s ⩕E t implies πs = πt , for every link s from D to E.
(c) πinE = id and πt∗s = πs ○ πt , for every link s from some diagram F

to D.

Proof. (a) We start by showing that πt maps cocones of E to cocones
of D. Let θ be the index map of t, µ ∈ Cone(E , a), and let g ∶ i→ j be a
morphism of I . As t is a link, we have

ti ⩕E tj ○ D(g) ,

which, by Lemma 5.4, implies that

µθ(i) ○ ti = µθ(j) ○ tj ○ D(g) .

Hence, πt(µ) = µ ∗ t is a cocone of D.
To show that πt is a natural transformation, let µ ∈ Cone(E , a) and

f ∶ a→ b. Then

πt(Cone(E , f )(µ)) = ( f ∗ µ) ∗ t
= f ∗ (µ ∗ t) = Cone(D, f )(πt(µ)) .
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5. Links and dense functors

(b) Let ρ and θ be the index maps of, respectively, s and t. Consider a
cocone µ ∈ Cone(E , a) and an index i ∈ I . Since si ⩕E ti, it follows by
Lemma 5.4 that

µρ(i) ○ si = µθ(i) ○ ti .

Hence, πs(µ) = µ ∗ s = µ ∗ t = πt(µ).
(c) For every cocone µ of E,

πinE (µ) = µ ∗ inE = µ ,
and πt∗s(µ) = µ ∗ t ∗ s = πs(πt(µ)) . ◻

Let us also make a remark about the behaviour of links when com-
posed with a functor.

Lemma 5.9. Let D ∶ I → C be a diagram and t a link from F ∶ J → I to
G ∶ K → I .

(a) D[t] ∶= (D(tj))j∈J is a link from D ○ F to D ○G.
(b) πD ,F = πD[t] ○ πD ,G .

Cone(D,−)

Cone(D ○ F ,−) Cone(D ○G ,−)

πD ,F πD ,G

πD[t]

(c) πD ,F = πD[inF].

Proof. (a) Let g ∶ i→ j be a morphism of J . As t is a link, we have

tj ○ F(g) ⩕G ti ,

which, by Lemma 5.3 (c), implies that

D(tj) ○ D(F(g)) ⩕D○G D(ti) .

Hence, D[t] is a link from D ○ F to D ○G.
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(b) Let µ ∈ Cone(D, a). Then

πD[t](πD ,G(µ)) = πD[t]((µG(k))k∈K)

= (µG(θ(j)) ○ D(tj))j∈J

= (µF(j))j∈J = πD ,F(µ) ,

where the third step follows from the fact that µ is a cocone of D.
(c) For a cocone µ of D,

πD[inF](µ) = µ ∗ D[inF]

= (µF(j) ○ D(idF(j)))j∈J = (µF(j))j∈J = πD ,F(µ) . ◻

We have seen in Lemma 5.7 that a.p-equivalence of links is a con-
gruence with respect to composition. Consequently, we can define a
category of a.p.-equivalence classes of links between diagrams.

Definition 5.10. Let C be a category and P a class of small categories.
The inductive P-completion of C is the category IndP(C) whose objects
are all diagrams D ∶ I → C with I ∈ P . A morphism D → E between
two diagrams D and E is an a.p.-equivalence class [t]⩕E of a link t from D
to E. We write Indall(C) if P is the class of all small categories.

Let us conclude this section with the following remarks.

Proposition 5.11. Two diagrams D ∶ I → C and E ∶ J → C that are
isomorphic in Indall(C) have the same colimits.

Proof. Let [s]⩕E ∶ D → E be an isomorphism with inverse [t]⩕D ∶ E → D.
By Lemma 5.8,

t ∗ s ⩕D inD implies πs ○ πt= πt∗s = πinD = id ,
and s ∗ t ⩕E inE implies πt ○ πs= πs∗t = πinE = id .

Hence, πs ∶ Cone(E ,−) → Cone(D,−) is a natural isomorphism and
the claim follows by Lemma 4.3. ◻
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5. Links and dense functors

The following exercise presents an alternative,more abstract definition
of the morphisms of Indall(C).

Exercise 5.1. Let D ∶ I → C and E ∶ J → C be diagrams.
(a) Prove that, for every object a ∈ C, there exists a bijection between

lim
Ð→
C(a, E−) and the set

{ [ f ]⩕E ∣ f ∶ a→ E(j) for some j ∈ J } .

(b) Prove that there exists a bijection

Indall(C)(D, E)→ lim
←ÐD

lim
Ð→E

C(D−, E−) ,

where lim
←ÐD

lim
Ð→E

C(D−, E−) denotes the limit of the functor

a↦ lim
Ð→
C(D(a), E−) .

Dense functors

After these preliminaries, we can define the class of functors preserving
colimits that we mentioned above.

Definition 5.12. Let C be a category. A functor F ∶ I → C is dense if, for
every object a ∈ C, the comma category (a ↓ F) is (d1) non-empty and
(d2) connected.

Lemma 5.13. Let F ∶ I → J and G ∶ J → C be dense functors. Then
G ○ F is also dense.

We can characterise dense functors in terms of links.

Lemma 5.14. Let F ∶ I → C be a diagram into a small category C and let
inF be the inclusion link associated with F. Then F is dense if, and only if,
the morphism [inF]

⩕
idC ∶ F → idC of Indall(C) has a left inverse.
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Proof. (⇒) Let F be dense. We use (d1) to select, for each a ∈ C, a
morphism ta ∶ a→ F(θ(a)) ∈ (a ↓ F). We claim that t ∶= (ta)a∈C is a link
such that [t]⩕F ○ [inF]

⩕
idC = id.

To check that t is a link, let f ∶ a→ b be a morphism of C. Then we can
use (d2) to find the desired alternating path from ta ∈ (a ↓ F) to tb ○ f ∈
(a↓F). To show that t is a left inverse of inF , let i ∈ I . By (d2), there exists
an alternating path from tF(i) to idF(i). Hence, tF(i) ○ idF(i) ⩕F idF(i).
(⇐) Let [t]⩕F be a left inverse of [inF]

⩕
idC . Then the morphisms ta ∈

(a↓F)witness (d1). To check (d2), consider two morphisms f ∶ a→ F(i)
and g ∶ a→ F(k). Since [t]⩕F ○ [inF]

⩕
idC = id, we have

tF(i) = tF(i) ○ idF(i) ⩕F idF(i) ,
tF(k) = tF(k) ○ idF(k) ⩕F idF(k) ,

which implies that

tF(i) ○ f ⩕F idF(i) ○ f = f ,
tF(k) ○ g ⩕F idF(k) ○ g = g .

As t is a link from idC to F, it follows that

f ⩕F tF(i) ○ f ⩕F ta ⩕F tF(k) ○ g ⩕F g . ◻

Let us finally prove that the projection along a dense functor preserves
colimits.

Proposition 5.15. Let C be a category and D ∶ I → C a diagram. The
projection

πD ,F ∶ Cone(D,−)→ Cone(D ○ F ,−)

along a dense functor F ∶ S → I is a natural isomorphism.

Proof. We have already seen in Lemma 4.5 (a) that πD ,F is a natural
transformation. To show that it is a natural isomorphism, we construct
an inverse of πD ,F .
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By Lemma 5.14, [inF]
⩕
idI ∶ F → idI has a left inverse [t]⩕F ∶ idI → F.

According to Lemma 5.9, its image D[t] under D is a link from D to
D ○ F satisfying

πD[t] ○ πD ,F = πD ,id = id .

Hence, πD[t] is a left inverse of πD ,F . To show that it is also a right inverse,
note that, by choice of t as left inverse to inF , we have

tF(i) = tF(i) ○ idF(i) ⩕F idF(i) ,

which implies, by Lemma 5.3 (c), that

D(tF(i)) ⩕D○F D(idF(i)) .

For µ ∈ Cone(D ○ F , a), it therefore follows by Lemma 5.4 that

πD ,F(πD[t](µ)) = πD ,F((µθ(i) ○ D(ti))i∈I)

= (µθ(F(i)) ○ D(tF(i)))i∈S

= (µi ○ D(idF(i)))i∈S
= µ . ◻

Corollary 5.16. Let D ∶ I → C be a diagram with a colimit. If F ∶ J → I
is dense, then lim

Ð→
(D ○ F) = lim

Ð→
D.
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1. Filtered limits and inductive completions
Recall that every partial order can be considered as a category where
there is at most onemorphism between any two objects. Using this corres-
pondence, we can generalise the notion of being κ-directed from partial
orders to arbitrary categories where there may be several morphisms
between two objects.

Definition 1.1. (a) A category C is κ-filtered if
(f1) for every set X ⊆ Cobj of size ∣X∣ < κ, there exist an object b ∈ C

and morphisms a→ b, for each a ∈ X ;
(f2) for every pair of objects a, b ∈ C and every set X ⊆ C(a, b) of size

∣X∣ < κ, there exist an object $ ∈ C and a morphism g ∶ b→ $ such
that

g ○ f = g ○ f ′ , for all f , f ′ ∈ X .

For κ = ℵ0, we call C simply filtered.
(b) A κ-filtered diagram is a diagram D ∶ I → C where the index

category I is κ-filtered. The colimit of such a diagram is called a κ-filtered
colimit.

Conditions (f1) and (f2) state that certain diagrams have a cocone.
It turns out that both conditions together imply that every sufficiently
small diagram has a cocone.

Lemma 1.2. A category C is κ-filtered if, and only if, there is a cocone for
every diagram D ∶ I → C of size less than κ.

logic, algebra & geometry 2024-04-09 — ©achim blumensath 285



b4. Accessible categories

Proof. (⇐) is obvious. For (⇒), let D ∶ I → C be a diagram of size less
than κ. By (f1), there exist an object a and morphisms gi ∶ D(i)→ a, for
i ∈ I . By (f2), we can find, for every morphism f ∶ i→ k of I , an object
b f ∈ C and a morphism h f ∶ a→ b f such that

h f ○ gi = h f ○ gk ○ D( f ) .

By (f1), there exist an object $ ∈ C and morphisms k f ∶ b f → $, for
f ∈ Imor. By (f2), we can find an object d ∈ C and a morphism e ∶ $→ d
such that

e ○ k f ○ h f = e ○ k f ′ ○ h f ′ , for all f , f ′ ∈ Imor .

D(i)

D(k)

D(j)

a

a

a

b f

b f ′

$

$

dgi

D( f )

D( f ′)

gk

gj

h f

h f ′

h f

h f ′

k f

k f ′

e

e

Set φ ∶= e ○ k f ○h f , for an arbitrary f ∈ Imor. Then φ∗ g is the desired
cocone since, for every f ∶ i→ k in Imor,

φ ○ gk ○ D( f ) = e ○ k f ○ h f ○ gk ○ D( f )
= e ○ k f ○ h f ○ gi

= φ ○ gi . ◻

It follows that a.p.-equivalence is especially simple for filtered dia-
grams.

Corollary 1.3. Let D ∶ I → C be a filtered diagram and f ∶ a→ D(i) and
g ∶ a→ D(j)morphisms. Then

f ⩕D g iff there are h ∶ i→ k and h′ ∶ j→ k in I such that
D(h) ○ f = D(h′) ○ g .
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Proof. (⇐) If D(h) ○ f = D(h′) ○ g then h and h′ form an alternating
path P ∶ Z1 → (a ↓ D) of length 1 from f to g.
(⇒) Fix an alternating path P ∶ Zn → (a ↓ D) from f to g and let

Q ∶ (a ↓ D)→ I be the projection defined by

Q(g) ∶= k , for objects g ∶ a→ D(k) ,
Q(h) ∶= h , for morphisms h ∶ g → g′ .

Then Q○P ∶ Zn → I is an alternating path in I and Lemma 1.2 provides a
cocone µ from Q○P to some object m ∈ I .By Lemma b3.4.5 (b), it follows
that D[µ] is a cocone from D ○Q ○ P to D(m). Since all morphisms of P
are in the range of D ○ Q ○ P, it follows that P factorises as P = I ○ P0,
where P0 ∶ Zn → (a ↓ D ○ Q ○ P) is an alternating path from f to g and
I ∶ (a↓D ○ Q ○ P)→ (a↓D) is the inclusion functor. Hence, f ⩕D○Q○P g
and, applying Lemma b3.5.4 to the diagram D ○ Q ○ P, we obtain

D(µ0) ○ f = D(µn) ○ g . ◻

When considering κ-filtered categories, we will frequently restrict our
attention to the case where κ is regular. This practice is justified by the
following lemma.

Lemma 1.4. Let κ be a singular cardinal. Every κ-filtered category C is
κ+-filtered.

Proof. Let C be κ-filtered. To show that it is κ+-filtered, we have to check
two conditions.

(f1) Let X ⊆ Cobj be a set of size ∣X∣ ≤ κ. As κ is singular, we can
write X as a union ⋃α<λ Xα of λ < κ sets of size ∣Xα ∣ < κ. Since C is
κ-filtered, it follows that, for every α < λ, there exist an object aα ∈ C and
morphisms f αb ∶ b→ aα , for b ∈ Xα . Similarly, we can find an object $ ∈ C
and morphisms gα ∶ aα → $, for α < λ. For each b ∈ X, fix an ordinal
α(b) such that b ∈ Xα(b). It follows that the family

gα(b) ○ f α(b)b ∶ b→ $ , for b ∈ X ,
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witnesses (f1).
(f2) Let X ⊆ C(a, b) be a set of size ∣X∣ ≤ κ. We write X as the union

⋃α<λ Xα of an increasing sequence (Xα)α<λ of λ < κ sets of size ∣Xα ∣ < κ.
Since C is κ-filtered, it follows that, for every α < λ, there exist an object
$α ∈ C and a morphism gα ∶ b→ $α such that

gα ○ f = gα ○ f ′ , for all f , f ′ ∈ Xα .

By Lemma 1.2, we can find an object d and morphisms hα ∶ $α → d and
h′ ∶ b→ d such that

hα ○ gα = h′ , for all α < λ .

We claim that h′ is the desired morphism. Let f , f ′ ∈ X. Then f ∈ Xα
and f ′ ∈ Xβ , for some α, β < λ. Setting γ ∶= max {α, β}, it follows that
f , f ′ ∈ Xγ and

h′ ○ f = hγ ○ gγ ○ f = hγ ○ gγ ○ f ′ = h′ ○ f ′ . ◻

Reducing filtered to directed colimits

We will show below that every κ-filtered colimit can also be obtained
as colimit of a κ-directed diagram. Hence, in terms of colimits this
generalisation does not provide more expressive power. We start with
some technical lemmas.

Lemma 1.5. Let I and J be κ-filtered categories.

(a) I ×J is κ-filtered.

(b) The projection functor P ∶ I ×J → I is dense.

Proof. (a) (f1) Let ⟨ai , bi⟩i<γ be a family of objects of size γ < κ. Since
I and J are κ-filtered, we can find objects $ ∈ I and d ∈ J and morph-
isms f i ∶ ai → $ and g i ∶ bi → d, for i < γ. Consequently, we obtain
morphisms ⟨ f i , g i⟩ ∶ ⟨ai , bi⟩→ ⟨$, d⟩, for i < γ.
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1. Filtered limits and inductive completions

(f2) Consider a family of morphisms

⟨ f i , g i⟩ ∶ ⟨a, b⟩→ ⟨$, d⟩ , i < γ ,

of size γ < κ. Since I and J are κ-filtered, we can find morphisms
h ∶ $→ e in I and k ∶ d→ f in J such that

h ○ f i = h ○ f j and k ○ g i = k ○ g j , for all i , j < γ .

Consequently,

⟨h, k⟩ ○ ⟨ f i , g i⟩ = ⟨h, k⟩ ○ ⟨ f j , g j⟩ , for all i , j < γ .

(b) (d1) We can use (f1) with X = ∅ to find some object b ∈ J . It
follows that, for every a ∈ I , we have a morphism ida ∶ a→ P(⟨a, b⟩).

(d2) Let f ∶ a → P(⟨b, $⟩) and f ′ ∶ a → P(⟨b′ , $′⟩) be morphisms
of I . By Lemma 1.2, there exist morphisms g ∶ b → d, g′ ∶ b′ → d, and
g′′ ∶ a→ d such that g ○ f = g′′ = g′ ○ f ′. AsJ is κ-filtered, there exist an
object e ∈ J and morphisms h ∶ $→ e and h′ ∶ $′ → e. Consequently, we
obtain morphisms ⟨g , h⟩ ∶ ⟨b, $⟩ → ⟨d, e⟩ and ⟨g′ , h′⟩ ∶ ⟨b′ , $′⟩ → ⟨d, e⟩
such that

P(⟨g , h⟩) ○ f = P(⟨g′ , h′⟩) ○ f ′ .

These two morphisms form an alternating path from f to f ′. ◻

Lemma 1.6. Let I be a κ-filtered category and K a κ-directed partial order
without maximal elements. Every subcategoryA ⊆ I × K with ∣Amor∣ < κ
can be extended to a subcategory A ⊆ A+ ⊆ I × K such that ∣Amor

+ ∣ < κ
and A+ has a unique terminal object.

Proof. Let A ⊆ I × K be a subcategory with less than κ morphisms.
According to Lemma 1.5, the product I×K is κ-filtered. Therefore,we can
use Lemma 1.2 to find a cocone µ from the inclusion functorA→ I ×K
to some object ⟨b, k⟩ ∈ I × K. Since K has no maximal element, there
exists some l ∈ K with l > k. Let h ∶= ⟨idb , h′⟩ ∶ ⟨b, k⟩ → ⟨b, l⟩ be the
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morphismswhose second component is the uniquemorphism h′ ∶ k → l
of K. LetA+ be the category obtained fromA by adding the object ⟨b, l⟩,
the identity morphism id⟨b, l⟩, and the morphisms

h ○ µ⟨a, i⟩ ∶ ⟨a, i⟩→ ⟨b, l⟩ , for all ⟨a, i⟩ ∈ A .

(Note that these morphisms are closed under composition since h ∗ µ is
a cocone.) Then ⟨b, l⟩ is the unique terminal object ofA+. ◻

Theorem 1.7. Let κ be a regular cardinal. For every small κ-filtered cat-
egory C, there exist a dense κ-directed diagram D ∶ J→ C.

Proof. Set J ∶= C × κ and let P ∶ J → C be the projection functor. By
Lemma 1.5, J is κ-filtered and P is dense. It is therefore sufficient to find
a dense κ-directed diagram D ∶ J→ J . Then the composition P ○ D is
the desired dense κ-directed diagram.
As index set we use the partial order J ∶= ⟨I , ⊆⟩ where I is the set

of all subcategories A ⊆ J with ∣Amor∣ < κ such that A has a unique
terminal object. To show that J is κ-directed, consider a set X ⊆ I of size
∣X∣ < κ. LetA be the subcategory of J generated by the morphisms in

⋃
B∈X
Bmor .

Since κ is regular,A still has less than κ morphisms. By Lemma 1.6, there
exists a subcategoryA ⊆ A+ ⊆ J with a unique terminal object. Hence,
A+ ∈ I is an upper bound of X.

Let D ∶ J → J be the functor mapping a subcategory A ∈ J to its
terminal object andmapping a pairA ⊆ B of subcategories to the unique
morphism from the terminal object ofA to the terminal object of B. We
claim that D is dense in J .

For (d1), let $ ∈ J . The subcategory A of J consisting just of the
object $ and its identity morphism has a unique terminal object. Hence,
A ∈ J and D(A) = $. Consequently, the identity morphism id$ ∶ $ →
D(A) has the desired properties.
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For (d2), let f ∶ $→ D(A0) and f ′ ∶ $→ D(A1) be morphisms of J .
LetB be a subcategory ofJ of size ∣Bmor∣ < κ containing f , f ′ and every
morphism of Amor

0 ∪Amor
1 . By Lemma 1.6, there exists a subcategory

B+ ∈ I containing B. Since D(B+) is a terminal object, B+ contains
unique morphisms

h ∶ $→ D(B+) ,
g ∶ D(A0)→ D(B+) ,

g′ ∶ D(A1)→ D(B+) .
$

D(A0)

D(A1)

D(B+)

f

f ′

h

g

g′

By uniqueness, it follows that g ○ f = h = g′ ○ f ′. Hence, g and g′ from
an alternating path from f to f ′ ◻

Corollary 1.8. Let κ be a regular cardinal. For every κ-filtered diagram
D ∶ I → C with a colimit, there exists a κ-directed diagram F ∶ K → I
such that lim

Ð→
(D ○ F) = lim

Ð→
D.

Corollary 1.9. Let κ be a regular cardinal. A functor F ∶ C → D preserves
κ-filtered colimits if, and only if, it preserves κ-directed ones.

Inductive completions

There is a general way to construct the closure of a category under κ-
filtered colimits.

Definition 1.10. Let C be a category, κ an infinite cardinal, and λ either
an infinite cardinal or λ =∞.

(a) The inductive (κ, λ)-completion of C is the category

Indλ
κ(C) ∶= IndP λ

κ
(C) ,
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where P λ
κ is the class of all small κ-filtered categories of size less than λ.

For κ = ℵ0 and λ =∞, we drop the indices and simply write Ind(C).
(b) Let P be a class of small categories containing the singleton cat-

egory [1]. The inclusion functor I ∶ C → IndP(C) sends an object a ∈ C to
the singleton diagram Ca ∶ [1]→ C ∶ 0↦ a and a morphism f ∶ a→ b to
the link t = (t i)i∈[1] from Ca to Cb that consists of the morphism t0 ∶= f .

We will show below that Indλ
κ(C) is the closure of C under κ-filtered

colimits of size less than λ. We start by determining the colimit of a
κ-filtered diagram D ∶ I → Indλ

κ(C). This colimit consists of a large
diagram U that is built up from the diagrams D(i), for i ∈ I .

Definition 1.11. Let D ∶ I → Indλ
κ(C) be a diagram and, for i ∈ I , let

K(i) be the index category of the diagram D(i) ∶ K(i)→ C.
(a) A union of D is a diagram U ∶ J → C of the following form. For

each morphism f ∶ i → j of I , fix a link t( f ) from D(i) to D(j) such
that D( f ) = [t( f )]⩕D(j). Let S be the subcategory of C generated by all
morphisms in

⋃
i∈Iobj

rngD(i)mor ∪ ⋃
f ∈Imor

t( f ) .

The index category J has the objects

J obj ∶= ⊍
i∈Iobj

K(i)obj = { ⟨i, k⟩ ∣ i ∈ I , k ∈ K(i) } ,

and the morphisms

J (⟨i, k⟩, ⟨j, l⟩) ∶= S(D(i)(k),D(j)(l)) .

The functor U ∶ J → C is defined by

U(⟨i, k⟩) ∶= D(i)(k) , for ⟨i, k⟩ ∈ J obj ,
U( f ) ∶= f , for f ∈ J mor .
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(b) Let µ be a cocone from D to some object E ∈ Indλ
κ(C) and, for

i ∈ I , let ti = (ti
k)k∈K(i) be a link such that µi = [ti]⩕E . The union of µ is

the a.p.-equivalence class [t]⩕E of the family

t ∶= (ti
k)⟨i,k⟩∈J .

Remark. Note that, due to the choice of the links t( f ), a diagram D
might have several unions. It will follow from Proposition 1.13 below that
they are all isomorphic.

To prove that the union of a diagram is its colimit, we start with a
lemma collecting several technical properties of the union operation.

Lemma 1.12. Let U ∶ J → C be a union of the diagram D ∶ I → Indλ
κ(C),

and let E ∈ Indλ
κ(C).

(a) Every cocone µ ∈ Cone(D, E) has a unique union.
(b) The union [u]⩕E of µ ∈ Cone(D, E) is a morphism [u]⩕E ∶ U → E

of Indall(C).
(c) The function ηE ∶ Cone(D, E) → Indall(C)(U , E) that maps a

cocone to its union is bijective.
(d) For i ∈ I , the inclusion link inD(i) is a link from D(i) to U.

Proof. Let K(i) be the index category of D(i) and, for f ∈ Imor, let
t( f ) be the representative of D( f ) used to construct the union U .

(a) We have to show that the union of µ is independent of the choice
of the links. For each i ∈ I , suppose that ui and w i are a.p.-equivalent
links from D(i) to E such that

[ui]⩕E = µi = [w i]⩕E .

Then [ui
k]
⩕
E = [w

i
k]
⩕
E , for all ⟨i, k⟩ ∈ J , which implies that the corres-

ponding links u = (ui
k)⟨i,k⟩∈J and w = (w i

k)⟨i,k⟩∈J are a.p.-equivalent and
induce the same value [u]⩕E = [w]

⩕
E .

(b) Let µ ∈ Cone(D, E) be a coconewhere µi = [ui]⩕E , and let [u]⩕E be
the union of µ. We have to show that u is a link from U to E. As every
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morphism of J is a finite composition of morphisms of the form t( f )k
and D(i)(g), it is sufficient to prove the equivalence

uj
l ○U(h) ⩕E ui

k

for morphisms h ∶ ⟨i, k⟩→ ⟨j, l⟩ of this form.
For h = D(i)(g) with g ∶ k → l inK(i), note that ui is a link from D(i)

to E. Hence,

ui
l ○ D(i)(g) ⩕E ui

k .

For h = t( f )k with f ∶ i → j in I and k ∈ K(i), the fact that µ is a
cocone of D implies that [uj]⩕E ○ [t( f )]

⩕
D(j) = [u

i]⩕E . Hence,

uj
θ(k) ○ t( f )k ⩕E ui

k ,

where θ is the index map of t( f ).
(c) We have seen in (b) that ηE maps cocones from D to E to morph-

isms in Indall(C)(U , E). Hence, it remains to prove that ηE is bijective.
For injectivity, consider two cocones µ, µ′ ∈ Cone(D, E) such that

ηE(µ) = ηE(µ′). Fix links ui, w i, and t = (ti,k)⟨i,k⟩∈J such that

µi = [ui]⩕E , µ′i = [w
i]⩕E , and ηE(µ) = [t]⩕E .

Then [ui
k]
⩕
E = [t⟨i,k⟩]

⩕
E = [w

i
k]
⩕
E for all indices i, k. Consequently,

µi = [ui]⩕E = [w
i]⩕E = µ′i , for all i ∈ I ,

which implies that µ = µ′.
For surjectivity, let s = (si,k)⟨i,k⟩∈J be a link from U to E. For i ∈ I , we

set si ∶= (si,k)k∈K(i) and µ ∶= ([si]⩕E )i∈I . As ηE(µ) = [s]⩕E it is sufficient
to prove that µ is a cocone from D to E.
We start by showing that each family si is a link from D(i) to E. Let

g ∶ k → l be a morphism of K(i). As s is a link from U to E, we have
sj,l ○ D(i)(g) ⩕E si,k, as desired.
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It remains to show that µ is a cocone. Let f ∶ i→ j be a morphism of I
and let θ be the index map of t( f ). Since s is a link from U to E,

sj,θ(k) ○U(t( f )k) ⩕E si,k , for every k ∈ K(i) .

Consequently,

µj ○ D( f ) = [sj]⩕E ○ [t( f )]
⩕
D(j) = [s

i]⩕E = µi .

(d) Consider a morphism g ∶ k → l ofK(i) and set f ∶= D(i)(g). Then
f ∶ ⟨i, k⟩→ ⟨i, l⟩ in J and

U(id⟨i,l⟩) ○ idD(i)(l) ○ D(i)(g) = f = U( f ) = U( f ) ○ idD(i)(k) .

Hence, id⟨i,l⟩ and f form an alternating path from idD(i)(l) ○ D(i)(g) to
idD(i)(k) in (D(i)(k) ↓U). ◻

After these preparations we can prove that a union is a colimit.

Proposition 1.13. Let C be a category, κ, λ regular cardinals (or λ =∞),
and let D ∶ I → Indλ

κ(C) be a κ-filtered diagram of size less than λ with
union U.

(a) U ∈ Indλ
κ(C).

(b) U = lim
Ð→

D and a limiting cocone µ = (µi)i∈I from D to U is given
by

µi = [inD(i)]
⩕
U ∶ D(i)→ U .

Proof. Let K(i) be the index category of D(i) and, for f ∈ Imor, let
t( f ) be the representative of D( f ) used to construct the union U .

(a) Since λ is regular, we have

∣J mor∣ ≤∑
i∈I
∣K(i)mor∣ < λ .

Hence, it remains to prove that U is κ-filtered.
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(f1) Let X ⊆ Iobj be a set of size ∣X∣ < κ. Since I is κ-filtered, there
exist an object m ∈ I and, for every ⟨i, k⟩ ∈ X, a morphism fi ∶ i→ m in I .
Let θ i be the index map of t( fi). SinceK(m) is κ-filtered, it contains an
object n ∈ K(m) and morphisms gi,k ∶ θ i(k)→ n, for every ⟨i, k⟩ ∈ X. The
desired family of morphisms of J is given by

hi,k ∶= D(m)(gi,k) ○ t( fi)k , for ⟨i, k⟩ ∈ X .

(f2) Let X ⊆ J (⟨i, k⟩, ⟨j, l⟩) be a set of size ∣X∣ < κ. For each morphism
f ∈ X, we choose a factorisation

f = h f
0 ○ ⋅ ⋅ ⋅ ○ h f

n f ,

where each factor h f
i is of the form D(m)(g), for some m ∈ Iobj and

g ∈ K(i)mor, or of the form t( f )m, for some f ∈ Imor. Let J0 ⊆ J be
the minimal subcategory of J that contains all these morphisms h f

i , for
f ∈ X and i ≤ n f , and such that the restriction U0 ∶= U ↾J0 is a union of
some restriction D↾I0, for some I0 ⊆ I . Let F ∶ I0 → I be the inclusion
functor. Note that ∣X∣ < κ implies

∣Imor
0 ∣ < κ and ∣J mor

0 ∣ < κ .

As I is κ-filtered, we can use Lemma 1.2 to find a cocone µ0 from F
to some object m ∈ I . Set µ ∶= D[µ0] and let [u]⩕D(m) be the union of µ.
By Lemma 1.12 (b), u is a link from U0 to D(m). Hence,

u⟨j,l⟩ ○ f ⩕D(m) u⟨i,k⟩ , for every f ∈ X .

Let ρ be the index map of u. As D(m) is κ-filtered, we can use Corol-
lary 1.3 to find morphisms

h f ∶ ρ(⟨j, l⟩)→ n f and h′f ∶ ρ(⟨i, k⟩)→ n f

such that

D(m)(h f ) ○ u⟨j,l⟩ ○ f = D(m)(h′f ) ○ u⟨i,k⟩ .
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According to Lemma 1.2,we can find an object n ∈ K(m) andmorphisms
g f ∶ n f → n, for f ∈ X, such that

g f ○ h f = g f ′ ○ h f ′ and g f ○ h′f = g f ′ ○ h′f ′ ,

for all f , f ′ ∈ X. Hence, φ ∶= D(m)(g f ○ h f ) ○ u⟨j,l⟩ (which does not
depend on f ) is a morphism such that

φ ○ f = D(m)(g f ○ h f ) ○ u⟨j,l⟩ ○ f
= D(m)(g f ○ h′f ) ○ u⟨i,k⟩
= D(m)(g f ′ ○ h′f ′) ○ u⟨i,k⟩
= D(m)(g f ′ ○ h f ′) ○ u⟨j,l⟩ ○ f ′ = φ ○ f ′ ,

for all f , f ′ ∈ X.
(b) To see that µ is the desired limiting cocone, we have to check

several properties. We have already seen in Lemma 1.12 (d) that each
component µi is a morphism D(i)→ U .

Next, we prove that µ is a cocone of D. Let f ∶ i → j be a morphism
of I and let θ be the index map of t( f ). Then

U(t( f )k) ○ idD(i)(k) = t( f )k = U(id⟨j,θ(k)⟩) ○ idD(j)(θ(k)) ○ t( f )k .

Hence, t( f )k and id⟨j,θ(k)⟩ form an alternating path from idD(i)(k) to
idD(j)(θ(k)) ○ t( f )k in (D(i)(k) ↓U). This implies that

µj ○ D( f ) = [inD(j)]
⩕
U ○ [t( f )]⩕D(j)

= [inD(j) ∗ t( f )]⩕U = [inD(i)]
⩕
U = µi .

It remains to show that µ is limiting. Let µ′ ∈ Cone(D, E) be a cocone
where µ′i = [w

i]⩕E , and let [w]⩕E be the union of µ′. We have seen in
Lemma 1.12 (b) that [w]⩕E is a morphism U → E. Furthermore,

[w]⩕E ∗ µ = ([w i]⩕E ○ [inD(i)]
⩕
U )i∈I = ([w

i]⩕E )i∈I = (µ
′
i )i∈I = µ′ .

Hence, the function [w]⩕E ↦ [w]
⩕
E ∗ µ is an inverse to the bijective

function of Lemma 1.12 (c). By Lemma b3.4.2 it follows that µ is limiting.
◻
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It turns out that Indλ
κ(C) is the closure of C under κ-filtered colimits

of size less than λ, i.e., it is the smallest category containing C that is
closed under such colimits. We begin the proof with a technical lemma
summarising properties of the inclusion functor C → IndP(C).

Lemma 1.14. Let C be a category, P a class of small categories containing
the singleton category [1], and be I ∶ C → IndP(C) be the inclusion functor.

(a) I is well-defined.
(b) For links s and t from D ∈ IndP(C) to I(a),

[s]⩕I(a) = [t]
⩕
I(a) ∶ D → I(a) implies s = t .

(c) I is full and faithful.
(d) For every D ∈ IndP(C), the inclusion [inD]

⩕
U ∶ D → U is an

isomorphism, where U is the union of I ○ D.
(e) For every D ∈ IndP(C) and every object a ∈ C, I induces an iso-

morphism

Cone(D, a)→ IndP(C)(D, I(a)) ∶ µ ↦ I[µ] .

(f) A family t is a link from a diagram D ∶ I → C to I(a) if, and only if,
t is a cocone from D to a.

Proof. To keep notation simple, we will not distinguish below between
a morphism f ∶ a → b of C and the link t = (t i)i∈[1] from I(a) to I(b)
whose only component is t0 = f .

(a) Clearly, I(a) ∈ Indλ
κ(C), for every object a ∈ C. Furthermore, if

f ∶ a→ b is a morphism of C, then the family I( f ) consisting just of f is
a link from I(a) to I(b) since it only has to satisfy the trivial requirement
that f ○ I(ida) ⩕I(b) f .

(b) Let i ∈ I . Since [s]⩕I(a) = [t]
⩕
I(a), the comma category (D(i) ↓ I(a))

contains an alternating path from si to ti. As ida is the only morphism
of I(a), this alternating path consists only of identity morphisms. Con-
sequently, si = ti.
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(c) To show that I is full, let [ f ]⩕I(b) ∶ I(a) → I(b) be a morphism of
Indλ

κ(C). Then f = ( f i)i∈[0] consists just of one morphism f0 ∶ a → b
and I( f0) = [ f ]⩕I(b).

To prove that I is faithful, suppose that I( f ) = I(g) for morphisms
f , g ∶ a→ b. Then [ f ]⩕I(b) = [g]

⩕
I(b) and (b) implies that f = g.

(d) Let D ∶ I → C be an object of IndP(C) and let U ∶ J → C be
the union of I ○ D. Note that J obj = Iobj × [1]. Since [inD]

⩕
U ∶ D → U

only consists of identity morphisms idD(i) ∶ D(i)→ U(⟨i, 0⟩), it has an
inverse [t]⩕D ∶ U → D where

t⟨i,0⟩ ∶= idD(i) ∶ U(⟨i, 0⟩)→ D(i) , for ⟨i, 0⟩ ∈ J .

Furthermore, as both families only consist of identity morphisms, it is
straightforward to check that they are links.

(e) By (d), D is the union of I ○ D. Hence, the morphism

Cone(D, a)→ IndP(C)(D, I(a)) ∶ µ ↦ I[µ]

can be written as composition of the natural isomorphisms

τI ,D ∶ Cone(D, a)→ Cone(I ○ D, I(a)) ∶ µ ↦ I[µ]
and ηI(a) ∶ Cone(I ○ D, I(a))→ Indall(C)(D, I(a)) ,

where ηI(a) is the morphism from Lemma 1.12 (c).
(f) (⇐) Let t be a cocone from D to a. For every morphism f ∶ i→ j

of I , we have tj ○ D( f ) = ti, which implies that tj ○ D( f ) ⩕I(a) ti.
(⇒) Let t be a link from D to I(a). By (e), there is a unique cocone

µ ∈ Cone(D, a) such that I[µ] = [t]⩕I(a). Hence, (b) implies that µ = t.
In particular, t ∈ Cone(D, a). ◻

Theorem 1.15. Let C be a category, κ, λ regular cardinals (or λ =∞), and
I ∶ C → Indλ

κ(C) the inclusion functor.

(a) Every κ-filtered diagram D ∶ I → Indλ
κ(C) of size less than λ has a

colimit in Indλ
κ(C).
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(b) For every object a ∈ Indλ
κ(C), there exists a κ-filtered diagram D ∶

I → C of size less than λ such that a = lim
Ð→
(I ○ D).

Proof. (a) follows immediately from Proposition 1.13.
(b) Let D ∈ Indλ

κ(C). By Lemma 1.14 (e), D is isomorphic to the union
of I○D. Consequently, it follows by Proposition 1.13 that D ≅ lim

Ð→
(I ○ D).

◻

Exercise 1.1. Prove the following universal property of Indλ
κ(C) : for

every functor F ∶ C → D into a categoryD that has κ-directed colimits
of size less than λ, there exists a unique functor G ∶ Indλ

κ(C)→ D such
that G preserves κ-filtered colimits of size less than λ and F factorises as
F = G ○ I, where I ∶ C → Indλ

κ(C) is the inclusion functor.

Remark. For every κ-filtered diagram D ∶ I → C of size less than λ, the
inductive completion Indλ

κ(C) has a colimit : the diagram D itself. But
note that, if D already has a colimit a in C, the corresponding object I(a)
of Indλ

κ(C) will in general not be a colimit. In fact, a limiting cocone λ
from D to a induces a morphism [λ]⩕I(a) ∶ D → I(a) in Indλ

κ(C), but
there is no reason why this morphism should be an isomorphism.

2. Extensions of diagrams
In this section we consider ways to extend a diagram D ∶ I → C to a
diagram D+ ∶ I+ → C with a larger index category. For instance, given a
κ-directed diagram and a cardinal λ ≥ κ, we would like to construct a
λ-directed diagram with the same colimit.

Completions of directed orders
We start by transforming κ-directed partial orders into λ-directed ones.

Definition 2.1. Let J be a partial order and κ, λ infinite cardinals or
λ = ∞. The (κ, λ)-completion of J is the partial order J+ ∶= ⟨I+ , ⊆⟩
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2. Extensions of diagrams

where

I+ ∶= {⇓S ∣ S ⊆ I is κ-directed and ∣S∣ < λ } .

Our hope is that, using a generalisation of Lemma b3.3.5, we can
prove that the (κ, λ)-completion of a κ-directed partial order is λ-direc-
ted. Unfortunately, this is not true in general. In only holds for certain
cardinals κ and λ.

Before characterising such cardinals, we compare the (κ, λ)-comple-
tion of a κ-directed partial order J to its inductive completion. It turns
out that these two categories are equivalent. Before presenting the proof,
let us note that the inductive completion of a preorder is again a preorder.

Lemma 2.2. Let κ and λ be infinite cardinals or λ =∞. If J is a preorder,
then so is Indλ

κ(J).

Proof. We have to prove that between any two objects D ∶ J → J and
E ∶ K → J of Indλ

κ(J), there is at most one morphism. Consider two
links s and t from D to E. We claim that s ⩕E t. Let ρ and θ be the index
maps of, respectively, s and t and let j ∈ J . As E is κ-filtered, there exist
an index k ∈ K and morphisms g ∶ ρ(j) → k and h ∶ θ(j) → k. It follows
that E(g)○ sj and E(h)○ tj are both morphisms from D(j) to E(k). Since
J is a preorder, this implies that E(g) ○ sj = E(h) ○ tj. Consequently,
g and h form an alternating path from sj to tj in (D(j) ↓ E). This implies
that sj ⩕E tj. ◻

Proposition 2.3. Let J be a partial order and let κ, λ be infinite cardinals
or λ =∞. The (κ, λ)-completion J+ of J is equivalent to Indλ

κ(J).

Proof. It is sufficient to prove that the function

h ∶ Indλ
κ(J)→ J+ ∶ D ↦ ⇓ rngDobj

is a surjective strict homomorphism. Then h induces a full and faithful
functor Indλ

κ(J)→ J+. Since, trivially, every object of J+ is isomorphic
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b4. Accessible categories

to some object in the image of this functor, it follows by Theorem b1.3.14
that the functor is an equivalence.

Let D ∶ J → J and E ∶ K → J be diagrams in Indλ
κ(J). To see that h is

a homomorphism, suppose that there exists a morphism [t]⩕E ∶ D → E.
Let θ be the index map of t. Then the morphisms tj ∶ D(j) → E(θ(j))
witness that D(j) ≤ E(θ(j)), for all j ∈ J . This implies that

rngDobj ⊆ ⇓ rng Eobj .

Hence, h(D) ⊆ h(E).
For strictness, suppose that h(D) ⊆ h(E). Then rngDobj ⊆ ⇓ rng Eobj

implies that, for every index j ∈ J , we can find some index θ(j) ∈ K
such that D(j) ≤ E(θ(j)). Setting

tj ∶= ⟨D(j), E(θ(j))⟩ , for j ∈ J ,

we obtain a link from D to E with index map θ.
It remains to prove that h is surjective. Let S ∈ I+. Then S = ⇓S0, for a

κ-directed set S0 ⊆ I of size ∣S0∣ < λ. Let D ∶ J ↾ S0 → J be the inclusion
functor. Then D ∈ Indλ

κ(J) and h(D) = ⇓S0 = S. ◻

If the (κ, λ)-completion is equivalent to the inductive completion,
why did we introduce it? The reason is that we would like to extend a
κ-directed diagram D ∶ J → C to a λ-directed one D+ ∶ J+ → C. We
cannot take the category Indλ

κ(J) as index category J+ since it is not
small. Instead, we can use the skeleton of Indλ

κ(J), which is small and
isomorphic to the (κ, λ)-completion of J.

Before doing so,we sill have to characterise the cardinals κ, λ such that
the (κ, λ)-completion is λ-directed. This is achieved by the following
relation.

Definition 2.4. For infinite cardinals κ, λ, we write κ ⊴ λ if κ ≤ λ and,
for every set X of size ∣X∣ < λ, there exists a set D ⊆ ℘κ(X) of size ∣D∣ < λ
that is dense in the partial order ⟨℘κ(X), ⊆⟩, where

℘κ(X) ∶= { S ⊆ X ∣ ∣S∣ < κ } .
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2. Extensions of diagrams

Exercise 2.1. Let κ be a regular cardinal. Prove that a set D ⊆ ℘κ(X) is
dense if, and only if, ⟨D, ⊆⟩ is κ-directed and ⋃D = X.

The next lemma summarises the basic properties of the relation ⊴.

Lemma 2.5. Let Cnℵ0 be the class of all infinite cardinals.
(a) ⊴ is a partial order on Cnℵ0 .
(b) κ ⊲ κ+, for every regular cardinal κ.
(c) If κ < λ are cardinals such that µ<κ < λ, for all µ < λ, then κ ⊲ λ.
(d) κ ⊲ (2<λ)+ for all cardinals κ ≤ λ.
(e) The partial order ⟨Cnℵ0 , ⊴⟩ is κ-directed for every cardinal κ.

Proof. (a) The relation ⊴ is antisymmetric since, by definition, κ ⊴ λ
implies κ ≤ λ. For reflexivity, let X be a set of size ∣X∣ < κ. Then X ∈
℘κ(X) and the set D ∶= {X} is dense. It remains to prove transitivity.
Suppose that κ ⊴ λ ⊴ µ. If λ = µ,we are done. Hence, suppose that λ ⊲ µ.
To show that κ ⊴ µ, let X be a set of size ∣X∣ < µ. Since λ ⊲ µ, there exists
a dense set D ⊆ ℘λ(X) of size ∣D∣ < µ. Since κ ⊴ λ, we can choose, for
every Y ∈ D, a dense set EY ⊆ ℘κ(Y) of size ∣EY ∣ < λ. Set

F ∶= ⋃
Y∈D

EY .

Then ∣F∣ ≤ ∑Y∈D ∣EY ∣ ≤ λ ⊗ ∣D∣ < µ. Hence, it remains to prove that F is
dense. Let U ∈ ℘κ(X). Then U ∈ ℘λ(X) and there is some Y ∈ D with
U ⊆ Y . Therefore, we can find a set Z ∈ EY ⊆ F with U ⊆ Z.

(b) Let X be a set of size ∣X∣ < κ+. Choose an injective map f ∶ X → κ.
We claim that the set

D ∶= { f −1[↓α] ∣ α < κ }

is dense in ℘κ(X). First, note that ∣ f −1[↓α]∣ ≤ ∣α∣ < κ, for each α < κ.
Hence, D ⊆ ℘κ(X).

Given Y ∈ ℘κ(X), set γ ∶= sup f [Y]. Since ∣ f [Y]∣ < κ and κ is regular,
it follows that γ < κ. Hence, Y ⊆ f −1[↓(γ + 1)] ∈ D.
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(c) Let X be a set of size µ ∶= ∣X∣ < λ. Then ∣℘κ(X)∣ = µ<κ < λ. Hence,
D ∶= ℘κ(X) is a dense set of size less than λ.

(d) Let κ ≤ λ and set µ ∶= (2<λ)+. Then

(<µ)<κ = (2<λ)<κ = sup{ (2λ0)κ0 ∣ κ0 < κ, λ0 < λ }

= sup{ 2λ0⊗κ0 ∣ κ0 < κ, λ0 < λ } ≤ 2<λ < µ .

Hence, (c) implies that κ ⊲ µ.
(e) Let X be a set of cardinals. We set µ ∶= sup X and λ ∶= (2<µ)+.

By (d), it follows that κ ⊲ λ, for every κ ≤ µ. Hence, λ is an upper bound
of X. ◻

Exercise 2.2. Prove that ℵ0 ⊴ λ, for all infinite cardinals λ.

Example. To show that the relation ⊴ is non-trivial, we prove that ℵ1 ⋪
ℵω+1 by showing that there is no dense set D ⊆ ℘ℵ1(ℵω) of size ∣D∣ ≤ ℵω .
For a contradiction, suppose that D is such a dense set. Fix a surjective
function f ∶ ℵω → D. Since

⋃ f [↓ℵn] ≤ ℵn ⊗ ℵ0 = ℵn < ℵn+1 ,

we can pick, for every n < ω, an element zn ∈ ℵn+1 ∖ ⋃ f [↓ℵn]. Set
Z ∶= { zn ∣ n < ω }. Then Z ∈ ℘ℵ1(ℵω) and, as D is dense, there exists a
set Y ∈ D with Z ⊆ Y . Since f is surjective, there is some y ∈ ℵω with
f (y) = Y . Fix an index n < ω with y ∈ ℵn . Then

zn ∈ ℵn+1 ∖⋃ f [↓ℵn] ⊇ ℵn+1 ∖ Y

implies that Z ⊈ Y . A contradiction.

For regular cardinals we can characterise the relation ⊴ in several
different equivalent ways. One of them solves our question regarding
the (κ, λ)-completion. Further characterisations will be given in The-
orem 4.9 below.

Theorem 2.6. Let κ ≤ λ be regular cardinals. The following statements
are equivalent :
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2. Extensions of diagrams

(1) κ ⊴ λ
(2) For each κ-directed set J, every subset X ⊆ I of size ∣X∣ < λ is

contained in a κ-directed subset H ⊆ I of size ∣H∣ < λ.
(3) The (κ, λ)-completion of a κ-directed partial order is λ-directed.

(4) Indλ
κ(J) is λ-directed, for every κ-directed partial order J.

Proof. (1)⇒ (2) Let I be a κ-directed partial order and let X ⊆ I be a set
of size ∣X∣ < λ. If λ = κ, the set X has an upper bound c ∈ I and X∪{c} is
the desired κ-directed set containing X. Therefore, we may assume that
λ > κ. For the construction of H, we consider the following operation
B ∶ ℘λ(I) → ℘λ(I). Given U ∈ ℘λ(I), we define B(U) ∈ ℘λ(I) as
follows. Choose a dense set D ⊆ ℘κ(U) of size ∣U ∣ < λ and, for every
Z ∈ D, fix an upper bound kZ ∈ I of Z ⊆ I. We set

B(U) ∶= U ∪ { kZ ∣ Z ∈ D } .

Then U ⊆ B(U) and ∣B(U)∣ ≤ ∣U ∣⊕ ∣D∣ < λ.
Using this operation, we define an increasing sequence (Hα(U))α≤κ

of sets by

H0(U) ∶= U ,
Hα+1(U) ∶= B(Hα(U)) ,

Hδ(U) ∶= ⋃
α<δ

Hα(U) , for limit ordinals δ .

By induction on α, it follows that ∣Hα(U)∣ < λ, for α ≤ κ and ∣U ∣ < λ.
We claim that Hκ(S) is the desired κ-directed set containing S. Let U ⊆
Hκ(S) be a set of size ∣U ∣ < κ. Since κ is regular, there is some ordinal α
such that U ⊆ Hα(S). Consequently, Hα+1(S) ⊆ Hκ(S) contains an
upper bound of U .

(2) ⇒ (3) Let J+ be the (κ, λ)-completion of a κ-directed partial
order J and let X ⊆ I+ be a set of size ∣X∣ < λ. By definition of I+, there
exists a family X0 of κ-directed subsets s ⊆ I of size ∣s∣ < λ such that
X = {⇓s ∣ s ∈ X0 }. Set S ∶= ⋃X0. Since λ is regular, we have ∣S∣ < λ.
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By (2), we can find a κ-directed set H ⊆ I such that S ⊆ H and ∣H∣ < λ.
For each s ∈ X0, s ⊆ H implies that ⇓s ⊆ ⇓H. Hence, ⇓H ∈ I+ is an upper
bound of X.

(3)⇔ (4) Let J be a κ-directed partial order and let J+ be its (κ, λ)-
completion. We have seen in Proposition 2.3 that the categories Indλ

κ(J)
and J+ are equivalent. Hence, the former is λ-directed if, and only if, the
latter is λ-directed.

(4)⇒ (1) Let X be a set of size ∣X∣ < λ. Note that, since κ is regular,
we have ⋃ Z ∈ ℘κ(X), for every subset Z ⊆ ℘κ(X) of size ∣Z∣ < κ. Con-
sequently, ⟨℘κ(X), ⊆⟩ is κ-directed. By (4), it follows that Indλ

κ(℘κ(X))
is λ-directed. Therefore, the preorder Indλ

κ(℘κ(X)) contains an up-
per bound D ∶ I → ℘κ(X) of the set { I({x}) ∣ x ∈ X }, where
I ∶ ℘κ(X)→ Indλ

κ(℘κ(X)) is the inclusion functor. For x ∈ X, let θx be
the index map of the link from I({x}) to D. Then {x} ⊆ D(θx(0)), for
all x ∈ X.
We claim that rngDobj is a dense subset of ℘κ(X). Let Y ∈ ℘κ(X).

Since D is κ-filtered, there exist an index k ∈ I and morphisms fy ∶
θ y(0)→ k, for y ∈ Y . Consequently,

{y} ⊆ D(θ y(0)) ⊆ D(k) implies Y ⊆ D(k) ∈ rngDobj . ◻

Extensions of directed diagrams
Having found a λ-directed completion J+ of a given κ-directed partial
order J, we can use it to extend κ-directed diagrams D ∶ J → C to a
λ-directed diagram D+ ∶ J+ → C. This construction is defined via a
detour through the inductive completion Indλ

κ(C). We construct two
diagrams J+ → Indλ

κ(C) and Indλ
κ(C) → C whose composition is the

extension J+ → C we are looking for. Let us start with the first diagram.

Definition 2.7. (a) Let D ∶ I → C be a diagram and F ⊆ ℘(Iobj). The
F-completion of D is the diagram

D+ ∶ ⟨F , ⊆⟩→ Indall(C)
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defined by

D+(S) ∶= D ↾ S , for objects S ∈ F ,
D+(S , T) ∶= [inD↾S]

⩕
D↾T , for pairs S ⊆ T .

(b) Let J be a partial order, D ∶ J → C a diagram, and κ, λ cardinals
or λ =∞. The (κ, λ)-completion of D is the I+-completion D+ ∶ J+ →
Indall(C) of D, where J+ is the (κ, λ)-completion of J.

For well-behaved sets F, the F-completion preserves the colimit.

Lemma 2.8. Let F ⊆ ℘(Iobj) be a directed set with ⋃ F = Iobj and let
D+ be the F-completion of D ∶ I → C. Then lim

Ð→
D+ ≅ D.

Proof. Let U ∶ J → C be the union of D+ where, for each pair S ⊆ T ,
we have chosen the representative uS ,T ∶= inD↾S of the equivalence class
D+(S , T) = [uS ,T]⩕D↾T . By Proposition 1.13 it is sufficient to show that
U ≅ D. For ⟨S , i⟩ ∈ J = ⊍S∈F S, set

s⟨S ,i⟩ ∶= idD(i) ∶ U(⟨S , i⟩)→ D(i) .

For every i ∈ I , choose a set θ(i) ∈ F with i ∈ θ(i) and set

ti ∶= idD(i) ∶ D(i)→ U(⟨θ(i), i⟩) .

We claim that s ∶= (s⟨S ,i⟩)⟨S ,i⟩∈J and t ∶= (ti)i∈I are links from, respect-
ively, U to D and D to U such that [s]⩕D ∶ U → D is an inverse of
[t]⩕U ∶ D → U .
We start by showing that s and t are a links. For t, let f ∶ i → j be a

morphism of I and choose a set S ∈ F with i, j ∈ S. Then

uθ(j),S
j ○ tj ○ D( f ) = idD(j) ○ idD(j) ○ D( f )

= D( f ) ○ idD(i) ○ idD(i)

= U(D( f )) ○ uθ(i),S
i ○ ti .
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Hence, uθ(j),S
j and D( f )○uθ(i),S

i form an alternating path from tj○D( f )
to ti in (D(i) ↓U).

For s, note that J is generated by morphisms of the form D( f ) and
uS ,T

i , for f ∈ Imor, S ⊆ T , and i ∈ Iobj. Hence, it is sufficient to check
that

s⟨T ,j⟩ ○U(h) ⩕D s⟨S ,i⟩ for such morphisms h .

For h = uS ,T
i , we have

s⟨T ,i⟩ ○U(uS ,T
i ) = idD(i) ○ idD(i) = idD(i) = s⟨S ,i⟩ .

For h = D( f ) with f ∶ i→ j in I ,

D(idj) ○ s⟨S ,j⟩ ○U(D( f )) = D(idj) ○ idD(j) ○ D( f )
= D( f ) ○ idD(i)

= D( f ) ○ s⟨S ,i⟩

implies that s⟨S ,j⟩ ○U(D( f )) ⩕D s⟨S ,i⟩.
It remains to prove that [s]⩕D is an inverse of [t]⩕U . Since

s ∗ t = (s⟨θ(i),i⟩ ○ ti)i∈I = (idD(i))i∈I ,

s is a left inverse of t. To show that it is also a right inverse, let ⟨S , i⟩ ∈ J
and fix a set T ∈ F with θ(i) ∪ S ⊆ T . Then

U(uθ(i),T
i ) ○ (t ∗ s)⟨S ,i⟩ = idD(i) ○ ti ○ s⟨S ,i⟩

= idD(i) ○ idD(i) ○ idD(i)

= U(idD(i)) ○ idU(⟨S ,i⟩)

implies that (t ∗ s)⟨S ,i⟩ ⩕U idU(⟨S ,i⟩). ◻

The second step of the construction uses the following functor to go
back to the category C.
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Definition 2.9. Let C be a category with P-colimits. Fixing, for every
diagram D ∈ IndP(C), a limiting cocone λD ∈ Cone(D, aD) of D, we
define the canonical projection functor

Q ∶ IndP(C)→ C

as follows. Qobj maps diagrams D ∈ IndP(C) to their colimit aD . For
morphisms [t]⩕E ∶ D → E,we choose for Qmor([t]⩕E ) the unique morph-
ism φ ∶ aD → aE such that

λE ∗ t = φ ○ λD .

Lemma 2.10. Let P be a class of small categories containing the singleton
category [1], C a category with P-colimits, and let Q ∶ IndP(C) → C be
the canonical projection functor.

(a) Q is well-defined.
(b) Q preserves colimits.

Proof. Let (λD)D be the family of limiting cocones used to define Q and
let (aD)D be the corresponding colimits.

(a) Clearly, the object part Qobj is well-defined. Hence, it remains to
check the morphism part Qmor. First note that, for a link t from D to E,
we have shown in Lemma b3.5.8 that λE ∗ t is a cocone of D. As λD is
limiting, there therefore exists a unique morphism φ such that

λE ∗ t = φ ○ λD .

It remains to show that this morphism φ does not depend on the choice
of the representative t. Suppose that s ⩕E t. Then

λE ∗ s ⩕I(a) λE ∗ t

and it follows by Lemma 1.14 (b) that λE ∗ s = λE ∗ t.
(b) Let λ∗ be a limiting cocone from D ∶ I → IndP(C) to E. By

Lemma b3.4.5, Q[λ∗] is a cocone from Q ○ D to Q(E) = aE . Hence, it
remains to show that Q[λ∗] is limiting.
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Let µ ∈ Cone(Q ○D, b) be a cocone. We have to find a unique morph-
ism φ ∶ aE → b such that µ = φ ∗ Q[λ∗]. For i ∈ I , set

νi ∶= [µi ∗ λD(i)]⩕I(b) .

We claim that ν ∶= (νi)i∈I is a cocone from D to I(b).
Let f ∶ i → j be a morphism of I and suppose that D( f ) = [t]⩕D(j).

Note that, by definition of Q,

λD(j) ∗ t = Q(D( f )) ∗ λD(i) .

Since µ is a cocone of Q ○ D, it follows that

νj ○ D( f ) = [µj ∗ λD(j)]
⩕
I(b) ○ D( f )

= [µj ∗ λD(j) ∗ t]
⩕
I(b)

= [µj ∗ Q(D( f )) ∗ λD(i)]
⩕
I(b)

= [µi ∗ λD(i)]
⩕
I(b) = νi ,

as desired.
As ν is a cocone ofD and λ∗ is limiting, there exists auniquemorphism
[t]⩕I(b) ∶ E → I(b) such that

ν = [t]⩕I(b) ∗ λ∗ .

By Lemma 1.14 (f) it follows that t is a cocone from E to b. As λE is
limiting, there exists a unique morphism φ ∶ aE → b such that t = φ ∗ λE .
Suppose that λ∗i = [s

i]⩕E . Then

Q(λ∗i ) ∗ λD(i) = λE ∗ si

implies that

[Q(λ∗i ) ∗ λD(i)]
⩕
I(aE)
= [λE]

⩕
I(aE)

∗ λ∗i .
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For every i ∈ I , it follows that

[φ ∗ Q(λ∗i ) ∗ λD(i)]
⩕
I(b) = [φ ∗ λE]

⩕
I(b) ∗ λ∗i

= [t]⩕I(b) ∗ λ∗i = νi = [µi ∗ λD(i)]⩕I(b) .

Using Lemma 1.14 (b), it follows that

φ ∗ Q(λ∗i ) ∗ λD(i) = µi ∗ λD(i) ,

which, by Lemma b3.4.2, implies that φ ○ Q(λ∗i ) = µi. Hence,

µ = φ ∗ Q[λ∗] .

It remains to prove that the morphism φ is unique. Suppose that
ψ ∶ aE → b is a morphism such that µ = ψ ∗ Q[λ∗]. Then

[ψ ∗ λE]
⩕
I(b) ∗ λ∗i = [ψ ∗ Q(λ∗i ) ∗ λD(i)]

⩕
I(b)

= [µi ∗ λD(i)]⩕I(b) = νi = [t]⩕I(b) ∗ λ∗i ,

and it follows by Lemma b3.4.2 that

[ψ ∗ λE]⩕I(b) = [t]
⩕
I(b) .

Hence, Lemma 1.14 (b) implies that t = ψ ∗ λE . By choice of φ, it follows
that ψ = φ. ◻

Combining these two functors we obtain the desired λ-directed ex-
tension.

Proposition 2.11. Let κ ⊴ λ and let C be a category with κ-directed colimits
of size less than λ. For every κ-directed diagram D ∶ J→ C, there exists a
λ-directed diagram D+ ∶ J+ → C such that

lim
Ð→

D+ ≅ lim
Ð→

D

and, for every i ∈ I+, there is some κ-directed set S ⊆ I of size ∣S∣ < λ such
that

D+(i) ≅ lim
Ð→
(D ↾ S) .
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Proof. Let D+ ∶ J+ → Indλ
κ(C) be the (κ, λ)-completion of D. By The-

orem 2.6 (3), the diagram D+ is λ-directed. Furthermore, we have seen
in Lemma 2.8 that lim

Ð→
D+ ≅ D. According to Lemma 2.10, the canonical

projection functor Q ∶ Indλ
κ(C)→ C preserves colimits. Hence, it follows

that

lim
Ð→
(Q ○ D+) = Q(lim

Ð→
D+) ≅ Q(D) ≅ lim

Ð→
D .

Furthermore, each index i ∈ I+ is of the form i = ⇓S for some κ-directed
set S ⊆ I of size ∣S∣ < λ. Since S is dense in ⇓S, it follows that

Q(D+(i)) ≅ lim
Ð→

D+(i) ≅ lim
Ð→
(D ↾ ⇓S) ≅ lim

Ð→
(D ↾ S) .

Hence, Q ○ D+ ∶ J+ → C is the desired diagram. ◻

Example. We can also use the previous results to give a short alternative
proof of Proposition b3.4.16. Let C be a category with directed colimits
and letD be the class of all directed partial orders. For D ∈ IndD(C) of
size κ, we find the desired chain C as follows.

By Proposition b3.3.6, there exists a chain (Hα)α<κ of directed subsets
Hα ⊆ I of size ∣Hα ∣ < κ such that I = ⋃α<κ Hα . Set F ∶= {Hα ∣ α < κ }, let
D+ be the F-completion of D, and let Q ∶ IndD(C)→ C be the canonical
projection. As above,

lim
Ð→
(Q ○ D+) = Q(lim

Ð→
D+) ≅ Q(D) ≅ lim

Ð→
D .

Since ⟨F , ⊆⟩ ≅ ⟨κ, ≤⟩ it follows that C ∶= Q ○ D+ is the desired chain.

Shifted diagrams

We conclude this section by presenting a second construction of dia-
grams. It provides a way to modify the colimit of a κ-filtered diagram
D ∶ I → C by adding morphisms to the index category I but no new
objects. We will see below that this results in a retraction of the colimit.
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Definition 2.12. Let D ∶ I → C be a diagram.
(a) A morphism f ∶ a→ a is idempotent if f ○ f = f . Similarly, we call

a link t from D to D idempotent if t ○ t ⩕D t.
(b) By↺ we denote the category with a single object ∗ and two

morphisms id, e ∶ ∗→ ∗ where e ○ e = e and id is the identity morphism.
(c) Let t be an idempotent link from D to D, let F ∶↺→ Indall(C)

be the diagram mapping ∗ to D and e to [t]⩕∗ , and let D+ ∶ I+ → C be
the union of F where we choose t as representative of [t]⩕D . We say that
D+ is the diagram obtained by shifting the diagram D by t.

Our aim is to show that the colimit of a shifted diagram is a retract of
the colimit of the original one.We also characterisewhich retractswe can
obtain in this way. The key argument is a proof that, in certain categories,
every idempotent morphism factorises as a retraction followed by a
section.

Lemma 2.13. Let D ∶↺→ C be a diagram. A cocone µ ∈ Cone(D, a) is
limiting if, and only if, the morphism µ∗ ∶ D(∗) → a has a right inverse
s ∶ a→ D(∗) such that

D(e) = s ○ µ∗ .

Proof. (⇒) Since D(e)○D(e) = D(e ○ e) = D(e), the family consisting
just of the morphism D(e) is a cocone from D to D(∗). If µ is limiting,
we can therefore find a morphism s ∶ a→ D(∗) such that D(e) = s ∗ µ∗.

We claim that s is the right inverse of µ∗. Since µ is a cocone, we have

µ∗ ○ s ○ µ∗ = µ∗ ○ D(e) = µ∗ ,

which implies by Lemma b3.4.2 that µ∗ ○ s = ida.
(⇐) Let s be a right inverse of µ∗ such that D(e) = s ○ µ∗. Given

another cocone µ′ ∈ Cone(D, b), we set φ ∶= µ′∗ ○ s. Then

µ′∗ = µ′∗ ○ D(e) = µ′∗ ○ s ○ µ∗ = φ ○ µ∗

implies that µ′ = φ∗ µ. To show that φ is unique, suppose that µ′ = ψ∗ µ.
Then

ψ = ψ ○ (µ∗ ○ s) = µ′∗ ○ s = φ ○ µ∗ ○ s = φ . ◻
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b4. Accessible categories

Corollary 2.14. Let C be a category with finite κ-filtered colimits, for some
cardinal κ. A morphism p ∶ a → a is idempotent if, and only if, p = s ○ r
for some retraction r ∶ a→ b with right inverse s ∶ b→ a.

Proof. (⇒) Let p ∶ a → a be idempotent and let D ∶ ↺ → C be the
diagram mapping the object ∗ to a and the morphism e to p. By assump-
tion, D has a limiting cocone λ to some object b. Consequently, it follows
by Lemma 2.13 that the morphism r ∶= λ∗ has a right inverse s with
s ○ r = D(e) = p.
(⇐) Let r be a retraction with right inverse s. Since (s ○ r) ○ (s ○ r) =

s ○ id ○ r = s ○ r, every morphism of the form s ○ r is idempotent. ◻

One consequence of Lemma 2.13 is that every diagram D+ obtained
by shifting a diagram D is a retract of D in Indall(C). For the proof that
the same holds for their colimits, we start with a technical lemma.

Lemma 2.15. Let D+ ∶ I+ → C be the diagram obtained by shifting a
filtered diagram D ∶ I → C by an idempotent link t.

(a) t is a link from D+ to D.

(b) Let µ ∈ Cone(D, a). Then

µ ∈ Cone(D+ , a) iff µ ∗ t = µ .

Proof. (a) Note that the morphism [t]⩕D ∶ D → D forms a cocone
from F ∶ ↺ → Indall(C) to D whose union is just [t]⩕D . Therefore,
Lemma 1.12 (b) implies that t is a link from D+ to D.

(b) (⇒) Let θ be the index map of t. If µ is a cocone of D+, then
µθ(i) ○ ti = µi, which implies that

µ ∗ t = (µθ(i) ○ ti)i∈I = (µi)i∈I .

(⇐) If µ ∗ t = µ, then it follows by (a) and Lemma b3.5.8 that

µ = µ ∗ t = πt(µ) ∈ Cone(D+ , a) . ◻
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Proposition 2.16. Let D+ ∶ I+ → C be the diagram obtained by shifting a
filtered diagram D ∶ I → C by an idempotent link t and let λ be a limiting
cocone from D to some object a. For an object b ∈ C, the following two
statements are equivalent.

(1) lim
Ð→

D+ ≅ b

(2) There exists a retraction r ∶ a → b with right inverse e ∶ b → a
satisfying

λ ∗ t = (e ○ r) ∗ λ .

Proof. (1)⇒ (2) Let λ+ be a limiting cocone form D+ to b. Since λ ∗ t ∈
Cone(D+ , a) and λ+ ∈ Cone(D, b), there exist unique morphisms r ∶
a→ b and e ∶ b→ a such that

λ ∗ t = e ∗ λ+ and λ+ = r ∗ λ .

By Lemma 2.15 (b), it follows that

(r ○ e) ∗ λ+ = r ∗ (e ∗ λ+)
= r ∗ (λ ∗ t)
= (r ∗ λ) ∗ t = λ+ ∗ t = λ+ = id ∗ λ+ .

Therefore, Lemma b3.4.2 implies that r ○ e = id. Consequently, r ∶ a→ b
is a retraction with section e ∶ b→ a. Furthermore,

λ ∗ t = e ∗ λ+ = e ∗ (r ∗ λ) = (e ○ r) ∗ λ .

(2)⇒ (1) We claim that λ+ ∶= r ∗ λ is a limiting cocone from D+ to b.
Since

λ+ ∗ t = (r ∗ λ) ∗ t = r ∗ (λ ∗ t)
= r ∗ ((e ○ r) ∗ λ)
= (r ○ e ○ r) ∗ λ = r ∗ λ = λ+ ,
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Lemma 2.15 (b) implies that λ+ ∈ Cone(D+ , b). To see that λ+ is limiting,
we prove that the natural transformation

η ∶ C(b,−)→ Cone(D+ ,−) ∶ f ↦ f ∗ λ+

from Lemma b3.4.2 is a natural isomorphism.
We start by showing that each component η$ of η is surjective. Let

µ ∈ Cone(D+ , $). Since µ ∈ Cone(D, $) and λ is limiting, there exists a
unique morphism φ ∶ a→ $ such that µ = φ ∗ λ. Consequently,

µ = µ ∗ t = φ ∗ λ ∗ t
= φ ∗ (e ○ r) ∗ λ
= (φ ○ e) ∗ (r ∗ λ)
= (φ ○ e) ∗ λ+ = η$(φ ○ e) ∈ rng η$ .

For injectivity, suppose that f , f ′ ∶ b→ $ are two morphisms such that
η$( f ) = η$( f ′). Since

( f ○ r) ∗ λ = f ∗ (r ∗ λ) = f ∗ λ+ = η$( f )

and, analogously, ( f ′ ○ r) ∗ λ = η$( f ′), it follows that

( f ○ r) ∗ λ = ( f ′ ○ r) ∗ λ .

By Lemma b3.4.2, this implies that f ○r = f ′○r. Since r is an epimorphism,
we obtain f = f ′, as desired. ◻

3. Presentable objects
When trying to find a category-theoretical generalisation of statements
involving the cardinality of structures, one needs a notion of cardinality
for the objects of a category. Of course, one could simply add a function
Cobj → Cn to a category C and axiomatise its properties. But it is not
obvious what such axioms should look like. It turns out that, for certain
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categories, there is a simpler way. Without explicitly adding a notion of
cardinality, we can recover it from the category. To do so we introduce
the concept of a κ-presentable object, which generalises the concept of a
κ-generated structure in Emb(Σ).

Definition 3.1. Let C be a category and κ a cardinal.
(a) Let D ∶ I → C be a diagram and µ ∈ Cone(D, b) a cocone.

A morphism f ∶ a → b factorises through µ if there exists an object
i ∈ I and a morphism f0 ∶ a→ D(i) such that

f = µi ○ f0 .

We say that this factorisation is essentially unique if, for every other
factorisation f = µk ○ f ′0 with k ∈ I and f ′0 ∶ a→ D(k), we have

f0 ⩕D f ′0 .

(b) An object a of C is κ-presentable if, for each κ-directed diagram
D ∶ J→ C with colimit b, every morphism f ∶ a→ b factorises essentially
uniquely through the limiting cocone. For κ = ℵ0, we call a finitely
presentable.

Remark. (a) Let κ ≤ λ. Since each λ-directed diagram is also κ-directed,
it follows that κ-presentable objects are λ-presentable.

(b) For a singular cardinal κ, it follows by Lemma 1.4 that an object is
κ-presentable if, and only if, it is κ+-presentable.

Example. In Set every set X is ∣X∣+-presentable.

Exercise 3.1. Prove that an object a is κ-presentable if, and only if, for
every κ-filtered diagram D with limiting cocone λ ∈ Cone(D, b), the
function

Indall(C)(I(a), I[λ])
∶ Indall(C)(I(a),D)→ Indall(C)(I(a), I(b))
∶ [t]⩕D ↦ I[λ] ○ [t]⩕D

is bijective. (I denotes the inclusion functor C → Indall(C).)
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b4. Accessible categories

I(a) D

I(b)

[t]⩕D

I[λ] ○ [t]⩕D I[λ]

Exercise 3.2. Let D ∶ I → C be a κ-filtered diagram with a κ-presentable
colimit a, and let λ be a limiting cocone from D to a. Prove that, in
Ind∞κ (C), the morphism I[λ] ∶ D ≅ I(a) induced by λ is an isomorph-
ism.

First, let us show that this notion indeed generalises the concept of
being κ-generated.

Proposition 3.2. Let κ be a regular cardinal. A Σ-structure A is κ-present-
able in the category Emb(Σ) if, and only if, it is κ-generated.

Proof. (⇒) Let A be κ-presentable. To show that A is κ-generated, let
J be the family of all κ-generated substructures of A ordered by inclusion
and let D ∶ J→ C be the canonical diagram. By Proposition b3.3.16, this
diagram is κ-directed and its colimit is A. Let λ be the limiting cocone.
Since A is κ-presentable, the identity idA ∶ A→ A factorises through λ.
Therefore, we can find an index k ∈ I and an embedding f ∶ A→ D(k)
such that λk○ f = idA.As λk○ f = idA is surjective, so is the embedding λk .
Consequently, λk is an isomorphism and A ≅ D(k) is κ-generated.
(⇐) Suppose that A is generated by a set X ⊆ Aof size ∣X∣ < κ. To show

that A is κ-presentable, let D ∶ J → Emb(Σ) be a κ-directed diagram
with colimit B and f ∶ A → B an embedding. Let λ ∈ Cone(D,B) be
a limiting cocone. For every element a ∈ X, fix an index ia ∈ I with
f (a) ∈ rng λ ia and let k be an upper bound of { ia ∣ a ∈ X }. Then

f [X] ⊆ ⋃
a∈X

rng λ ia ⊆ rng λk ,

which implies that rng f ⊆ rng λk . By Lemma a2.1.10, there exists a right
inverse g ∶ rng λk → D(k) of λk . We set f0 ∶= g ○ f . Then

λk ○ f0 = λk ○ g ○ f = f .
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It remains to show that the factorisation is essentially unique. Hence,
suppose that there is an index i ∈ I and an embedding f ′0 ∶ A → D(i)
such that λ i ○ f ′0 = f . For every element a ∈ X,

λ i( f ′0(a)) = f (a) = λk( f0(a))

implies, by the definition of a κ-directed limit of Σ-structures, that there
is some index la ≥ i , k such that

D(i , l)( f ′0(a)) = D(k, l)( f0(a)) .

Choosing an upper bound m of { la ∣ a ∈ X }, we obtain

D(i ,m) ○ f ′0 = D(k,m) ○ f0 .

This implies that f ′0 ⩕D f0. ◻

Let us present several alternative characterisations of being κ-present-
able. The first one rests on the fact that, since every κ-filtered colimit can
bewritten as a κ-directed one,we can replace in the definition κ-directed
diagrams by κ-filtered ones. The second characterisation is based on
hom-functors.

Theorem 3.3. Let C be a category and a an object. The following statements
are equivalent :

(1) a is κ-presentable.

(2) For each κ-filtered diagram D ∶ I → C with colimit b, every morph-
ism f ∶ a → b factorises essentially uniquely through the limiting
cocone.

(3) The covariant hom-functor C(a,−) preserves κ-directed colimits.

(4) The covariant hom-functor C(a,−) preserves κ-filtered colimits.

Proof. (4)⇒ (3) is trivial.
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(3)⇒ (1) Let D ∶ J→ C be a κ-directed diagram with limiting cocone
λ ∈ Cone(D, b), and let f ∶ a → b be a morphism. By assumption
(C(a, λ i))i∈I is a limiting cocone of C(a,−) ○ D. Consequently,

C(a, b) =⋃
i∈I
C(a, λ i)[C(a,D(i))] .

In particular, there are an index i ∈ I and a morphism f0 ∈ C(a,D(i))
with

f = C(a, λ i)( f0) = λ i ○ f0 .

Hence, f factorises through λ. For essential uniqueness, suppose that
there is a second index j ∈ I and a morphism f ′0 ∶ a → D( j) such that
f = λ j ○ f ′0. Then

C(a, λ j)( f ′0) = λ j ○ f ′0 = λ i ○ f0 = C(a, λ i)( f0) .

Hence, f0 ∈ C(a,D(i)) and f ′0 ∈ C(a,D( j)) correspond to the same
element of the colimit C(a, b). This implies that there exists an index
k ≥ i , j such that

C(a,D(i , k))( f0) = C(a,D( j, k))( f ′0) .

Consequently,

D(i , k) ○ f0 = D( j, k) ○ f ′0 ,

which implies that f0 ⩕D f ′0.
(1) ⇒ (2) Let λ be a limiting cocone from D to b. By Theorem 1.7,

there exists a dense κ-directed diagram F ∶ K → I . Furthermore, ac-
cording to Proposition b3.5.15, the projection πD ,F along F is a natural
isomorphism. Consequently, it follows by Lemma b3.4.3 that the pro-
jection µ ∶= πD ,F(λ) is a limiting cocone from D ○ F to b. Therefore,
every morphism f ∶ a→ b factorises essentially uniquely through µ as
f = µk ○ f0, for some k ∈ K and f0 ∶ a→ D(F(k)).
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We claim that λF(k) ○ f0 is an essentially unique factorisation of f
through λ. Note that λF(k) ○ f0 = µk ○ f0 = f implies that it is a factor-
isation of f . Hence, it remains to prove essential uniqueness.

Suppose that f = λi ○ f ′0 is a second factorisation. As F is dense, there
exists an index l ∈ K and a morphism g ∶ i→ F(l). Hence,

µk ○ f0 and µ l ○ D(g) ○ f ′0

are two factorisations of f through µ and, by essential uniqueness, we
obtain

f0 ⩕D○F D(g) ○ f ′0 .

By Lemma b3.5.3 (d), this implies that f0 ⩕D f ′0.
(2)⇒ (4) Let D ∶ I → C be a κ-filtered diagram with limiting cocone

λ ∈ Cone(D, b). We have to show that λ′ ∶= (C(a, λi))i∈I is a limiting
cocone from C(a,−) ○ D to C(a, b). By Lemma b3.4.2, it is sufficient to
prove that the natural transformation

η ∶ Set(C(a, b),−)→ Cone(C(a,−) ○ D,−) ∶ φ ↦ φ ∗ λ′

is a natural isomorphism. We define an inverse ζ of η as follows.
For each morphism f ∶ a→ b, we choose an essentially unique factor-

isation

f = λi( f ) ○ g( f ) , with i( f ) ∈ I and g( f ) ∶ a→ D(i( f )) ,

and, for a cocone µ of C(a,−) ○ D and a morphism f ∶ a→ b, we set

ζ(µ)( f ) ∶= µi( f )(g( f )) .

It remains to show that ζ is an inverse of η. First, note that ζ(λ′) = id
since

ζ(λ′)( f ) = λ′i( f )(g( f ))

= C(a, λi( f ))(g( f )) = λi( f ) ○ g( f ) = f .
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Furthermore,

ζ(φ ∗ µ)( f ) = (φ ∗ µ)i( f )(g( f ))

= φ(µi( f )(g( f ))) = φ(ζ(µ)( f ))

implies that ζ(φ ∗ µ) = φ ○ ζ(µ). Consequently,

ζ(η(φ)) = ζ(φ ∗ λ′) = φ ○ ζ(λ′) = φ ○ id = φ .

To show that ζ is also a right inverse of η, note that, if f = λj ○ f0 is
an arbitrary factorisation of f ∶ a→ b through λ, it follows by essential
uniqueness and Corollary 1.3, that there are morphisms h ∶ i( f )→ k and
h′ ∶ j→ k such that

D(h) ○ g( f ) = D(h′) ○ f0 .

For a cocone µ of C(a,−) ○ D, it therefore follows that

µi( f )(g( f )) = (µk ○ C(a,D(h)))(g( f ))

= µk(D(h) ○ g( f ))

= µk(D(h′) ○ f0)

= (µk ○ C(a,D(h′)))( f0) = µj( f0) .

Consequently,

η(ζ(µ)) = ζ(µ) ∗ λ′ = (ζ(µ) ○ C(a, λj))j∈I

= ( f0 ↦ µi(λj○ f0)(g(λj ○ f0)))j∈I
= ( f0 ↦ µj( f0))j∈I
= (µj)j∈I . ◻

Exercise 3.3. Prove that a hom-functor C(a,−) always preserves limits.
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Corollary 3.4. Let a be κ-representable and let D ∶ I → C be a κ-filtered
diagram with limiting cocone λ. If f i ∶ a → D(ki), i < γ, is a family of
γ < κ morphisms with

λki ○ f i = λk j ○ f j , for all i , j < γ ,

then there exist an object l ∈ I and morphisms g i ∶ ki → l, i < γ, such that

D(g i) ○ f i = D(g j) ○ f j , for all i , j < γ .

Proof. For every pair i , j < γ, we apply Theorem 3.3 (b) to the morphism
λki ○ f i = λk j ○ f j . By essential uniqueness and Corollary 1.3, there are
morphisms h i j ∶ ki → li j and h′i j ∶ k j → li j such that

D(h i j) ○ f i = D(h′i j) ○ f j .

By Lemma 1.2, there exist an object m ∈ I and morphisms

g i ∶ ki → m and g i j ∶ li j → m , for i , j < γ ,

such that

g i = g i j ○ h i j and g j = g i j ○ h′i j , for all i , j < γ .

Consequently,

D(g i) ○ f i = D(g i j) ○ D(h i j) ○ f i

= D(g i j) ○ D(h′i j) ○ f j = D(g j) ○ f j . ◻

To prove that an object of a full subcategory is κ-presentable, the next
lemma is sometimes useful.

Lemma 3.5. Let F ∶ C → D be a full and faithful functor that preserves
κ-directed colimits. Then F reflects κ-presentable objects.

323



b4. Accessible categories

Proof. Let a ∈ C be an object such that F(a) is κ-presentable. To show
that a is also κ-presentable, let D ∶ J → C be a κ-directed diagram
with colimit b, let λ be a corresponding limiting cocone, and let f ∶
a→ b be a morphism. Then F[λ] is a limiting cocone of the κ-directed
diagram F ○ D ∶ J → D. Hence, F( f ) factorises essentially uniquely
as F( f ) = F(λ i) ○ g, for some g ∶ F(a) → F(D(i)). As F is full, we
can find a morphism f0 ∶ a → D(i) with F( f0) = g. Consequently,
F( f ) = F(λ i ○ f0) which, by faithfulness of F, implies that f = λ i ○ f0.
We claim that this factorisation is essentially unique. Suppose that

f = λk ○ f ′0 is a second factorisation. Then F( f ) = F(λk) ○ F( f ′0) is a
factorisation of F( f ) and it follows by essential uniqueness that

F( f0) ⩕F○D F( f ′0) .

By Corollary 1.3, there exist an index l ≥ i , k such that

F(D(i , l)) ○ F( f0) = F(D(k, l)) ○ F( f ′0) .

Since F is faithful, this implies that

D(i , l) ○ f0 = D(k, l) ○ f ′0 .

Consequently, f0 ⩕D f ′0. ◻

Cardinality
In the next section we will define a notion of cardinality such that κ-
presentable objects have size less than κ. The aim of the following results
is to show that κ-presentability does indeed behave as we would expect
for a notion of cardinality : an object consisting of λ parts of size less
than κ has size less than κ ⊕ λ+. Before giving the proof, we start with a
technical result about diagrams of κ-presentable objects.

Lemma 3.6. Let E ∶ J → C be a κ-filtered diagram with limiting cocone
µ ∈ Cone(E , b), and let D ∶ I → C a diagram where each object D(i) is
κ-presentable.
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(a) For all links s and t from D to E,

s ⩕E t iff µ ∗ s = µ ∗ t .

(b) Given a limiting cocone λ ∈ Cone(D, a) and a morphism f ∶ a→ b,
there exists a link t from D to E such that

µ ∗ t = f ∗ λ .

Furthermore, this link t is unique up to a.p.-equivalence.

Proof. (a) Let ρ and θ be the index maps of, respectively, s and t. For
every i ∈ I , we have

si ⩕E ti iff µρ(i) ○ si = µθ(i) ○ ti ,

where one direction follows by Lemma b3.5.4 and the other one by
Theorem 3.3 (b), which implies that the morphism µρ(i) ○ si = µθ(i) ○ ti

factorises essentially uniquely through µ.
(b) SinceD(i) is κ-presentable, it follows by Theorem 3.3 (b) that f ○λi

has an essentially unique factorisation

f ○ λi = µθ(i) ○ ti ,

where θ(i) ∈ I and ti ∶ D(i) → E(θ(i)). Setting t ∶= (ti)i∈I it follows
that

f ∗ λ = µ ∗ t .

Hence, it remains to show that t is a link and that it is unique. For
uniqueness, note that, according to (a)

µ ∗ t′ = f ∗ λ = µ ∗ t implies t′ ⩕E t .

To show that t is a link, let g ∶ i→ j be a morphism of I . Then

µθ(i) ○ ti = f ○ λi = f ○ λj ○ D(g) = µθ(j) ○ tj ○ D(g)

are two factorisations of the same morphism through µ. By essential
uniqueness, it therefore follows that ti ⩕D tj ○ D(g). ◻
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Proposition 3.7. Let D ∶ I → C be a diagram where each D(i) is κ-
presentable. If it exists, the colimit of D is (κ ⊕ ∣Imor∣+)-presentable.

Proof. Let λ be a limiting cocone from D to a ∈ C and set µ ∶= κ⊕∣Imor∣+.
To show that a is µ-presentable, consider a morphism f ∶ a → b where
b is the colimit of a µ-directed diagram E ∶ K → C. Let λ′ ∈ Cone(E , b)
be the corresponding limiting cocone. By Lemma 3.6 (b), there exists a
link t from D to E such that

λ′ ∗ t = f ∗ λ .

Let θ ∶ Iobj → K be the index map of t. For h ∶ i→ j in I , we have

λ′θ(i) ○ ti = f ○ λi = f ○ λj ○ D(h) = λ′θ(j) ○ tj ○ D(h) .

As D(i) is µ-presentable, it follows by essential uniqueness and Corol-
lary 1.3 that we can find an index kh ∈ K such that

E(θ(i), kh) ○ ti = E(θ(j), kh) ○ tj ○ D(h) .

Let l ∈ K be an upper bound of { kh ∣ h ∈ Imor } and set

νi ∶= E(θ(i), l) ○ ti , for i ∈ I .

Then ν = (νi)i∈I is a cocone from D to E(l).
Since λ is limiting, there exists a morphism φ ∶ a → E(l) such that

ν = φ ∗ λ. It follows that

f ○ λi = λ′θ(i) ○ ti = λ′l ○ E(θ(i), l) ○ ti = λ′l ○ νi = λ′l ○ φ ○ λi ,

for every i ∈ I . By Lemma b3.4.2, this implies that f = λ′l ○ φ.
It remains to check that φ is essentially unique. Suppose that there is a

second morphism ψ ∶ a→ E(m), for some m ∈ K, such that f = λ′m ○ ψ.
For i ∈ I , it follows that

λ′m ○ ψ ○ λi = f ○ λi = λ′l ○ φ ○ λi .
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As D(i) is µ-presentable, it follows by essential uniqueness and Corol-
lary 1.3 that there is an index ni ≥ l ,m such that

E(m, ni) ○ ψ ○ λi = E(l , ni) ○ φ ○ λi .

Let n∗ ∈ K be an upper bound of { ni ∣ i ∈ I }. Then

E(m, n∗) ○ ψ ○ λi = E(l , n∗) ○ φ ○ λi , for all i ∈ I .

Consequently, it follows by Lemma b3.4.2 that

E(m, n∗) ○ ψ = E(l , n∗) ○ φ .

This implies that ψ ⩕E φ. ◻

For the converse of this statement we need additional requirements
on the category C.

Theorem 3.8. Let κ ⊴ λ be regular cardinals and C a category with
κ-directed colimits of size less than λ. Suppose that there exists a class
K ⊆ Cobj of κ-presentable objects such that every object of C can be written
a κ-filtered colimit of objects in K.
An object a ∈ C is λ-presentable if, and only if, it is the colimit of a

κ-filtered diagram D ∶ I → C of size less than λ where each D(i) ∈ K.

Proof. (⇐) was already shown in Proposition 3.7.
(⇒) Let a be λ-presentable and let D ∶ J→ C be a κ-directed diagram

with colimit a such that each D(i) belongs toK. Since κ ⊴ λ, we can use
Proposition 2.11 to find a λ-directed diagram D+ ∶ J+ → C with colimit a
such that, for every i ∈ I+, there exists a κ-directed subset S ⊆ I of size
less than λ such that

D+(i) ≅ lim
Ð→
(D ↾ S) .

Let µ+ be a limiting cocone from D+ to a. Since a is λ-presentable, there
exists an essentially unique factorisation ida = µ+S ○ e, for some index
i ∈ I+ and morphism e ∶ a→ D+(i). Set

b ∶= D+(i) and r ∶= µ+i .
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By construction of D+, there exists a κ-directed subset S ⊆ I of size
∣S∣ < λ such that D+(i) ≅ lim

Ð→
(D ↾ S). Let µ be a limiting cocone form

D ↾ S to b.
It follows that r ∶ b→ a is a retraction with right inverse e ∶ a→ b. By

Lemma 3.6 (b), there exists a link t from D ↾ S to D ↾ S such that

µ ∗ t = (e ○ r) ∗ µ .

Furthermore, according to Lemma 3.6 (a),

µ ∗ t ∗ t = (e ○ r) ∗ µ ∗ t
= (e ○ r) ∗ (e ○ r) ∗ µ
= (e ○ r ○ e ○ r) ∗ µ = (e ○ r) ∗ µ = µ ∗ t

implies that t ○ t ⩕D t. Hence, the link t is idempotent and we can
shift D ↾ S by t to obtain a diagram E ∶ J → C. By Proposition 1.13
and Proposition 2.16, it follows that E is a κ-filtered diagram of size less
than λ and that lim

Ð→
E ≅ a. Finally, note that, for every j ∈ J , there is

some i ∈ I with E(j) = D(i) ∈ K. ◻

As a further indication that our notion of cardinality is well-behaved,
let us conclude this section with the remark that retracts do not increase
the size.

Proposition 3.9. Every retract of a κ-presentable object is κ-presentable.

Proof. Let a be κ-presentable and let r ∶ a→ b be a retraction with right
inverse e ∶ b → a. To show that b is also κ-presentable, let D ∶ J → C
be a κ-directed diagram with limiting cocone λ ∈ Cone(D, $), and let
f ∶ b → $ be a morphism. Since a is κ-presentable, f ○ r factorises
essentially uniquely through λ as

f ○ r = λ i ○ g , for some g ∶ a→ D(i) .

We obtain a factorisation

f = f ○ r ○ e = λ i ○ g ○ e
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of f . We claim that this factorisation is essentially unique.
Suppose that f = λk ○ h is a second factorisation. Then λk ○ (h ○ r) is

a factorisation of f ○ r and essential uniqueness implies that g ⩕D h ○ r.
By Lemma b3.5.3 (b), it follows that

g ○ e ⩕D h ○ r ○ e = h ,

as desired. ◻

4. Accessible categories
Using the notion of κ-presentability, we can define a class of categories
where one can associate a cardinality with each object.

Definition 4.1. Let κ be a cardinal. A category C is κ-accessible if
◆ it has κ-directed colimits,
◆ every object a ∈ C is a κ-directed colimit of κ-presentable objects,
◆ up to isomorphism, there exists only a set of κ-presentable objects.

It follows by Proposition 3.7 that every object of a κ-accessible category
is λ-presentable, for some cardinal λ. We can use this fact to define a
notion of cardinality for the objects of such a category.

Definition 4.2. Let C be a κ-accessible category. The cardinality ∥a∥ of
an object a ∈ C is the least cardinal λ such that a is λ+-presentable.

Example. The categories Emb(Σ) and Set are κ-accessible, for all regular
cardinals κ. We have ∥X∥ = ∣X∣, for every infinite set X ∈ Set. Similarly,
if A is a Σ-structure in Emb(Σ) with ∣As ∣ ≥ ∣Σ∣+, for every sort s, then
∥A∥ = ∣A∣.

The following theorem immediately follows from Theorem 3.8.

Theorem 4.3. Let κ ⊴ λ be regular cardinals and C a κ-accessible category.
An object a ∈ C is λ-presentable if, and only if, it is the colimit of a κ-filtered
diagram D ∶ I → C of size less than λ where each D(i) is κ-presentable.
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b4. Accessible categories

Let us give some non-trivial examples of κ-accessible categories. The
first one is the category of all κ-directed partial orders.

Definition 4.4. Let κ be a cardinal. We denote by Dir(κ) the full subcat-
egory of Emb(≤) induced by all κ-directed partial orders.

Proposition 4.5. Let κ be a cardinal and let J ∶ Dir(κ)→ Emb(≤) be the
inclusion functor.

(a) For every κ-directed diagram D ∶ J→ Dir(κ), the colimit of J ○ D
in Emb(≤) is a κ-directed partial order.

(b) J preserves κ-directed colimits.
(c) Let λ ≥ κ be a regular cardinal. An object J ∈ Dir(κ) is λ-present-

able if, and only if, ∣I∣ < λ.
(d) Dir(κ) is κ-accessible.

Proof. (a) Let D ∶ J → Dir(κ) be a κ-directed diagram. Since Emb(≤)
has colimits, the diagram J ○ D has a colimit A = ⟨A, ≤⟩ ∈ Emb(≤). Let
λ be a limiting cocone from J ○ D to A.

To show that A is a partial order, consider elements a, b, c ∈ A. Since
D is κ-directed, there exists an index i ∈ I such that a, b, c ∈ rng λ i .

For reflexivity, note that λ i is an embedding and that D(i) is a partial
order. Hence, λ−1

i (a) ≤ λ−1
i (a) implies that a ≤ a.

For antisymmetry, suppose that a ≤ b and b ≤ a. Then we have
λ−1

i (a) ≤ λ−1
i (b) and λ−1

i (b) ≤ λ−1
i (a), which implies that λ−1

i (a) =
λ−1

i (b). Hence, a = b.
For transitivity, suppose that a ≤ b ≤ c. Then λ−1

i (a) ≤ λ−1
i (b) ≤

λ−1
i (c), which implies that λ−1

i (a) ≤ λ−1
i (c). Hence, a ≤ c.

It remains to prove that A is κ-directed. Let X ⊆ A be a set of size
∣X∣ < κ. Since D is κ-directed, we can find an index i ∈ I such that
X ⊆ rng λ i . As D(i) is κ-directed, λ−1

i [X] has an upper bound c ∈ D(i).
Hence, λ i(c) is an upper bound of X.

(b) Consider a κ-directed diagram D ∶ J→ Dir(κ). Since Emb(≤) has
colimits, the diagram J ○ D has a limiting cocone λ to some structure
A = ⟨A, ≤⟩. We have seen in (a) that A ∈ Dir(κ). Since the inclusion
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functor is full and faithful, it follows that λ is a cocone from D to A
in Dir(κ). Furthermore, note that J reflects colimits by Lemma b3.4.7.
Hence, λ is also limiting in Dir(κ).

To show that J preserves κ-directed colimits, let µ ∈ Cone(D,B) be
a limiting cocone. As both λ and µ are limiting, there exists a (unique)
isomorphism π ∶ B→ A such that λ = π∗µ. Since λ = J[λ] = J(π)∗J[µ]
is limiting in Emb(≤) and since J(π) is an isomorphism, it follows that
J[µ] is also limiting.

(c) (⇐) Let J be a κ-directed partial order of size ∣I∣ < λ. According
to Proposition 3.2, J is λ-presentable in Emb(≤). By (b) and Lemma 3.5,
the inclusion functor Dir(κ)→ Emb(≤) reflects λ-presentability. Hence,
J is also λ-presentable in Dir(κ).
(⇒) For a partial order J, we denote by J⊺ the extension of J by a

new greatest element ⊺.
Suppose that J is λ-presentable. To show that ∣I∣ < λ, letS be the family

of all substructures of J⊺ of size less than λ, and let D ∶ S → Emb(≤)
be the canonical diagram. By Proposition b3.3.16, we have J⊺ = lim

Ð→
D.

Let S0 ⊆ S be the subfamily of all substructures of J⊺ that contain the
element ⊺. Note that every such substructure is κ-directed and that S0 is
dense in S . Consequently, the restriction D ↾ S0 also has the colimit J⊺

and it factorises as D ↾ S0 = J ○ D0 for some D0 ∶ S0 → Dir(κ). By
Lemma b3.4.7, J reflects colimits. Therefore, J(J⊺) = J⊺ = lim

Ð→
(J ○ D0)

implies that J⊺ = lim
Ð→

D0.
Let µ be a corresponding limiting cocone. As J is λ-presentable, the

inclusion h ∶ J→ J⊺ factorises as h = µA ○ g, for some A ∈ S0 and some
embedding g ∶ J → A. Since g is injective, it follows that ∣I∣ = ∣rng g∣ ≤
∣A∣ < λ.

(d) To show that Dir(κ) has κ-directed colimits, let D ∶ J → Dir(κ)
be a κ-directed diagram. By (a), the colimit A of J ○D in Emb(≤) belongs
to Dir(κ). By Lemma b3.4.7, the inclusion functor J reflects colimits.
Consequently, A is also the colimit of D in Dir(κ).

Furthermore, note that (c) implies that, up to isomorphism, there
exist only a set of κ-presentable objects in Dir(κ).
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Hence, it remains to show that every object of Dir(κ) can be written
as a κ-directed diagram of κ-presentable objects. Given J ∈ Dir(κ),
let S be the family of all substructures of J of size less than κ and let
D ∶ S → Emb(≤) be the canonical diagram. By Proposition b3.3.16, we
have J = lim

Ð→
D. Let S0 ⊆ S be the subfamily of all substructures of J

that have a greatest element. We claim that S0 is dense in S . Let A ∈ S .
Then ∣A∣ < κ and, since J is κ-directed, the set A ⊆ I has an upper bound
b ∈ I. Consequently, J∣A∪{b} is an element of S0 containing A.

Note that every substructure in S0 is κ-directed and that S0 is dense
in S . It follows that the restriction D ↾ S0 also has the colimit J and that
D ↾ S0 factorises as D ↾ S0 = J ○ D0 for some D0 ∶ S0 → Dir(κ). By
Lemma b3.4.7, J reflects colimits. Therefore, J(J) = J = lim

Ð→
(J ○ D0)

implies that J = lim
Ð→

D0, as desired. ◻

A further important example of a κ-accessible category is the inductive
completion of a category.

Lemma 4.6. Let C be a category, κ a regular cardinal, and let I ∶ C →
Ind∞κ (C) be the inclusion functor. In Ind∞κ (C) every object of the form
I(a) is κ-presentable.

Proof. To keep notation simple, we will not distinguish below between a
morphism f ∶ a→ b of C and the link t = (t i)i∈[1] whose only component
is t0 = f .

Let D ∶ I → Ind∞κ (C) be a κ-directed diagram with union U ∶ J → C.
By Proposition 1.13, the family µ = (µi)i∈I with µi = [inD(i)]

⩕
U is a

limiting cocone from D to U .
To show that I(a) is κ-presentable, let [ f ]⩕U ∶ I(a)→ U be amorphism.

We have to show that [ f ]⩕U factorises essentially uniquely through the
cocone µ. Suppose that f ∶ a → U(⟨i, k⟩). Then we can regard f as a
link from I(a) to D(i). Let [ f ]⩕D(i) ∶ I[a]→ D(i) be the corresponding
morphism of Ind∞κ (C). Then

µi ○ [ f ]⩕D(i) = [inD(i)]
⩕
U ○ [ f ]⩕D(i) = [idD(i)(k) ○ f ]⩕U = [ f ]

⩕
U .
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We claim that this factorisation of [ f ]⩕U is essentially unique.
Let [ f ]⩕U = µj ○ [g]⩕D(j) be a second factorisation where [g]⩕D(j) ∶

I(a) → D(j). Then g ∶ a → D(j)(l), for some index l, and, as above, it
follows that

[ f ]⩕U = µj ○ [g]⩕D(j) = [idD(j)(l) ○ g]⩕U = [g]
⩕
U .

Hence, f ⩕U g and there are morphisms

h ∶ ⟨i, k⟩→ ⟨m, n⟩ and h′ ∶ ⟨j, l⟩→ ⟨m, n⟩

of J such that

U(h) ○ f = U(h′) ○ g .

By definition of the union,we can express h and h′ as finite compositions

h = hu−1 ○ ⋅ ⋅ ⋅ ○ h0 and h′ = h′v−1 ○ ⋅ ⋅ ⋅ ○ h′0

of morphisms of the form D(x)(φ) and t(x, y)x, for indices x ∈ I , morph-
isms φ in the index category of D(x), and links t(x, y) such that D(x, y) =
[t(x, y)]⩕D(y). By induction on u and v it follows that

[hu−1 ○ ⋅ ⋅ ⋅ ○ h0 ○ f ]⩕D(m) ⩕D [ f ]⩕D(i)
and [h′v−1 ○ ⋅ ⋅ ⋅ ○ h′0 ○ g]⩕D(m) ⩕D [g]⩕D(j) .

Hence, h ○ f = h′ ○ g implies that

[ f ]⩕D(i) ⩕D [hu−1 ○ ⋅ ⋅ ⋅ ○ h0 ○ f ]⩕D(m)
= [h′v−1 ○ ⋅ ⋅ ⋅ ○ h′0 ○ g]⩕D(m) ⩕D [g]⩕D(j) . ◻

Proposition 4.7. Ind∞κ (C) is κ-accessible, for every small category C.

Proof. Let I ∶ C → Ind∞κ (C) be the inclusion functor. We have seen in
Theorem 1.15 that the category Ind∞κ (C) has κ-directed colimits and that
every object of Ind∞κ (C) can bewritten as a κ-filtered diagram of objects
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in rng I. Hence, it follows from Lemma 4.6 that every object of Ind∞κ (C)
is a κ-filtered colimit of κ-presentable objects.
Consequently, it remains to prove that, up to isomorphism, the κ-

presentable objects of Ind∞κ (C) form a set. By Theorem 3.8, every κ-
presentable object can bewritten as a κ-filtered colimit of size less than κ
where all objects are in rng I ≅ C. Consequently, an object is κ-present-
able if, and only if, it belongs to Indκ

κ(C). Since C is small, there exist,
up to isomorphism, only a set of diagrams D ∶ I → C of size less than κ.
Therefore, Indκ

κ(C) is small (up to isomorphism). ◻

In fact, all κ-accessible categories are of this form.

Theorem 4.8. A category C is κ-accessible if, and only if, it is equivalent
to a category of the form Ind∞κ (C0), for some small category C0.

Proof. (⇐)We have seen in Proposition 4.7 that Ind∞κ (C0) is κ-access-
ible. Hence, all categories C equivalent to Ind∞κ (C0) are κ-accessible.
(⇒) Suppose that C is κ-accessible, let C1 be the full subcategory of

all κ-presentable objects of C, and let C0 be a skeleton of C1. We claim
that C is equivalent to Ind∞κ (C0).

Let Q0 ∶ Ind∞κ (C0) → C be the restriction of the canonical projec-
tion Q ∶ Ind∞κ (C) → C to Ind∞κ (C0). We claim that Q0 is the desired
equivalence. By Theorem b1.3.14, it is sufficient to prove that Q0 is full
and faithful and that every object of C is isomorphic to some object in
rng Qobj

0 .
Let D ∶ I → C0 and E ∶ J → C0 be objects of Ind∞κ (C0) and let

λD and λE be the limiting cocones used to define Q0(D) and Q0(E).
To show that Q0 is faithful, let [ f ]⩕E , [g]

⩕
E ∶ D → E be morphisms of

Ind∞κ (C0) with Q0([ f ]⩕E ) = Q0([g]⩕E ). Then

λE ∗ f = Q0([ f ]⩕E ) ∗ λD = Q0([g]⩕E ) ∗ λD = λE ∗ g .

By Lemma 3.6, this implies that f ⩕E g. Hence, [ f ]⩕E = [g]
⩕
E .

To prove that Q0 is full, let f ∶ Q0(D)→ Q0(E) be a morphism of C.
By Lemma 3.6 (b), there exists a link t from D to E such that

λE ∗ t = f ∗ λD .

334



4. Accessible categories

By definition of Qmor
0 , this implies that Q0([t]⩕E ) = f .

Hence, it remains to prove that every object a ∈ C is isomorphic to
some object in rng Qobj

0 . Let D ∶ J → C be a κ-directed diagram with
colimit a where every object D(i) belongs to C1. For every index i ∈ I,
let E(i) be the unique object of C0 isomorphic to D(i). This defines the
object part of a functor E ∶ J→ C0. To define the morphism part, we fix
isomorphisms η i ∶ D(i) ≅ E(i) and we set

E(i , j) ∶= η j ○ D(i , j) ○ η−1
i , for i ≤ j .

Then E is a κ-directed diagram in Ind∞κ (C0) and η ∶= (η i)i∈I is a natural
isomorphism η ∶ D ≅ E. Consequently, it follows by Lemma b3.4.3 that

Q0(E) = lim
Ð→

E ≅ lim
Ð→

D = a ,

as desired. ◻

Finally, let us show that in general it is not true that a κ-accessible
category is also λ-accessible for larger cardinals λ. Studying this question,
we again meet the relation ⊴.

Theorem 4.9. Let κ ≤ λ be regular cardinals. The following statements
are equivalent :

(1) κ ⊴ λ

(2) Every κ-accessible category is λ-accessible.

(3) Let C be a category with κ-directed colimits. For each κ-directed
diagram D ∶ J→ C of κ-presentable objects, there exists a λ-directed
diagram D+ ∶ J+ → C of λ-presentable objects with the same colimit.

(4) For every set X of size ∣X∣ < λ, we can write the partial order
⟨℘κ(X), ⊆⟩ as the colimit of a λ-directed diagram D ∶ J→ Dir(κ)
of partial orders of size ∣D(i)∣ < λ.

Proof. (1)⇒ (3) Let D ∶ J→ C be a κ-directed diagram of κ-presentable
objects. By (1) and Proposition 2.11, there exists a λ-directed diagram

335



b4. Accessible categories

D+ ∶ J+ → C with the same colimit as D where every object D+(i) is of
the form lim

Ð→
(D ↾ S), for some κ-directed subset S ⊆ I of size ∣S∣ < λ. By

Proposition 3.7, it follows that each D+(i) is λ-presentable.
(3) ⇒ (2) Let C be a κ-accessible category. Since every λ-directed

diagram is also κ-directed, it follows that C has λ-directed colimits.
We claim that every a ∈ C is a λ-directed colimit of λ-presentable

objects. As C is κ-accessible, there exists a κ-directed diagram D ∶ J→ C
of κ-presentable objects with colimit a. By (3), it follows that a is the
colimit of a λ-directed diagram D+ of λ-presentable objects.

It remains to prove that the λ-presentable objects form a set. By The-
orem 4.3, we can write every λ-presentable object as a κ-directed dia-
gram D of size less than λ such that each D(i) is κ-presentable. Since, up
to isomorphism, there exists only a set of κ-presentable objects, it follows
that, up to isomorphism, there also exists only a set of such diagrams.

(2)⇒ (4) Let X be a set of size less than λ. Since κ is regular, the partial
order ⟨℘κ(X), ⊆⟩ is κ-directed. Hence, it is an object of the category
Dir(κ). We have shown in Proposition 4.5 that Dir(κ) is κ-accessible.
By (2), it is also λ-accessible. Consequently, we can write ℘κ(X) as the
colimit of a λ-directed diagram D ∶ J→ Dir(κ) of λ-presentable objects.
By Proposition 4.5 (c), it follows that every D(i) has size less than λ.

(4)⇒ (1) Let X be a set of size less than λ. We have to find a dense
set H ⊆ ℘κ(X) of size ∣H∣ < λ. By (4), there exists a λ-directed diagram
D ∶ J→ Dir(κ) of partial orders of size less than λ with lim

Ð→
D = ℘κ(X).

Let µ be the corresponding limiting cocone. For each element x ∈ X, we
select an index i(x) ∈ I such that {x} ∈ rng µ i(x). Since J is λ-directed,
there exists an index k ∈ I with k ≥ i(x), for all x ∈ X. This implies that
{{x} ∣ x ∈ X } ⊆ rng µk .
We claim that the range H ∶= rng µk is the desired dense set. Since
∣H∣ = ∣D(k)∣ < λ, it remains to show that H is dense. Let Y ∈ ℘κ(X). As
D(k) is κ-directed, it contains an upper bound c of the set { µ−1

k ({y}) ∣
y ∈ Y }. Consequently, µk(c) ∈ H is an upper bound of {{y} ∣ y ∈ Y }.
This implies that Y ⊆ µk(c). ◻
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Substructures
We have shown in Proposition b3.3.16, that every Σ-structure can be
written as a κ-directed colimit of its κ-generated substructures. This
statement can be generalised to arbitrary κ-accessible categories. We
start by introducing a notion of substructure for accessible categories.

Definition 4.10. Let C be a category, K ⊆ Cobj a class of objects, and
a ∈ C.

(a) We define the arrow category

SubK(a) ∶= (K ↓ a) ,

where we have writtenK for the inclusion functorK → C.
For the class K of all κ-presentable objects, we also write Subκ(a)

instead of SubK(a).
(b) The canonical diagram D ∶ SubK(a)→ C of a overK is defined by

D( f ) ∶= $ , for objects f ∶ $→ a ,
and D(φ) ∶= φ , for morphisms φ ∶ f → f ′ .

Before generalising Proposition b3.3.16 we prove a technical lemma.

Lemma 4.11. Let C be a category, D ∶ Subκ(a)→ C the canonical diagram
of a ∈ C, and E ∶ I → C a diagram with colimit a such that every E(i) is
κ-presentable.

(a) E factorises as E = D ○ F, for a suitable functor F ∶ I → Subκ(a).
(b) If I is κ-filtered, we can choose F to be dense.

Proof. Let λ be a limiting cocone from E to a. We define

F(i) ∶= λi , for i ∈ Iobj ,
F( f ) ∶= E( f ) , for f ∈ Imor .

To see that F is indeed a functor I → Subκ(a), note that, for amorphism
f ∶ i→ j of I , λi = λj ○ E( f ) implies that F( f ) ∈ Subκ(a)(λi , λj).
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(a) We have

(D ○ F)(i) = D(λi) = E(i) , for i ∈ Iobj ,
(D ○ F)( f ) = D(E( f )) = E( f ) , for f ∈ Imor .

(b) (d1) Consider g ∈ Subκ(a). Since g factorises essentially uniquely
through λ, there are i ∈ I and a morphism g0 such that g = λi ○ g0. Since
F(i) = λi, it follows that g0 ∶ g → F(i) is a morphism in Subκ(a).

(d2) Let f ∶ g → F(i) and f ′ ∶ g → F(i′) be morphisms of Subκ(a).
Then

λi ○ f = F(i) ○ f = g = F(i′) ○ f ′ = λi′ ○ f ′ .

Consequently, λi ○ f and λi′ ○ f are two factorisations of g through λ. As
E is κ-filtered and the domain of g is κ-presentable, it follows by essential
uniqueness and Corollary 1.3 that there are morphisms h ∶ i → k and
h′ ∶ i′ → k such that

E(h) ○ f = E(h′) ○ f ′ .

Consequently,

F(h) ○ f = F(h′) ○ f ′ ,

which implies that f ⩕F f ′. ◻

Proposition 4.12. Let C be a κ-accessible category and a ∈ C an object.
The canonical diagram D ∶ Subκ(a)→ C of a is κ-filtered and lim

Ð→
D = a.

Proof. Fix a κ-directed diagram E ∶ J→ C of κ-presentable objects with
colimit a and let λ be the corresponding limiting cocone. To show that
Subκ(a) is κ-filtered, we have to check two conditions.

(f1) Let X ⊆ Subκ(a)obj be a set of size ∣X∣ < κ. Every g ∶ $g → a in X
factorises essentially uniquely through λ as g = λkg ○ g0, for suitable
kg ∈ I and g0 ∶ $g → E(kg). Since J is κ-directed, there exists an upper
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bound l ∈ I of { kg ∣ g ∈ X }. Consequently, λ l ∶ E(l)→ a is an object of
Subκ(a) and

E(kg , l) ○ g0 ∶ g → λ l , for g ∈ X ,

is the desired family of morphisms of Subκ(a).
(f2) Let X ⊆ Subκ(a)(g , g′) be a set of size ∣X∣ < κ. There are essen-

tially unique factorisations

g = λ i ○ g0 and g′ = λ j ○ g′0 , for suitable i , j ∈ I .

For every f ∈ X,

λ j ○ (g′0 ○ f ) = g′ ○ f = g ,

is another factorisation of g. Consequently, g′0 ○ f ⩕E g0 and, by Corol-
lary 1.3, we can find an index k f ≥ i , j such that

E( j, k f ) ○ g′0 ○ f = E(i , k f ) ○ g0 .

Let l be an upper bound of { k f ∣ f ∈ X }. Then

E( j, l) ○ g′0 ○ f = E(i , l) ○ g0 = E( j, l) ○ g′0 ○ f ′ ,

for all f , f ′ ∈ X. Since λ l ∶ E(l) → a is an object of Subκ(a) and
E( j, l) ○ g′0 ∶ g′ → λ l is a morphism, the claim follows.

It remains to prove that D has the colimit a. Let F ∶ I → Subκ(a) be
the dense functor from Lemma 4.11 with E = D ○ F. Then

lim
Ð→

D = lim
Ð→
(D ○ F) = lim

Ð→
E = a . ◻
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1. Open and closed sets

Definition 1.1. A topology on a set X is a system C ⊆ ℘(X) of subsets
of X that satisfies the following conditions :

◆ ∅, X ∈ C

◆ If Z ⊆ C then ⋂ Z ∈ C.

◆ If C0 ,C1 ∈ C then C0 ∪ C1 ∈ C.

A topological space is a pair X = ⟨X , C⟩ consisting of a set X and a
topology C on X. The elements of C are called closed sets. A set O is open
if its complement X ∖O is closed. Sets that are both closed and open are
called clopen. A set U is a neighbourhood of an element x ∈ X if there
exists an open set O with x ∈ O ⊆ U . The elements of a topological
space X are usually called points.

Example. (a) In the usual topology ⟨R, C⟩ of the real numbers a subset
A ⊆ R is open if and only if, for every a ∈ A, there exists an open interval
(c, d) ⊆ A with a ∈ (c, d). Correspondingly, a set A ⊆ R is closed if it
contains all elements a ∈ R such that, for every open interval (c, d) with
a ∈ (c, d), there exists an element b ∈ (c, d) ∩ A. The only clopen sets
are ∅ and R.

(b) Consider the space Rn . We denote the usual Euklidean norm of a
tuple ā ∈ Rn by

∥ā∥ ∶=
√
a2
0 + ⋅ ⋅ ⋅ + a2

n−1 ,
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b5. Topology

and the ε-ball around ā by

Bε(ā) ∶= { b̄ ∈ Rn ∣ ∥b̄ − ā∥ < ε } .

A set A ⊆ Rn is open if and only if, for every ā ∈ A, there is some ε > 0
such that Bε(ā) ⊆ A. The set A is closed if, whenever ā ∈ Rn is a tuple
such that Bε(ā) ∩ A ≠ ∅, for all ε > 0, then we have ā ∈ A.

(c) Let X be an arbitrary set. The trivial topology of X is given by the
set C = {∅, X} where only ∅ and X are closed.

(d) The discrete topology of a set X is its power set C = ℘(X) where
every set is clopen.

(e) We can define a topology on any set X by

C ∶= {C ⊆ X ∣ C is finite} .

(f) Let K be a field and n < ω. For a set I ⊆ K[x0 , . . . , xn−1] of polyno-
mials over K, define

Z(I) ∶= { ā ∈ Kn ∣ p(ā) = 0 for all p ∈ I } .

We can equip Kn with the Zariski topology

Z ∶= { Z(I) ∣ I ⊆ K[x̄] } .

Let us prove that Z is indeed a topology. Clearly,

∅ = Z({1}) ∈ Z and Kn = Z({0}) ∈ Z .

Let X ⊆ Z and set I ∶= { I ∣ Z(I) ∈ X }. Then we have

⋂X =⋂{ Z(I) ∣ I ∈ I } = Z(⋃I) ∈ Z .

Finally, suppose that Z(I0), Z(I1) ∈ Z . Then

Z(I0) ∪ Z(I1) = Z(J) , where J ∶= { pq ∣ p ∈ I0 , q ∈ I1 } .

Note that, for n = 1, Z consists of all finite subsets of K. If K = R
and C is the usual topology on R then we have Z ⊂ C. An example of a
C-closed set that is not Z-closed is [0, 1]n .
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Remark. (a) Note that the systemO of open sets satisfies :
◆ ∅, X ∈ O
◆ If Z ⊆ O then ⋃ Z ∈ O.
◆ If O0 ,O1 ∈ O then O0 ∩ O1 ∈ O.

Conversely, given any systemO with these properties we can define a
topology by

C ∶= {X ∖ O ∣ O ∈ O } .

(b) The family of clopen sets of a topological space X forms a boolean
algebra.

Lemma 1.2. Let X be a topological space. A set A ⊆ X is open if and only
if it is a neighbourhood of all of its elements.

Proof. Clearly, if A is open and x ∈ A then we have x ∈ A ⊆ A and A is a
neighbourhood of x. Conversely, suppose that, for every x ∈ A, there is
an open set Ox with x ∈ Ox ⊆ A. Then A = ⋃x∈A Ox is open. ◻

Remark. The family of all neighbourhoods of a point x ∈ X forms a filter
in the power-set lattice ℘(X).

Note that every topological space is a closure space. Hence, we can
use Lemma a2.4.8 to assign to each topology a corresponding closure
operator.

Definition 1.3. Let X = ⟨X , C⟩ be a topological space.
(a) The topological closure of a set A ⊆ X is

cl(A) ∶=⋂{C ∈ C ∣ A ⊆ C } .

(b) The interior of A is the set

int(A) ∶=⋃{O ∣ O ⊆ A is open} .

(c) The boundary of A is the set

∂A ∶= cl(A) ∖ int(A) .
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Example. (a) Consider the space R. We have cl(Q) = R, int(Q) = ∅,
and ∂Q = R.

(b) The interior of a closed interval [a, b] is the corresponding open
interval (a, b). Its boundary is {a, b}.

Exercise 1.1. Prove that

int(A) = A∖ cl(X ∖ A) and ∂A = cl(A) ∩ cl(X ∖ A) .

Lemma 1.4. Let X be a set.

(a) If C is a topology on X, the corresponding operation cl forms a
topological closure operator on X.

(b) Conversely, if c is a topological closure operator on X, then fix c is a
topology on X.

As seen in the examples above, it can be quite cumbersome to describe
a topology by defining when a set is closed. Instead, it is usually easier to
define only some especially simple closed sets. Note that the intersection
of a family of topologies is again a topology. Hence, the collection of all
topologies on a set X form a complete partial order and we can assign
to each family B ⊆ ℘(X) the least topology containing B.

Definition 1.5. Let X = ⟨X , C⟩ be a closure space.
(a) A closed base of C is a system B ⊆ ℘(X) such that

C = {⋂ Z ∣ Z ⊆ B } .

(By convention, we set ⋂∅ ∶= X.)
(b) An open base of C is a system B ⊆ ℘(X) such that

C = {X ∖⋃ Z ∣ Z ⊆ B } .

(c) A closed subbase of C is a system B ⊆ ℘(X) such that the set

{B0 ∪ ⋅ ⋅ ⋅ ∪ Bn−1 ∣ n < ω, B i ∈ B }
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forms a closed base of C.
(d) An open subbase of C is a system B ⊆ ℘(X) such that the set

{B0 ∩ ⋅ ⋅ ⋅ ∩ Bn−1 ∣ n < ω, B i ∈ B }

forms an open base of C.
(e) If B is a base or subbase of C then we say that B induces the

topology C.

Every family B ⊆ ℘(X) is a closed base for the closure space ⟨X , C⟩
where

C ∶= {⋂ Z ∣ Z ⊆ B } .

In the following lemma we characterise those families B where resulting
closure space is topological.

Lemma 1.6. Let X be a set and B ⊆ ℘(X).
(a) B forms a closed base of some topology C on X if and only if it

satisfies the following conditions :
◆ ⋂B = ∅ .
◆ For all C0 ,C1 ∈ B, there exists a set Z ⊆ B such that C0∪C1 =

⋂ Z.
(b) B forms an open base of some topology C on X if and only if it

satisfies the following conditions :
◆ ⋃B = X .
◆ For all O0 ,O1 ∈ B, there is a set Z ⊆ B such that O0 ∩ O1 =

⋃ Z.

Remark. (a) The set of all open intervals forms an open base for the
topology of R. An open subbase is given by the set of all intervals of the
form ↓a and ↑a, for a ∈ R. Similarly, the set of all intervals of the form
⇓a and ⇑a is a closed subbase for this topology.

(b) The usual topology of Rn has an open base consisting of all balls
Bε(ā) with ā ∈ Rn and ε > 0.
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Definition 1.7. Let X = ⟨X , C⟩ be a closure space and Y ⊆ X. The closure
subspace of X induced by Y is the closure space

X∣Y ∶= ⟨X , C∣Y⟩ where C∣Y ∶= {C ∩ Y ∣ C ∈ C } .

C∣Y is called the system of closed sets on Y induced by C.

Lemma 1.8. If X is a topological space then so is X∣Y , for every Y ⊆ X.

Example. Let X = R2 with the usual topology and Y ∶= R × {0} ⊆ X.
The set A ∶= (0, 1) × {0} = (0, 1) ×R ∩ Y is an open subset of Y in the
subspace topology. Clearly, A is not an open subset of X.

2. Continuous functions
As usual we employ structure preserving maps to compare topological
spaces.

Definition 2.1. Let f ∶ X → Y be a function between closure spaces.
(a) f is continuous if f −1[C] is closed, for every closed set C ⊆ Y .
(b) f is closed if f [C] is closed, for every closed set C ⊆ X.
(c) f is a homeomorphism if it is bijective, closed, and continuous.

Exercise 2.1. Let f ∶ R → R. Show that f is continuous if and only if,
for every element x ∈ R and all ε > 0, there exists a number δ > 0 such
that ∣ f (y) − f (x)∣ < ε, for all y with ∣y − x∣ < δ. Hence, for the standard
topology of the real numbers the above definition coincides with the
well-known definition from analysis.

Lemma 2.2. Let f ∶ X → Y be a function between closure spaces. The
following statements are equivalent :

(1) f is continuous.

(2) f −1[O] is open, for every open set O ⊆ Y .

(3) f −1[O] is open, for every basic open set O ⊆ Y .
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(4) f −1[C] is closed, for every basic closed set C ⊆ Y .

Proof. (1)⇒ (2) If O is open then Y ∖ O is closed. Hence,

X ∖ f −1[O] = f −1[Y ∖ O]

is closed and f −1[O] is open.
(3)⇒ (4) follows analogously. If B is a closed base for the topology

of Y then {Y ∖ B ∣ B ∈ B } is an open base for this topology. Hence, if
B ∈ B then

X ∖ f −1[B] = f −1[Y ∖ B]

is open and f −1[B] is closed.
(2)⇒ (3) is trivial.
(4)⇒ (1) Let C ⊆ Y be closed. Then there exists a family S of basic

closed sets such that C = ⋂ S. Hence,

f −1[C] =⋂{ f −1[B] ∣ B ∈ S }

is closed. ◻

Example. We claim that addition of real numbers is a continuous func-
tion + ∶ R2 → R with regard to the usual topologies on R and R2.
Since the open intervals form a base for the topology of R it is sufficient
to check that the preimage of every open interval (a, b) is open. This
preimage is the set

{ ⟨x , y⟩ ∈ R2 ∣ a − x < y < b − x }

which is open in the topology of R2.

Exercise 2.2. Prove that multiplication ⋅ ∶ R2 → R is also continuous.

Lemma 2.3. Let f ∶ X → Y be a function between topological spaces.
(a) f is continuous if, and only if, there exists a closed subbase B of Y

such that f −1[B] is closed, for every B ∈ B.
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(b) If f is injective, then f is closed if, and only if, there exists a closed
subbase B of X such that f [B] is closed, for every B ∈ B.

Proof. (a) (⇒) is trivial. For (⇐), note that

f −1[B0 ∪ ⋅ ⋅ ⋅ ∪ Bn−1] = f −1[B0] ∪ ⋅ ⋅ ⋅ ∪ f −1[Bn−1]

is closed, for all B0 , . . . , Bn−1 ∈ B. Hence, there is a close base

B+ ∶= {B0 ∪ ⋅ ⋅ ⋅ ∪ Bn−1 ∣ n < ω, B0 , . . . , Bn−1 ∈ B }

of Y such that f −1[B] is closed, for all B ∈ B. Consequently, we can use
Lemma 2.2 to show that that f is continuous.

(b) (⇒) is trivial. For (⇐), let C ⊆ X be closed. Then there is a family
(Fi)i∈I of finite subsets Fi ⊆ B such that

C =⋂
i∈I
⋃ Fi .

Since f is injective, it follows that

f [C] = f [⋂i∈I ⋃ Fi] =⋂
i∈I

f [⋃ Fi] =⋂
i∈I
⋃
B∈Fi

f [B] .

This set is closed. ◻

Lemma 2.4. Let f ∶ X → Y and g ∶ Y → Z be functions between closure
spaces.

(a) If f and g are continuous then so is g ○ f .
(b) If f and g are closed then so is g ○ f .

The following lemma comes in handy when one wants to prove that a
piecewise defined function is continuous.

Lemma 2.5 (Gluing Lemma). Let f ∶ X → Y be a function between
topological spaces and suppose that C0 , . . . ,Cn−1 ⊆ X is a finite sequence
of closed sets such that X = C0 ∪ ⋅ ⋅ ⋅ ∪ Cn−1. If each restriction f ↾ C i is
continuous then so is f .

348



2. Continuous functions

Proof. Let A ⊆ Y be closed. Since f ↾ C i is continues it follows that the
sets f −1 ↾ C i[A] are closed. Hence,

f −1[A] = f −1 ↾ C0[A] ∪ ⋅ ⋅ ⋅ ∪ f −1 ↾ Cn−1[A]

being a finite union of closed sets is also closed. ◻

As an application we consider topologies on partial orders and con-
tinuous functions between them.

Definition 2.6. Let ⟨A, ≤⟩ be a partial order. The order topology of A is
the topology induced by the open subbase consisting of all sets ↑a and ↓a,
for a ∈ A.

Example. (a) The order topology of ⟨Z, ≤⟩ is the discrete topology.
(b) The order topology of ⟨R, ≤⟩ is the usual topology.
(c) The order topology of ⟨Q, ≤⟩ is the subspace topology induced by

the inclusion Q ⊆ R. If (a, b) ⊆ R is an open interval with irrational
endpoints then (a, b) ∩Q is a clopen subset of Q.

Lemma 2.7. Let X be a topological space and L a lattice with the or-
der topology. If f , g ∶ X → L are continuous then so are the functions
f ⊔ g , f ⊓ g ∶ X → L with

( f ⊔ g)(x) ∶= f (x) ⊔ g(x) and ( f ⊓ g)(x) ∶= f (x) ⊓ g(x) .

Proof. The preimages

( f ⊔ g)−1[↓a] = f −1[↓a] ∩ g−1[↓a]
( f ⊔ g)−1[↑a] = f −1[↑a] ∪ g−1[↑a]

of the basic open sets ↓a and ↑a are open. The claim for f ⊓ g follows
analogously. ◻

Corollary 2.8. Let L be a lattice with the order topology and let C(X, L)
be the set of all continuous functions X → L. If we order f , g ∈ C(X, L) by

f ⊑ g : iff f (x) ⊑ g(x) , for all x ∈ X ,

then C(X, L) ∶= ⟨C(X, L), ⊑⟩ forms a lattice.
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Proof. We have shown in the preceding lemma that f , g ∈ C(X, L) im-
plies f ⊔ g , f ⊓ g ∈ C(X, L). Clearly, f ⊔ g = sup{ f , g} and f ⊓ g =
inf { f , g}. ◻

Definition 2.9. Let A = ⟨A, ≤⟩ be a partial order. The chain topology
on A is the topology where a set U ⊆ A is closed if, and only if, supC ∈ U ,
for every nonempty chain C ⊆ U that has a supremum.

Lemma 2.10. Let ⟨A, ≤⟩ be a complete partial order. If C ⊆ A is closed in
the chain topology then the suborder ⟨C , ≤⟩ is inductively ordered.

Lemma 2.11. An increasing function f ∶ A→ B between partial orders is
continuous (in the sense of Definition a2.3.12) if and only if it is continuous
with regard to the chain topology.

Proof. (⇒) Suppose that U ⊆ B is a closed set such that f −1[U] is not
closed. Then there exists a chain C ⊆ f −1[U] such that supC exists but
supC ∉ f −1[U]. Since f is increasing it follows that f [C] is a chain in U .
If sup f [C] does not exist then f is not continuous and we are done.
Otherwise, we have sup f [C] ∈ U since U is closed. Since f (supC) ∉ U
it follows that sup f [C] ≠ f (supC), as desired.
(⇐) Suppose that there is a chain C ⊆ A such that supC exists but,

either sup f [C] does not or sup f [C] ≠ f (supC). Set c ∶= f (supC).
Since c is an upper bound of f [C] but not the least one, we can find an
upper bound b of f [C] with b ≱ c. Since C ⊆ f −1[⇓b] is a chain with
supremum supC ∉ f −1[⇓b] it follows that f −1[⇓b] is not closed. The
set ⇓b, on the other hand, is closed. Consequently, f is not continuous
with regard to the chain topology. ◻

3. Hausdorff spaces and compactness
The finer a topology on X is, that is, the more subsets of X are closed, the
smaller the vicinity of a point becomes. One extreme is the trivial topo-
logy {∅, X} where all points are near to each other. The other extreme
is the discrete topology ℘(X) which consists of isolated points that are
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far away from each other. When we equip a set X with a topology we
aim at imposing a spatial relationship on the points of X. To exclude
trivial cases we will adopt the basic requirement that the topology is fine
enough to separate each point from every other one. Such topologies are
called Hausdorff topologies.

Definition 3.1. Let X be a topological space.
(a) X is a Hausdorff space if, for all x , y ∈ X with x ≠ y, there exist

open sets U and V with x ∈ U , y ∈ V , and U ∩ V = ∅.
(b) X is zero-dimensional, or totally disconnected, if it has an open base

of clopen sets.

Example. (a) R is a Hausdorff space. It is not zero-dimensional.
(b) Q is a zero-dimensional Hausdorff space.
(c) The Zariski topology is not Hausdorff.

A typical example for the kind of topological space we are mostly
interested in is given by the Cantor discontinuum.

Definition 3.2. The Cantor discontinuum is the space C ∶= ⟨2ω , C⟩ where
the open sets are of the form

⟨W⟩ ∶= { x ∈ 2ω ∣ w ⪯ x for some w ∈W }

with W ⊆ 2<ω . (⪯ denotes the prefix order.)

Remark. The Cantor discontinuum can be regarded as the set of all
branches of the infinite binary tree ⟨2<ω , ⪯⟩. An open set ⟨W⟩ consists
of all branches that contain an element of W . Correspondingly, a set C is
closed if there exists a set W ⊆ 2<ω such that C consists of all branches
that avoid every element of W . In particular, every singleton {x} is
closed. An open base of the Cantor topology consists of the sets ⟨{w}⟩
with w ∈ 2<ω .

Lemma 3.3. The Cantor discontinuum is a zero-dimensional Hausdorff
space.
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Proof. Let w = c0 . . . cn−1 ∈ 2<ω and set d i ∶= 1 − c i . The complement of
a basic open set ⟨{w}⟩ is the open set⋃{ ⟨c0 . . . c i−1d i⟩ ∣ i < n }. Hence,
every basic open set ⟨{w}⟩ is clopen.

To show that the topology is Hausdorff let x , y ∈ 2ω with x ≠ y. Then
there exists a least index n < ω with x(n) ≠ y(n). Let w ∈ 2<ω be the
common prefix of x and y of length n and set c ∶= x(n) and d ∶= y(n).
Then we have x ∈ ⟨wc⟩, y ∈ ⟨wd⟩ and ⟨wc⟩ ∩ ⟨wd⟩ = ∅. ◻

Many familiar properties of the real topology are shared by all Haus-
dorff spaces.

Lemma 3.4. In a Hausdorff space X every singleton {x} is closed.

Proof. Let x ∈ X. For every y ≠ x, there are disjoint open sets Uy ,Vy
with x ∈ Uy and y ∈ Vy . The set O ∶= ⋃y≠x Vy is open. Since O = X∖{x}
it follows that {x} is closed. ◻

An important property of topological spaces is compactness which
can be regarded as a strong form of completeness (the precise statement
is given in Lemma 3.6 (3) below).

Definition 3.5. Let X be a topological space.
(a) A cover of X is a subset U ⊆ ℘(X) such that ⋃U = X. The cover

is called open if every U ∈ U is an open set. A subcover of U is a subset
U0 ⊆ U that is still a cover of X.

(b) X is compact if every open cover has a finite subcover. We call a
set A ⊆ X compact if the subspace induced by A is compact.

(c) X is locally compact if every point x ∈ X has a compact neighbour-
hood.

Exercise 3.1. (a) Prove that R is not compact.
(b) Prove that a subset A ⊆ R is compact if, and only if, it is closed

and bounded.
(c) Prove that R is locally compact.
(d) Prove that Q is not locally compact.
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Lemma 3.6. Let X be a topological space. The following statements are
equivalent :

(1) X is compact.
(2) The topology of X has an open subbase B such that every cover U

of X with U ⊆ B has a finite subcover.
(3) If C ⊆ ℘(X) is a family of closed sets with ⋂C = ∅ then there exists

a finite subfamily C0 ⊆ C with ⋂C0 = ∅.

Proof. (1)⇒ (2) is trivial. (2)⇒ (1) Let F be the set of all open covers
of X that do not have a finite subcover. We have to show that F = ∅.
For a contradiction, suppose otherwise. Note that ⟨F , ⊆⟩ is inductively
ordered. Hence, there exists a maximal element U ∈ F . Let V ∶= U ∩B.
Since no finite subset of V is a cover of X and V ⊆ B it follows by (2)
that V is not a cover of X. Let x ∈ X ∖⋃V and choose some open set
U ∈ U with x ∈ U . By definition of a subbase there exist finitely many
sets B0 , . . . , Bn ∈ B such that

x ∈ B0 ∩ ⋅ ⋅ ⋅ ∩ Bn ⊆ U .

Since x ∉ ⋃V we have B i ∉ U , for all i < n. By maximality of U it follows
that U ∪ {B i} has a finite subcover. That is, for every i < n, there exists a
finite subset Ui ⊆ U such that Ui ∪ {B i} is a cover of X. It follows that

U ∪⋃
i<n
⋃Ui ⊇ ⋂

i<n
B i ∪⋃

i<n
⋃Ui ⊇ ⋂

i<n
(B i ∪⋃Ui) = X .

Consequently, U contains the finite subcover {U} ∪ U0 ∪ ⋅ ⋅ ⋅ ∪ Un−1.
Contradiction.

(1)⇒ (3) Set U ∶= {X ∖ C ∣ C ∈ C }. If ⋂C = ∅ then U is an open
cover of X. Hence, there exists a finite subcover U0 ⊆ U which implies
that ⋂C0 = ∅ where C0 ∶= {X ∖U ∣ U ∈ U0 } ⊆ C.

(3)⇒ (1) Let U be an open cover of X and set C ∶= {X ∖U ∣ U ∈ U }.
Then ⋂C = ∅. Hence, there exists a finite subset C0 ⊆ C such that
⋂C0 = ∅. This implies that {X ∖ C ∣ C ∈ C0 } is a finite subcover
of U . ◻

353



b5. Topology

Lemma 3.7. The Cantor discontinuum is compact.

Proof. Let U be a cover of 2ω consisting of basic open sets ⟨W⟩ with
W ⊆ 2<ω . SetW ∶= {W ⊆ 2<ω ∣ ⟨W⟩ ∈ U } and

T ∶= 2<ω ∖⋃W .

Note that if w ∈ W then ⟨W⟩ = ⟨W ∪ {wx}⟩, for all x ∈ 2<ω . Con-
sequently, v ∈ T implies u ∈ T , for all u ⪯ v. Hence, T is a tree. We claim
that it is finite.

Suppose otherwise. As the tree T is binary we can use Lemma b2.1.9
to find an infinite branch α ∈ 2ω through T . This implies that α ∉ ⟨W⟩,
for all W ∈W . Hence, α ∉ ⋃U . Contradiction.

Since T is finite it follows that the partial order ⟨2<ω∖T , ⪯⟩ has finitely
many minimal elements w0 , . . . ,wn−1. For every i < n, choose some
Wi ∈ W with w i ∈ Wi . Then {⟨W0⟩, . . . , ⟨Wn−1⟩} is a finite subcover
of U . ◻

Lemma 3.8. If A and B are compact then so is A∪ B.

Proof. Let U be an open cover of A∪ B. Since A is compact there exists
a finite subset V ⊆ U that is a cover of A. Similarly, we find a finite cover
W ⊆ U of B. Hence, V ∪W ⊆ U is a finite cover of A∪ B. ◻

Lemma 3.9. If X is compact and A ⊆ X closed then A is compact.

Proof. We employ the characterisation of Lemma 3.6 (3). Let C be a
family of subsets of A that are closed in A. It is sufficient to show that
every set in C is also closed in X. For every C ∈ C, there is a closed set
U ⊆ X with C = U ∩ A. Since A is closed it follows that so is C. ◻

Lemma 3.10. Let f ∶ X → Y be continuous. If K ⊆ X is compact then so is
f [K].

Proof. Let U be an open cover of f [K]. Then V ∶= { f −1[U] ∣ U ∈ U }
is an open cover of K that, by assumption, contains a finite subcover
V0 ⊆ V . For every V ∈ V0, fix some set UV ∈ U such that f −1[UV ] = V .
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We claim that U0 ∶= {UV ∣ V ∈ V0 } is a cover of f [K]. If y ∈ f [K]
then y = f (x), for some x ∈ K. Choose some V ∈ V0 with x ∈ V . Then
y = f (x) ∈ f [V] = UV is covered by U0. ◻

Lemma 3.11. Let X be a Hausdorff space and K ⊆ X a compact set.
(a) For every x ∈ X ∖ K, there exist disjoint open sets U and V with

x ∈ U and K ⊆ V .
(b) For every compact set A ⊆ X, disjoint from K, there exist disjoint

open sets U and V with A ⊆ U and K ⊆ V .
(c) K is closed.

Proof. (a) Let x ∈ X ∖ K. Since X is a Hausdorff space we can find, for
every y ∈ K, disjoint open sets Uy ,Vy ⊆ X with x ∈ Uy and y ∈ Vy . Since
K ⊆ ⋃y Vy is compact there exist finitely many points y0 , . . . , yn−1 ∈ K
such that K ⊆ Vy0 ∪ ⋅ ⋅ ⋅ ∪ Vyn−1 =∶ V . The set U ∶= Uy0 ∩ ⋅ ⋅ ⋅ ∩ Uyn−1 is
open, disjoint from V , and it contains x.

(b) The proof is similar to that of (a). Applying (a) we fix, for every
x ∈ K, disjoint open sets Ux and Vx with x ∈ Vx and A ⊆ Ux . Since
K ⊆ ⋃x Vx there exist finitely many elements x0 , . . . , xn−1 ∈ K with
K ⊆ Vx0 ∪ ⋅ ⋅ ⋅ ∪Vxn−1 =∶ V . The set U ∶= Ux0 ∩ ⋅ ⋅ ⋅ ∩Uxn−1 is open, disjoint
from V , and it contains A.

(c) For every x ∈ X ∖ K, we can use (a) to find an open set Ux with
x ∈ Ux and K ∩Ux = ∅. Since X ∖ K = ⋃x Ux is open it follows that K
is closed. ◻

We turn to an investigation of locally compact Hausdorff spaces. The
following lemma shows that these are very similar to the real topology.

Lemma 3.12. Let X be a locally compact Hausdorff space.
(a) For every neighbourhood U of a point x ∈ X, there exists a compact

neighbourhood V ⊆ U of x.
(b) For all sets K ⊆ O ⊆ X where K is compact and O is open, there

exists an open set U such that K ⊆ U ⊆ cl(U) ⊆ O and cl(U) is
compact.

355
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(c) If C ⊆ X is closed and O ⊆ X is open then the subspace induced by
C ∩ O is a locally compact Hausdorff space.

Proof. (a) Replacing U by int(U) we may assume that U is open. Let
K be a compact neighbourhood of x. If K ⊆ U we are done. Otherwise,
the set A ∶= K∖U = K∩(X∖U) is closed. Since A ⊆ K it is also compact.
There exist disjoint open sets W0 ,W1 with A ⊆W0 and x ∈W1. The set
V ∶= K ∩ (X ∖W0) = K ∖W0 is closed, compact, and it contains x.
Furthermore, K ∖U ⊆W0 implies that V = K ∖W0 ⊆ U .

(b) By (a), we can choose, for every x ∈ K, a compact neighbourhood
Wx ⊆ O. The family

W ∶= { int(Wx) ∣ x ∈ K }

is an open cover of K. By compactness, there exists a finite subcover
W0 ⊆W . The set U ∶= ⋃W0 is open and we have

cl(U) = cl(⋃W0) =⋃{ cl(int(Wx)) ∣ int(Wx) ∈W0 }

⊆⋃{Wx ∣ int(Wx) ∈W0 } ⊆ O .

Finally, cl(U) is compact because it is a finite union of compact sets.
(c) Every subspace of a Hausdorff space is Hausdorff. To prove that

C ∩ O is locally compact, let x ∈ C ∩ O. By (a), there exists a compact
neighbourhood K ⊆ O of x. The set V ∶= C ∩ K ⊆ C ∩ O is compact.
Furthermore, V is a neighbourhood of x in C ∩ O since x ∈ C ∩ int(K)
and C ∩ int(K) is open in C ∩ O. ◻

Theorem 3.13. A Hausdorff space X is locally compact if and only if there
exist a compact Hausdorff space Y such that X ⊆ Y is an open subset of Y .

Proof. (⇐) If Y is compact and X ⊆ Y is open then Lemma 3.12 (c)
implies that X = X ∩ Y is locally compact.
(⇒)We set Y ∶= X ∪ {∞} where∞ ∉ X is a new point. Let C be the

topology of X. We define the topology of Y by

D ∶= {C ∪ {∞} ∣ C ∈ C } ∪ {K ∣ K ⊆ X is compact} .
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Let us show thatD is a topology. Since ∅ is compact we have

∅ ∈ D and Y = X ∪ {∞} ∈ D .

Furthermore, if A, B ∈ D then either ∞ ∈ A∪ B and (A∪ B) ∖ {∞} is
closed in X, or A and B are compact in X and so is A∪ B. In both cases
it follows that A∪ B ∈ D.

Finally, suppose that Z ⊆ D. If∞ ∈ ⋂ Z then⋂ Z ∖ {∞} being closed
in X it follows that⋂ Z ∈ D. Otherwise, there is a compact set K ∈ Z and
⋂ Z ⊆ X is closed in X. Since ⋂ Z ⊆ K it follows that it is also compact.
Hence, ⋂ Z ∈ D.

Since {∞} = ∅ ∪ {∞} ∈ D it follows that X is an open subset of Y .
Hence, it remains to prove that Y is a compact Hausdorff space.

If x ≠ y are points in X then X contains disjoint open neighbourhoods
of x and y. These are also open in Y . Similarly, for x ∈ X and∞, we can
select a compact neighbourhood K ⊆ X of x. Then int(K) and Y ∖K are
disjoint open sets with x ∈ int(K) and∞ ∈ Y ∖ K. Consequently, Y is a
Hausdorff space.

For compactness, let Z ⊆ D be a family with ⋂ Z = ∅. Since∞ ∉ ⋂ Z
there is a set K ∈ Z that is compact in X. The family,

Z′ ∶= {C ∩ K ∣ C ∈ Z }

is a family of closed subsets of K with ⋂ Z′ = ∅. Since K is compact it
follows that there is a finite subset Z′0 ⊆ Z′ with ⋂ Z′0 = ∅. Suppose that

Z′0 = {C0 ∩ K , . . . ,Cn−1 ∩ K} .

Then Z0 ∶= {K ,C0 , . . . ,Cn−1} is a finite subset of Z with⋂ Z0 = ∅. ◻

4. The Product topology
Definition 4.1. Let (Xi)i∈I be a sequence of topological space. Their
product∏i∈I Xi is the space with universe∏i∈I X i whose topology has
as open base all sets of the form ∏i∈I O i where each O i ⊆ X i is open
and there are only finitely many i with O i ≠ X i .
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Example. The Cantor discontinuum is the product∏n<ω[2] where each
factor [2] is equipped with the discrete topology.

Lemma 4.2. The product topology is the least topology such that every
projection is continuous.

Proof. Let Xi , i ∈ I, be a family of topological spaces and let C be the
product topology. Set

B ∶= {pr−1
k [O] ∣ k ∈ I, O ⊆ Xk open} .

Since B is an open subbase of C it follows that pr−1
k [O] is open, for every

open O ⊆ Xk . Hence, prk ∶∏i X i → Xk is continuous.
Let C′ be another topology on∏i X i such that all projections prk are

continuous. If O ⊆ Xk is open then pr−1
k [O] is open in C′. Hence, every

set of B is open in C′. Since B is a subbase of C it follows that every open
set of C is open in C′, that is, C ⊆ C′. ◻

Lemma 4.3. Let Xi , for i ∈ I, be nonempty topological spaces.
(a) The product∏i∈I Xi is a Hausdorff space if and only if each factor Xi

is a Hausdorff space.
(b) The product space∏i∈I Xi is zero-dimensional if and only if each

factor Xi is zero-dimensional.

Proof. (a) (⇐) Let (x i)i , (y i)i ∈ ∏i X i be distinct. Fix some index i
with x i ≠ y i . Since X i is Hausdorff there exist disjoint open sets U ,V ⊆
X i with x i ∈ U and y i ∈ V . Hence, U∗ ∶= pr−1

i [U] and V∗ ∶= pr−1
i [V]

are disjoint open sets with (x i)i ∈ U∗ and (y i)i ∈ V∗.
(⇒) Fix elements z i ∈ X i , for i ∈ I. For x ∈ Xk , let x∗ ∶= (x i)i where

x i ∶=

⎧⎪⎪
⎨
⎪⎪⎩

x if i = k ,
z i otherwise .

To show that Xk is a Hausdorff space let x , y ∈ Xk be distinct. By as-
sumption there are disjoint open sets U ,V ⊆ ∏i X i with x∗ ∈ U and
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y∗ ∈ V . W.l.o.g. we may assume that U = ∏i U i and V = ∏i Vi are
basic open with open sets U i ,Vi ⊆ X i . It follows that x ∈ Uk and
y ∈ Vk . Furthermore, Uk ∩ Vk = ∅ since z ∈ Uk ∩ Vk would imply
that z∗ ∈∏i U i ∩∏i Vi = ∅.

(b) (⇒) Suppose that∏i Xi is zero-dimensional. Fix elements z i ∈ X i
and define the functions fk ∶ Xk →∏i X i ∶ x ↦ (y i)i where

y i ∶=

⎧⎪⎪
⎨
⎪⎪⎩

x if i = k ,
z i otherwise .

Then fk is a homeomorphism from Xk to a subspace of∏i Xi . Since every
subspace of a zero-dimensional space is zero-dimensional it follows that
so is Xk .
(⇐) Suppose that every factor Xi has an open base Bi of clopen sets.

The space∏i Xi has an open base consisting of all sets of the form

pr−1
k0
[B0] ∩ ⋅ ⋅ ⋅ ∩ pr−1

kn
[Bn]

where B i ∈ Bk i . Since each element of Bk i is clopen, the projections prk i

are continuous, and the family of clopen sets is closed under boolean
operations it follows that these sets are clopen. ◻

Theorem 4.4 (Tychonoff). Let Xi , for i ∈ I, be nonempty topological
spaces. The product space∏i∈I Xi is compact if and only if each factor Xi
is compact.

Proof. (⇒) Let U be an open cover of X i . Then

V ∶= {pr−1
i [U] ∣ U ∈ U }

is an open cover of∏i X i . Consequently, there exists a finite subcover
V0 ⊆ V and {U ∈ U ∣ pr−1

i [U] ∈ V0 } is a finite subcover of U .
(⇐) Let U be a cover of∏i Xi . By Lemma 3.6, we may assume that

every set in U is of the form pr−1
i (U) where i ∈ I and U ⊆ X i is open.

For i ∈ I, let

Ui ∶= {U ⊆ X i ∣ pr−1
i [U] ∈ U } .
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We claim that there is some index i ∈ I such that ⋃Ui = X i . Suppose
otherwise. Then, for every i ∈ I, we can find a point x i ∈ X i ∖ ⋃Ui .
Hence, (x i)i ∉ ⋃U and U is not a cover of∏i Xi . Contradiction.

Fix such an index i. Since Xi is compact there exists a finite subcover
U0 ⊆ Ui of Xi . It follows that {pr−1

i [U] ∣ U ∈ U0 } is a finite subcover
of U . ◻

Lemma 4.5. Let f ∶ Y0 × ⋅ ⋅ ⋅ ×Yn−1 → Z and g i ∶ Xi → Yi , for i < n, be
functions and define h ∶ X0 × ⋅ ⋅ ⋅ × Xn−1 → Z by

h(ā) = f (g0(a0), . . . , gn−1(an−1)) .

If f and all g i are continuous then so is h.

Proof. Let k ∶ X0 × ⋅ ⋅ ⋅ ×Xn−1 → Y0 × ⋅ ⋅ ⋅ ×Yn−1 be the function such that

k(ā) ∶= ⟨g0(a0), . . . , gn−1(an−1)⟩ .

Since h = f ○ k it is sufficient to prove that k is continuous.
Let O ⊆ X0 × ⋅ ⋅ ⋅ × Xn−1 be a basic open set. Then O = U0 × ⋅ ⋅ ⋅ ×Un−1

where each U i is open. Since g i is continuous it follows that g−1
i [U i] is

also open. Consequently,

k−1[O] = g−1
0 [U0] × ⋅ ⋅ ⋅ × g−1

n−1[Un−1]

is open. ◻

Example. From this lemma and the fact that addition and multiplication
of real numbers are continuous functions, it follows immediately that
every polynomial function Rn → R is continuous.

We conclude this section with two further lemmas showing that Haus-
dorff spaces exhibit properties familiar from real topology. The first one
is similar to Lemma 3.4.

Lemma 4.6. If X is a Hausdorff space then the set

∆ ∶= { ⟨x , x⟩ ∣ x ∈ X }

is closed in X × X.
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Proof. If ⟨x , y⟩ ∉ ∆ then there are disjoint open sets U and V with x ∈ U
and y ∈ V . Hence, U × V is an open neighbourhood of ⟨x , y⟩. Since
U and V are disjoint we have U × V ∩ ∆ = ∅. It follows that X × X ∖ ∆
is open and ∆ closed. ◻

Lemma 4.7. Let f ∶ X → Y be a continuous function where Y is a
Hausdorff space. Then f is a closed subset of X ×Y.

Proof. The function g ∶ X × Y → Y × Y with g(x , y) ∶= ⟨ f (x), y⟩ is
continuous, by Lemma 4.5. Since ∆ is closed in Y ×Y and

f = { ⟨x , f (x)⟩ ∣ x ∈ X } = g−1[∆]

if follows that f is closed in X × X. ◻

5. Dense sets and isolated points
In this section we study two different approaches to classify subsets of a
space into ‘thin’ and ‘thick‘ ones. The first one is the property of Baire
and the second one the Cantor-Bendixson rank.

Definition 5.1. A set A ⊆ X is dense if A∩ O ≠ ∅, for every nonempty
open set O.

Example. The set Q is dense in R.

Lemma 5.2. Let X be a topological space and A ⊆ X.
(a) A is dense if and only if cl(A) = X.
(b) int(A) = ∅ if and only if X ∖ A is dense.

Proof. (a) (⇐) Let O be a nonempty open set. Then C ∶= X ∖ O ≠ X.
Since cl(A) = X it follows that C ⊉ A. This implies that O ∩ A ≠ ∅.
(⇒) Let C ⊇ A be closed and set O ∶= X ∖ C. If O ≠ ∅ then we have

O ∩ A ≠ ∅ since A is dense. It follows that A ∖ C ≠ ∅. Contradiction.
Hence, X is the only closed set containing A, which implies that cl(A) =
X.
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(b) Let O ≠ ∅ be open. If O ∩ (X ∖ A) = ∅ then O ⊆ Awhich implies
that int(A) ≠ ∅. Conversely, if O ⊆ A then O∩(X∖A) = ∅ and X∖A is
not dense. ◻

Definition 5.3. Let X be a topological space and A ⊆ X.
(a) A is nowhere dense if its closure has empty interior.
(b) A is meagre if A is a countable union of nowhere dense sets.

Lemma 5.4. Let X be a topological space and A ⊆ X.

(a) If A is meagre and B ⊆ A then B is meagre.

(b) If A = ⋃n<ω Bn where each Bn is meagre then A is meagre.

(c) If D ⊆ X is dense and A∩ D is meagre in D then A is meagre in X.

Proof. (a) Fix nowhere dense sets Cn , n < ω, such that A = ⋃n Cn . Since
B = ⋃n(Cn ∩ B) and every Cn ∩ B is nowhere dense it follows that B is
also meagre.

(b) Fix nowhere dense sets Ck
n , k, n < ω, such that Bn = ⋃k Ck

n . Then

A =⋃
n
Bn =⋃

n
⋃
k
Ck

n

is a countable union of nowhere dense sets.
(c) Let A = ⋃n Bn where each set Bn ∩ D is nowhere dense in D. It

is sufficient to prove that every Bn is nowhere dense in D. Let O be
the interior of the closure of Bn in X. For a contradiction, suppose that
O ≠ ∅. Then O ⊆ clX(B) implies O ∩ D ⊆ clD(B ∩ D). Since O ∩ D is
open in D we have O ∩ D ⊆ intD(clD(B ∩ D)). But D is dense in X and
O is open. Hence, O ∩ D ≠ ∅ and B ∩ D is not nowhere dense in D.
Contradiction. ◻

This lemma shows that the meagre subsets A ⊆ X form an ideal in
℘(X) that is closed under countable unions.We are interested in spaces X
where this ideal is proper. The next lemma gives several equivalent char-
acterisations of such spaces.
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Lemma 5.5. Let X be a topological space. The following statements are
equivalent :

(1) If, for every n < ω, An is a closed set with empty interior then
⋃n<ω An has empty interior.

(2) If An is open and dense, for every n < ω, then ⋂n<ω An is dense.

(3) If A is open and nonempty then A is not meagre.

(4) If A is meagre then X ∖ A is dense.

Proof. (1)⇒ (2) If An is open and dense then X ∖An is a closed set with
empty interior. By (1), it follows that B = ⋃n(X ∖An) has empty interior.
Consequently, ⋂n<ω An = X ∖ B is dense.

(2)⇒ (3) Suppose that A is open, nonempty, and meagre. Then there
are nowhere dense sets Bn such that A = ⋃n<ω Bn . Since the interior
of cl(Bn) is empty it follows that On ∶= X ∖ cl(Bn) is dense and open.
(2) implies that the set X ∖ A = ⋂n On is dense. Consequently, A has
empty interior and, since A is open it follows that A = ∅. A contradiction.

(3) ⇒ (4) Suppose that A is meagre but X ∖ A is not dense. Then
int(A) ≠ ∅ and there exists a nonempty open subset O = int(A) ⊆ A
of A. By (3), it follows that O is not meagre. This contradicts Lemma 5.4.

(4)⇒ (1) Let B = ⋃n<ω An where each An is a closed set with empty
interior. Then B is meagre and it follows by (4) that X ∖ B is dense.
Consequently, we have int(B) = ∅. ◻

Definition 5.6. A topological space X has the property of Baire if there is
no set A ⊆ X that is nonempty, open, and meagre.

Lemma 5.7. Let X be a topological space with the property of Baire. If
A is a meagre set then the subspace X ∖ A has the property of Baire. In
particular, X ∖ A is not meagre.

Proof. Let A be a meagre subset of X. By Lemma 5.5 (4), it follows that
X ∖A is dense. According to Lemma 5.4 (c), if B is a meagre set in X ∖A
then B is also meagre in X. By Lemma 5.4 it follows that A ∪ B is also
meagre. Consequently, C = (X ∖A)∖B = X ∖ (A∪B) is dense in X and,
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therefore, C is also dense in X ∖ A. By Lemma 5.5, it follows that X ∖ A
has the property of Baire. ◻

Theorem 5.8 (Baire). Every locally compact Hausdorff space X has the
property of Baire.

Proof. We show that X has the property of Lemma 5.5 (2). Let (An)n<ω
be a family of open dense subsets of X. Let O0 be an arbitrary nonempty
open set in X. We have to prove that O0 ∩⋂n An ≠ ∅. We construct a
decreasing chain

O0 ⊇ cl(O0) ⊇ O1 ⊇ cl(O1) ⊇ . . .
⋅ ⋅ ⋅ ⊇ On ⊇ cl(On) ⊇ On+1 ⊇ cl(On+1) ⊇ . . .

where each On is nonempty and open, cl(On) is compact, and cl(On) ⊆
An .

Suppose that On is already defined. Since An is dense there exists an
element an ∈ On ∩ An . Since the singleton {an} is compact we can use
Lemma 3.12 (b) to find an open set On+1 such that

an ∈ On+1 ⊆ cl(On+1) ⊆ On ∩ An

and cl(On+1) is compact.
Since C ∶= ⋂n cl(On) is the intersection of a decreasing sequence of

nonempty compact sets it follows that C ≠ ∅. Furthermore, we have
C ⊆ O0 and C ⊆ An , for every n. ◻

Definition 5.9. Let X be a topological space and A ⊆ X. A point x ∈ X is
an accumulation point of A if x ∈ cl(A∖ {x}). A point a ∈ A that is not
an accumulation point of A is called isolated.

Remark. x is an isolated point of X if and only if the set {x} is open.

Lemma 5.10. Let X be a topological space. The following statements are
equivalent :

(1) X is a finite Hausdorff space.
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(2) X is a Hausdorff space with a finite dense subset.

(3) X is a finite space with discrete topology.

(4) X is compact and every point is isolated.

Proof. (1)⇒ (2) is trivial.
(2)⇒ (1) Suppose thatA = {a0 , . . . , an−1} isdense in X.Each singleton {a i}

is closed sinceX is aHausdorff space. Hence, their unionA = {a0}∪⋅ ⋅ ⋅∪{an−1}
is also closed. Since A is dense in X it follows by Lemma 5.2 that A =
cl(A) = X. Thus, X is finite.

(1)⇒ (3) Suppose that X = {x0 , . . . , xn−1} and let A ⊆ X be an arbit-
rary set.We claim that A is open. SinceX is Hausdorffwe can choose open
sets U i k , for i ≠ k, such that x i ∈ U i k and xk ∉ U i k . Let O i ∶= ⋂k≠i U i k .
Then we have O i = {x i} and A = ⋃{O i ∣ x i ∈ A} and these sets are
open.

(3)⇒ (4) Let X = {x0 , . . . , xn−1}. Since {x i} is open it follows that
every element is isolated. For compactness, suppose that (U i)i∈I is an
open cover of X. For every xk , we fix some ik ∈ I with xk ∈ U ik . Then
(U ik)k<n is a finite subcover of X.

(4)⇒ (1) For every pair x ≠ y of distinct points we have the disjoint
open neighbourhoods {x} and {y}. Hence, X is a Hausdorff space.

To show that X is finite fix, for every x ∈ X, an open neighbourhoodUx
isolating x, i.e., Ux = {x}. Then U = {Ux ∣ x ∈ X } is an open cover
of X. By compactness, we can find a finite subcover U0 = {Ux ∣ x ∈ X0 }
with X0 ⊆ X. It follows that

X = ⋃
x∈X

Ux = ⋃
x∈X0

Ux = X0

is also finite. ◻

Definition 5.11. Let X be a topological space and A ⊆ X. The Cantor-
Bendixson rank rkCB(x/A) of an element x ∈ X with respect to A is
defined as follows :

◆ rkCB(x/A) = −1 iff x ∉ A.
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◆ rkCB(x/A) ≥ 0 iff x ∈ A.

◆ rkCB(x/A) ≥ α + 1 if rkCB(x/A) ≥ α and x is an accumulation
point of the set { a ∈ A ∣ rkCB(a/A) ≥ α } .

◆ For limit ordinals δ, we set rkCB(x/A) ≥ δ if rkCB(x/A) ≥ α, for
all α < δ.

The Cantor-Bendixson rank of A is

rkCB(A) ∶= sup{ rkCB(a/A) ∣ a ∈ A} .

Remark. A point a is an isolated point of A if and only if rkCB(a/A) = 0.

Proposition 5.12. Let X be a topological space. For α ∈ On ∪ {∞}, define

X<α ∶= { x ∈ X ∣ rkCB(x/X) < α }

and set X≥α ∶= X ∖ X<α and Xα ∶= X≥α ∩ X<α+1.

(a) rkCB(X) ≥ ∣X∣+ implies rkCB(X) =∞.

(b) Each set X<α is open, while X≥α is closed.

(c) X∞ is a closed set without isolated points.

(d) The following statements are equivalent :

(1) The isolated points are dense in X.
(2) X∞ is nowhere dense.
(3) int(X∞) = ∅.

Proof. (a) By definition, X≥α = X≥α+1 implies X≥α = X∞. Since the
sequence (X≥α)α is decreasing it follows that there is some α < κ+ with
X≥α ∖ X≥α+1 = ∅. Consequently, X≥α = X∞. If X≥α = ∅ then we have
rkCB(X) ≤ α < κ+. Otherwise, rkCB(X) =∞.

(b) Suppose that there is some element x ∈ cl(X≥α) ∖ X≥α . Let β ∶=
rkCB(x/X) < α. Then x ∈ cl(X≥α) = cl(X≥α ∖ {x}) ⊆ cl(X≥β ∖ {x})
implies that x is an accumulation point of X≥β . This implies that x ∈
X≥β+1. A contradiction.

366



5. Dense sets and isolated points

(c) We have seen in (b) that X∞ is closed. Fix some α < ∣X∣+ with
X≥α = X∞. If X≥α had an isolated point then we would have X∞ ⊆
X≥α+1 ⊂ X≥α . Contradiction.

(d) The equivalence (2)⇔ (3) follows from the fact that X∞ is closed.
It remains to prove (1)⇔ (3). If X0 is dense in X then so is X<∞ ⊇ X0.
By Lemma 5.2 (b), it follows that int(X∞) = ∅. Conversely, let O ⊆ X be
anonempty open set.Choose some a ∈ O such that α ∶= rkCB(a/X) <∞
is minimal. Since a is an isolated point of X≥α it follows that there is an
open set U with U ∩ X≥α = {a}. By choice of a we have O ⊆ X≥α and it
follows that U ∩ O = {a}. Hence, {a} is open and a is an isolated point
of X. Therefore, a ∈ O ∩ X0 ≠ ∅, as desired. ◻

Lemma 5.13. Let X be a topological space and C ⊆ X a closed set. For
every c ∈ C, we have

rkCB(c/C) = rkCB(c/X) .

Proof. We prove by induction on α that

rkCB(c/C) = α iff rkCB(c/X) = α .

Set

Xα ∶= { x ∈ X ∣ rkCB(x/X) < α } ,
Cα ∶= { x ∈ C ∣ rkCB(x/C) < α } .

By inductive hypothesis, we have

Cα = Xα ∩ C and C ∖ Cα = (X ∖ Xα) ∩ C .

It follows that

rkCB(c/C) = α iff c is isolated in C ∖ Cα

iff c is isolated in X ∖ Xα

iff rkCB(c/X) = α . ◻
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Lemma 5.14. Let f ∶ X → Y be injective and continuous. For every x ∈ X,
we have

rkCB(x/X) ≤ rkCB( f (x)/Y) .

Proof. We prove by induction on α that

rkCB(x/X) ≥ α implies rkCB( f (x)/Y) ≥ α .

For α = 0, there is nothing to do and, if α is a limit ordinal then the claim
follows immediately from the inductive hypothesis. For the successor
step, suppose that rkCB(x/X) ≥ α + 1. Set

X≥α ∶= { x ∈ X ∣ rkCB(x/X) ≥ α } ,
Y≥α ∶= { y ∈ Y ∣ rkCB(y/Y) ≥ α } .

By inductive hypothesis, we know that f [X≥α] ⊆ Y≥α . For a contradic-
tion, suppose that rkCB( f (x)/Y) = α. Then f (x) is an isolated point
of Y≥α and we can find an open neighbourhood O of f (x) such that
Y≥α ∩ O = { f (x)}. Hence,

{x} = f −1[{ f (x)}] = f −1[Y≥α ∩ O] = f −1[Y≥α] ∩ f −1[O]
⊇ X≥α ∩ f −1[O] ⊇ {x} .

It follows that X≥α ∩ f −1[O] = {x} and x is an isolated point of X≥α .
Contradiction. ◻

Lemma 5.15. Let X be a compact Hausdorff space and C ⊆ X a closed set.
If rkCB(C) <∞ then the set

{ c ∈ C ∣ rkCB(c/C) = rkCB(C) }

is finite and nonempty.

Proof. Let C ⊆ X be the subspace induced by C. By Lemma 3.9, C is also
a compact Hausdorff space. Replacing X by C, we may therefore assume
w.l.o.g. that C = X.
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Let α ∶= rkCB(X). By Proposition 5.12 (b), the set Xα = X≥α is closed.
Consequently, Xα is a compact subspace of X where every point is isol-
ated. By Lemma 5.10, it follows that Xα is finite.

It remains to prove that it is nonempty. Suppose otherwise. Then
{X<β ∣ β < α } is an open cover of X. By compactness, we can find
an open subcover {X<β0 , . . . , X<βn}. Set γ ∶= max {β0 , . . . , βn}. Then
X = X<γ implies that rkCB(X) ≤ γ < α. Contradiction. ◻

Lemma 5.16. Let X be a locally compact Hausdorff space. If rkCB(X) =∞
then ∣X∣ ≥ 2ℵ0 .

Proof. Let A ∶= { x ∈ X ∣ rkCB(x/X) =∞}. We prove that ∣A∣ ≥ 2ℵ0 . We
choose points xw ∈ A, for w ∈ 2<ω , and open neighbourhoods Uw of xw
such that, for all v ,w ∈ 2<ω ,

◆ Uv ⊆ Uw iff v ⪯ w,

◆ if v ⪯̸ w and w ⪯̸ v then Uv ∩Uw = ∅.

By assumption A ≠ ∅. Choose an arbitrary element x⟨⟩ ∈ A, let K be
a compact neighbourhood of x⟨⟩, and set U⟨⟩ ∶= int(K). Suppose that
xw has already been chosen. Since A has no isolated points there is some
element

y ∈ (A∖ {xw}) ∩Uw .

We set xw0 ∶= xw and xw1 ∶= y.As X is aHausdorff space there are disjoint
open sets V0 and V1 with xw0 ∈ V0 and xw1 ∈ V1. We set Uw0 ∶= Uw ∩V0
and Uw1 ∶= Uw ∩ V1. For every σ ∈ 2ω , let

Cσ ∶= ⋂
w≺σ

cl(Uw) .

Since K is compact and cl(Uw) ⊆ K it follows that Cσ ≠ ∅. Furthermore,
we have Cσ ∩ Cρ = ∅, for σ ≠ ρ. Consequently,

∣A∣ ≥ ∑
σ∈2ω
∣Cσ ∣ ≥ 2ℵ0 .

◻
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6. Spectra and Stone duality
Boolean algebras can be characterised in terms of topological spaces.
With every boolean algebra we can associate a topological space in such
a way that we can recover the original algebra from the topology.

Definition 6.1. Let L be a lattice. The spectrum of L is the set

spec(L) ∶= { u ⊆ L ∣ u an ultrafilter}

of all ultrafilters of L. We equip spec(L) with the topology consisting of
all sets of the form

⟨X⟩ ∶= { u ∈ spec(L) ∣ X ⊆ u} , for X ⊆ L .

For X = {x}, we simply write ⟨x⟩.

Remark. Note that the sets ⟨X⟩ really form a topology since,

spec(L) = ⟨∅⟩ , ∅ = ⟨L⟩ ,

⋂
i∈I
⟨X i⟩ = ⟨⋃i∈I X i⟩ ,

⟨X⟩ ∪ ⟨Y⟩ = ⟨{ x ⊔ y ∣ x ∈ X , y ∈ Y }⟩ .

Lemma 6.2. Let L be a lattice.
(a) The sets of the form ⟨x⟩, for x ∈ L, form a closed base of the topology

of spec(L).
(b) If L is a boolean algebra then every basic closed set ⟨x⟩ is clopen.

Proof. (a) Every closed set ⟨X⟩ = ⋂{ ⟨x⟩ ∣ x ∈ X } is an intersection of
basic closed sets.

(b) The complement L∖ ⟨x⟩ = ⟨x∗⟩ of a basic closed set is closed. ◻

Example. Let A be an infinite set. For the lattice F = ⟨F , ⊆⟩ with

F ∶= {X ⊆ A ∣ X or A∖ X is finite} ,
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we have spec(F) = {u∞} ∪ { ua ∣ a ∈ A} where

ua ∶= ⇑{a} and u∞ ∶= {X ⊆ A ∣ A∖ X is finite} .

The basic closed sets are

⟨X⟩ =
⎧⎪⎪
⎨
⎪⎪⎩

{ ua ∣ a ∈ X } , if X is finite,
{ ua ∣ a ∈ X } ∪ {u∞} , if X is infinite.

Each ua is isolated while u∞ is an accumulation point. Consequently, we
have rkCB(spec(F)) = 1 .

Exercise 6.1. Let B be a boolean algebra. Prove that a point u ∈ spec(B)
is isolated if, and only if, u is principal.

Exercise 6.2. Prove that ⟨x ⊔ y⟩ = ⟨x⟩ ∪ ⟨y⟩, ⟨x ⊓ y⟩ = ⟨x⟩ ∩ ⟨y⟩, and
⟨x∗⟩ = spec(B) ∖ ⟨x⟩.

Lemma 6.3. Let f ∶ L→ K be a homomorphism between lattices. If u is
an ultrafilter of K such that f −1[u] ≠ L, then f −1[u] is an ultrafilter of L.

Proof. If a ∈ f −1[u] and a ⊑ b then f (a) ⊑ f (b) ∈ u implies b ∈ f −1[u].
Similarly, if a, b ∈ f −1[u] then f (a ⊓ b) = f (a) ⊓ f (b) ∈ u implies
a⊓ b ∈ f −1[u]. Finally, if a⊔ b ∈ f −1[u] then f (a⊔ b) = f (a)⊔ f (b) ∈ u
implies f (a) ∈ u or f (b) ∈ u. Hence, a ∈ f −1[u] or b ∈ f −1[u]. It follows
that either f −1[u] = L or it is an ultrafilter. ◻

Definition 6.4. Let f ∶ L→ K be a homomorphism between lattices. If
there is no ultrafilter of K containing rng f then we can define

spec( f ) ∶ spec(K)→ spec(L) ∶ u↦ f −1[u] .

Remark. Note that spec( f ) is defined if (a) f is surjective, or (b) K is a
boolean algebra.

Lemma 6.5. Let f ∶ L → K be a homomorphism between lattices such
that spec( f ) is defined.
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(a) The function spec( f ) ∶ spec(K)→ spec(L) is continuous.
(b) If f is surjective, then spec( f ) is injective.

Proof. (a) For every basic closed set ⟨a⟩L ⊆ spec(L),

spec( f )−1[⟨a⟩L] = { u ∈ spec(K) ∣ a ∈ f −1[u] } = ⟨ f (a)⟩K .

Hence, spec( f ) is continuous.
(b) Let u, v ∈ spec(K). If f −1[u] = f −1[v] then Lemma a2.1.10 implies

u = f [ f −1[u]] = f [ f −1[v]] = v . ◻

Since for boolean algebras the function spec is always defined, we
obtain the following corollary.

Proposition 6.6. spec is a contravariant functor from the category Bool
of boolean algebras to the category Top of topological spaces.

Lemma 6.7. Let f ∶ A→ B be a homomorphism between boolean algeb-
ras.

(a) If f is surjective then spec( f ) is continuous and injective.
(b) If f is injective then spec( f ) is a closed continuous surjection.
(c) If spec( f ) is injective then f is surjective.
(d) If spec( f ) is surjective then f is injective.

Proof. (a) was already proved in Lemma 6.5.
(b) We have already seen in Lemma 6.5 that spec( f ) is continuous.

To show that spec( f ) is surjective let u ∈ spec(A). We have to find
some v ∈ spec(B) with f −1[v] = u. Set v0 ∶= f [u]. If there is some
ultrafilter v ⊇ v0, then f −1[v] ⊇ f −1[ f [u]] = u, by injectivity of f and
Lemma a2.1.10, and we are done. Hence, suppose that such an ultrafilter
does not exist. ByCorollary b2.4.10,we can find elements b0 , . . . , bn ∈ v0
with b0⊓⋅ ⋅ ⋅⊓bn = �.Choosing elements a i ∈ uwith f (a i) = b i it follows
that

f (a0 ⊓ ⋅ ⋅ ⋅ ⊓ an) = b0 ⊓ ⋅ ⋅ ⋅ ⊓ bn = � .
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Since f is injective this implies that a0 ⊓ ⋅ ⋅ ⋅ ⊓ an = �. Hence, � ∈ u.
Contradiction.

It remains to prove that spec( f ) is closed. For X ⊆ B, we have to
show that f −1[⟨X⟩] is closed. Since ⟨X⟩ = ⟨c↑(X)⟩ we may assume that
X = c↑(X) is a filter. We claim that f −1[⟨X⟩] = ⟨ f −1[X]⟩.
(⊆) If u ∈ ⟨X⟩ then X ⊆ u implies that f −1[X] ⊆ f −1[u]. Hence,

f −1[u] ∈ ⟨ f −1[X]⟩.
(⊇) For a contradiction suppose that there is some element

u ∈ ⟨ f −1[X]⟩ ∖ f −1[⟨X⟩] .

Then there is no ultrafilter v ∈ ⟨X⟩ with f −1[v] = u. Note that every
ultrafilter v containing the set X ∪ f [u] satisfies v ∈ ⟨X⟩ and f −1[v] ⊇
f −1[ f [u]] = u, by injectivity of f and Lemma a2.1.10. Hence, there is no
such ultrafilter and we can use Corollary b2.4.10 to find finite subsets
C ⊆ u and D ⊆ X such that

⊓ f [C] ⊓⊓D = � .

Set c ∶= ⊓C ∈ u and d ∶= ⊓D ∈ X. Then

f (c) ⊓ d = � implies d ⊑ f (c)∗ = f (c∗) .

Since X is a filter it follows that f (c∗) ∈ X. Hence, c∗ ∈ f −1[X] ⊆ u
which implies that � = c ⊓ c∗ ∈ u. Contradiction.

(c) Note that rng f induces a subalgebra of B. Hence, if rng f ⊂ B, we
can use Proposition b2.4.14 to find distinct ultrafilters u, v ∈ spec(B)
with u∩ rng f = v∩ rng f . Consequently, f −1[u] = f −1[v] and spec( f ) is
not injective.

(d) For a contradiction, suppose that spec( f ) is surjective, but f is not
injective. Then there are elements a, b ∈ Awith a ≠ b and f (a) = f (b).
We distinguish three cases.

If a ⊓ b∗ ≠ �, there is some ultrafilter u ∈ spec(A) with a ⊓ b∗ ∈ u. As
spec( f ) is surjective, we can find some v ∈ spec(B) with f −1[v] = u. It
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follows that

a ∈ u = f −1[v] ⇒ f (a) ∈ v

⇒ f (b) ∈ v ⇒ b ∈ f −1[v] = u .

Since b∗ ∈ u we obtain � = b ⊓ b∗ ∈ u. A contradiction.
If b ⊓ a∗ ≠ �, we analogously choose an ultrafilter u with b ⊓ a∗ ∈ u

and we obtain a ⊓ a∗ ∈ u as above.
Hence, it remains to consider the case that a ⊓ b∗ = � = b ⊓ a∗. Then

a ⊔ b∗ = (a∗ ⊓ b)∗ = �∗ = ⊺. Hence, b∗ satisfies the defining equations
for the complement of a. Since complements are unique, it follow that
b∗ = a∗. Hence, b = a. A contradiction. ◻

We will show below that the functor spec has an inverse. But first let
us show that the class of topological spaces of the form spec(B), for a
boolean algebra B, can be characterised in purely topological terms.

Definition 6.8. (a) A Stone space is a nonempty Hausdorff space that is
compact and zero-dimensional.

(b) If S is a Stone space then we denote by clop(S) the lattice of all
clopen subsets of S.

Example. The Cantor discontinuum C is a Stone space. clop(C) consists
of all sets

⟨W⟩ ∶= { x ∈ 2ω ∣ w ⪯ x for some w ∈W }

whereW ⊆ 2<ω is finite.

It follows from Lemma 4.3 and Theorem 4.4 that the class of Stone
spaces is closed under products.

Lemma 6.9. Let Xi , i ∈ I, be a family of nonempty topological spaces.
The product∏i Xi is a Stone space if and only if every factor Xi is a Stone
space.
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The next theorem states that the functors spec and clop form an equi-
valence between the category of boolean algebras and the category of
Stone spaces.

Theorem 6.10. Let B be a boolean algebra and S a Stone space.

(a) spec(B) is a Stone space.

(b) clop(S) is a boolean algebra.

(c) The function

g ∶ B→ clop(spec(B)) ∶ x ↦ ⟨x⟩

is an isomorphism.

(d) The function

h ∶ S→ spec(clop(S)) ∶ x ↦ {C ∈ clop(S) ∣ x ∈ C }

is a homeomorphism.

Proof. (a) Every basic closed set ⟨x⟩ is open since ⟨x⟩ = spec(B)∖ ⟨x∗⟩.
Hence, the topology is zero-dimensional.

Next, we show that it is Hausdorff. If u ≠ v are distinct points of
spec(B) then we can find some element x ∈ u ∖ v. This implies that
x∗ ∈ v ∖ u. The sets ⟨x⟩ and ⟨x∗⟩ are disjoint, open, and we have u ∈ ⟨x⟩
and v ∈ ⟨x∗⟩, as desired.

It remains to prove that spec(B) is compact. Let ⟨x i⟩i∈I be a cover
of spec(B) consisting of basic open sets. Set X ∶= { x i ∣ i ∈ I } and let
a ∶= c↓(X) be the ideal generated by X. We claim that a is non-proper.

Suppose otherwise. Then we can use Theorem b2.4.7 to find an ul-
trafilter u with u ∩ a = ∅. In particular, we have x i ∉ u, for all i. Hence,
u ∉ ⋃i∈I⟨x i⟩ and ⟨x i⟩i is not a cover of spec(B). A contradiction.
Consequently, we have ⊺ ∈ a. By definition of c↓(X) it follows that

there is a finite subset X0 ⊆ X with ⊺ = ⊔X0. If v is an ultrafilter then
⊔X0 = ⊺ ∈ v implies, by definition of an ultrafilter, that there is some
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x ∈ X0 with x ∈ v. Hence, we have found a finite subcover

spec(B) = ⋃
x∈X0

⟨x⟩ .

(b) Clearly, the complement of a clopen set is clopen. Since the class
of open sets and the class of closed sets are both closed under finite
intersections and unions so is the class of clopen sets. Hence, clop(S)
forms a boolean algebra.

(c) The function g is clearly an embedding. We only need to prove
that it is surjective. Let U be a clopen subset of spec(B). By (a), we can
find a finite cover ⋃i≤n⟨x i⟩ of U consisting of basic clopen sets. Since

U = ⟨x0⟩ ∪ ⋅ ⋅ ⋅ ∪ ⟨xn⟩ = ⟨x0 ⊔ ⋅ ⋅ ⋅ ⊔ xn⟩

we have U ∈ rng g.
(d) The set h(x) is a final segment of clop(S) and it is closed under

finite intersections. Furthermore, if C ∪ D ∈ h(x) then at least one
of C and D is also in h(x). Hence, h(x) is an ultrafilter and h is well-
defined.

Since S is a zero-dimensional Hausdorff space we have ⟨x⟩ ∈ h(x).
Hence, h(x) ≠ h(y), for x ≠ y, and h is injective. For surjectivity, let
u ∈ spec(clop(S)). Since S is compact we have ⋂ u ≠ ∅. Fix some
element x ∈ ⋂ u. We claim that h(x) = u.

Let C be a clopen set in S. If C ∈ u then we have x ∈ C. Conversely,
x ∉ S ∖ C implies that S ∖ C ∉ u. Therefore, it follows that

C ∈ u iff x ∈ C iff C ∈ h(x) .

It remains to prove that h is a homeomorphism. Note that, if C ∈
clop(S) then

h(x) ∈ ⟨C⟩ iff C ∈ h(x) iff x ∈ C .

Consequently, if ⟨C⟩ ∈ spec(clop(S)) then h−1[⟨C⟩] = C ∈ clop(S).
Conversely, if C ∈ clop(S) then h[C] = { h(x) ∣ x ∈ C } = ⟨C⟩ is
clopen. ◻
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Corollary 6.11. The functor spec forms an equivalence between the cat-
egory Bool of boolean algebras and the opposite Stoneop of the category of
Stone spaces. Its inverse is the functor clop.

An immediate consequence of Theorem 6.10 is that every boolean
algebra is isomorphic to an algebra of sets.

Corollary 6.12. For every boolean algebra B, there exists a set X such
that B is isomorphic to a substructure of ⟨℘(X),∩,∪, ∗ ,∅, X⟩.

Corollary 6.13. Every boolean algebra A is a subdirect product of two-
element boolean algebras B2. In particular, B2 is the only subdirectly
irreducible boolean algebra.

Proof. The power-set algebra ℘(X) is isomorphic to BX
2 . ◻

7. Stone spaces and Cantor-Bendixson rank
The structure of Stone spaces will play an important part in the following
chapters. In particular, we will be interested in their cardinality and their
Cantor-Bendixson rank. We start with an observation that immediately
follows from Lemma 5.10.

Lemma 7.1. If S is a Stone space with rkCB(S) = 0 then S is finite.

A generalisation of this result is given in the next lemma which shows
that the size of a Stone space is minimal if the corresponding boolean
algebra has a partition rank.

Lemma 7.2. Let B be a boolean algebra. If rkP(a) <∞, for every a ∈ B,
then then ∣spec(B)∣ ≤ ∣B∣.

Proof. This follows immediately from Corollary b2.5.22. ◻

Conversely, if the boolean algebra has infinite partition rank then its
Stone space is large.
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Lemma 7.3. Let B be a boolean algebra and let κ, λ be cardinals. If there
exists an embedding of λ<κ into B, then ∣spec(B)∣ ≥ λκ .

Proof. Let (aw)w∈λ<κ be an embedding of λ<κ into B. For sequences
α ∈ λκ , define

Xα ∶=⋂{ ⟨aw⟩ ∣ w ≺ α } .

(⪯ denotes the prefix order.) If α ≠ β, then there exists some prefix
w ∈ λ<κ and ordinals i , k < λ with i ≠ k such that w i ≺ α and wk ≺ β.
Consequently, we have Xα ⊆ ⟨aw i⟩ and Xβ ⊆ ⟨awk⟩. Since aw i ⊓ awk = �
it follows that Xα ∩ Xβ = ∅.

Hence, it is sufficient to prove that Xα ≠ ∅, for all α ∈ λκ . For finitely
many elements w0 ≺ ⋅ ⋅ ⋅ ≺ wn ≺ α, we have

⟨aw0⟩ ∩ ⋅ ⋅ ⋅ ∩ ⟨awn ⟩ = ⟨aw0 ⊓ ⋅ ⋅ ⋅ ⊓ awn ⟩ = ⟨awn ⟩ ≠ ∅ .

Thus, the family ⟨aw⟩w≺α has the finite intersection property and, by
compactness, it follows that Xα = ⋂w≺α⟨aw⟩ ≠ ∅. ◻

Corollary 7.4. Let B be a boolean algebra. If there is an element a ∈ B
with rkP(a) =∞ then ∣spec(B)∣ ≥ 2ℵ0 .

Proof. By Lemma b2.5.15, there exists an embedding (bw)w∈2<ω of 2<ω

into B. Hence, the claim follows by Lemma 7.3. ◻

Remark. In Theorem 7.8 below we will prove that Cantor-Bendixson
rank and partition rank are the same. Hence, Corollary 7.4 is just a special
case of Lemma 5.16.

Combining Corollary 7.4 with Lemma 7.2, we obtain the following
result.

Corollary 7.5. Let B be a countable boolean algebra. If ∣spec(B)∣ > ℵ0
then ∣spec(B)∣ = 2ℵ0 .
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In the remainder of this section we provide tools to compute the
Cantor-Bendixson rank of a Stone space. First, we show that it coincides
with the partition rank of the associated Boolean algebra,which is usually
easier to compute.

Lemma 7.6. Let B be a boolean algebra and a ∈ B. If rkP(a) <∞ then
there exists an ultrafilter u ∈ ⟨a⟩ with rkP(u) = rkP(a).

Proof. For every u ∈ ⟨a⟩, choose an element cu ∈ u of minimal rank and
degree. Then

⟨a⟩ = ⋃
u∈⟨a⟩
⟨a ⊓ cu⟩ .

By compactness, there exists a finite subcover

⟨a⟩ = ⟨a ⊓ cu0⟩ ∪ ⋅ ⋅ ⋅ ∪ ⟨a ⊓ cun ⟩ .

Hence, a = (a ⊓ cu0) ⊔ ⋅ ⋅ ⋅ ⊔ (a ⊓ cun). By Lemma b2.5.11, there is some
index i ≤ n such that

rkP(a) = rkP(a ⊓ cui ) .

This implies that

rkP(ui) ≤ rkP(a) = rkP(a ⊓ cui ) ≤ rkP(cui ) = rkP(ui) . ◻

Corollary 7.7. Let B be a boolean algebra and a ∈ B.

rkP(a) = sup{ rkP(u) ∣ u ∈ ⟨a⟩ } .

Proof. If u ∈ ⟨a⟩, then a ∈ u implies that rkP(u) ≤ rkP(a). Conversely,
we can use Lemma 7.6 to find some ultrafilter u ∈ ⟨a⟩ with rkP(u) =
rkP(a). ◻

Theorem 7.8. Let B be a boolean algebra. For every u ∈ spec(B),we have

rkP(u) = rkCB(u/ spec(B)) .
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Proof. We prove by induction on α that

rkP(u) ≥ α iff rkCB(u/ spec(B)) ≥ α .

For α = 0 the claim holds trivially and, if α is a limit ordinal, it follows
immediately from the inductive hypothesis. Thus, suppose that α = β + 1
is a successor ordinal. Let

X ∶= { u ∈ spec(B) ∣ rkP(u) ≥ β } .

By inductive hypothesis, we know that

X = { u ∈ spec(B) ∣ rkCB(u/ spec(B)) ≥ β } .

Suppose that rkP(u) = β. Fix an element a ∈ u of minimal partition
rank and degree. If v ∈ ⟨a⟩ is an ultrafilter with v ≠ u then we have
rkP(v) < rkP(u) = β, by Proposition b2.5.21. Hence, ⟨a⟩ ∩ X = {u} and
u is an isolated point of X. This implies that rkCB(u/ spec(B)) = β.

Conversely, suppose that rkCB(u/ spec(B)) = β. Then there is a basic
open set ⟨a⟩ such that ⟨a⟩ ∩ X = {u}. By inductive hypothesis it follows
that rkP(a) ≥ rkP(u) ≥ β. Let P be a partition of a with rkP(p) = β, for
all p ∈ P. By Lemma 7.6, there are ultrafilters vp ∈ ⟨p⟩, for p ∈ P, such
that rkP(vp) = rkP(p) = β. Hence, vp ∈ X. It follows that

vp ∈ ⟨p⟩ ∩ X ⊆ ⟨a⟩ ∩ X = {u} .

Consequently, vp = u and rkP(u) = rkP(vp) = β. ◻

Corollary 7.9. Let B be a boolean algebra and a ∈ B. Then

rkCB(⟨a⟩) = rkP(a) .

Proof. By Lemma 5.13, Theorem 7.8, and Corollary 7.7, it follows that

rkCB(⟨a⟩) = sup{ rkCB(u/⟨a⟩) ∣ u ∈ ⟨a⟩ }

= sup{ rkCB(u/ spec(B)) ∣ u ∈ ⟨a⟩ }

= sup{ rkP(u) ∣ u ∈ ⟨a⟩ }
= rkP(a) . ◻
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Corollary 7.10. Let S be a Stone space and C ⊆ S closed.

rkCB(C) = rkP(C/clop(C))

Proof. Let C be the subspace of S induced by C. By Lemma 3.9, C is
compact. Since every subspace of a zero-dimensional Hausdorff space
is itself a zero-dimensional Hausdorff space, it follows that C is a Stone
space. Let B ∶= clop(C). Then spec(B) ≅ C and Corollary 7.9 implies
that

rkCB(C) = rkCB(spec(B)) = rkP(⊺/B) = rkP(C/clop(C)) . ◻

When applying Corollary 7.10, we have to consider clopen sets in a
closed subspace of the given Stone space. The following lemma shows
that such clopen sets are just restrictions of sets that are clopen in the
ambient space.

Lemma 7.11. Let B be a boolean algebra, A ⊆ B, and let SA be the
subspace of spec(B) induced by ⟨A⟩. A set C ⊆ ⟨A⟩ is clopen in SA if,
and only if, it is of the form C = ⟨b⟩ ∩ ⟨A⟩, for some b ∈ B.

Proof. (⇐) A set of the form C = ⟨b⟩ ∩ ⟨A⟩ is obviously closed. It is
open since its complement ⟨A⟩ ∖ C = ⟨b∗⟩ ∩ ⟨A⟩ is also closed.
(⇒) Suppose that C ⊆ ⟨A⟩ is clopen in SA. Then there are sets D, E ⊆

B such that

C = ⟨D⟩ ∩ ⟨A⟩ and ⟨A⟩ ∖ C = ⟨E⟩ ∩ ⟨A⟩ .

Consequently,

⟨A⟩ ∩ ⟨E⟩ ∩ ⋂
d∈D
⟨d⟩ = ⟨A⟩ ∩ ⟨E⟩ ∩ ⟨D⟩ = ∅ .

As spec(B) is compact, there exists a finite subset D0 ⊆ D such that

⟨A⟩ ∩ ⟨E⟩ ∩ ⋂
d∈D0

⟨d⟩ = ∅ .
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It follows that

C = ⟨D⟩ ∩ ⟨A⟩ ⊆ ⟨D0⟩ ∩ ⟨A⟩ ⊆ ⟨A⟩ ∖ ⟨E⟩ = C .

Hence, C = ⟨b⟩ ∩ ⟨A⟩ for b ∶= ⊓D0. ◻

Corollary 7.12. Let S be a Stone space, C ⊆ S closed, and D ∈ clop(C).
Then

clop(D) = { E ∈ clop(C) ∣ E ⊆ D } .

Proof. Let B ∶= clop(S). By Lemma 7.11, there is some A ∈ B such that
D = A∩ C. By the same lemma it follows that

E ∈ clop(D) iff E = A′ ∩ D for some A′ ∈ B
iff E = A′ ∩ A∩ C for some A′ ∈ B
iff E = A′′ ∩ C for some A′′ ∈ B with A′′ ⊆ A
iff E ∈ clop(C) and E ⊆ D . ◻

Corollary 7.13. Let S be a Stone space, C ⊆ S closed, and D ∈ clop(C).
Then

rkP(D/clop(D)) = rkP(D/clop(C)) .

As an application of these results, we show that, under a surjective
continuous map, the Cantor-Bendixson rank never increases.

Lemma 7.14. Let f ∶ S → T be a surjective continuous map between
Stone spaces. For every closed set C ⊆ T ,

rkCB(C/T) ≤ rkCB( f −1[C]/S) .

Proof. We prove by induction on α that

rkCB(C/T) ≥ α implies rkCB( f −1[C]/S) ≥ α .
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For α = 0, surjectivity of f implies that

rkCB(C/T) ≥ 0 iff C ≠ ∅
iff f −1[C] ≠ ∅
iff rkCB( f −1[C]/S) ≥ 0 .

For limit ordinals α, the claim follows immediately from the inductive
hypothesis. For the successor step, suppose that rkCB(C/T) ≥ α + 1. By
Corollary 7.10, it follows that

rkP(C/clop(C)) ≥ α + 1 .

Consequently, we can find a sequence (Dn)n<ω of disjoint, nonempty,
clopen subsets Dn ⊆ C such that rkP(Dn/clop(C)) ≥ α. Using Co-
rollary 7.10 and Corollary 7.13, this implies that rkCB(Dn/T) ≥ α. By
inductive hypothesis, it therefore follows that

rkCB( f −1[Dn]/S) ≥ α .

Since, byCorollary 7.10, ( f −1[Dn])n<ω is a sequence ofdisjoint,nonempty,
clopen subsets of f −1[C] with

rkP( f −1[Dn] / clop( f −1[C])) ≥ α ,

it follows that

rkP( f −1[C] / clop( f −1[C])) ≥ α + 1 .

Hence, rkCB( f −1[C]/S) ≥ α + 1. ◻
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1. Groups
In this chapter we apply the general theory developed so far to the
structures arising in classical algebra.

Definition 1.1. (a) A monoid is a structure M = ⟨M , ○, e⟩ with a binary
function ○ and a constant e such that all elements a, b, c ∈ G satisfy the
following equations :

a ○ (b ○ c) = (a ○ b) ○ c (associativitiy)
a ○ e = a = e ○ a (neutral element)

Usually, we omit the symbol ○ in a ○ b and just write ab instead.
(b) A group is a structure G = ⟨G , ○, −1 , e⟩ with a binary function ○, a

unary function −1, and a constant e such that ⟨G , ○, e⟩ is a monoid and,
for all a ∈ G, we have

a ○ a−1 = e (inverse)

(c) A group G is abelian, or commutative, if we further have

ab = ba , for all a, b ∈ G .

Remark. Every substructure of a group is again a group.

Example. (a) Let A be a set. The structure ⟨A<ω , ⋅ , ⟨⟩⟩ of all finite se-
quences over Awith concatenation forms a monoid.

(b) The integers with addition form a group ⟨Z,+,−, 0⟩.
(c) The positive rational numbers with multiplication form the group

⟨Q+ , ⋅ , −1 , 1⟩.
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Definition 1.2. Let M be a Σ-structure. The automorphism group

Aut M = ⟨Aut M, ○, −1 , idM⟩

of M consists of all automorphisms of M with composition ○ as multi-
plication and the identity function idM as neutral element.

Exercise 1.1. Let G be a group. Prove that GG = G and G−1 = G where

GG ∶= { gh ∣ g , h ∈ G } and G−1 ∶= { g−1 ∣ g ∈ G } .

Below we will show that the congruences of a group can be described
in terms of certain subgroups. We start by looking more generally at
equivalence relations induced by arbitrary subgroups.

Definition 1.3. Let U ⊆ G be groups. We define

G/U ∶= { gU ∣ g ∈ G } .

The elements of G/U are called (left) cosets of U. The number ∣G/U ∣ of
cosets is called the the index of U in G.

Lemma 1.4. Let U ⊆ G be groups.
(a) G/U forms a partition of G.
(b) For all g , h ∈ G, we have a bijection λ ∶ gU → hU with λ(x) ∶=

hg−1x.

Proof. (a) Since g ∈ gU ,we haveG = ⋃g gU = ⋃(G/U). If gU∩hU ≠ ∅
then there are elements u, v ∈ U with gu = hv. Consequently, h =
g(uv−1) ∈ gU which implies that hU = gU .

(b) To show that λ is surjective let u ∈ U . Then hu = hg−1 gu =
λ(gu) with gu ∈ gU . For injectivity, suppose that λ(x) = λ(y) then
hg−1x = hg−1 y and, multiplying with (hg−1)−1 on the left, it follows that
x = y. ◻

Theorem 1.5 (Lagrange). If U ⊆ G are groups then

∣G∣ = ∣G/U ∣⊗ ∣U ∣ .
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Proof. By the preceding lemma, we have G = ⋃(G/U) and ∣gU ∣ = ∣hU ∣,
for all g , h ∈ U . It follows that

∣G∣ = ∣⋃(G/U)∣ = ∑
gU∈G/U

∣gU ∣ = ∑
gU∈G/U

∣U ∣ = ∣G/U ∣⊗ ∣U ∣ .
◻

The equivalence relation induced by the partition G/U does not need
to be a congruence. Subgroups where it is one are called normal.

Definition 1.6. Let G be a group. A subgroup N ⊆ G is normal if we
have gN = Ng, for all g ∈ G.

Remark. Every subgroup of an abelian group is normal.

Lemma 1.7. If N is a normal subgroup of G then the relation

g ≈N h : iff gN = hN

is a congruence relation.

Proof. If gN = g′N and hN = h′N then

ghN = ghNN = gNhN = g′Nh′N = g′h′NN = g′h′N ,

and g−1N = g−1N−1 = (Ng)−1 = (gN)−1 = (g′N)−1

= (Ng′)−1 = (g′)−1N−1 = (g′)−1N . ◻

Lemma 1.8. Let f ∶ G→ H be a surjective homomorphism. If G is a group
then so is H.

Proof. Let x , y, z ∈ H and set u ∶= f (e). Since f is surjective there are
elements a, b, c ∈ G with f (a) = x, f (b) = y, and f (c) = z. It follows
that

[xy]z = [ f (a) f (b)] f (c) = f (ab) f (c) = f ((ab)c)
= f (a(bc)) = f (a) f (bc) = f (a)[ f (b) f (c)] = x[yz] ,

xu = f (a) f (e) = f (ae) = f (a) = x ,

x f (a−1) = f (a) f (a−1) = f (aa−1) = f (e) = u .
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Consequently, the multiplication of H is associative, u is its neutral ele-
ment, and every element x = f (a) ∈ H has the inverse f (a−1). ◻

Corollary 1.9. Let N be a normal subgroup of G. Then the quotient

G/N ∶= ⟨G/N , ⋅, −1 , N⟩

where the multiplication is defined by gN ⋅ hN = ghN is a group.

Proof. The function g ↦ gN is a surjective homomorphism G→ G/N.
◻

We have seen that every normal subgroup induces a congruence. The
converse is given by the following lemma.

Lemma 1.10. If ≈ is a congruence a of group G then [e]≈ induces a normal
subgroup of G.

Proof. Let π ∶ G → G/≈ be the canonical projection. Since {[e]≈} in-
duces a subgroup of the quotient G/≈ it follows by Lemma b1.2.8 that
the set [e]≈ = π−1([e]≈) induces a subgroup of G. To show that this
subgroup is normal, let u ∈ [e]≈ and g ∈ G. Then

[gug−1]≈ = [g]≈[u]≈[g−1]≈

= [g]≈[e]≈[g−1]≈ = [geg−1]≈ = [e]≈ ,

which implies that gug−1 ∈ [e]≈. Consequently, we have

g[e]≈g−1 ⊆ [e]≈ and g[e]≈ ⊆ [e]≈g .

Analogously,we can show that g−1ug ∈ [e]≈, for all u ∈ [e]≈. This implies
that [e]≈g ⊆ g[e]≈. ◻

Combining Lemmas 1.7 and 1.10, we obtain the following character-
isation of the congruence lattice of a group.

Theorem 1.11. Let G be a group. Then Cong(G) is isomorphic to the lattice
of all normal subgroups of G. The corresponding isomorphism is given by
≈↦ [e]≈ and its inverse is N↦ ≈N .
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It follows that we can translate Theorems b1.4.12 and b1.4.18 into the
language of normal subgroups.

Theorem 1.12. Let h ∶ G→ H be a homomorphism between groups and
set K ∶= h−1[e]. Then

G/K ≅ rng h .

Theorem 1.13. Let G be a group with normal subgroups K,N ⊆ G where
K ⊆ N. Then N/K is a normal subgroup of G/K and

(G/K) / (N/K) ≅ G/N .

A related statement is the following one.

Theorem 1.14. Let G be a group with subgroups U,N ⊆ G where N is
normal. Then

UN/N ≅ U/(U ∩N) .

Exercise 1.2. Prove the preceding theorem and formulate a generalisa-
tion to arbitrary structures and congruences.

2. Group actions
One important class of groups we will deal with frequently are auto-
morphism groups. To study such groups we can make use of the fact
that they consist of functions on some set.

Definition 2.1. Let Ω be a set.
(a) The symmetric group of Ω is the group

Sym Ω ∶= ⟨Sym Ω, ○, −1 , idΩ⟩

where the universe

Sym Ω ∶= { α ∈ ΩΩ ∣ α bijective}
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consists of all permutations of Ω.
(b) An action of a group G on Ω is a homomorphism α ∶ G→ Sym Ω,

that is, to every element g ∈ G we associate a permutation α(g) of Ω.
Such an action induces a map G × Ω → Ω. If α is understood then we
usually write ga instead of α(g)(a), for g ∈ G and a ∈ Ω.

(c) If Ω = ⋃s Ωs is a many-sorted set then an action α of G on Ω is a
family of actions αs of G on Ωs .

(d) Each action of G on Ω induces an action of G on Ωn by

g⟨a0 , . . . , an−1⟩ ∶= ⟨ga0 , . . . , gan−1⟩ .

Remark. Any action of a group G on a set Ω satisfies the following laws.
For all g , h ∈ G and a ∈ Ω, we have

g(ha) = (gh)a and ea = a ,

where e is the neutral element of G.

Example. Every subgroup G ⊆ Sym Ω induces a canonical action idG ∶
G→ Sym Ω. In particular, we have a canonical action of the automorph-
ism group Aut A on As̄ , for all s̄.

Definition 2.2. Let G be a group acting on Ω.
(a) For F ⊆ G and ā ⊆ Ω, we set

F(ā) ∶= { g ā ∣ g ∈ F } .

(b) The orbit of a tuple ā ⊆ Ω is the set G(ā).
(c) If there is some element a ∈ Ω with G(a) = Ω then we call the

action transitive. The action is oligomorphic if, for every finite tuple of
sorts s̄, there are only finitely many different orbits on Ω s̄ .

Remark. For each s̄, the orbits of all s̄-tuples form a partition of Ω s̄ . In
particular, the orbits of two s̄-tuples are either equal or disjoint.

Example. Consider the action of the automorphism group on the struc-
ture ⟨Q, ≤⟩. The orbit of ⟨0, 1⟩ consist of all pairs ⟨a, b⟩ with a < b. It
follows that Q2 is the disjoint union of the orbits of ⟨0, 1⟩, ⟨0, 0⟩, and
⟨1, 0⟩. In fact, the automorphism group of ⟨Q, ≤⟩ is oligomorphic.
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Example. Every group G acts on itself via conjugation. This action is
defined by

α(g)(h) ∶= ghg−1 .

The orbits of α on G are called the conjugacy classes of G.
We can characterise normal subgroups of G in terms of α. A subgroup

N ⊆ G is normal if and only if N is a union of conjugacy classes.
(⇒) Suppose that N is a normal subgroup. By definition this means

that gN = Ng, for all g ∈ G. Consequently,we have gNg−1 = Ngg−1 = N
which implies that α(g)(u) ∈ N , for all u ∈ N . Hence, N is a union of
orbits of α.
(⇐) Let g ∈ G. By assumption we have gNg−1 = N . Hence, gN =

gNg−1 g = Ng and N is normal.

Definition 2.3. Let G be a group acting on Ω and let X ⊆ Ω.
(a) The pointwise stabiliser of X is the set

G(X) ∶= { g ∈ G ∣ gx = x for all x ∈ X } .

(b) Its setwise stabiliser is the set

G{X} ∶= { g ∈ G ∣ gX = X } .

Remark. G(X) and G{X} are subgroups of G with G(X) ⊆ G{X} ⊆ G.
We can use the following lemmas to compute the size or the number

of orbits.

Lemma 2.4. Let G be a group acting on Ω and let a ∈ Ω. Then

∣G∣ = ∣G(a)∣⊗ ∣G(a)∣ .

Proof. By Theorem 1.5 it is sufficient to prove that ∣G(a)∣ = ∣G/G(a)∣.
We define a function µ ∶ G/G(a) → G(a) by

µ(gG(a)) ∶= ga .
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First, let us show that µ is well-defined. Suppose that gG(a) = hG(a).
Then there is some u ∈ G(a) with g = hu. Hence,

µ(gG(a)) = ga = hua = ha = µ(hG(a)) .

Furthermore, µ is surjective since, for every b ∈ G(a) there is some
g ∈ G with b = ga. Hence, b = µ(gG(a)). Therefore, it remains to prove
that µ is injective. Suppose that µ(gG(a)) = µ(hG(a)). Then ga = ha
implies h−1 ga = a. Hence, h−1 g ∈ G(a) and

gG(a) = hh−1 gG(a) = hG(a) . ◻

Lemma 2.5. Let G be a group acting on Ω and let a ∈ Ω. Then G(ga) =
gG(a)g−1.

Proof. We have

h ∈ G(ga) iff hga = ga

iff g−1hga = a
iff g−1hg ∈ G(a) iff h ∈ gG(a)g−1 . ◻

Corollary 2.6. Let G be a group acting on Ω and a, b ∈ Ω. If G(a) = G(b)
then ∣G(a)∣ = ∣G(b)∣.

Proof. Let g ∈ G be an element with gb = a. The function G(a) → G(b) ∶
h ↦ ghg−1 is bijective. ◻

Lemma 2.7 (Burnside). Let G be a group acting on Ω and let κ be the
number of orbits. Then

κ ⊗ ∣G∣ = ∑
g∈G
∣fix g∣ where fix g ∶= { a ∈ Ω ∣ ga = a } .
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Proof. For each orbit of G, fix one representative a i ∈ Ω, i < κ. It follows
that

κ ⊗ ∣G∣ =∑
i<κ
∣G∣ =∑

i<κ
∣G(a i)∣⊗ ∣G(a i)∣ =∑

i<κ
∑

b∈G(a i)
∣G(a i)∣

=∑
i<κ

∑
b∈G(a i)

∣G(b)∣ = ∑
b∈Ω
∣G(b)∣

= ∣{ ⟨g , b⟩ ∈ G ×Ω ∣ gb = b }∣ = ∑
g∈G
∣fix g∣ .

◻

Corollary 2.8. If G is a finite group acting on Ω then the number of orbits
is

1
∣G∣ ∑g∈G

∣fix g∣ .

Let us collect two combinatorial results about groups and their sub-
groups.

Lemma 2.9 (B. H. Neumann). Suppose that H0 , . . . ,Hn−1 are subgroups
of a group G and a0 , . . . , an−1 ∈ G elements such that

G = a0H0 ∪ ⋅ ⋅ ⋅ ∪ an−1Hn−1 .

but G ≠ ⋃i∈I a i H i , for every proper subset I ⊂ [n] .

Then ∣G/⋂i H i ∣ ≤ n! . In particular, ∣G/H i ∣ is finite for all i.

Proof. Let H ∶= ⋂i Hi . We claim that

∣⋂i∈I H i/H∣ ≤ (n − ∣I∣)! , for all nonempty I ⊆ [n] .

For I = {i}, it then follows that every H i is the union of at most (n − 1)!
cosets of H. Hence, G can be written as union of n! such cosets, i.e.,
∣G/H∣ ≤ n! .
We prove the above claim by induction on n − ∣I∣. For I = [n], we

have ∣H/H∣ = 1. Suppose that ∣I∣ < n and set F ∶= ⋂i∈I Hi . By assumption
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there is some element g ∈ G ∖⋃i∈I a i H i . Hence, for all i ∈ I, we have
a i H i ∩ gH i = ∅. This implies that

a i H i ∩ gF = ∅ and g−1a i H i ∩ F = ∅ .

For every i < n, we either have

g−1a i H i ∩ F = ∅

or there is some h i ∈ G with

g−1a i H i ∩ F = h i(F ∩H i) .

For i ∈ I, we have seen that the intersection is empty. Therefore, F is
the union of at most n − ∣I∣ sets of the form h i(F ∩ H i) with i ∉ I. By
inductive hypothesis, we can write each of these as union of at most
(n − ∣I∣ − 1)! cosets of H. Therefore, ∣F/H∣ ≤ (n − ∣I∣)! . ◻

Corollary 2.10 (Π. M. Neumann). Let M be a Σ-structure and ā ∈ M<ω .
If no a i lies in a finite orbit of Aut M then the orbit of ā under Aut M
contains an infinite set of pairwise disjoint tuples.

Proof. Let C ⊆ M be finite. We claim that there is some g ∈ Aut M such
that g ā∩C = ∅. For a contradiction, suppose otherwise. For every c ∈ C
and each i < n, choose, if possible, some element g ic ∈ Aut M with
g ica i = c. Let Hi ∶= (Aut M)(a i). By assumption, every g ∈ Aut M is con-
tained in some coset g icH i . Hence,we can apply B. H. Neumann’s lemma
and it follows that at least one Hi has finite index in Aut M. Therefore,
the orbit of a i under Aut M is finite. Contradiction. ◻

When studying group actions it is helpful to introduce a topology on
the group.

Definition 2.11. A topological group is a group G equipped with a topo-
logy such that the group multiplication ⋅ ∶ G × G → G and its inverse
−1 ∶ G → G are continuous.
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Example. The additive group of the real vector space Rn is topological
in the usual topology.

Each action induces a canonical topology on its group.

Definition 2.12. Let G be a group acting on Ω. For finite tuples ā, b̄ ∈ Ωn ,
we set

⟨ā ↦ b̄⟩ ∶= { g ∈ G ∣ g ā = b̄ } .

Subsets O ⊆ G of the form O = ⟨ā ↦ b̄⟩ are called basic open.

Lemma 2.13. Let G be a group acting on Ω.

(a) The family of all basic open sets induces a topology on G.

(b) G equipped with this topology forms a topological group.

(c) A subgroup H ⊆ G is open if and only if there is some finite tuple
ā ∈ Ω<ω with G(ā) ⊆ H.

(d) A subset F ⊆ G is closed if and only if, whenever g ∈ G is an element
such that, for all finite tuples ā ⊆ Ω, there is some element h ∈ F
with g ā = hā, then we have g ∈ F.

(e) A subset F ⊆ G is dense in G if and only if the orbits of G and F
on Ωn are the same, for all n < ω.

Proof. (a) We have ⟨ā0 ↦ b̄0⟩ ∩ ⟨ā1 ↦ b̄1⟩ = ⟨ā0 ā1 ↦ b̄0 b̄1⟩. Therefore,
we only have to show that every g ∈ G is contained in some basic open
set. Fix an arbitrary element a ∈ Ω and let b ∶= ga. Then g ∈ ⟨a ↦ b⟩.

(b) If g ∈ ⟨ā ↦ b̄⟩ then g−1 ∈ ⟨b̄ ↦ ā⟩. Hence, −1 is continuous.
Similarly, gh ∈ ⟨ā ↦ b̄⟩ implies g c̄ = b̄ where c̄ ∶= hā. Consequently, we
have g ∈ ⟨c̄ ↦ b̄⟩, h ∈ ⟨ā ↦ c̄⟩, and ⟨c̄ ↦ b̄⟩ ⋅ ⟨ā ↦ c̄⟩ ⊆ ⟨ā ↦ b̄⟩.

(c) If G(ā) ⊆ H then

H = ⋃
h∈H

hG(ā) = ⋃
h∈H
⟨ā ↦ hā⟩
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is open. Conversely, if H is open then it contains some basic open set
⟨ā ↦ b̄⟩. Fixing some h ∈ ⟨ā ↦ b̄⟩ ⊆ H we have

G(ā) = ⟨ā ↦ ā⟩ = h−1⟨ā ↦ b̄⟩ ⊆ h−1H = H .

(d) F is closed if and only if it contains all elements g ∈ G such that

F ∩ ⟨ā ↦ b̄⟩ ≠ ∅ , for all basic open set with g ∈ ⟨ā ↦ b̄⟩ .

This is equivalent to (d).
(e) F is dense if and only if every nonempty basic open set ⟨ā ↦ b̄⟩

has a nonempty intersection with F. Therefore, F is dense iff, for every
g ∈ G with g ā = b̄, there is some h ∈ F mapping ā to b̄. ◻

We can characterise automorphism groups in topological terms.

Lemma 2.14. Let G ⊆ Sym Ω. A subgroup H ⊆ G is closed in G if and only
if there is some structure M with universe Ω such that H = G ∩Aut M.

In particular, a subgroup H ⊆ Sym Ω is of the form Aut M if and only if
it is closed.

Proof. (⇒) Let M be the structure with universe Ω that, for each finite
tuple s̄ of sorts and every orbit ∆ ⊆ Ω s̄ , has a relation RM

∆ ∶= ∆ of type s̄.
Since every element of H maps R∆ into R∆ we have H ⊆ Aut M. Hence,
H ⊆ G implies H ⊆ G ∩Aut M.

For the converse, let g ∈ G ∩ Aut M. If ā ∈ R∆ then g ā ∈ R∆ . Hence,
there is some h ∈ H mapping ā to g ā. Since H is closed in G it follows
by Lemma 2.13 (d) that g ∈ H.
(⇐) Let H = G ∩ Aut M. To show that H is closed in G we apply

Lemma 2.13 (d). Let g ∈ G and suppose that, for every finite tuple ā ∈ Ω,
there is some h ∈ H with hā = g ā. Let φ(x̄) be an atomic formula and
ā ∈ Ωn . Choose h ∈ H such that hā = g ā. Since H ⊆ Aut M it follows
that

M ⊧ φ(ā) iff M ⊧ φ(hā) iff M ⊧ φ(g ā) .

Hence, g ∈ Aut M which implies that g ∈ H. ◻
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Exercise 2.1. Let A be a countable structure with countable signature
such that

∣Aut⟨A, ā⟩∣ > 1 , for all ā ∈ A<ω .

Prove that ∣Aut A∣ = 2ℵ0 .

3. Rings
Let us consider what happens if we add a second binary operation to an
abelian group.

Definition 3.1. (a) A structure R = ⟨R,+,−, ⋅, 0, 1⟩ is a ring if the reduct
⟨R,+,−, 0⟩ is an abelian group, ⟨R, ⋅, 1⟩ is a monoid, and all elements
a, b, c ∈ R satisfy the following distributive laws :

a ⋅ (b + c) = a ⋅ b + a ⋅ c ,
(a + b) ⋅ c = a ⋅ c + b ⋅ c .

Usually we omit the dot and write ab instead of a ⋅ b.
(b) A ring R is commutative if we further have

a ⋅ b = b ⋅ a , for all a, b ∈ R .

(c) A ring R is a skew field if 0 ≠ 1 and, for every a ∈ R with a ≠ 0,
there is some element a−1 ∈ R such that

a ⋅ a−1 = 1 = a−1 ⋅ a .

A commutative skew field is called a field.

Example. (a) The integers ⟨Z,+,−, ⋅, 0, 1⟩ form a commutative ring.
(b) The rationals ⟨Q,+,−, ⋅, 0, 1⟩ form a field.
(c) Let V be a vector space. The set Lin(V,V) of all linear maps

h ∶ V→ V forms a ring where addition is defined component wise:

(g + h)(x) ∶= g(x) + h(x) ,
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and multiplication is composition :

(g ⋅ h)(x) ∶= g(h(x)) .

This ring is not commutative.

An important example of rings are polynomial rings. Here we present
only their basic properties. In Section 5 we will study polynomial rings
over a field in more detail.

Definition 3.2. Let R be a ring.
(a) The ring R[[x]] of formal power series over R has the universe

R[[x]] ∶= Rω .

For s, t ∈ R[[x]], we define addition and multiplication by

(s + t)(n) ∶= s(n) + t(n) and (s ⋅ t)(n) ∶=
n
∑
i=0

s(i)t(n − i) .

We also define a derivation operation on R[[x]] by

s′(n) ∶= (n + 1)s(n + 1) .

Usually, elements s ∈ R[[x]] arewritten more suggestively in the form

s = ∑
n<ω

anxn where an ∶= s(n) .

The numbers an are called the coefficients of s. In this notation the above
definitions take the following form :

∑
n<ω

anxn + ∑
n<ω

bnxn ∶= ∑
n<ω
(an + bn)xn ,

∑
n<ω

anxn ⋅ ∑
n<ω

bnxn ∶= ∑
n<ω
(

n
∑
i=0

a ibn−i)xn ,

(∑
n<ω

anxn)
′
∶= ∑

n<ω
an+1(n + 1)xn .
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(b) The polynomial ring over R is the subring R[x] ⊆ R[[x]] of all
formal power series∑n<ω anxn where an = 0 for all but finitely many n.
Elements p ∈ R[x] are called polynomials. Omitting zero terms we can
write them as finite sums

p = anxn + an−1xn−1 + ⋅ ⋅ ⋅ + a1x + a0 ,

where a i ∶= p(i) and n is an arbitrary number such that p(i) = 0, for
i > n.

(c) The degree of a polynomial∑i a ix i ∈ R[x] is the largest number n
with an ≠ 0. We denote it by deg p. If all coefficients a i are equal to 0
then we set deg p ∶= −∞.

(d) We can iterate the construction of polynomial rings to obtain rings
R[x0 , x1 , . . . , xn−1] ∶= R[x0][x1] . . . [xn−1].

Remark. Let Ring be the category of all rings with homomorphisms. We
can turn the operation R ↦ R[x] into a functor F ∶ Ring→ Ring if, for
homomorphisms h ∶ R→ S, we define

F(h)(∑n anxn) ∶= ∑n h(an)xn .

Remark. Let R be a commutative ring and p, q ∈ R[x]. A direct calcula-
tion shows that we have

(p + q)′ = p′ + q′ and (pq)′ = pq′ + p′q .

Polynomial rings can be regarded as a free extension of a ring by a
single new element x.

Lemma 3.3. Let R and S be rings. For each homomorphism h0 ∶ R→ S
and every element a ∈ S, there exists a unique homomorphism h ∶ R[x]→
S with h(x) = a and h ↾ R = h0.

Proof. For p = cnxn + ⋅ ⋅ ⋅ + c1x + c0, we define

h(p) ∶= h0(cn)an + ⋅ ⋅ ⋅ + h0(c1)a + h0(c0) .
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It is straightforward to check that h is a homomorphism. For uniqueness,
suppose that g is another homomorphism such that g(x) = a and g↾R =
h0. For every polynomial p = cnxn + ⋅ ⋅ ⋅ + c1x + c0, we have

g(p) = g(cn)g(x)n + ⋅ ⋅ ⋅ + g(c1)g(x) + g(c0)
= h0(cn)an + ⋅ ⋅ ⋅ + h0(c1)a + h0(c0) = h(p) .

Hence, g = h. ◻

As for groups we can characterise congruences of rings in terms of
certain subrings.

Definition 3.4. Let R be a ring.
(a) A left ideal of R is a subset a ⊆ R such that

a + b ∈ a , for all a, b ∈ a ,
ra ∈ a , for all a ∈ a and every r ∈ R .

(b) A (two-sided) ideal of R is a subset a ⊆ R such that

a + b ∈ a , for all a, b ∈ a ,
ras ∈ a , for all a ∈ a and all r, s ∈ R .

(c) We denote the set of all ideals of R ordered by inclusion by

Idl(R) ∶= ⟨Idl(R), ⊆⟩ .

(d) Let ā ⊆ R. The ideal generated by ā is

(ā) ∶=⋂{ a ⊆ R ∣ a an ideal with ā ⊆ a} .

Remark. Clearly, every two-sided ideal is also a left ideal. The converse
does not hold in general, but for commutative rings both notions coin-
cide.

Example. Let Z = ⟨Z,+,−, ⋅, 0, 1⟩ be the ring of integers. A subset a ⊆ Z
is an ideal if and only if it is of the form mZ, for some m ∈ N.
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Exercise 3.1. Prove that

(a0 , . . . , an−1) = { r0a0s0 + ⋅ ⋅ ⋅ + rn−1an−1sn−1 ∣ r̄, s̄ ⊆ R } .

Lemma 3.5. Let R be a ring.
(a) If h ∶ R→ S is a surjective homomorphism then S is also a ring.
(b) If h ∶ R→ S is a homomorphism into a ring S, then h−1[0] is an

ideal of R.
(c) If a is an ideal of R, then the relation

r ≈a s : iff r − s ∈ a

is a congruence of R.

Proof. (a) For all elements a, b, c ∈ S, there are elements x ∈ h−1(a),
y ∈ h−1(b), and z ∈ h−1(c). Since h is a homomorphism it follows that
every equation satisfied by x, y, and z is also satisfied by a, b, and c.

(b) Let a, b ∈ h−1[0] and r, s ∈ R. Then

h(a + b) = h(a) + h(b) = 0 + 0 = 0 ,

and h(ras) = h(r) ⋅ h(a) ⋅ h(s) = h(r) ⋅ 0 ⋅ h(s) = 0 .

(c) First,we prove that ≈a is an equivalence relation. Let r, s, t ∈ R. The
relation ≈a is reflexive since r − r = 0 ∈ a. It is symmetric since r − s ∈ a
implies s− r = (−1) ⋅(r− s) ∈ a. Finally, it is transitive since r− s, s− t ∈ a
implies r − t = (r − s) + (s − t) ∈ a.

It remains to show that ≈a is a congruence. Suppose that r ≈a r′ and
s ≈a s′. Then

(r + s) − (r′ + s′) = (r − r′) + (s − s′) ∈ a ,

and rs − r′s′ = rs − rs′ + rs′ − r′s′ = r(s − s′) + (r − r′)s′ ∈ a . ◻

Theorem 3.6. Let R be a ring. The function Idl(R)→ Cong(R) ∶ a↦ ≈a

is an isomorphism.
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Proof. By definition, a ⊆ b implies ≈a ⊆ ≈b. Hence, h ∶ a ↦ ≈a is a
homomorphism and it remains to find a homomorphism g ∶ Cong(R)→
Idl(R) that is inverse to h. For ∼ ∈ Cong(R), we define

g(∼) ∶= [0]∼ .

Then ∼ ⊆ ≈ implies g(∼) ⊆ g(≈). Furthermore,

g(h(a)) = g(≈a) = [0]≈a = a ,

and h(g(∼)) = h([0]∼) = ≈[0]∼ = ∼ . ◻

Definition 3.7. Let R be a ring.
(a) For an ideal a of R, we set

R/a ∶= R/≈a .

(b) The kernel of a homomorphism h ∶ R→ S is the ideal

Ker h ∶= h−1[0] (= [0]ker h) .

To every ring we can assign a topological space in much the same way
as we associated Stone spaces with boolean algebras.

Definition 3.8. Let R be a ring.
(a) An ideal p of R is prime if p ≠ R and

ab ∈ p implies a ∈ p or b ∈ p , for all a, b ∈ R .

(b) The spectrum of R is the set spec(R) of all prime ideals. We endow
spec(R) with a topology by taking as closed sets all sets of the form

⟨X⟩ ∶= { p ∈ spec(R) ∣ X ⊆ p} , for X ⊆ R .

Exercise 3.2. Prove that spec ∶ Ring→ Top is a contravariant functor.
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4. Modules
Instead of a group acting on a set we can consider a ring acting on an
abelian group. This leads to the notion of a module.

Definition 4.1. Let R be a ring.
(a) An R-module M consists of an abelian group M = ⟨M ,+,−, 0⟩

and an action R × M → M satisfying

r(sa) = (rs)a ,
r(a + b) = ra + rb , for all r, s ∈ R and a, b ∈ M .
(r + s)a = ra + sa ,

The action R × M → M is called scalar multiplication.
(b) A vector space is an R-module where the ring R is a skew field.
(c) We regard R-modules as one-sorted structures

M = ⟨M ,+,−, 0, (λr)r∈R⟩

where λr ∶ a ↦ ra are the scalar multiplication maps. When we talk
about substructures or homomorphisms of modules we always have this
signature in mind.

(d) We denote by ModR the category of all R-modules and homo-
morphisms.

Example. (a) We can turn every abelian group A into a Z-module by
defining

0a ∶= 0 ,
(n + 1)a ∶= na + a , for n ∈ N and a ∈ A .
(−n)a ∶= −(na) ,

(b) Every ring R is an R-module for the canonical action α(r)(a) ∶=
ra given by multiplication.

(c) The derivation map R[x] → R[x] ∶ p ↦ p′ is a homomorphism
of R-modules. It is not a ring homomorphism.
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We can turn the set of all homomorphisms M→ N into an R-module
by defining addition and scalar multiplication pointwise.

Exercise 4.1. If M and N are R-modules then so is ModR(M,N).

For N =M we not only get a module but even a ring.

Definition 4.2. The endomorphism ring End(M) of an R-module M is
the ring with universe

End(M) ∶=ModR(M,M)

where addition and multiplication are defined by

(g + h)(x) ∶= g(x) + h(x) and (g ⋅ h)(x) ∶= g(h(x)) .

Lemma 4.3. End(M) is a ring.

Exercise 4.2. Prove the lemma.

We have seen above that congruences of groups and rings can be
described in terms on certain substructures. For modules, the situation
is much simpler. Every submodule corresponds to a congruence.

Theorem 4.4. Let M be an R-module. The function

Sub(M)→ Cong(M) ∶ U ↦ { ⟨a, b⟩ ∣ a − b ∈ U }

is an isomorphism. Its inverse is given by the map ≈↦ [0]≈.

Exercise 4.3. Prove the preceding theorem.

Lemma 4.5. Let M be an R-module. Then Sub(M) is a modular lattice.

Proof. Let K, L ⊆M. It is straightforward to check that

K ⊓ L = K ∩ L ∶=M∣K∩L and K ⊔ L = K + L ∶=M∣K+L .
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Hence, Sub(M) is a lattice. To show that it is modular it is sufficient to
prove that

K ⊆ L implies L ∩ (K +N) ⊆ K + (L ∩N) .

Let a ∈ L ∩ (K + N). Then there are elements b ∈ K and c ∈ N such
that a = b + c. Since a ∈ L and b ∈ K ⊆ L it follows that c = a − b ∈ L.
Hence, c ∈ L ∩ N and we have a = b + c ∈ K + (L ∩ N). ◻

Since congruences of modules are simpler than those of rings, it is
frequently worthwhile to regard rings as modules. The following obser-
vation shows that we can study the left ideals of a ring in this way. For
the proof, it is sufficient to note that the closure conditions of a left ideal
and those of a submodule coincide.

Lemma 4.6. Let R be a ring. A subset a ⊆ R is a left ideal of R if and only
if it is a submodule of R.

Let us consider products of modules. We will show below that we can
decompose every vector space over a skew field S as a product of copies
of S.

Lemma 4.7. If Mi , for i ∈ I, are R-modules then so is their direct product
∏i∈I Mi .

Definition 4.8. Let (Mi)i∈I be a family of R-modules. The direct sum
⊕i∈I Mi is the submodule of ∏i∈I Mi consisting of all sequence a ∈
∏i M i such that a(i) = 0, for all but finitely many i.

The direct power of a module M is the direct sum M(I) ∶=⊕i∈I M of
I copies of M.

Remark. In the category ModR the direct product∏i Mi and the direct
sum⊕i Mi play the role of, respectively, product and coproduct.

That is, for every family of homomorphisms h i ∶ N→Mi , i ∈ I, there
is a unique homomorphism g ∶ N→∏i Mi such that h i = pri ○ g where
pii ∶∏ j M j →Mi is the i-th projection.
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Similarly, for every family of homomorphisms h i ∶ Mi → N, i ∈ I,
there is a unique homomorphism g ∶⊕i Mi → N such that h i = g ○ ini
where ini ∶ Mi →⊕ j M j is the i-th injection.

To conclude this sectionwe take a look at the structure of vector spaces,
which is particularly simple. We will show below that every vector space
over a skew field S is isomorphic to a direct power of S.

Definition 4.9. Let V be a vector space over a skew field S.
(a) A set X ⊆ V is linearly dependent if there are pairwise distinct

elements a0 , . . . , an−1 ∈ X and nonzero scalars s0 , . . . , sn−1 ∈ S ∖ {0},
such that

s0a0 + ⋅ ⋅ ⋅ + sn−1an−1 = 0 .

Otherwise, X is called linearly independent.
(b) A basis of V is a linearly independent subset B ⊆ V generating V.

Lemma 4.10. Let V be a vector space over a skew field S, a ∈ V , and
suppose that I ⊆ V is linearly independent. Then I ∪ {a} is linearly inde-
pendent if and only if a ∉ ⟪I⟫V.

Proof. (⇒) If a ∈ ⟪I⟫V then there are elements b0 , . . . , bn−1 ∈ I and
scalars s0 , . . . , sn−1 ∈ S such that

a = s0b0 + ⋅ ⋅ ⋅ + sn−1bn−1 .

Omitting all terms s ib i that are zero, we may assume that s i ≠ 0, for all i.
Consequently,

s0b0 + ⋅ ⋅ ⋅ + sn−1bn−1 − a = 0

and I ∪ {a} is linearly dependent.
(⇐) Suppose that I ∪ {a} is linearly dependent. Then there are ele-

ments b0 , . . . , bn−1 ∈ I and nonzero scalars r, s0 , . . . , sn−1 ∈ S such that

ra + s0b0 + ⋅ ⋅ ⋅ + sn−1bn−1 = 0 .
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(This sum must contain a term with a since I is independent.) Con-
sequently,

a = −r−1s0b0 − ⋅ ⋅ ⋅ − r−1sn−1bn−1 ∈ ⟪I⟫V . ◻

Lemma 4.11. Every vector space has a basis.

Proof. Suppose that V is a vector space over S. Let I be the set of all
linearly independent sets I ⊆ V . The partial order ⟨I , ⊆⟩ is inductive.
Consequently, it has amaximal element B. We claim that B is a basis. Sup-
pose otherwise. Then there is some vector a ∈ V ∖⟪B⟫V. By Lemma 4.10,
it follows that B ∪ {a} is linearly independent. This contradicts the max-
imality of B. ◻

Theorem 4.12. Let V be an S-vector space with basis B. There exists an
isomorphism

h ∶ S(B) → V ∶ (sb)b∈B ↦∑
b∈B

sbb .

Proof. It is straightforward to check that h is a homomorphism. We
claim that it is bijective. For surjectivity, fix a ∈ V . Since V = ⟪B⟫V there
are elements b0 , . . . , bn−1 ∈ B and scalars s0 , . . . , sn−1 ∈ S such that

a = s0b0 + ⋅ ⋅ ⋅ + sn−1bn−1 .

Hence, a ∈ rng h.
It remains to prove that h is injective. Suppose that h(sb)b = h(s′b)b .

We have

∑
b∈B
(sb − s′b)b =∑

b∈B
sbb −∑

b∈B
s′bb = h(sb)b − h(s′b)b = 0 .

(Note that these sums are defined since (sb)b , (s′b)b ∈ S(B).) Since B is
linearly independent it follows that sb − s′b = 0, for all b. Consequently,
(sb)b = (s′b)b . ◻
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Every vector space is freely generated by its basis.

Lemma 4.13. Let V andW beS-vector spaces and suppose that B is a basis
of V. For every map h0 ∶ B →W , there exists a unique homomorphism
h ∶ V→W such that h ↾ B = h0.

Proof. By Theorem 4.12, we can find, for every a ∈ V , a unique sequence
(sb)b ∈ S(B) such that a = ∑b sbb. We define h(a) ∶= ∑b sbh0(b).

Then h ↾ B = h0 and we have

h(a + b) = h(a) + h(b) and h(sa) = sh(a) .

Hence, h is a homomorphism. It is obviously unique. ◻

Lemma 4.14 (Exchange Lemma). Let V be a vector space over a skew
field S, suppose that I ⊆ V is linearly independent, and let I0 ⊆ I. For
every element a ∈ ⟪I⟫V ∖ ⟪I0⟫V, there exists ane element b ∈ I ∖ I0 such
that (I ∖ {b})∪ {a} is linearly independent and b ∈ ⟪(I ∖ {b})∪ {a}⟫V.

Proof. Since I ∪ {a} is dependent it follows by Lemma 4.10 that there
are elements b0 , . . . , bn−1 ∈ I and scalars s0 , . . . , sn−1 ∈ S such that

a = s0b0 + ⋅ ⋅ ⋅ + sn−1bn−1 .

We choose these elements such that the number n is minimal. It particu-
lar this implies that s i ≠ 0, for all i.

Since the set I0 ∪ {a} is independent we have b i ∈ I ∖ I0, for some i.
By renumbering the elements we may assume that b0 ∈ I ∖ I0. We claim
that b0 is the desired element.

First of all,

b0 = s−1
0 a − s−1

0 s1b1 − ⋅ ⋅ ⋅ − s−1
0 sn−1bn−1

implies that b0 ∈ ⟪(I ∖ b0) ∪ {a}⟫V. Hence, it remains to prove that
(I ∖ b0) ∪ {a} is linearly independent.
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For a contradiction, suppose otherwise. Then Lemma 4.10 implies
that a ∈ ⟪I ∖ {b0}⟫V. Since ⟪ ⋅ ⟫V is a closure operator it follows that

b0 ∈ ⟪(I ∖ {b0}) ∪ {a}⟫V ⊆ ⟪⟪I ∖ {b0}⟫V⟫V = ⟪I ∖ {b0}⟫V .

Hence, I = (I ∖ {b0}) ∪ {b0} is linearly dependent. Contradiction. ◻

Theorem 4.15. Let V be a vector space over the skew field S. If V has a
finite basis then all bases of V have the same cardinality.

Proof. Let B and C be two bases of V and suppose that B is finite. We
prove by induction on ∣B ∖ C∣ that ∣B∣ = ∣C∣.

First, suppose that B ⊆ C. If there is some element c ∈ C ∖ B then
B ∪ {c} is linearly independent. By Lemma 4.10, it follows that c ∉
⟪B⟫V = V . A contradiction. Consequently, C = B.

For the inductive step, suppose that there is some element b ∈ B ∖ C.
Let I ∶= B ∩ C. By Lemma 4.14, we can find a vector c ∈ C ∖ I such that
C′ ∶= (C ∖ {c}) ∪ {b} is linearly independent and ⟪C′⟫V = ⟪C⟫V = V .
Hence, C′ is a basis of V and it follows by inductive hypothesis that
∣C∣ = ∣C′∣ = ∣B∣. ◻

Remark. The preceding theorem holds also for vector spaceswith infinite
bases. We postpone the proof to Section f1.1 where we will prove the
corresponding result in a more general setting.

Definition 4.16. Let V be a vector space. The dimension dim V of V is
the minimal cardinality of a basis of V.

Theorem 4.17. Let V and W be S-vector spaces. Then V ≅W if and only
if dim V = dim W.

Proof. (⇒) is trivial. For (⇐), suppose that B andC are bases of, respect-
ively, V and W such that ∣B∣ = ∣C∣. Then V ≅ S(B) ≅ S(C) ≅W. ◻

Lemma 4.18. Let V be a vector space and n < ω. Thenwe have dim V ≥ n
if and only if there exists a strictly increasing chain

{0} = U0 ⊂ ⋅ ⋅ ⋅ ⊂ Un = V
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of subspaces of V.

Proof. (⇒) Let B be a basis of V. By assumption, ∣B∣ ≥ n. Choose n dis-
tinct elements b0 , . . . , bn−1 ∈ B and set

Uk ∶= ⟪b0 , . . . , bk−1⟫V .

We claim that U0 ⊂ ⋅ ⋅ ⋅ ⊂ Un . For a contradiction, suppose that Uk+1 = Uk ,
for some k. Then

bk ∈ Uk = ⟪b0 , . . . , bk−1⟫V .

By Lemma 4.10 it follows that {b0 , . . . , bk−1 , bk} is linearly dependent.
Contradiction.
(⇐) Suppose that {0} = U0 ⊂ ⋅ ⋅ ⋅ ⊂ Un = V. For every k < n, choose

some element bk ∈ Uk+1 ∖Uk . Let m be the maximal number such that
the set {b0 , . . . , bm−1} is linearly independent. Since m ≤ dim V it is
sufficient to prove that m = n.

For a contradiction, suppose otherwise. Then {b0 , . . . , bm−1 , bm} is
linearly dependent and, by Lemma 4.10, it follows that

bm ∈ ⟪b0 , . . . , bm−1⟫V ⊆ Um .

But bm ∈ Um+1 ∖Um . Contradiction. ◻

5. Fields
We have seen in the previous section that modules over fields are better
behaved than modules over arbitrary rings. In this section we study
further properties particular to fields. The first and largest part of the
section is devoted to constructions turning rings into fields. In particular,
we will study quotients of polynomial rings. In the second part we use
this machinery to investigate extensions of fields.

Definition 5.1. Let R be a ring.
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(a) An ideal a ⊆ R is maximal if a ≠ R and there is no ideal b with
a ⊂ b ⊂ R.

(b) An element a ∈ R is a unit if there is some b ∈ R such that ab =
1 = ba.

(c) An element a ∈ R is a zero-divisor if a ≠ 0 and there exists some
element b ≠ 0 such that ab = 0 or ba = 0.

(d) R is an integral domain if it is commutative and it contains no
zero-divisors.

Remark. (a) Every field is an integral domain. (b) A zero-divisor is never
a unit. (c) A ring is a skew field if and only if every element but 0 is a
unit.

Exercise 5.1. Let R and S be commutative rings. Show that the direct
product R ×S is never an integral domain.

Exercise 5.2. Prove that every maximal ideal is prime.

In the same way as Q is obtained from Z, we can associate a field with
every integral domain.

Definition 5.2. Let R be an integral domain. The field of fractions of R
is the ring FF(R) consisting of all pairs ⟨r, s⟩ ∈ R2 with s ≠ 0. We write
such pairs as fractions r/s.

Two fractions r/s and r′/s′ are considered to be equal if rs′ = r′s.
Addition and multiplication is defined by the usual formulae

r/s + r′/s′ ∶= (rs′ + r′s)/ss′ and r/s ⋅ r′/s′ ∶= rr′/ss′ .

Lemma 5.3. Let R be an integral domain. Then FF(R) is a field.

Exercise 5.3. Prove the preceding lemma.

Lemma 5.4. Let R be an integral domain and K a field. For every embed-
ding h0 ∶ R → K, there exists a unique embedding h ∶ FF(R) → K with
h ↾ R = h0.
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Proof. We define h(r/s) ∶= h0(r) ⋅h0(s)−1. It is straightforward to check
that h is an embedding and that this is the only possible choice to define h.

◻

Theorem 5.5. A ring R is an integral domain if and only if R can be
embedded into some field K.

Proof. Every integral domain R can be embedded into the field FF(R).
Conversely, suppose that R ⊆ K, for some field K. Since K is an integral
domain, so is R. ◻

We can construct integral domains by taking quotients by prime ideals.

Lemma 5.6. Let R be a commutative ring and a ⊆ R an ideal. The quotient
R/a is an integral domain if and only if a is prime.

Proof. Let π ∶ R→ R/a be the canonical projection.
(⇒) To show that a is prime consider elements a, b ∈ R with ab ∈ a.

Then π(ab) = 0. SinceR/a is an integral domain it follows that π(a) = 0
or π(b) = 0. Hence, a ∈ a or b ∈ a.
(⇐) Suppose that π(a)π(b) = 0. Then ab ∈ p. Since p is prime it

follows that a ∈ p or b ∈ p. Hence, π(a) = 0 or π(b) = 0. ◻

In a similar way we can characterise ideals a such that R/a is a field.

Definition 5.7. A structure A is simple if Congw(A) = {�, ⊺}.

Example. A ring R is simple if and only if {0} and R are its only ideals.

Exercise 5.4. Let R be a ring. Prove that an ideal m of R is maximal if
and only if the quotient R/m is simple.

Lemma 5.8. A commutative ring R is a field if and only if it is simple.

Proof. (⇒) Let R be a field and a an ideal of R. Suppose that a ≠ {0}
and choose a nonzero element a ∈ a. Since R is a field it follows that
1 = a−1a ∈ a. Hence, a = R.
(⇐)The set a ∶= { a ∈ R ∣ a is not a unit} is an ideal of R. Since 1 ∉ a

it follows that a = {0}. Consequently, every nonzero element of R is a
unit and R is a field. ◻
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Corollary 5.9. Let R be a commutative ring and a ⊆ R an ideal. The
quotient R/a is a field if and only if a is maximal.

Proof. By Theorem b1.4.19, each ideal of R/a corresponds to an ideal b
of R with a ⊆ b. Hence, R/a is simple if and only if a is maximal. Con-
sequently, the claim follows from Lemma 5.8. ◻

Exercise 5.5. Show that every homomorphism between fields is an em-
bedding.

The main part of this section is concerned with extensions of fields
and ways to construct them. First we take a look at the subfields of a
given fields.

Definition 5.10. Let K be a field
(a) The characteristic of K is the least number n > 0 such that

1 + ⋅ ⋅ ⋅ + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

= 0 .

If there is no such number then we define the characteristic to be 0.
(b) The subfield generated by a subset X ⊆ K is the set

{ ab−1 ∣ a, b ∈ ⟪X⟫K } .

(c) The prime field of K is the subfield generated by ∅.

Example. (a) The prime field of R is Q.
(b) Let p be a prime number. The ring Z/(p) of all integers modulo p

is a field of characteristic p.

Exercise 5.6. Let K be a field of characteristic m > 0. Prove that m is a
prime number.

Lemma 5.11. Let K be a field with prime field K0.
(a) K has characteristic 0 if and only if K0 ≅ Q.
(b) K has characteristic p > 0 if and only if K0 ≅ Z/(p).

413



b6. Classical Algebra

Definition 5.12. (a) An embedding h ∶ K → L of fields is called a field
extension.

(b) Let h ∶ K → L be a field extension. We can regard L as a K-vector
space by defining

λa ∶= h(λ) ⋅ a , for λ ∈ K and a ∈ L .

The dimension of the extension h is the dimension of this vector space.
(c) If K → L is a field extension and ā ⊆ L, then we denote the subfield

of L generated by K ∪ ā by K(ā).

Example. The subfield of R generated by
√

2 is

K ∶= { a + b
√

2 ∣ a, b ∈ Q} .

The field extension Q→ K has dimension 2.

One way to obtain an extension of a field K is by considering its poly-
nomial ring K[x]. We can obtain a field extending K by either forming
the field of fractions FF(K[x]), or by taking a suitable quotient K[x]/p.
We start by taking a closer look at polynomial rings of fields.

Lemma 5.13. Let R be an integral domain and p, q ∈ R[x] polynomials.

deg(pq) = deg p + deg q .

Proof. Let m ∶= deg p and n ∶= deg q and suppose that

p = amxm + ⋅ ⋅ ⋅ + a0 and q = bnxn + ⋅ ⋅ ⋅ + b0 .

If p = 0 or q = 0 then deg(pq) = deg0 = −∞ and we are done. Hence,
suppose that p and q are nonzero. Then

pq =
m+n
∑
k=0
(

k
∑
i=0

a ibk−i)x i = ambnxm+n +
m+n−1
∑
k=0
(

k
∑
i=0

a ibk−i)x i

(where a i ∶= 0, for i > m, and b i ∶= 0, for i > n). By assumption am ≠ 0
and bn ≠ 0. Since R is an integral domain it follows that ambn ≠ 0.
Hence, deg pq = m + n. ◻
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Lemma 5.14. Let K be a field.

(a) For all polynomials p, q ∈ K[x] with p ≠ 0, there exist polynomials
r, s ∈ K[x] such that

q = r p + s and deg s < deg p .

(b) For every ideal a ⊆ K[x], there exists a polynomial p ∈ K[x] such
that (p) = a.

Proof. (a) Suppose that

p = amxm + ⋅ ⋅ ⋅ + a0 and q = bnxn + ⋅ ⋅ ⋅ + b0 ,

where am ≠ 0 and bn ≠ 0. We prove the claim by induction on n. If
m > n we can take r ∶= 0 and s ∶= q. Hence, we may assume that m ≤ n.
Setting

r′ ∶= a−1
m bnxn−m and s′ ∶= q − r′p

it follows that q = r′p+ s′ and the degree of s′ is less than n. By inductive
hypothesis, there are polynomials r′′ and s′′ such that s′ = r′′p + s′′
and the degree of s′′ is less than n. Consequently, we obtain the desired
polynomials by setting r ∶= r′ + r′′ and s ∶= s′′.

(b) If a = {0} = (0) then there is nothing to do. Hence, suppose that
a contains some nonzero polynomial. Choose a nonzero polynomial
p ∈ a of minimal degree. We claim that (p) = a. Clearly, we have (p) ⊆ a.
For the converse, let q ∈ a. By (a), there are polynomials r, s ∈ K[x] such
that q = r p+ s and deg s < deg p. Since s = q− r p ∈ a it follows, by choice
of p, that s = 0. Hence, q = r p ∈ (p). ◻

Definition 5.15. Let R be a ring, p ∈ R[x] a polynomial, and a ∈ R.
(a) We define

p[a] ∶= ha(p) ,
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where ha ∶ R[x]→ R is the unique homomorphism such that ha(x) = a
and ha ↾R = id. The polynomial function associatedwith p is the function

p[x] ∶ R→ R ∶ a ↦ p[a] .

(b) We say that a is a root of p if p[a] = 0.

Lemma 5.16. Let K be a field and p ∈ K[x] a nonzero polynomial of
degree n.

(a) If a is a root of p then p = q ⋅ (x − a), for some q ∈ K[x].
(b) p has at most n roots in K.

Proof. (a) We can use Lemma 5.14 to find polynomials q, r such that
p = q(x − a) + r and deg r < deg(x − a) = 1. Hence, r ∈ K and it follows
that

0 = p[a] = q[a](a − a) + r[a] = r[a] = r .

Consequently, p = q(x − a).
(b) Let a0 , . . . , am−1 be an enumeration of all roots of p.By (a),we have

p = q(x − a0)⋯(x − am−1). Therefore, the degree of p is at least m. ◻

Definition 5.17. Let R be a ring. A nonzero polynomial p ∈ R[x] is
irreducible if p is not a unit and there is no factorisation p = qr with
q, r ∈ R[x] such that neither q nor r is a unit.

Lemma 5.18. Let K be a field. A polynomial p ∈ K[x] is irreducible if and
only if the ideal (p) is maximal.

Proof. (⇒) Suppose that a ⊆ K[x] is an ideal with (p) ⊂ a. Fix some q ∈
a∖ (p). By Lemma 5.14, there is some polynomial r with (r) = (p, q). In
particular, p = sr, for some s ∈ K[x]. Since p is irreducible it follows that
one of r or s is a unit. If r is a unit then we have a ⊇ (p, q) = (r) = K[x].
Otherwise, r = s−1 p implies that (r) = (p) ⊂ (p, q). Contradiction.
(⇐) Let (p) be maximal and suppose that p = qr, for some q, r ∈

K[x]. Then (p) ⊆ (q) and (p) ⊆ (r). By maximality of (p) it follows
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that either (q) = (p) or (q) = K[x]. In the latter case q is a unit and
we are done. Hence, suppose that (q) = (p). Similarly, we may assume
that (r) = (p). Consequently, there are units u, v ∈ K[x] such that
q = up and r = vp. It follows that p = qr = uvp2. This is only possible if
deg p ≤ 0. Hence, p ∈ K. Contradiction. ◻

Lemma 5.19. Let K be a field. For every nonzero polynomial p ∈ K[x],
there exists a factorisation p = cq0⋯qm−1 where c ∈ K and q0 , . . . , qm−1 ∈
K[x] are irreducible.

Proof. We prove the claim by induction on deg p. If p ∈ K or p is already
irreducible then there is nothing to do. Otherwise, we can find polyno-
mials q, r ∈ K[x] of degree at least 1 such that p = qr. Since

deg q = deg p − deg r < deg p

we can use the inductive hypothesis to find a factorisation q = cq0⋯q l−1
of q into irreducible polynomials. In the same way we obtain such a
factorisation r = dr0⋯rm−1 for r. It follows that p = cdq0⋯q l−1r0⋯rm−1.

◻

Lemma 5.20. Let K be a field and suppose that p ∈ K[x] is an irreducible
polynomial of degree n.

(a) K[x]/(p) is a field.

(b) The field extension K → K[x]/(p) has dimension n.

(c) p has a root in K[x]/(p).

Proof. Let π ∶ K[x]→ K[x]/(p) be the canonical projection.
(a) follows from Lemma 5.18 and Corollary 5.9.
(c) p[π(x)] = π(p) = 0.
(b) We claim that 1, π(x), . . . , π(xn−1) form a basis of K[x]/(p). First,

let us show that these elements generate the K-vector space K[x]/(p).
For every q ∈ K[x], we can use Lemma 5.14 to find polynomials r, s ∈
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K[x] such that q = r p + s and the degree of s is less than n. Hence,
s = an−1xn−1 + ⋅ ⋅ ⋅ + a0, for some a0 , . . . , an−1 ∈ K, and

π(q) = π(s) = an−1π(xn−1) + ⋅ ⋅ ⋅ + a1π(x) + a0 .

It remains to prove that 1, π(x), . . . , π(xn−1) are linearly independ-
ent. For a contradiction, suppose that there are nonzero coefficients
a0 , . . . , an−1 ∈ K such that

a0 + a1π(x) + ⋅ ⋅ ⋅ + an−1π(xn−1) = 0 .

Then there is some b ∈ K[x] such that

a0 + a1x + ⋅ ⋅ ⋅ + an−1xn−1 = bp .

But the degree of the polynomial on the left hand side is between 0 and
n−1,while the degree of bp is either−∞ or at least n.Contradiction. ◻

With the help of polynomial rings we can study field extensions.

Definition 5.21. Let K be a field and U ⊆ K a subring.
(a) A subset X ⊆ K is algebraically dependent over U if there exist

elements a0 , . . . , an−1 ∈ X and a polynomial p ∈ U[x0 , . . . , xn−1] such
that p[a0 , . . . , an−1] = 0. We call X algebraically independent over U if
it is not algebraically dependent over U .

(b) A transcendence basis of K over U is a maximal subset I ⊆ K that
is algebraically independent over U . The cardinality of a transcendence
basis is called the transcendence degree of K over U .

(d) An element a ∈ K is algebraic over U if {a} is algebraically de-
pendent over U . Otherwise, a is transcendental over U . A field extension
h ∶ K → L is algebraic if every element a ∈ L∖rng h is algebraic over rng h.
Similarly,we call h transcendental if every a ∈ L∖rng h is transcendental
over rng h.

(e) The field K is algebraically closed if every polynomial p ∈ K[x] has
a root in K.
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Remark. The partial order of all algebraically independent subsets of a
field K has finite character and, consequently, it is inductively ordered.
Hence, every field has a transcendence basis.

Lemma 5.22. Let h ∶ K → L be a field extension and a ∈ L an element.
(a) If a is transcendental over K then

K(a) ≅ FF(K[x]) .

(b) If a is algebraic over K then there exists an irreducible polynomial
p ∈ K[x] such that

K(a) ≅ K[x]/(p) .

Proof. (a) There exists a unique embedding h0 ∶ K[x]→ L with h0 ↾K =
id and h0(x) = a. Let h ∶ FF(K[x])→ L be the unique embedding with
h ↾K[x] = h0. We claim that h is surjective. Every element of K(a) is of
the form bc−1, for b, c ∈ ⟪K ∪ {a}⟫L. Fix polynomials p, q ∈ K[x] such
that b = h0(p) and c = h0(q). Then bc−1 = h0(p) ⋅ h0(q)−1 = h(p/q).

(b) By Lemma 3.3, there exists a homomorphism h ∶ K[x] → K(a)
with h(x) = a and h ↾ K = id. Note that h is surjective since K ∪ {a} ⊆
rng h. The kernel Ker h is an ideal of K[x]. By Lemma 5.14, there exists a
polynomial p ∈ K[x] such that Ker h = (p). Let π ∶ K[x]→ K[x]/(p) be
the canonical projection. By Theorem b1.4.12, there exists an isomorph-
ism g ∶ K[x]/(p)→ rng h = K(a) such that h = g ○ π. ◻

Definition 5.23. We call the polynomial p from statement (b) of the
preceding lemma the minimal polynomial of a.

Lemma 5.24. Let K → L be an extension of fields of characteristic 0.
Suppose that p ∈ K[x] is an irreducible polynomial (in K[X]) that can be
factorised in L[x] as

p = (x − a)nq , for a ∈ L, q ∈ L[x], n < ω .

Then n ≤ 1.
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Proof. Note that p′ ∉ (p) because deg p′ < deg p. Hence, (p) ⊂ (p, p′).
Since the polynomial p is irreducible, the ideal (p) is maximal and it
follows that (p, p′) = K[X] = (1). Hence, there are r, s ∈ K[x] such that
r p + sp′ = 1. Consequently,

r(x − a)nq + s[n(x − a)n−1q + (x − a)nq′] = 1 .

Setting t ∶= rq(x−a)+nsq+sq′(x−a)we obtain a polynomial such that
(x−a)n−1 t = 1. This implies that 0 = deg 1 = deg (x − a)n−1 t ≥ n−1. ◻

Algebraically closed fields are particularly well-behaved. As we will
prove below, they are uniquely determined by their characteristic and
their transcendence degree.

Lemma 5.25. Let K be an algebraically closed field of transcendence de-
gree κ. Then ∣K∣ = κ ⊕ ℵ0.

Proof. Let I ⊆ K be a transcendence basis of K over∅. Then ∣K∣ ≥ ∣I∣ = κ.
Furthermore, we have ∣K∣ ≥ ℵ0 since, if K = {a0 , . . . , an−1} were finite,
we could find a polynomial

p ∶= (x − a0)⋯(x − an−1) + 1

without root in K. Hence, K would not be algebraically closed.
Therefore, we have ∣K∣ ≥ κ ⊕ ℵ0 and it remains to prove the con-

verse. For every element a ∈ K ∖ I, the set I ∪ {a} is algebraically de-
pendent. Hence, there are elements b0 , . . . , bn−1 ∈ I and a polynomial
p ∈ Q[x , y0 , . . . , yn−1] such that

p[a, b0 , . . . , bn−1] = 0 .

Setting f (a) ∶= ⟨p, b̄⟩ we obtain a function

f ∶ K ∖ I → ⋃
n<ω
(Q[x , ȳ] × In) .
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For every pair ⟨p, b̄⟩, there are only finitely many elements a ∈ K with
f (a) = ⟨p, b̄⟩ since p[x , b̄] has at most deg p < ℵ0 roots in K. It follows
that

∣K∣ = ∑
⟨p,b̄⟩∈rng f

f −1(⟨p, b̄⟩)

≤ ℵ0 ⊗ ∣rng f ∣ = ℵ0 ⊗ (ℵ0 ⊗ κ<ω) ≤ ℵ0 ⊕ κ . ◻

Lemma 5.26. For every field K, there exists an extension K → L such that
every polynomial in K[x] of degree at least 1 has a root in L.

Proof. We have seen in Lemma 5.20 that, if p ∈ K[x] is a polynomial
and q an irreducible factor of p, then the field K[x]/(q) is an extension
of K in which p has the root x.

Fix an enumeration (pα)α<κ of K[x]. We construct a chain (Lα)α<κ
of fields Lα ⊇ K such that pα has a root in Lα+1. We set L0 ∶= K and
Lδ ∶= ⋃α<δ Lα , for limit ordinals δ. For the successor step we define
Lα+1 ∶= Lα[x]/(qα) where qα is an irreducible factor of pα . The union
L ∶= ⋃α<κ Lα is the desired extension of K. ◻

Proposition 5.27. Every field K has an extension K → L where L is
algebraically closed.

Proof. By the preceding lemma, we can construct a chain (Ln)n<ω as
follows. L0 ∶= K and Ln+1 is some extension of Ln such that every polyno-
mial in Ln[x] has a root in Ln+1. The union L ∶= ⋃n<ω Ln is algebraically
closed since, if p ∈ L[x] then p ∈ Ln[x], for some n, and p has a root
in Ln+1 ⊆ L. ◻

The previous proposition tells us that every field has an algebraically
closure. In the following lemmas we prove that it is unique.

Lemma 5.28. Let K0 → L0 and K1 → L1 be field extensions with algebra-
ically closed fields L0 and L1. If L1 and L2 have the same transcendence
degree over, respectively, K0 and K1, then we can find, for every element
a ∈ L0 and every isomorphism π ∶ K0 → K1, and element b ∈ L1 and an
isomorphism σ ∶ K0(a)→ K1(b) such that σ ↾ K0 = π.
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Proof. First,we consider the case that a is algebraic over K0. Let p be the
minimal polynomial. We can extend π to an isomorphism π′ ∶ K0[x]→
K1[x]. Let q ∶= π′(p). Since L1 is algebraically closed, q has a root b ∈ L1.
It follows that

K0(a) ≅ K0[x]/(p) ≅ K1[x]/(q) ≅ K1(b) ,

and this isomorphism extends π.
It remains to consider the case that a is transcendental over K0. Then

the transcendence degree of L0 over K0 is at least 1 and we can find an
element b ∈ L1 that is transcendental over K1. It follows that

K0(a) ≅ FF(K0[x]) ≅ FF(K1[x]) ≅ K1(b) . ◻

Theorem 5.29. Let K be a field and h0 ∶ K → L0 and h1 ∶ K → L1
algebraically closed extensions of K. If L0 and L1 have the same transcend-
ence degree over K then there exists an isomorphism π ∶ L0 ≅ L1 with
π ○ h0 = h1.

Proof. Since L0 and L1 have the same transcendence degree λ of K we
have ∣L0∣ = ∣K∣ ⊕ λ = ∣L1∣. Fix enumerations (a i)i<κ and (b i)i<κ of,
respectively, L0 and L1. By induction on α, we construct increasing
sequences

L0
d ⊆ L1

d ⊆ ⋅ ⋅ ⋅ ⊆ Lα
d ⊆ . . . and π0 ⊆ π1 ⊆ ⋅ ⋅ ⋅ ⊆ πα ⊆ . . .

of subfields Lα
d ⊆ Ld and isomorphisms πα ∶ Lα

0 → Lα
1 such that

aα ∈ dom πα+1 and bα ∈ rng πα+1 .

Then π ∶= ⋃α πα is an isomorphism with dom π = L0 and rng π = L1.
We start with L0

d ∶= K and π0 ∶= idK . For limit ordinals δ, we take
unions Lδ

d ∶= ⋃α<δ Lα
d and πδ ∶= ⋃α<δ πα . For the successor step, suppose

that πα ∶ Lα
0 → Lα

1 has already been defined. We apply the preceding
lemma twice, first to construct an extension σ ⊇ πα with aα ∈ dom σ ,
and then to find an extension πα+1 ⊇ σ with bα ∈ rng πα+1. ◻
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Corollary 5.30. Two algebraically closed fieldswith the same characteristic
and the same transcendence degree are isomorphic.

Corollary 5.31. Let L be an algebraically closed field. For every isomorph-
ism σ ∶ K0 → K1 between subfields K0 ,K1 ⊆ L, there exists an automorph-
ism π ∈ Aut L such that π ↾ K0 = σ.

We can use automorphisms to study algebraic field extensions. This
leads to what is called Galois theory. Here, we present only a simple
lemma that is needed in the next section.

Definition 5.32. Let h ∶ K → L be a field extension. We set

Aut (L/K) ∶= { π ∈ Aut L ∣ π ↾ rng h = id} .

Lemma 5.33. Let K → L be a field extension where L is algebraically
closed.

(a) If a ∈ L is an element such that π(a) = a, for all π ∈ Aut (L/K),
then a ∈ K.

(b) If C ⊆ L is a finite set such that π[C] ⊆ C, for all π ∈ Aut (L/K),
then there exists a polynomial p ∈ K[x] of degree deg p = ∣C∣ such that
C is the set of roots of p.

Proof. (a) For a contradiction, suppose that a ∉ K. First, we consider the
case that a is algebraic over K. Let p be its minimal polynomial and let
a0 , . . . , an−1 be the roots of p. We have n = deg p. Since

K(a i) ≅ K[x]/(p) ≅ K(a) ,

we can use Corollary 5.31 to find automorphisms π i ∈ Aut (L/K) such
that π i(a) = a i . By assumption, this implies a i = a. Hence, we have

p = (x − a)n =
n
∑
i=0
(

n
i
)an−ix i ,

which implies that a, a2 , . . . , an ∈ K. Contradiction.
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It remains to consider the case that a is transcendental over K. Then
a2 is also transcendental over K. Hence,

K(a) ≅ FF(K[x]) ≅ K(a2)

and we can use Corollary 5.31 to find an automorphism π ∈ Aut (L/K)
with π(a) = a2. This implies a2 = a, i.e., a = 1 ∈ K. Contradiction.

(b) Suppose that C = {c0 , . . . , cn−1} and set

p ∶= (x − c0)⋯(x − cn−1) .

Clearly,C is the set of roots of p. Hence, it remains to prove that p ∈ K[x].
For every π ∈ Aut (L/K), we have

π(p) = (x − π(c0))⋯(x − π(cn−1)) = p .

Hence, every coefficient of p is fixed by every element of Aut (L/K).
By (a), it follows that all coefficients of p belong to K. ◻

We conclude this section with a result stating that every finite di-
mensional field extension is generated by a single element (at least in
characteristic 0).

Theorem 5.34. Let K → L be an extension of fields of characteristic 0. For
all algebraic elements a, b ∈ L, there exists a finite subset U ⊆ K such that

K(a, b) = K(ac + b) , for all c ∈ K ∖U .

Proof. W.l.o.g. we may assume that L is algebraically closed. Let p and q
be theminimal polynomials of a and b, respectively. Let a′0 , . . . , a′m−1 ∈ L
be the roots of p and b′0 , . . . , b′n−1 ∈ L the roots of q where a′0 = a and
b′0 = b. We claim that the set

U ∶= { (b′j − b)(a − a′i)
−1 ∣ 1 ≤ i < m and 0 ≤ j < n }

has the desired properties. Let c ∈ K ∖U and set d ∶= ac + b. We have to
show that

K(a, b) = K(d) .
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Clearly, K(d) ⊆ K(a, b). For the converse, let r ∈ K(d)[x] be a
polynomial such that

(r) = (p, q[d − cx]) .

Then p[a] = 0 and q[d − ca] = q[b] = 0 implies that r[a] = 0. Further-
more, if r[z] = 0, for some z ∈ L, thenwe have p[z] = 0 and q[d−cz] = 0.
The former implies that z = a′i , for some i, while the latter implies that
d − cz = b′j , for some j. Hence,

ac + b − cz = b′j implies (a − z)c = b′j − b .

Since c ∉ U it follows that z = a. Consequently, a is the only root of r
and we have

r = (x − a)k , for some k < ω .

Since r divides p it follows that p = (x − a)k p0, for some p0 ∈ K(a)[x].
As p is irreducible,we can use Lemma 5.24 to conclude that k = 1. Hence,
r = x − a. Since r ∈ K(d)[x] it follows that a ∈ K(d). This, in turn,
implies that b = d − ac ∈ K(d). Consequently, K(a, b) ⊆ K(d). ◻

6. Ordered fields
The field C of complex numbers is the canonical example of an algebrai-
cally closed field of characteristic zero. We have studied such fields in
the previous section. In this section we study fields like the field R of
real numbers. It turns out that the theory of R is more complicated than
that of C. We start by looking at fields equipped with a partial order.

Definition 6.1. (a) A structure R = ⟨R,+,−, ⋅, 0, 1, <⟩ is a partially
ordered ring if ⟨R,+,−, ⋅, 0, 1⟩ is a ring and < is a strict partial order
on R satisfying the following conditions :

◆ a < b implies a + c < b + c, for all a, b, c ∈ R .
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◆ a < b and c > 0 implies a ⋅ c < b ⋅ c .

If < is a linear order then we call R an ordered ring.
(b) A ring R is orderable if there exists a linear order < such that ⟨R, <⟩

is an ordered ring.
(c) For an element a ∈ R of an ordered ring R, we define

∣a∣ ∶=
⎧⎪⎪
⎨
⎪⎪⎩

a if a ≥ 0 ,
−a if a < 0 .

(d) A field K is real if −1 cannot be written as a sum of squares.

Exercise 6.1. Let K be an ordered field. Prove that −1 < 0.

Lemma 6.2. If K is an ordered field then a2 ≥ 0, for all a ∈ K.

Proof. If a > 0 then we have a ⋅ a > 0 ⋅ a = 0. Similarly, if a = 0 then
a2 = 02 = 0 ≥ 0. Hence, suppose that a < 0. Then we have

0 = a + (−a) < 0 + (−a) = −a ,

which implies that −a2 = a ⋅ (−a) < 0 ⋅ (−a) = 0. Consequently, we have
0 = (−a2) + a2 < 0 + a2 = a2. ◻

Lemma 6.3. Every orderable field has characteristic 0.

Proof. By the previous lemma, we have 1 = 12 > 0. This implies that
0 + 1 < 1 + 1 and, by induction it follows that

1 + 1 < 1 + 1 + 1 , 1 + 1 + 1 < 1 + 1 + 1 + 1 , . . .

If some sum 1 + ⋅ ⋅ ⋅ + 1 equals 0 then we have

0 < 1 < 1 + 1 < ⋅ ⋅ ⋅ < 1 + ⋅ ⋅ ⋅ + 1 < 0 .

A contradiction. ◻
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Lemma 6.4. Let K be a real field. Then ⟨K, ≤⟩ is partially ordered where

a ≤ b : iff b − a is a sum of squares.

Proof. We start by showing that ≤ is a partial order. It is clearly reflexive.
For transitivity, suppose that b − a = x and c − b = y where x and y are
sums of squares. Then c − a = x + y is also a sum of squares. Finally,
suppose that a ≤ b and b ≤ a for a ≠ b. Then x ∶= b−a and y ∶= a−b are
nonzero sums of squares with x + y = 0. Suppose that x = x2

0 + ⋅ ⋅ ⋅ + x2
m

and y = y2
0 + ⋅ ⋅ ⋅ + y2

n . Then

−x2
0 = x

2
1 + ⋅ ⋅ ⋅ + x2

m + y2
0 + ⋅ ⋅ ⋅ + y2

n

implies

−1 = (x1/x0)2 + ⋅ ⋅ ⋅ + (xm/x0)2 + (y0/x0)2 + ⋅ ⋅ ⋅ + (yn/x0)2 .

Contradiction.
To show that K is partially ordered by ≤ note that, if b− a and c = c−0

are sums of squares and d is an arbitrary element then

(b + d) − (a + d) = b − a and bc − ac = (b − a)c

are also sums of squares. ◻

We have seen that every real field can be equipped with a canonical
partial order. We would like to extend this partial order to a linear one.
To do so we consider field extensions such that, for every pair of ele-
ments a, b, one of a − b and b − a is a square. In the following we denote
by
√
a an arbitrary root of the polynomial x2 − a, either in the given

field K itself or one of its extensions.

Lemma 6.5. Let K be a real field and a ∈ K an element.
(a) If a is a sum of squares then K(

√
a) is a real field.

(b) If −a cannot be written as a sum of squares then K(
√
a) is a real

field.

427



b6. Classical Algebra

Proof. For a contradiction, suppose that K(
√
a) is not real. This implies

that
√
a ∉ K. Furthermore, there are numbers b i , c i ∈ K such that

−1 =∑
i<n
(b i + c i

√
a)2 =∑

i<n
(b2

i + 2b i c i
√
a + ac2

i ) .

Since K(
√
a) is a K-vector space with basis {1,

√
a} it follows that

−1 =∑
i<n
(b2

i + ac2
i ) and 0 =∑

i<n
2b i c i

√
a .

Consequently, if a is a sum of squares then so is −1 and K is not real. This
contradiction proves (a).

For (b), note that setting d ∶= ∑i c2
i the above equation implies

−a =
1 +∑i b2

i

∑i c2
i
=
∑i c2

i +∑i b2
i ⋅∑i c2

i

(∑i c2
i )

2

=∑
i
(c i/d)2 +∑

i
b2

i ⋅∑
i
(c i/d)2 ,

and −a is a sum of squares. Again a contradiction. ◻

Corollary 6.6. If K is real and a ∈ K then at least one of K(
√
a) and

K(
√
−a) is real.

Lemma 6.7. Let K be a real field and p ∈ K[x] an irreducible polynomial
of odd degree. If a is a root of p (in some extension of K) then K(a) is a
real field.

Proof. We prove the claim by induction on n ∶= deg p. Suppose that
K(a) is not real. Then there are elements b i ∈ K(a) with

−1 = b2
0 + ⋅ ⋅ ⋅ + b2

k .

Since K(a) ≅ K[x]/(p) we can find polynomials q i ∈ K[x] of degree
less than n such that b i ≡ q i (mod p). It follows that

−1 ≡ q2
0 + ⋅ ⋅ ⋅ + q2

k (mod p) .
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Hence, there is some polynomial r ∈ K[x] such that

−1 = q2
0 + ⋅ ⋅ ⋅ + q2

k + r p .

Each square q2
i has an even degree. Let m be the degree of the sum

q2
0 + ⋅ ⋅ ⋅ + q2

k . If m ≤ 0 then we would have r = 0 and −1 would be a sum
of squares of elements in K. Hence,we have 0 < m ≤ 2n−2. As n = deg p
is odd, it follows that the degree of r is also odd and at most n − 2. Let
r0 be an irreducible factor of r of odd degree and let c be a root of r0.
Then

−1 = (q0[c])2 + ⋅ ⋅ ⋅ + (qk[c])2

is a sum of squares in K(c). Hence, K(c) is not real. This contradicts the
inductive hypothesis since the degree of r0 is odd and less than n. ◻

Definition 6.8. (a) A field is real closed if it is real and it has no proper
algebraic extension that is real.

(b) A real closure of a field K is an algebraic extension K → L that is
real closed.

Theorem 6.9. Every real field has a real closure.

Proof. Let K be a real field and letR be the set of all real fields that are
algebraic extensions of K. ThenR is inductively ordered by inclusion.
Hence, it has a maximal element L. This is the desired real closure of K.

◻

Lemma 6.10. Let K be a real closed field. There exists a unique linear
order < such that ⟨K, <⟩ is an ordered field.

Proof. Let ≤ be the partial order of Lemma 6.4. We claim that ≤ is linear.
Suppose that a ≰ b. Then b − a is not a sum of squares. By Lemma 6.5 it
follows that K(

√
a − b) is real. SinceK is real closedwe have

√
a − b ∈ K.

Hence, a − b is a square and we have b ≤ a, as desired.
Finally, note that, since every sum of squares must be non-negative

≤ is the only possible linear order on K. ◻
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Theorem 6.11. A field is orderable if and only if it is real.

Proof. (⇒) If ⟨K, <⟩ is an ordered field then a2 ≥ 0, for all a ∈ K. Hence,
every sum of squares is non-negative.
(⇐) Let K be a real field and let L be a real closure of K. Then L has a

unique linear order <. The restriction of < to K yields the desired order
of K. ◻

Lemma 6.12. Let K0 be an ordered field and K0 → K1 an (unordered)
field extension such that there are no elements c i ∈ K1 and a i ∈ K0 with
a i > 0 and

−1 = a0c2
0 + ⋅ ⋅ ⋅ + an−1c2

n−1 .

Let A be the algebraic closure of K1 and L ⊆ A the subfield generated by
the set K1 ∪ {

√
c ∣ c ∈ K0 , c > 0}. Then L is a real field whose canonical

partial order extends that of K0.

Proof. Since every positive element of K0 has a square root in L it follows
that the canonical order of L extends the order of K0. Hence, we only
need to prove that L is real.

If L were not real then we would have

−1 = a0c2
0 + ⋅ ⋅ ⋅ + an−1c2

n−1 ,

where a i = 1 and c i ∈ L, for i < n. Furthermore, by definition of L,
there would be elements b0 , . . . , bk−1 ∈ K0 such that c0 , . . . , cn−1 ∈
K1(
√
b0 , . . . ,

√
bk−1).

Consequently, it is sufficient to prove that we cannot find elements
a0 , . . . , an−1 , b0 , . . . , bk−1 ∈ K0 and c0 , . . . , cn−1 ∈ K1(

√
b0 , . . . ,

√
b1)

such that a i , b i > 0 and

−1 = a0c2
0 + ⋅ ⋅ ⋅ + an−1c2

n−1 .

We proceed by induction on k. For k = 0 the claim follows by our
assumption on K1. Hence, let k > 0 and, for a contradiction, suppose
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that there are elements a i , b i , and c i as above. Then

c i = u i + v i
√
bk−1 , where u i , v i ∈ K1(

√
b0 , . . . ,

√
bk−2) .

Hence,

−1 =∑
i<n

a i(u i + v i
√
bk−1)

2

=∑
i<n
(a iu2

i + a ibk−1v2
i + 2a iu iv i

√
bk−1) .

If bk−1 ∈ K1(
√
b0 , . . . ,

√
bk−2) then we obtain the desired contradiction

by inductive hypothesis. Hence, assume that bk−1 is not contained in
this field. Then 1 and

√
bk−1 are linearly independent and it follows that

−1 =∑
i<n
(a iu2

i + a ibk−1v2
i ) and 0 =∑

i<n
2a iu iv i

√
bk−1 .

But the first equation contradicts the inductive hypothesis. ◻

Theorem 6.13. Every ordered field K has a real closure R such that the
canonical ordering of R extends the order of K.

Proof. Applying Lemma 6.12 with K0 = K1 = K we obtain a real field L
such that the canonical partial order of L extends the order of K. The
claim follows since the canonical order of every real closure of L extends
the canonical order of L. ◻

The next theorem gives a more concrete characterisation of when a
field is real closed.

Theorem 6.14. Let K be a real field. The following statements are equival-
ent :

(1) K is real closed.

(2) K(
√
−1) is algebraically closed.
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(3) Every polynomial p ∈ K[x] of odd degree has a root in K and, for
every a ∈ K, either a or −a is a square.

Proof. (1)⇒ (3) follows from Lemmas 6.5 and 6.7.
(3)⇒ (2) We start by showing that every element a+b

√
−1 ∈ K(

√
−1)

has a square root in K(
√
−1). Let < be an ordering of K. Then a2+b2 > 0

implies that a2 + b2 is a square. Since −
√
a2 + b2 ≤ a ≤

√
a2 + b2 we

have

e ∶=
a +
√
a2 + b2

2
> 0 .

Hence, e is also a square. Set c ∶=
√
e and d ∶= b

2c . It follows that

(c + d
√
−1)2 = e + b

√
−1 −

b2

4e

=
a
2
+

√
a2 + b2

2
+ b
√
−1 −

b2

2(a +
√
a2 + b2)

=
a
2
+ b
√
−1 +

√
a2 + b2(a +

√
a2 + b2) − b2

2(a +
√
a2 + b2)

=
a
2
+ b
√
−1 +

a
√
a2 + b2 + a2

2(a +
√
a2 + b2)

= a + b
√
−1 ,

as desired.
To prove that K(

√
−1) is algebraically closed we have to show that

every irreducible polynomial p ∈ K[x] has a root in K(
√
−1). Suppose

that the degree of p is n = 2m l where l is odd. We prove the claim by
induction on m. If m = 0 then the claim holds by assumption on K.
Suppose that m > 0. Let K → L be an algebraic field extension inwhich p
has n roots a0 , . . . , an−1. ByTheorem 5.34, there exist finite subsets U i k ⊆
K such that

K(a i + ak , a iak) = K(a i + ak + ca iak) , for all c ∈ K ∖U i k .
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Fix some element c ∈ K ∖ ⋃i ,k U i k . By Lemma 5.33, there is a poly-
nomial q ∈ K[x] of degree n(n − 1)/2 whose roots are the elements
a i + ak + ca iak . By inductive hypothesis, one of them is in K(

√
−1).

Suppose that a i + ak + ca iak ∈ K(
√
−1).

First, we show that b ∶= a i + ak ∈ K(
√
−1) and b′ ∶= a iak ∈ K(

√
−1).

For a contradiction, suppose otherwise. Note that, if one of b and b′ is
not in K(

√
−1) then b + cb′ ∈ K(

√
−1) implies that the other one also

does not belong to K(
√
−1). Hence, K(b, b′ ,

√
−1) is a K(

√
−1)-vector

spacewith basis {1, b, b′}. But these vectors are not linearly independent
since they satisfy the equation λ1−b−b′ = 0 with λ = b+ cb′ ∈ K(

√
−1).

Contradiction.
Consequently, a i is the root of a quadratic polynomial in K(

√
−1)[x].

Since every element of K(
√
−1) has a square root it follows that a i ∈

K(
√
−1).

(2)⇒ (1) By Lemma 6.4, there exists a partial order

a ≤ b : iff b − a is a sum of squares

on K. We claim that ≤ is linear. This implies that K is real.
It is sufficient to show that every element a ∈ K satisfies a ≥ 0 or

−a ≥ 0. Suppose that a ≠ 0 is not a sum of squares. Let b be a root of the
polynomial x2 − a. Since b is algebraic over K we have K(b) ⊆ K(

√
−1).

Hence, there are elements c, d ∈ K with b = c + d
√
−1. Consequently,

b2 = c2 + 2cd
√
−1 − d2 .

Since K(
√
−1) is a K-vector space with basis {1,

√
−1} it follows that

cd = 0 and b2 = c2 − d2. Since b ∉ K we have d ≠ 0. Hence, c = 0 and
−a = −b2 = d2 is a square.

Finally, note that the real closure R of K is contained in K(
√
−1) since

the latter is algebraically closed. To show that K is real closed we have
to prove that R = K. For a contradiction, suppose that there is some
element a ∈ R ∖ K. Since a ∈ K(

√
−1) there are elements b, c ∈ K with

a = b + c
√
−1. Hence,

√
−1 = (a − b)/c ∈ R and −1 is a square in R.

Contradiction. ◻
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We continue our investigation of ordered fields by looking at the roots
of polynomials.

Lemma 6.15. If K is real closed then every polynomial p ∈ K[x] can be
written as a product of polynomials of degree at most 2.

Proof. Since K(
√
−1) is algebraically closed it follows that

p = u(x − a0)⋯(x − an−1) ,

for some a0 , . . . , an−1 , u ∈ K(
√
−1). For c = a + b

√
−1 ∈ K(

√
−1) we

denote by c∗ ∶= a − b
√
−1 its complex conjugate. The mapping c ↦ c∗

is a field homomorphism. Therefore, we have p[c]∗ = p[c∗]. It follows
that, for every i < n, there is some l < n with a∗i = a l . If i = l we have
a i ∈ K and x − a i is a factor of p in K[x]. Otherwise, p has the factor

(x − a i)(x − a l) = x2 − (a i + a∗i )x + a ia∗i

with a i + a∗i ∈ K and a ia∗i ∈ K. ◻

Lemma 6.16. Let p = xn + an−1xn−1 + ⋅ ⋅ ⋅ + a1x + a0 be a polynomial
over an ordered field K and suppose that b ∈ K is some element with
b > 1 + ∣a0∣ + ⋅ ⋅ ⋅ + ∣a2n ∣. Then

p[b] > 0 and (−1)n p[−b] > 0 .

Proof. Note that b > 1 implies b i+1 > b i , for all i. Hence,

p[b] > bn −∑
i<n
∣a i ∣ ⋅ b i ≥ bn − bn−1

∑
i<n
∣a i ∣ > 0 .

Similarly,

p[−b] = (−1)nbn +∑
i<n
(−1)ia ib i

implies

(−1)n p[−b] > bn −∑
i<n
∣a i ∣ ⋅ b i > 0 .

◻
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Proposition 6.17. An ordered field K is real closed if and only if, for every
polynomial p ∈ K[x] and all elements a < b in K with p[a] < 0 < p[b],
there exists some c ∈ (a, b) with p[c] = 0.

Proof. (⇐)We use the characterisation of Theorem 6.14 (3).
For a ∈ K set p ∶= x2 − a. If a > 0 then p[0] = −a < 0 < a = p[2a].

Hence, there is some element c ∈ (0, 2a) with p[c] = 0. This implies that
a = c2 is a square.

Similarly, if a < 0 then p[a] = 2a < 0 < −a = p[0]. As above we find
an element c with p[c] = 0. Hence, −a = c2 is a square.

Finally, let p = x2n+1 + a2nx2n + ⋅ ⋅ ⋅ + a1x + a0 be a polynomial of odd
degree. Choose b ∈ K such that b > 1 + ∣a0∣ + ⋅ ⋅ ⋅ + ∣a2n ∣. By Lemma 6.16
we have p[−b] < 0 < p[b]. Therefore, p has a root c ∈ (−b, b).
(⇒) Let p = pk0

0 ⋯pkn
n where each p i is irreducible. Choosing the

interval (a, b) small enough we may assume that there is exactly one
factor p i with p i[a] < 0 < p i[b] while all other factors have constant
sign on the interval (a, b). If p i = x + c then a + c < 0 < b + c implies
−c ∈ (a, b). Hence, −c is the desired root of p.

Suppose that p i = x2 + cx +d. As p i is irreduciblewe have 4d − c2 > 0.
It follows that

p i[z] = (z + c/2)2 + (d − c2/4) > 0 , for all z ∈ (a, b) .

This contradicts our choice of p i . ◻

Lemma 6.18. Let K be an ordered field and p ∈ K[x] a polynomial. For
every element a ∈ K with p[a] > 0, there exists some ε > 0 such that

p[z] > 0 , for all a − ε ≤ z ≤ a + ε .

Proof. We consider the polynomial q ∶= p[a + x]. Suppose that

q = cnxn + ⋅ ⋅ ⋅ + c1x + c0 .
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Set k ∶= max1≤i≤n ∣c i ∣ and let ε be the minimum of 1 and c0/2kn. For
∣z∣ ≤ ε it follows that

q[z] = c0 + c1z + ⋅ ⋅ ⋅ + cnzn

≥ c0 − ε∣c1∣ − ⋅ ⋅ ⋅ − εn ∣cn ∣

≥ c0 − εk − ⋅ ⋅ ⋅ − εk
= c0 − εkn

≥
c0
2
=

p[a]
2
> 0 . ◻

Lemma 6.19. Let K be an ordered field and p ∈ K[x] a polynomial. If
p′[a] > 0 then there exist some ε > 0 such that

p[z] > p[a] , for a < z < a + ε ,
p[z] < p[a] , for a − ε < z < a .

Proof. Set q ∶= p[a + x] − p[a]. Since q[0] = 0 we have q = xq0, for
some q0 ∈ K[x]. Furthermore, we have

q0[0] = q0[0] + 0 ⋅ q′0[0] = q′[0] = p′[a] > 0 .

Hence, we can use Lemma 6.18 to find a number ε > 0 such that

q0[z] > 0 , for all −ε < z < ε .

This implies that

q[z] > 0 , for 0 < z < ε ,
and q[z] < 0 , for −ε < z < 0 . ◻

Lemma 6.20. Let K be a real closed field and p ∈ K[x] a polynomial. If
a < b are elements such that

p′[z] ≥ 0 , for all a ≤ z ≤ b ,

then p[a] < p[b].
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Proof. First, suppose that p′[z] > 0, for all a ≤ z ≤ b. If p[a] ≥ p[b] then
applying Lemma 6.19 to a and b, respectively,we obtain elements a < c <
d < b with p[d] < p[b] ≤ p[a] < p[c]. Consequently, Proposition 6.17
implies that the polynomial p− p[a] has a root b1 with c < b1 < d. Since
p[b1] = p[a] we can repeat this argument to obtain a second root b2
of p − p[a] with a < b2 < b1. Continuing in this way we obtain an
infinite descending sequence b1 > b2 > . . . of roots of p − p[a]. But
every nonzero polynomial has only finitely many roots. Contradiction.

For the general case, fix an enumeration c0 < ⋅ ⋅ ⋅ < ck−1 of all roots
of p′ in the interval (a, b), and let d0 < ⋅ ⋅ ⋅ < d2k+2 be the sequence
defined by

a <
a + c0

2
< c0 <

c0 + c1

2
< c2 < . . .

<
ck−2 + ck−1

2
< ck−1 <

ck−1 + b
2

< b .

It is sufficient to prove that p[d i] < p[d i+1], for all i ≤ 2k. Therefore, we
may assume that p′[z] > 0 for all z in the interval [a, b] except possibly
for one of the endpoints.

Suppose that p′[a] = 0 and p′[b] > 0. If p[a] > p[b] then applying
Lemma 6.18 to the polynomial p−p[b]we obtain some element a < c < b
with p[c] > p[b]. Since p′[z] > 0, for all z ∈ [c, b] this contradicts the
first part of the proof. Consequently, we have p[a] ≤ p[b]. By the same
argument it follows that p[a] ≤ p[(a+ b)/2]. Hence, the first part of the
proof implies that p[a] ≤ p[(a + b)/2] < p[b], as desired.

For p′[a] > 0 and p′[b] = 0 the claim follows in the same way by
exchanging the roles of a and b. ◻

We conclude this section by proving that the real closure of an order
field is unique.

Lemma 6.21. Let L0 and L1 be real closures of an ordered field K whose
canonical orders extend the order of K. Suppose that a ∈ L0 ∖ K is an
element whose minimal polynomial has minimal degree. Then there exists
an order preserving embedding K(a)→ L1.
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Proof. Let p be the minimal polynomial of a and set n ∶= deg p. We
start by showing that p has a root in L1. Note that, by Lemma 6.16, there
are elements b− , b+ ∈ K with b− < a < b+. Further, note that, if q is
a polynomial of degree less than n then all roots of q are in K. Hence,
when z varies over L i then the sign of q[z] changes only at points z ∈ K.

By choice of p we have p′[a] ≠ 0 since, otherwise, we would have
p′ = (x − a)q, for some q. Hence, p = (x − a)2r, for some r, which
contradicts Lemma 5.24. Therefore, replacing p by −p if necessary, we
may assume that p′[a] > 0.
We claim that there are elements c, d ∈ K with c < a < d such that

p′ is positive on the interval [c, d]. Let c′ be the largest root of p′ that is
less than a. If such a root does not exist then we set c′ ∶= b−. Similarly,
let d′ be the smallest root of p′ that is greater than a, or set d′ ∶= b+ if
there is no such root. Since p′ has degree n − 1 it follows that c′ , d′ ∈ K.
Furthermore, Proposition 6.17 implies that p′ has constant sign on the
interval (c′ , d′). Setting c ∶= (c′ + a)/2 and d ∶= (d′ + a)/2 we obtain
the desired elements.
By Lemma 6.20 it follows that p[c] < 0 < p[d]. Hence, we can use

Proposition 6.17 to find a root b ∈ L1 of p.
Let a0 < ⋅ ⋅ ⋅ < a l−1 be an increasing enumeration of all roots of p in L0

and let b0 < ⋅ ⋅ ⋅ < bm−1 be an increasing enumeration of all roots of p
in L1. We claim that l = m and that there exists an order preserving
embedding σ ∶ K(ā)→ K(b̄) with σ(a i) = b i and σ ↾ K = id.

Fix elements c1 , . . . , cn−1 ∈ L0 such that c2
i = a i − a i−1. There exists an

embedding σ ′ ∶ K(āc̄)→ L1 of unordered fields with σ ′ ↾ K = id. Since

σ ′(a i) − σ ′(a i−1) = σ ′(c i)
2

it follows that σ ′(a i−1) < σ ′(a i). Furthermore, σ ′(a i) is a root of p.
Hence, σ ′(a i) ∈ b̄. This implies that l ≤ m. Similarly, we can show
that m ≤ l . Hence, there exists an embedding σ ∶ K(ā) → K(b̄) with
σ(a i) = b i and σ ↾ K = id. It remains to show that σ is order preserving.

Let z ∈ K(ā) be an element with z > 0. We fix some u ∈ L0 such that
u2 = z. As above we can find an embedding of unordered fields σ ′′ ∶
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6. Ordered fields

K(āc̄u) → L with σ ′′(a i) = b i and σ ′′ ↾ K = id. Hence, σ ′′ ↾ K(ā) = σ .
Furthermore, σ(z) = σ ′′(z) = σ ′′(u)2 > 0. ◻

Theorem 6.22. If L0 and L1 are ordered real closures of an ordered field K
then there exists a unique isomorphism π ∶ L0 → L1 with π ↾ K = id.

Proof. As in Theorem 5.29, we construct increasing sequences of iso-
morphisms

πα ∶ L
α
0 → Lα

1

where L0
i ⊆ L1

i ⊆ ⋅ ⋅ ⋅ ⊆ Li are increasing chains of subfields with union
⋃α Lα

i = Li . The limit π ∶= ⋃α πα is the desired isomorphism.
We start with π0 ∶= idK . For limit steps,we take unions πδ ∶= ⋃α<δ πα .

For the inductive step, we apply Lemma 6.21 twice. First, we select some
element a ∈ L0 ∖ Lα

0 such that its minimal polynomial over Lα
0 has

minimal degree and we extend πα to an isomorphism Lα
0(a)→ Lα

1 (b),
for some b ∈ L1. Then we select some element d ∈ L1 ∖Lα

1 (b) and extend
the isomorphism to πα+1 ∶ Lα

0(a, c)→ Lα
1 (b, d), for some c ∈ L0. ◻
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First-Order Logic and its
Extensions





c1. First-order logic

1. Infinitary first-order logic

Logics are languages to talk about structures and their elements. They
can be used to assert that a given structure has a certain property, to
define classes of structures, or to define relations inside a given structure.
Let us start with a simple, but typical example.

Example. Let K be a field and X a set of variables. The Zariski logic over K
is the set ZL[K, X] ∶= K[X] of all polynomials over K with unknowns
from X.

Let L ⊇ K be a field extending K. For a polynomial p ∈ ZL[K, X] and a
variable assignment β ∶ X → L, recall that pL[β] denotes the value of p
when we assign to each variable x ∈ X the value β(x). A polynomial
p ∈ ZL[K, X] defines in a given field L ⊇ K the set

pL ∶= { β ∈ LX ∣ pL[β] = 0}

of its roots. A set A ⊆ Ln is Zariski-definable over K if there exist finitely
many polynomials p0 , . . . , pk−1 ∈ ZL[K, {x0 , . . . , xn−1}] such that

A = { ⟨β(x0), . . . , β(xn−1)⟩ ∣ β ∈ pL
0 ∩ ⋅ ⋅ ⋅ ∩ pL

k−1 } .

In case of algebraically closed fields the Zariski-definable relations are
called algebraic varieties.

For instance, the polynomial x2 + y2 − 1 = 0 defines over R the unit
circle S1, while x − y2 = 0 defines a rotated parabola.
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c1. First-order logic

x2 + y2 − 1 = 0

x − y2 = 0

Let us capture the above situation in a general definition.

Definition 1.1. A logic is a triple ⟨L,K,⊧⟩ consisting of a nonempty
class L of formulae, a nonempty classK of interpretations, and a binary
satisfaction relation ⊧ ⊆ K × L.

Let J ∈ K be an interpretation and φ ∈ L a formula. If J ⊧ φ then we
say that φ holds in J, that J satisfies φ, or that J is a model of φ. For sets
of formulae Φ ⊆ L we define

J ⊧ Φ : iff J ⊧ φ for all φ ∈ Φ .

Example. (a) In the case of Zariski-logic ZL[K, X] the formulae are the
polynomials p ∈ K[X] and an interpretation is a pair ⟨L, β⟩ where L ⊇ K
is a field extension of K and β ∈ LX is a variable assignment. We have

⟨L, β⟩ ⊧ p iff pL[β] = 0 .

(b) For a boolean algebra B, we define boolean logic

BL(B) ∶= ⟨B, spec(B), ⊧⟩ ,

where, for an element b ∈ B and an ultrafilter u ∈ spec(B),

u ⊧ b : iff b ∈ u .

Themain logicwewill consider is first-order logic, also called predicate
logic.We start by defining its syntax, that is, the set of first-order formulae.
For convenience we simultaneously define two logics, basic first-order
logic FO and a variant FOκℵ0 where we allow infinite formulae.
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1. Infinitary first-order logic

Definition 1.2. Let Σ be a signature and κ an infinite cardinal. For each
sort s of Σ, let Xs be a set of variable symbols of sort s, and set X ∶= ⋃s Xs .

The set FOκℵ0[Σ, X] of infinitary first-order formulae is the smallest
set of terms satisfying the following closure conditions :

◆ If t0 , t1 ∈ T[Σ, X] are of the same sort then t0 = t1 belongs to
FOκℵ0[Σ, X].

◆ If R ∈ Σ is of type s0 . . . sn−1 and t i ∈ Ts i [Σ, X], for i < n, then
Rt0 . . . tn−1 is in FOκℵ0[Σ, X].

◆ If φ ∈ FOκℵ0[Σ, X] then ¬φ ∈ FOκℵ0[Σ, X].
◆ If Φ ⊆ FOκℵ0[Σ, X] and ∣Φ∣ < κ then ⋀Φ, ⋁Φ ∈ FOκℵ0[Σ, X].
◆ If φ ∈ FOκℵ0[Σ, X ∪ {x}] then ∃xφ, ∀xφ ∈ FOκℵ0[Σ, X].

For κ = ℵ0, we obtain ( finitary) first-order logic

FO[Σ, X] ∶= FOℵ0ℵ0[Σ, X] .

If we omit the cardinality restriction, we get

FO∞ℵ0[Σ, X] ∶=⋃
κ

FOκℵ0[Σ, X] .

The operation ¬ is called negation, ⋀ and ⋁ are conjunction and dis-
junction, and ∃ and ∀ are the existential and universal quantifier. An
atom is a formula of the form

Rt0 . . . tn−1 or t0 = t1 .

A formula that is either an atom or the negation of an atom is called a
literal.

Remark. Every formula φ ∈ FOκℵ0[Σ, X] is a term φ ∶ T → Λ where
T ⊆ κ<ω and

Λ ∶= Σ ∪ X′ ∪ {=,¬,⋀,⋁} ∪ {∃x ,∀x ∣ x ∈ X′ } ,

for some X′ ⊇ X. In particular, for κ = ℵ0, we can regard FO[Σ, X] as a
subset of T[Λ,∅].
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c1. First-order logic

It remains to define the meaning of these formulae, that is, the satis-
faction relation. Before doing so, let us note that we can use induction
on formulae.

Lemma 1.3. If κ is a regular cardinal then we have frk(φ) < κ, for all
φ ∈ FOκℵ0[Σ, X].

Proof. Let Λ be the same set of symbols as in the preceding remark. The
set Γ of all terms t ∶ T → Λ such that frk(t) < κ is closed under all
operations of Definition 1.2. Since FOκℵ0[Σ, X] is the smallest such set
we have FOκℵ0[Σ, X] ⊆ Γ, as desired. ◻

Corollary 1.4. frk(φ) <∞, for all φ ∈ FO∞ℵ0[Σ, X].

This result implies that the reversed ordering on the domain of a
formula is well-founded. Therefore, we can give proofs and definitions
by induction on this order. A proof or a construction by induction on φ
takes the following form. We have to distinguish several cases :

◆ φ is an atom.
◆ φ = ¬ψ and the inductive hypothesis holds for ψ.
◆ φ = ⋀Φ or φ = ⋁Φ and the inductive hypothesis holds for every

element of Φ.
◆ φ = ∃xψ or φ = ∀xψ and the inductive hypothesis holds for ψ.
We use induction to define the semantics of first-order logic, that is,

the satisfaction relation.

Definition 1.5. Let A be a Σ-structure and β ∶ X → A a variable as-
signment. The pair ⟨A, β⟩ is called a ( first-order) interpretation. For
φ ∈ FOκℵ0[Σ, X] we define the satisfaction relation A ⊧ φ[β] by induc-
tion on φ.

A ⊧ t0 = t1[β] : iff tA
0 [β] = tA

1 [β] ,

A ⊧ Rt0 . . . tn−1[β] : iff ⟨tA
0 [β], . . . , tA

n−1[β]⟩ ∈ RA ,

A ⊧ ¬φ[β] : iff A ⊭ φ[β] ,
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1. Infinitary first-order logic

A ⊧⋁Φ[β] : iff there is some φ ∈ Φ such that
A ⊧ φ[β] ,

A ⊧⋀Φ[β] : iff A ⊧ φ[β] for all φ ∈ Φ ,
A ⊧ ∃xφ[β] : iff there is some a ∈ A such that

A ⊧ φ[β[x/a]] ,
A ⊧ ∀xφ[β] : iff A ⊧ φ[β[x/a]] for all a ∈ A .

The set defined by a formula φ is φA ∶= { β ∈ AX ∣ A ⊧ φ[β] }.

Remark. For X = ∅, we simply write A ⊧ φ and we identify the pair
⟨A,∅⟩ with the structure A. In this case φA is either ∅ or A∅ = {∅}.

Exercise 1.1. Let N ∶= ⟨ω,+, 0, 1⟩ be the natural numbers with addition
and consider the formula

φ ∶= ∀x∃y[x = y + y ∨ x = y + y + 1] .

Using the above definition, give a formal proof that N ⊧ φ.

Definition 1.6. We will use the abbreviations

true ∶=⋀∅ , false ∶=⋁∅ ,
φ ∨ ψ ∶=⋁{φ,ψ} , φ → ψ ∶= ¬φ ∨ ψ ,
φ ∧ ψ ∶=⋀{φ,ψ} , φ↔ ψ ∶= (φ → ψ) ∧ (ψ → φ) ,

and t0 ≠ t1 ∶= ¬(t0 = t1) .

The operation→ is called implication. We abbreviate ∃x0⋯∃xn−1 as ∃x̄
and ∀x0⋯∀xn−1 as ∀x̄. Furthermore, we set

(∃x̄ .γ)φ ∶= ∃x̄(γ ∧ φ) and (∀x̄ .γ)φ ∶= ∀x̄(γ → φ) .

Quantifiers of the form (∃x̄ .γ) and (∀x̄ .γ) are called relativised quanti-
fiers, the formula γ is the guard of the quantifier.
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c1. First-order logic

Remark. To avoid unnecessary parenthesis we employ the following
precedence rules.

◆ Unary operators like quantifiers, negation, and the large conjunc-
tion anddisjunction signs bind strongest. For instance, the formula

∃x¬⋀
i<5

Pix ∧ ∃yP0 y is read as (∃x¬⋀
i<5

Pix) ∧ (∃yP0 y) .

◆ ∧ binds stronger than ∨,→, and↔.
◆ The precedence between ∨,→, and↔ is left unspecified.

Example. (a) Let x0 , . . . , xn−1 be variables of sort s. The formula

φn ∶= ∃x0⋯∃xn−1⋀
i≠k

x i ≠ xk

expresses that the universe contains at least n different elements of sort s.
Therefore, we can say that the domain of sort s is finite by the sentence

φfin ∶=⋁{¬φn ∣ n < ω } .

(b) Let Σ = {<} be the signature of strict partial orders. We can
express that an element y is the immediate successor of an element x by
the formula

φ ∶= x < y ∧ ¬∃z(x < z ∧ z < y) .

(c) Let G = ⟨V , E⟩ be a graph. For every n < ω, we can write down a
first-order formula ψn saying that there exists a path of length at most n
from the element x to y :

ψn ∶= ∃z0⋯∃zn(z0 = x ∧ zn = y ∧⋀
i<n
(z i = z i+1 ∨ Ez iz i+1)) .

The FOℵ1ℵ0 -formula

φsc ∶= ∀x∀y ⋁
n<ω

ψn
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expresses that the graph is strongly connected.
(d) Let ⟨R,+,−, 0, <, f ⟩ be the additive ordered group of the real

numbers with one unary function symbol f . We can say that ∣x − y∣ < z
by the formula

x − y < z ∧ y − x < z .

Making heavy use of relativised quantifiers, we can express that the
function f is continuous at x by the formula

(∀ε.ε > 0)(∃δ.δ > 0)
(∀y.x − y < δ ∧ y − x < δ)
( fx − fy < ε ∧ fy − fx < ε) .

Exercise 1.2. (a) Let ⟨A, ≤, P⟩ be a linear order with an additional unary
predicate P ⊆ A. Write down a first-order formula φ(x) which says that
x is the supremum of P.

(b) Let ⟨V , E⟩ be a graph. Define a first-order formula φ which states
that every vertex has exactly two outgoing edges.

Lemma 1.7. For every ordinal α < κ, there exists an FOκℵ0 -formula φα
such that

A ⊧ φα iff A ≅ ⟨α, <⟩ .

Proof. We define a slightly more general formula ψα(x) such that

A ⊧ ψα(a) iff ⟨↓a, <⟩ ≅ ⟨α, <⟩ .

The sentence

ϑ ∶= ∀x¬(x < x) ∧ ∀x∀y∀z(x < y ∧ y < z → x < z)

states that < is a strict linear order. By induction on α, we set

ψ0(x) ∶= ¬∃y(y < x) ∧ ϑ ,
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and ψα(x) ∶= ⋀
β<α
(∃y.y < x)ψβ(y) ∧ (∀y.y < x) ⋁

β<α
ψβ(y) .

Hence, we can define the desired formula φα by

φα ∶= ⋀
β<α

∃yψβ(y) ∧ ∀y ⋁
β<α

ψβ(y) .
◻

We can define the notions of a free variable, a subformula, substitution,
etc. for formulae in the sameway as for terms. But note that, unlike terms,
formulae can contain variables that are not free.

Definition 1.8. Let φ ∈ FO∞ℵ0[Σ, X].
(a) A subterm of φ is called a subformula.
(b) The set free(φ) of free variables of φ is theminimal set X0 such that

φ ∈ FO∞ℵ0[Σ, X0]. A formula without free variables is called a sentence.
(c) An occurrence of a variable x in a formula φ is bound if it lies in a

subformula of the form ∃xψ or ∀xψ. Otherwise, the occurrence of x is
free.

(d) For a sequence s̄ ∈ S I of sorts, let X s̄ ∶= { x i ∣ i ∈ I } be a standard
set of variables where x i is of sort s i . We set

FOs̄
κℵ0
[Σ] ∶= FOκℵ0[Σ, X s̄] .

For ordinals α, we define

FOα
κℵ0
[Σ] ∶= ⋃

s̄∈Sα
FOκℵ0[Σ, X s̄]

and FO<ακℵ0
[Σ] ∶= ⋃

β<α
FOβ

κℵ0
[Σ] .

Remark. (a) Every FOκℵ0 -formula has less than κ free variables.
(b) Note that a variable x can occur both free and bound in the same

formula φ.
Obviously, the truth value of a formula only depends on the sym-

bols actually appearing in it. This triviality is recorded in the following
lemma. Like the corresponding result for terms it can be proved by a
straightforward induction on the structure of φ.
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1. Infinitary first-order logic

Lemma 1.9 (Coincidence Lemma). Let φ ∈ FO∞ℵ0[Γ ,Y] be a formula
and, for i < 2, let Ai be a Σ i-structure and β i ∶ X i → A i a variable
assignment. If

◆ Γ ⊆ Σ0 ∩ Σ1 and free(φ) ⊆ X0 ∩ X1 ,

◆ A0∣Γ = A1∣Γ and β0 ↾ free(φ) = β1 ↾ free(φ)

then we have A0 ⊧ φ[β0] iff A1 ⊧ φ[β1].

Remark. We will write φ(x0 , . . . , xn−1) to indicate that

free(φ) ⊆ {x0 , . . . , xn−1} .

Furthermore, if a0 , . . . , an−1 are elements of the structure A, we write

A ⊧ φ(a0 , . . . , an−1)

instead of A ⊧ φ[β] for the assignment β ∶ x i ↦ a i . By the Coincidence
Lemma, this notation is well-defined. Similarly, we write Φ(x̄) and A ⊧
Φ(ā), for sets Φ ⊆ FO∞ℵ0[Σ, X].

Let us compute the number of FOκℵ0 -formulae. Note that the number
of finite formulae follows immediately from Lemma b3.1.5.

Lemma 1.10. Let κ be a regular cardinal. Every formula φ ∈ FOκℵ0[Σ, X]
has less than κ subformulae.

Proof. Using the same notation as in the remark after Definition 1.2, we
see that φ is a Λ-term with dom φ ⊆ κ<ω . If κ = ℵ0 then φ is a finite term
that has only finitely many subformulae. Suppose that κ > ℵ0. Since κ is
regular it follows by induction on φ that there exists a cardinal λ < κ
such that dom φ ⊆ λ<ω . Hence, ∣dom φ∣ ≤ λ<ω = λ ⊕ ℵ0 < κ. ◻

Lemma 1.11. Let Σ be a signature, X a set of variables, and κ a regular
cardinal.

∣FOκℵ0[Σ, X]∣ ≤ (∣Σ∣⊕ ∣X∣⊕ ℵ0)
<κ .
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Proof. We have shown in the preceding lemma that every infinitary
first-order formula φ ∈ FOκℵ0[Σ, X] is a Λ-term with ∣dom φ∣ < κ. Fur-
thermore, we have

∣Λ∣ ≤ ∣Σ∣⊕ ∣X′∣⊕ ℵ0 ≤ ∣Σ∣⊕ ∣X∣⊕ ∣dom φ∣⊕ ℵ0 .

Consequently, it follows that

∣FOκℵ0[Σ, X]∣ ≤ sup
λ<κ
(∣Σ∣⊕ ∣X∣⊕ λ ⊕ ℵ0)

λ

= sup
λ<κ
(∣Σ∣⊕ ∣X∣⊕ ℵ0)

λ = (∣Σ∣⊕ ∣X∣⊕ ℵ0)
<κ .

◻

Remark. In the preceding lemma, we have tacitly identified formulae
φ and ψ that differ only in the names of bound variables, i.e., variables in
X′∖X. Hence, the above bound holds only up to this equivalence relation.
Clearly, if we distinguish the formulae ∃xPx, ∃yPy, ∃zPz,. . . then we
can construct arbitrarily many formulae by using that many different
variable names.

Exercise 1.3. Prove that every formula φ ∈ FO∞ℵ0[Σ, X] can be rewritten
to use only countably many different bound variables. That is, for every
sort s, there exists a countable set Ys such that φ can bewritten as Λ-term
with

Λ ∶= Σ ∪ X ∪ Y ∪ {=,¬,⋀,⋁} ∪ {∃x ,∀x ∣ x ∈ X ∪ Y } ,

where Y = ⋃s Ys . Hint. If ψ is a subformula of φ then free(ψ) ∖ X is
finite.

We have seen that each FO∞ℵ0 -formula has a foundation rank. Hence,
we could measure the complexity of a formula by its foundation rank.
But this measure is not very meaningful. There exists another rank for
formulae that better reflects the semantics of first-order logic.

Definition 1.12. The quantifier rank qr(φ) ∈ On of a formula φ ∈ FO∞ℵ0

is defined inductively by :
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◆ qr(Rt̄) ∶= 0 and qr(t = t′) ∶= 0.
◆ qr(¬φ) ∶= qr(φ).
◆ qr(∃xφ) ∶= qr(∀xφ) ∶= qr(φ) + 1.
◆ qr(⋀Φ) ∶= qr(⋁Φ) ∶= sup{qr(φ) ∣ φ ∈ Φ }.

A formula φ is quantifier-free if qr(φ) = 0.

Example. For the formulae φfin and ψsc from the example on page 448,
we have

qr(φfin) = sup{qr(φn) ∣ n < ω } = ω ,
and qr(ψsc) = sup{qr(ψn) ∣ n < ω } + 2 = ω + 2 .

Immediately from the respective definitions it follows that the found-
ation rank bounds the quantifier rank of a formula.

Lemma 1.13. qr(φ) ≤ frk(φ), for all φ ∈ FO∞ℵ0[Σ, X].

Corollary 1.14. If κ is a regular cardinal then we have qr(φ) < κ, for all
φ ∈ FOκℵ0[Σ, X].

If κ is singular then FOκℵ0 can exhibit pathological behaviour. Fortu-
nately, it is safe to ignore these logics and only consider FOκℵ0 for regular
cardinals κ.

Lemma 1.15. For singular cardinals κ, the logics FOκℵ0 and FOκ+ℵ0 have
the same expressive power.

Proof. Let κ be singular and fix a cofinal function f ∶ cf κ → κ. Every con-
junction of κ formulae can bewritten equivalently as nested conjunction
of less then κ formulae:

⋀
i<κ

φ i is equivalent to ⋀
α<cf(κ)

⋀
i< f (α)

φ i .

Consequently, we can inductively transform every formula φ ∈ FOκ+ℵ0

into an equivalent FOκℵ0 -formula. ◻
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c1. First-order logic

2. Axiomatisations
Let us begin a more systematic investigation of what can be expressed in
first-order logic. In this section we give examples of classes of structures
that can be defined in FO∞ℵ0 .

Definition 2.1. Let ⟨L,K,⊧⟩ be a logic.
(a) A set of formulae Φ ⊆ L axiomatises the class

ModL(Φ) ∶= {J ∈ K ∣ J ⊧ Φ } .

For a single formula we simply write ModL(φ) ∶=ModL({φ}).
(b) A class C ⊆ K of interpretations is L-axiomatisable if

C =ModL(Φ) , for some Φ ⊆ L .

If C = ModL(Φ), for a finite set Φ ⊆ L, we say that C is finitely L-
axiomatisable. If C is axiomatised by Φ, we call the set Φ an axiom
system for C and every φ ∈ Φ is an axiom.

(c)A set of formulaeΦ ⊆ L is consistent, or satisfiable, if ModL(Φ) ≠ ∅.
Otherwise, Φ is called inconsistent, or unsatisfiable. If ModL(Φ) = K,
then Φ is called valid or a tautology. We use the same terminology for
single formulae φ.

Example (Partial orders). The class of all partial orders is finitely first-
order axiomatised by

∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z) ,
∀x∀y(x ≤ y ∧ y ≤ x ↔ x = y) .

We get an axiom system for the class of linear orders ifwe add the formula

∀x∀y(x ≤ y ∨ y ≤ x) .

A linear order is dense if between any two elements there exists a third
one. The corresponding first-order axiom is

∀x∀y(x < y → ∃z(x < z ∧ z < y)) ,
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where x < y abbreviates x ≤ y ∧ x ≠ y. A dense linear order is open if it
does not have a least and a greatest element.

∀x∃y∃z(y < x ∧ x < z) .

A discrete linear order is an order where every element, except for the
first one, has an immediate predecessor and every element, except for
the last one, has an immediate successor.

∀x[∃y(y < x)→ ∃y(y < x ∧ ¬∃z(y < z ∧ z < x))] ,

∀x[∃y(x < y)→ ∃y(x < y ∧ ¬∃z(x < z ∧ z < y))] .

Example (Equivalence relations). The class of all structures A = ⟨A, ∼⟩
where ∼ is an equivalence relation can be axiomatised by the first-order
formulae

∀x(x ∼ x) ,
∀x∀y(x ∼ y↔ y ∼ x) ,
∀x∀y∀z(x ∼ y ∧ y ∼ z → x ∼ z) .

Example (Lattices). An axiom system for the class of lattices was given
in Lemma b2.2.4.

∀x∀y(x ⊑ y↔ x ⊓ y = x)
∀x(x ⊓ x = x ∧ x ⊔ x = x)
∀x∀y(x ⊓ y = y ⊓ x ∧ x ⊔ y = y ⊔ x)
∀x∀y(x ⊓ (x ⊔ y) = x ∧ x ⊔ (x ⊓ y) = x)
∀x∀y∀z(x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z)
∀x∀y∀z(x ⊔ (y ⊔ z) = (x ⊔ y) ⊔ z)
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For boolean algebras we have to add the axioms

� ≠ ⊺ ,
∀x(� ⊓ x = � ∧ � ⊔ x = x) ,
∀x(⊺ ⊓ x = x ∧ ⊺ ⊔ x = ⊺) ,
∀x(x ⊓ x∗ = � ∧ x ⊔ x∗ = ⊺) ,
∀x∀y∀z[x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z)] ,
∀x∀y∀z[x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z)] .

Example (Groups). The class of all groups (in the signature { ⋅ , −1 , e})
can be finitely axiomatised in first-order logic by the sentences

∀x∀y∀z[x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z] ,
∀x(x ⋅ e = x) ,
∀x(x ⋅ x−1 = e) .

If we only allow multiplication then these axioms become

∀x∀y∀z[x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z] ,
∃e∀x[x ⋅ e = x ∧ ∃y(x ⋅ y = e)] .

We can add the FOℵ1ℵ0 -sentence φfin from page 448 to obtain an axiom
system for the class of all finite groups. But note that this is an infinitary
formula. We will prove in Theorem c2.4.12 that this class cannot be
axiomatised in first-order logic.

The class of all infinite groups on the other hand is first-order axio-
matisable. To the group axioms we can add, for all n < ω, the sentence

∃x0⋯∃xn−1 ⋀
i<k<n

x i ≠ xk .

This axiom system is necessarily infinite. If the class of infinite groups
where axiomatisable by a single first-order sentence, its negation could
be used to construct an axiom system of the class of all finite groups.
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Example (Rings). The class of all rings ⟨R,+,−, ⋅ , 0, 1⟩ is defined by

∀x∀y∀z[x + (y + z) = (x + y) + z] ,
∀x(x + 0 = x) ,
∀x(x + (−x) = 0) ,
∀x∀y(x + y = y + x) ,
∀x∀y∀z[x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z] ,
∀x(x ⋅ 1 = x ∧ 1 ⋅ x = x) ,
∀x∀y∀z[x ⋅ (y + z) = x ⋅ y + x ⋅ z] ,
∀x∀y∀z[(y + z) ⋅ x = y ⋅ x + z ⋅ x] .

Example (Fields). We obtain an axiom system for the class of all fields if
we add to the ring axioms the formulae

0 ≠ 1 ,
∀x∃y(x ≠ 0→ x ⋅ y = 1) ,
∀x∀y(x ⋅ y = y ⋅ x) .

To get axioms for the class of ordered fields, we further have to add the
axioms for a linear order and the formulae

∀x∀y∀z(x < y → x + z < y + z) ,
∀x∀y∀z(x < y ∧ 0 < z → x ⋅ z < y ⋅ z) .

Example (Set theory). The axioms of set theory can be expressed in first-
order logic. The signature consists just of one binary relation symbol ∈.

First, let us collect some auxiliary formulae. The subset relation x ⊆ y
can be defined by the formula

∀z(z ∈ x → z ∈ y) .

There are formulae Stage(x) andWellOrder(x , y) that express, respect-
ively, that the set x is a stage and that y is a well-order on the set x
(exercise).
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The Axiom of Extensionality reads

∀a∀b[a = b↔ ∀x(x ∈ a↔ x ∈ b)] .

To express the Axiom of Separation we need infinitely many formulae.
For every first-order formula φ(x , z̄) ∈ FO, we have the formula

∀z̄∀a∃b∀x[x ∈ b↔ x ∈ a ∧ φ(x , z̄)] .

(Since the signature {∈} of set theory does not contain constant symbols,
we need parameters z̄ for those sets that φ might refer to.)

The Axioms of Creation and Infinity are

∀a(∃s.Stage(s))(a ∈ s)

and (∃s.Stage(s))∀x[x ∈ s → ℘(x) ∈ s] ,

where ℘(x) ∈ s is an abbreviation for the formula

∃z[z ∈ s ∧ ∀y(y ∈ z↔ y ⊆ x)] .

For the Axiom of Choice we have the formula

∀a∃rWellOrder(a, r) .

Finally, the Axiom of Replacement again consists of several formulae,
one for every formula φ(x , y, z̄) ∈ FO.

(∀z̄.funφ(z̄))[∃u domφ(z̄, u)→ ∃u rngφ(z̄, u)] ,

where

funφ(z̄) ∶= ∀x∀y∀y′[φ(x , y, z̄) ∧ φ(x , y′ , z̄)→ y = y′]

says that φ defines a function and the formulae

domφ(z̄, u) ∶= ∀x∀y(φ(x , y, z̄)→ x ∈ u)
and rngφ(z̄, u) ∶= ∀x∀y(φ(x , y, z̄)→ y ∈ u)

express that u contains, respectively, the domain and the range of the
function defined by φ.
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Exercise 2.1. Define the following formulae over the signature {∈}.

(a) Stage(x) states that the set x is a stage.

(b) Pair(x , y, z) expresses that z = ⟨x , y⟩.

(c) WellOrder(x , y) says that y is a well-order on the set x.

Lemma 2.2. If A is a finite Σ-structure then the class {B ∣ B ≅ A} is
first-order axiomatisable. If Σ is finite then it is finitely axiomatisable.

Proof. First, we consider the case that Σ is finite. Let a0 , . . . , an−1 be an
enumeration of A without repetitions. If A has only one sort then we
can axiomatise A by the formula

∃x0⋯∃xn−1( ⋀
0≤i<k<n

x i ≠ xk ∧ ∀y⋁
i<n

y = x i

∧ ⋀{Rx i0 . . . x ik ∣ ⟨a i0 , . . . , a ik ⟩ ∈ RA , R ∈ Σ }

∧ ⋀{¬Rx i0 . . . x ik ∣ ⟨a i0 , . . . , a ik ⟩ ∉ RA , R ∈ Σ }

∧ ⋀{ f x i0 . . . x ik = x l ∣ f A(a i0 , . . . , a ik) = a l , f ∈ Σ }) .

The case of several sorts requires two modifications of this formula. We
have to replace the subformula ∀y⋁i y = x i by a conjunction of several
such formulae where y is of the respective sort s and the disjunction
ranges only over those i such that x i has the same sort s. Furthermore,
we have to remove from the conjunction ⋀i<k x i ≠ xk all inequations
x i ≠ xk where x i and xk have different sorts.

Suppose that Σ is infinite. For each finite subsignature Σ0 ⊆ Σ, we can
construct a formula φΣ0 axiomatising the Σ0-reduct A∣Σ0 of A. We claim
that the set

Φ ∶= {φΣ0 ∣ Σ0 ⊆ Σ is finite}

is the desired axiom system. Clearly, A ⊧ Φ. Conversely, suppose that
B ⊧ Φ. Then B has exactly n ∶= ∣A∣ elements. For every finite signature
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Σ0 ⊆ Σ, there exists a sequence b̄Σ0 ∈ Bn such that we can satisfy the
formula φΣ0 if we assign to the variable x i the element bΣ0

i . Define

S ∶= {Σ0 ⊆ Σ ∣ Σ0 finite}
and S(b̄) ∶= {Σ0 ∈ S ∣ b̄Σ0 = b̄ } , for b̄ ∈ Bn .

Then ⟨S , ⊆⟩ is a directed partial order with a finite partition S = ⋃b̄ S(b̄).
By Proposition b3.3.4, there exists some b̄ such that S(b̄) is a dense subset
of S. It follows that the mapping b i ↦ a i is an isomorphism from B
to A. ◻

3. Theories
In the previous section we have studied sets of formulae and the classes
they axiomatise. Now we turn to the dual question. Given a class of
structures we try to determine which formulae hold.

Definition 3.1. Let ⟨L,K,⊧⟩ be a logic, J ∈ K an interpretation, φ,ψ ∈ L
formulae, and Φ ⊆ L a set of formulae.

(a) We write

Φ ⊧ φ : iff ModL(Φ) ⊆ModL(φ) .

If Φ ⊧ φ then φ is called a consequence of Φ. We also say that φ follows
from Φ or that Φ entails φ.

If Φ = {ψ} we simply write ψ ⊧ φ and, for Φ = ∅, we write ⊧ φ. Note
that we use the same symbol ⊧ both for the satisfaction relation and for
the entailment relation. The object on the left-hand side can be used to
resolve any ambiguities.

(b) If φ ⊧ ψ and ψ ⊧ φ then φ and ψ are called equivalent and we
write φ ≡ ψ. Similarly, if Φ ∪ {φ} ⊧ ψ and Φ ∪ {ψ} ⊧ φ, we say that
φ and ψ are equivalent modulo Φ.

(c) The closure of Φ under entailment is the set

Φ⊧ ∶= {φ ∈ L ∣ Φ ⊧ φ } .
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Remark. Note that if L0 and L1 are logics with the same class of inter-
pretations, we can generalise the above definitions of Φ ⊧ φ and φ ≡ ψ
also to the case that Φ ⊆ L0, ψ ∈ L0, and φ ∈ L1.

Example. If p, q ∈ ZL[K, X]where K is algebraically closed then we have

p ⊧ q iff every zero of p is a zero of q
iff p ∣ qn , for some n < ω .

Consequently, p⊧ = { q ∈ K[X] ∣ p ∣ qn for some n < ω } ⊴ K[X] is the
radical ideal generated by p and we have

p ≡ q iff pm = aqn for some a ∈ K and m, n < ω .

Each non-constant polynomial is satisfiable. A constant polynomial p
is satisfiable if and only if p = 0. The polynomial p = 0 is the only
tautology.

The following properties of the entailment relation follow immediately
from the definition.

Lemma 3.2. Let ⟨L,K,⊧⟩ be a logic.

(a) ⊧ is a preorder on L.

(b) A set Φ ⊆ L is a final segment of ⟨L,⊧⟩ if, and only if, Φ = Φ⊧.

(c) If Φ ⊆ L is inconsistent, then Φ⊧ = L.

(d) φ is a tautology if, and only if, ∅ ⊧ φ.

Definition 3.3. Let ⟨L,K,⊧⟩ be a logic.
(a) An L-theory is a set of formulae T ⊆ L with T⊧ = T . The L-theory

of a class C ∈ K is the set

ThL(C) ∶= {φ ∈ L ∣ J ⊧ φ , for all J ∈ C } .

The L-theory of a single interpretation J ∈ K is ThL(J) ∶=ThL({J}).
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(b) An L-theory T is complete if it is of the form T =ThL(J), for some
L-interpretation J.

(c) Two L-interpretations J0 and J1 are L-equivalent if

ThL(J0) =ThL(J1) .

We write J0 ≡L J1 to denote this fact. As usual we omit the index L if
L = FO0[Σ].

Example. Let B be a boolean algebra, a, b ∈ B, and u ∈ spec(B). For
boolean logic BL(B) = ⟨B, spec(B), ⊧⟩, we have

a ⊧ b iff every ultrafilter containing a also contains b
iff a ⊑ b ,

and ThBL(B)(u) = { b ∈ B ∣ u ⊧ b } = u .

Remark. (a) The function Φ ↦ Φ⊧ is a closure operator on L whose
closed sets are the theories. Consequently, the set of all L-theories forms
a complete partial order where the least element is the set ∅⊧ of all
tautologies and the greatest element is the set L of all formulae.

(b) For Φ ⊆ L, we have

Φ =ThL(ModL(Φ)) iff Φ = Φ⊧ iff Φ is a theory .

Exercise 3.1. Let T be a satisfiable L-theory such that there is no satis-
fiable L-theory T ′ with T ⊂ T ′. Prove that T is complete.

The following properties of the entailment relation follow immediately
from the definition. We say that a logic L is closed under negation if, for
every formula φ ∈ L, there is some formula ¬φ ∈ L with

J ⊧ ¬φ iff J ⊭ φ .

Similarly, L is closed under implication if there are formulae φ → ψ such
that

J ⊧ φ → ψ iff J ⊭ φ or J ⊧ ψ or both.
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Lemma 3.4. Let L be a logic, Φ ⊆ L, and φ,ψ ∈ L.

(a) Φ ⊧ φ implies Ψ ⊧ φ, for every Ψ ⊇ Φ.

If L is closed under negation then we have

(b) Φ ⊧ φ if, and only if, Φ ∪ {¬φ} is inconsistent;

(c) φ is satisfiable if, and only if, ¬φ is no tautology ;

(d) Φ is a complete theory if, and only if, we have

Φ ⊭ φ iff Φ ⊧ ¬φ , for all φ ∈ L .

If L is closed under implication then we have

(f) Φ ∪ {φ} ⊧ ψ if, and only if, Φ ⊧ φ → ψ;

(g) φ ≡ ψ modulo Φ if, and only if, Φ ⊧ φ → ψ and Φ ⊧ ψ → φ.

We conclude this section with a collection of equivalences that can be
used to simplify first-order formulae. We start with the boolean opera-
tions which, of course, satisfy the laws of a boolean algebra.

Lemma 3.5. The following equivalences hold for φ,ψ, ϑ ∈ FO∞ℵ0[Σ] :

(a) ¬¬φ ≡ φ (elimination of double negation)

(b) φ ∧ ψ ≡ ψ ∧ φ (commutativity)
φ ∨ ψ ≡ ψ ∨ φ

(c) (φ ∧ ψ) ∧ ϑ ≡ φ ∧ (ψ ∧ ϑ) (associativity)
(φ ∨ ψ) ∨ ϑ ≡ φ ∨ (ψ ∨ ϑ)

(d) φ ∧ φ ≡ φ (idempotence)
φ ∨ φ ≡ φ

(e) ¬⋀
i<α

φ i ≡ ⋁
i<α

¬φ i (de Morgan’s laws)

¬⋁
i<α

φ i ≡ ⋀
i<α

¬φ i
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(f) φ → ψ ≡ ¬ψ → ¬φ (contraposition)

(g) φ ∧ (φ ∨ ψ) ≡ φ (absorption)
φ ∨ (φ ∧ ψ) ≡ φ

(h) φ ∧ (ψ ∨ ϑ) ≡ (φ ∧ ψ) ∨ (φ ∧ ϑ) (distributivity)
φ ∨ (ψ ∧ ϑ) ≡ (φ ∨ ψ) ∧ (φ ∨ ϑ)

Lemma 3.6. The following equivalences hold for φ,ψ ∈ FO∞ℵ0[Σ].

(a) ∃xφ ∨ ∃xψ ≡ ∃x(φ ∨ ψ)
∀xφ ∧ ∀xψ ≡ ∀x(φ ∧ ψ)

(b) ¬∃xφ ≡ ∀x¬φ
¬∀xφ ≡ ∃x¬φ

(c) ∃x∃yφ ≡ ∃y∃xφ
∀x∀yφ ≡ ∀y∀xφ

Furthermore, if x ∉ free(φ) then we also have

(d) φ ∧ ∃xψ ≡ ∃x(φ ∧ ψ)
φ ∨ ∀xψ ≡ ∀x(φ ∨ ψ)

(e) φ ∨ ∃xψ ≡ ∃x(φ ∨ ψ) modulo ∃x(x = x)
φ ∧ ∀xψ ≡ ∀x(φ ∧ ψ) modulo ∃x(x = x)

(f) φ ≡ ∃xφ modulo ∃x(x = x)
φ ≡ ∀xφ modulo ∃x(x = x)

Remark. Note that the equivalences (e) and (f) only hold in structures
that contain at least one element of the corresponding sort.

Exercise 3.2. Prove some of the above equivalences.
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Example. In general we have

∃x(φ ∧ ψ) ≢ ∃xφ ∧ ∃xψ ,
∀x(φ ∨ ψ) ≢ ∀xφ ∨ ∀xψ ,

∃x∀yφ ≢ ∀y∃xφ .

For a counterexample, consider the structure A = ⟨A, P⟩ with A = {0, 1}
and P = {1}. We have

A ⊧ ∃xPx ∧ ∃x¬Px but A ⊭ ∃x(Px ∧ ¬Px) ,
A ⊧ ∀x(Px ∨ ¬Px) but A ⊭ ∀xPx ∨ ∀x¬Px ,
A ⊧ ∀y∃x(x = y) but A ⊭ ∃x∀y(x = y) .

4. Normal forms
In this section we study syntactic operations on first-order formulae.
In particular, we will define several ways to simplify a given formula.
We start by generalising the operation of substitution from terms to
formulae.

Definition 4.1. Let φ ∈ FO∞ℵ0[Σ, X] be a formula, t ∈ T[Σ, X] a term,
and x ∈ X a variable. The substitution of t for x in φ is the formula φ[x/t]
obtained from φ by

◆ renaming the bound variables of φ such that no variable in free(t)
is bound in φ, and

◆ replacing every free occurrence of x in φ by the term t.

Example. (a) When substituting terms in formulae, we have to take care
to avoid clashes with bound variables in order not to change themeaning
of the formula. For instance, consider the formula ∃y(y + y = x) which
expresses that x is divisible by 2. If we substitute y for x, we expect the
formula to say that y is divisible by 2. Ifwe rename the bound variable to z,
we obtain the formula ∃z(z + z = y) which has the expected semantics.
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But if we forget the renaming, we get ∃y(y + y = y) which has an
altogether different meaning.

(b) Renaming bound variables does not change the meaning of a
formula. But note that renaming of free variables does. For instance, we
have ∃zRxz ≢ ∃zRyz since the interpretation ⟨A, β⟩ with

A ∶= ⟨[2], {⟨0, 1⟩}⟩ and β(x) ∶= 0 , β(y) ∶= 1

satisfies the first formula but not the second one.

Remark. Note that, if φ ≡ ψ are equivalent formulae, we have

¬φ ≡ ¬ψ , ∃xφ ≡ ∃xψ , and ∀xφ ≡ ∀xψ .

Similarly, φ i ≡ ψ i , for all i, implies that

⋀i φ i ≡ ⋀i ψ i and ⋁i φ i ≡ ⋁i ψ i .

By induction it follows that, if is φ a subformula of ϑ and φ ≡ ψ, then
ϑ ≡ ϑ[φ/ψ] where ϑ[φ/ψ] denotes the formula obtained from ϑ by
replacing the subformula φ by ψ.

In the following we give a quick summary of various normal forms for
first-order logic. That is, we present subsets Φ ⊆ FOκℵ0[Σ, X] defined by
some syntactic criterion andwe prove that every formula of FOκℵ0[Σ, X]
is logically equivalent to an element of Φ. We start by simplifying the
terms appearing in a formula.

Definition 4.2. A formula φ ∈ FO∞ℵ0[Σ, X] is term-reduced if every
atomic subformula of φ is of the form

Rx̄ , f x̄ = y , or y = z ,

where x̄ , y, and z are variables.

Lemma 4.3. For each formula φ ∈ FOκℵ0[Σ, X], we can construct a term-
reduced formula ψ ∈ FOκℵ0[Σ, X] such that φ ≡ ψ.
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Proof. If φ is not term-reduced, it contains a subformula ϑ of the form
Rt̄ or f t̄ = s where not all elements of t̄ and s are variables. Suppose that
t0 is not a variable. If z is a variable that does not appear in ϑ, we can
replace Rt0 . . . tn−1 by the equivalent formula

∃z(t0 = z ∧ Rzt1 . . . tn−1) .

Similarly, we can replace f t̄ = s by

∃z(t0 = z ∧ f zt1 . . . tn−1 = s) .

By induction, it follows that, for every atomic subformula ϑ of φ, there
exists a term-reduced formula χϑ ≡ ϑ. We obtain the desired formula ψ
by replacing every atom ϑ in φ by the corresponding term-reduced
formula χϑ . ◻

Definition 4.4. (a) A formula is in disjunctive normal form if it is of the
form

⋁{⋀Φ i ∣ i ∈ I }

where each Φ i is a set of literals.
(b) A formula is in conjunctive normal form if it is of the form

⋀{⋁Φ i ∣ i ∈ I }

where each Φ i is a set of literals.

Lemma 4.5. For every quantifier-free formula φ ∈ FO[Σ, X], there exist
equivalent FO[Σ, X]-formulae dnf(φ) and cnf(φ) that are in, respect-
ively, disjunctive normal form and conjunctive normal form.

Proof. We construct dnf(φ) and cnf(φ) by induction on φ. If φ is a
literal, we can set

dnf(φ) ∶= φ and cnf(φ) ∶= φ .
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Suppose that, by inductive hypothesis, we have

dnf(ψ) =⋁
i
⋀
k
α i k and cnf(ψ) =⋀

i
⋁
k
β i k

dnf(ϑ) =⋁
i
⋀
k

γ i k and cnf(ϑ) =⋀
i
⋁
k
δ i k

Then we can set

dnf(¬ψ) ∶=⋁
i
⋀
k
¬β i k

cnf(¬ψ) ∶=⋀
i
⋁
k
¬α i k

dnf(ψ ∧ ϑ) ∶=⋁
i
⋁

j
(⋀

k
α i k ∧⋀

k
γ jk)

cnf(ψ ∧ ϑ) ∶= cnf(ψ) ∧ cnf(ϑ)

dnf(ψ ∨ ϑ) ∶= dnf(ψ) ∨ dnf(ϑ)

cnf(ψ ∨ ϑ) ∶=⋀
i
⋀

j
(⋁

k
β i k ∧⋁

k
δ jk) .

◻

Exercise 4.1. Prove the corresponding statement for FO∞ℵ0[Σ, X].

When doing inductions on the structure of a formula, it is sometimes
useful not to have to treat the case of negations. In such cases we can use
de Morgan’s laws to move all negation signs directly in front of atoms.

Definition 4.6. Given a formula φ ∈ FO∞ℵ0[Σ, X], we construct two
formulae φ+ and φ− as follows. If φ is atomic, we set φ+ ∶= φ and φ− ∶=
¬φ. For other formulae we define

(¬ψ)+ ∶= ψ− , (¬ψ)− ∶= ψ+ ,
(⋀Φ)+ ∶=⋀{ψ+ ∣ ψ ∈ Φ } , (⋀Φ)− ∶=⋁{ψ− ∣ ψ ∈ Φ } ,
(⋁Φ)+ ∶=⋁{ψ+ ∣ ψ ∈ Φ } , (⋁Φ)− ∶=⋀{ψ− ∣ ψ ∈ Φ } ,
(∃xψ)+ ∶= ∃xψ+ , (∃xψ)− ∶= ∀xψ− ,
(∀xψ)+ ∶= ∀xψ+ , (∀xψ)− ∶= ∃xψ− .
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The formula φ+ is called the negation normal form of φ. It is denoted by
nnf(φ). We say that φ is in negation normal form if nnf(φ) = φ.

The following basic properties of the negation normal form of φ can
be shown by a straightforward induction on the structure of φ.

Lemma 4.7. Let φ ∈ FO∞ℵ0[Σ, X].
(a) nnf(φ) ≡ φ and φ− ≡ ¬φ.
(b) nnf(φ) is in negation normal form.
(c) φ is in negation normal form if, and only if, the only subformulae

of φ of the form ¬ψ are literals.
(d) qr(nnf(φ)) = qr(φ).

Definition 4.8. A formula φ ∈ FOκℵ0[Σ, X] is in prenex normal form if
it is of the form

φ = Q0x0⋯Qn−1xn−1ψ

where Q0 , . . . , Qn−1 ∈ {∃,∀} and ψ is quantifier-free.

We can transform formulae into prenex normal form only for struc-
tures with nonempty universe.

Definition 4.9. Let Tne be the theory consisting, for every sort s, of one
formula ∃xs(xs = xs) where xs is of sort s.

Tne expresses that all domains of a structure are nonempty. For models
of Tne we can construct prenex normal forms.

Lemma 4.10. For every formula φ ∈ FO[Σ, X], there exists a formula
ψ ∈ FO[Σ, X] in prenex normal form such that φ ≡ ψ modulo Tne.

Proof. By induction on φ,we can move the quantifiers to the front using
the equivalences of Lemma 3.6. Suppose that the prenex normal forms
of ψ and ϑ are, respectively,

Q0x0⋯Qm−1xm−1ψ0 and Q′
0 y0⋯Q′

n−1 yn−1ϑ0 ,
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where all variables x i and yk are distinct. For Q ∈ {∃,∀}, define Q by
∃ ∶= ∀ and ∀ ∶= ∃. The prenex normal form of φ is

φ if φ is atomic ,

Q0x0⋯Qm−1xm−1¬ψ0 for φ = ¬ψ ,
Q0x0⋯Qm−1xm−1Q′

0 y0⋯Q′
n−1 yn−1(ψ0 ∧ ϑ0) for φ = ψ ∧ ϑ ,

Q0x0⋯Qm−1xm−1Q′
0 y0⋯Q′

n−1 yn−1(ψ0 ∨ ϑ0) for φ = ψ ∨ ϑ ,
∃zQ0x0⋯Qm−1xm−1ψ0 for φ = ∃zψ ,
∀zQ0x0⋯Qm−1xm−1ψ0 for φ = ∀zψ . ◻

In some cases we can get a prenex normal form that is fully equivalent
instead of being only equivalent modulo Tne.

Corollary 4.11. Let Σ be an S-sorted signature satisfying either of the
following conditions :

◆ For every s ∈ S, there is a constant symbol of sort s.
◆ ∣S∣ = 1 and S does not contain relations of arity 0.

For every formula φ ∈ FO[Σ, X], there exists a formula ψ ∈ FO[Σ, X] in
prenex normal form such that φ ≡ ψ.

Proof. In the first case, every Σ-structure is amodel of Tne. Hence, logical
equivalence and equivalence modulo Tne coincide.

In the second case,we can obtain ψ as follows. There exists a formulaψ′
in prenex normal form such that φ ≡ ψ′ modulo Tne. Note that, up
to isomorphism, there exists exactly one Σ-structure A0 with empty
universe since we have no relations of arity 0. Let x ∉ free(φ) be a new
variable. Note that A0 ⊧ ∀xψ′ and A0 ⊭ ∃xψ′ regardless of what the
formula ψ′ looks like. Hence, we can set

ψ ∶=

⎧⎪⎪
⎨
⎪⎪⎩

∀xψ′ if A0 ⊧ φ ,
∃xψ′ otherwise .

For every nonempty structureA,we haveA ⊧ ψ′ iff A ⊧ ψ. Consequently,
φ ≡ ψ. ◻
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Remark. Infinitary formulae usually have no prenex normal form. For
example, consider the sentence

φ ∶= ⋀
n<ω

∃x0⋯∃xn−1⋀
i≠k

x i ≠ xk .

If we move all quantifiers to the front, we obtain a formula starting
with an infinite string of quantifiers. This is forbidden by the definition
of FO∞ℵ0 .

When we are interested in whether some theory is satisfiable, we can
also perform translations that, while preserving satisfiability, do not re-
spect logical equivalence. For infinitary formulae the following reduction
to first-order logic is useful. Another example is Skolemisation which
transforms an arbitrary theory into a universal one (see Section c2.3).

Lemma 4.12 (Chang’s Reduction). For every φ ∈ FOκℵ0[Σ, X], there
exists a signature Σφ ⊇ Σ and a set Φφ ⊆ FOκℵ0[Σφ , X] with the following
properties :

◆ Every model of φ can be expanded in exactly one way to a model
of Φφ .

◆ Every model of Φφ is a model of φ.

◆ Every subformula of φ is equivalent modulo Φφ to an atomic for-
mula.

◆ Every formula in Φφ is either a first-order formula or a sentence of
the form ∀x̄⋁i ψ i(x̄) where each ψ i is atomic.

Proof. For every subformula ψ(x̄) of φ with n free variables, choose
two new n-ary relation symbols Rψ , R¬ψ ∉ Σ. Let Σφ be the signature
consisting of Σ and all the new symbols Rψ , R¬ψ . The set Φφ consists of
the following formulae.

∀x̄(Rψ x̄ ↔ ψ(x̄)) , if ψ is atomic.
∀x̄(R¬ψ x̄ ↔ ¬Rψ x̄) ,
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∀x̄(R∃yψ x̄ ↔ ∃yRψ x̄ y) ,
∀x̄(R∀yψ x̄ ↔ ∀yRψ x̄ y) ,
∀x̄(R⋀i<λ ψ i x̄ → Rψ i x̄) , for all i < λ ,
∀x̄(Rψ i x̄ → R⋁i<λ ψ i x̄) , for all i < λ ,

∀x̄[R⋀i<λ ψ i x̄ ∨⋁i<λ R¬ψ i x̄] ,

∀x̄[R¬⋁i<λ ψ i x̄ ∨⋁i<λ Rψ i x̄] . ◻

5. Translations
In the last section we have considered transformations of formulae re-
specting logical equivalence. Now we turn to operations on structures
and we investigate how to compute the theory of the resulting structure
from the theories of the original ones. We start with a trivial example
that illustrates the general situation.

Lemma 5.1. Let Σ ⊆ Γ be signatures. For every formula φ(x̄) ∈ FOκℵ0[Σ],
there exists a formula ψ(x̄) ∈ FOκℵ0[Γ] such that

A∣Σ ⊧ φ(ā) iff A ⊧ ψ(ā) ,

for every Γ-structure A and all ā ⊆ A.

Proof. We can set ψ ∶= φ. ◻

Corollary 5.2. Let A and B Γ-structures.

A ≡FOκℵ0 [Γ] B implies A∣Σ ≡FOκℵ0 [Σ] B∣Σ , for all Σ ⊆ Γ .

The other results of this section are all of the above form. We consider
an operation F on structures and logics L and L′, and we prove that, for
every formula φ ∈ L, one can construct a formula φ′ ∈ L′ such that

F(A) ⊧ φ iff A ⊧ φ′ , for every A .
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As a consequence we obtain the result that

A ≡L′ B implies F(A) ≡L F(B) .

In the case that L′ = L we call such operations compatible with L.
As a converse to the introductory example we consider expansions

of a structure. Of course, there is no hope to reduce the theory of an
arbitrary expansion to the original structure. But ifwe expand a structure
by definable relations, such a reduction is possible.

Definition 5.3. Let A be a Σ-structure and Γ ⊇ Σ. A Γ-structure B is an
L-definable expansion of A if B∣Σ = A and, for every symbol ξ ∈ Γ ∖ Σ,
there is some L-formula φξ such that

ā ∈ RB iff A ⊧ φR(ā) , for all relations R ∈ Γ ∖ Σ ,

f B(ā) = b iff A ⊧ φ f (ā, b) , for all functions f ∈ Γ ∖ Σ .

In this case we also say that (φξ)ξ∈Γ∖Σ defines the expansion B of A.

Lemma 5.4. Let Σ ⊆ Γ be signatures and let φξ(x̄) ∈ FOκℵ0[Σ], for
ξ ∈ Γ ∖ Σ, be formulae. For every formula ψ(x̄) ∈ FOκℵ0[Γ], there exists a
formula ψ+(x̄) ∈ FOκℵ0[Σ] such that

A+ ⊧ ψ(ā) iff A ⊧ ψ+(ā) ,

whenever ā ⊆ A and A+ is the expansion of A defined by (φξ)ξ .

Proof. Let ψ′ be a term-reduced formula equivalent to ψ. We can ob-
tain ψ+ by replacing in ψ′

◆ every atom Rt̄ with R ∈ Γ ∖ Σ by the formula φR(t̄) and

◆ every atom f t̄ = s with f ∈ Γ ∖ Σ by φ f (t̄, s). ◻

Next we consider substructures. Again we have to restrict ourselves
to those where the universe is definable.
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Definition 5.5. Let A be an S-sorted Σ-structure and δs(x) ∈ FOs
κℵ0
[Σ],

for s ∈ S.
(a) If ⋃s∈S δA

s induces a substructure A0 of A, we call A0 the substruc-
ture defined by (δs)s∈S .

(b) The relativisation of a formula φ ∈ FOκℵ0[Σ] to (δs)s∈S is the
formula φ(δ̄) ∈ FOκℵ0 obtained from φ by replacing every subformula of
the form ∃yψ and ∀yψ by, respectively,

(∃y.δs(y))ψ and (∀y.δs(y))ψ ,

where s is the sort of y.

Lemma 5.6. If a sequence (δs)s∈S of FOκℵ0 -formulae defines a substruc-
ture A0 of A, we have

A0 ⊧ φ(ā) iff A ⊧ φ(δ̄)(ā) ,

for every φ ∈ FOκℵ0 and all ā ⊆ ⋃s∈S δA
s .

Exercise 5.1. Prove Lemma 5.6.

Factorisation by definable congruences is also compatible with first-
order logic.

Lemma 5.7. Let Σ be an S-sorted signature and εs(x , y) ∈ FOss
κℵ0
[Σ],

for s ∈ S. For every formula φ(x̄) ∈ FOκℵ0[Σ, X], there exists a formula
φ′(x̄) ∈ FOκℵ0[Σ, X] such that, if ≈ ∶= ⋃s∈S εA

s is a congruence relation
on A, then

A/≈ ⊧ φ([ā]≈) iff A ⊧ φ′(ā) , for all ā ⊆ A .

Proof. We can obtain φ′ from φ by replacing every atom of the form
t = u by the formula εs(t, u), where s is the sort of t and u. ◻

If we combine all of the above operations, we obtain the notion of a
first-order interpretation.
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Definition 5.8. Let Σ be an S-sorted signatures and Γ a T-sorted one.
(a) An FOκℵ0 -interpretation from Σ to Γ is a sequence

I = ⟨α, (δt)t∈T , (εt)t∈T , (φξ)ξ∈Γ⟩

of formulae where, for some function σ ∶ T → S<ω ,

α ∈ FO0
κℵ0
[Σ] , δt ∈ FOσ(t)

κℵ0
[Σ] , εt ∈ FOσ(t)σ(t)

κℵ0
[Σ] ,

for every relation symbol R ∈ Γ of type t0 . . . tn−1,

φR ∈ FOσ(t0). . .σ(tn−1)
κℵ0

[Σ] ,

and for every function symbol f ∈ Γ of type t0 . . . tn−1 → t′,

φ f ∈ FOσ(t0). . .σ(tn−1)σ(t′)
κℵ0

[Σ] .

(b) Each FOκℵ0 -interpretation I defines an operation on structures as
follows. Intuitively, given a Σ-structure A the interpretation I constructs
a Γ-structure I(A) every element of which is a tuple of elements of A
and where the relations and functions are defined by the formulae φξ .
The formulae δt define those tuples that encode elements of sort t and
the formula εt is used to check whether two such tuples encode the same
element. Finally, the admissibility condition α says when I(A) is defined.

Formally, if A is a Σ-structure with A ⊧ α, we define the Γ-structure

I(A) ∶= ⟨(δA
t )t∈T , (φA

ξ )ξ∈Γ⟩/≈ ,

which is obtained from the structure ⟨(δA
t )t∈T , (φA

ξ )ξ∈Γ⟩, where the
domain of sort t is δA

t ⊆ Aσ(t) and every symbol ξ ∈ Γ is interpreted as
the relation or function φA

ξ , by factorising by the congruence relation ≈
defined by the εA

t . We regard I(A) as undefined if

◆ A ⊭ α, or
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◆ εA
t is not a congruence relation of ⟨(δA

t )t , (φA
ξ )ξ⟩, or

◆ there is some function symbol f ∈ Γ such that φA
f is not a function.

Example. We construct an interpretation

I = ⟨δ(x̄), ε(x̄ , ȳ), φ+(x̄ , ȳ, z̄), φ⋅(x̄ , ȳ, z̄)⟩

such that

I⟨Z,+, ⋅, 0, <⟩ ≅ ⟨Q,+, ⋅⟩ .

We encode a rational number p/q by the pair ⟨p, q⟩.

δ(x , x′) ∶= x′ > 0 ,
ε(x , x′ , y, y′) ∶= x ⋅ y′ = y ⋅ x′ ,

φ+(x , x′ , y, y′ , z, z′) ∶= ε(z, z′ , x ⋅ y′ + y ⋅ x′ , x′ ⋅ y′) ,
φ⋅(x , x′ , y, y′ , z, z′) ∶= ε(z, z′ , x ⋅ y, x′ ⋅ y′) .

Exercise 5.2. Consider the structures N ∶= ⟨N,+, ⋅⟩ of arithmetic, S ∶=
⟨HF, ∈⟩ of hereditary finite sets, and M ∶= ⟨2<ω , ⋅⟩ of finite sequences
over [2] with concatenation. Define interpretations I0, I1, and I2 such
that

N = I0(S) , S = I1(M) , M = I2(N) .

For the next lemma, we denote by ιs ∶ δA
s → I(A) the canonical

function mapping a tuple to the element it encodes.

Lemma 5.9 (Interpretation Lemma). Let I = ⟨α, (δs)s , (εs)s , (φξ)ξ⟩ be
an FOκℵ0 -interpretation from Σ to Γ.

(a) For every formula ψ(x0 , . . . , xm−1) ∈ FOs̄
κℵ0
[Γ], we can construct

an formula ψI(x̄0 , . . . , x̄m−1) ∈ FO<ω
κℵ0
[Σ] such that

I(A) ⊧ ψ(ιs0 ā0 , . . . , ιsm−1 ām−1) iff A ⊧ ψI(ā0 , . . . , ām−1) ,
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for all structures A such that I(A) is defined and all ā i ⊆ δA
s i

.
(b) There exists a formula χ ∈ FO0

κℵ0
[Σ] such that, for every Σ-struc-

ture A,

A ⊧ χ iff I(A) is defined.

Proof. (a) W.l.o.g. we may assume that ψ is term-reduced. We define ψI
by induction on ψ. For atomic formulae, we have

( f x0 . . . xm−1 = y)I ∶= φ f (x̄0 , . . . , x̄m−1 , ȳ) ,

(Rx0 . . . xm−1)
I ∶= φR(x̄0 , . . . , x̄m−1) ,

and, if x and y are of sort s then

(x = y)I ∶= εs(x̄ , ȳ) .

(Note that we assume that every tuple satisfying φξ also satisfies the cor-
responding δs . Otherwise, we have to add the conjunction of all δs i (x̄ i)
to the above formulae.) Boolean combinations are left unchanged.

(¬ϑ)I ∶= ¬ϑI ,

(⋀Φ)I ∶=⋀{ ϑI ∣ ϑ ∈ Φ } ,

(⋁Φ)I ∶=⋁{ ϑI ∣ ϑ ∈ Φ } .

And if y is a variable of sort s, we have to restrict quantifiers over y to δs .

(∃yϑ)I ∶= (∃ ȳ.δs( ȳ))ϑI ,

(∀yϑ)I ∶= (∀ ȳ.δs( ȳ))ϑI .

(b) We can set

χ ∶= α ∧⋀
ξ∈Γ

ϑξ
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where, for each relation symbol R ∈ Γ of type s0 . . . sn−1, the formula

ϑR ∶= ∀x̄0⋯x̄n−1 ȳ0⋯ ȳn−1

(⋀
i<n

εs i (x̄ i , ȳ i)→

(φR(x̄0 , . . . , x̄n−1)↔ φR( ȳ0 , . . . , ȳn−1))

expresses that the εs define a congruence with respect to the relation
defined by φR and, for each function symbol f ∈ Γ of type s0 . . . sn−1 → t,
the formula

ϑ f ∶= ∀x̄0⋯x̄n−1∃ ȳφ f (x̄0 , . . . , x̄n−1 , ȳ)
∧ ∀x̄0⋯x̄n−1 ȳ0⋯ ȳn−1ūv̄

((⋀
i<n

εs i (x̄ i , ȳ i) ∧ φ f (x̄0 , . . . , x̄n−1 , ū)

∧ φ f ( ȳ0 , . . . , ȳn−1 , v̄))→ εt(ū, v̄))

says that φ f defines a function and the εs define a congruence with
respect to this function. ◻

The general scheme of these constructions is summarised in the fol-
lowing definition.

Definition 5.10. Let ⟨L0 ,K0 ,⊧⟩ and ⟨L1 ,K1 ,⊧⟩ be logics.
(a) A morphism from L0 to L1 is a pair ⟨α, β⟩ of functions α ∶ L0 → L1

and β ∶ K1 → K0 such that

J ⊧ α(φ) iff β(J) ⊧ φ , for all φ ∈ L0 and J ∈ K1 .

The category consisting of all logics and these morphisms is called Logi$.
(b) An embedding is a morphism ⟨α, β⟩ ∶ L0 → L1 where β is surject-

ive.
(c) A comorphism from L0 to L1 is a morphism ⟨α, β⟩ ∶ L1 → L0.
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(d)By abuse of terminologywe call a function α ∶ L0 → L1 amorphism
if there exists a function β ∶ K1 → K0 such that the pair ⟨α, β⟩ forms
a morphism L0 → L1. Similarly, we call β ∶ K0 → K1 a comorphism if
there is some α ∶ L1 → L0 such that ⟨α, β⟩ is a comorphism L0 → L1.

Remark. The only difference between a morphism and a comorphism
is the direction of the arrow. We will use the former term if we want to
stress the translation of formulae, while the latter term is used when we
are mainly interested in the operation on structures.

Example. Each of the operations introduced in this section induces a
comorphism. For instance, we have seen in Lemma 5.1 that the reduct
operation r ∶ A↦ A∣Σ induces the comorphism

⟨i , r⟩ ∶ FOκℵ0[Γ , X]→ FOκℵ0[Σ, X] ,

where i ∶ FOκℵ0[Σ, X]→ FOκℵ0[Γ , X] is the inclusion map.
In the case of interpretations we face a minor technical difficulty since

these are partial operations. An FOκℵ0 -interpretation I from Σ to Γ in-
duces a comorphism L → FOκℵ0[Γ , X] where L is not FOκℵ0[Σ, X] but
the sublogic ⟨FOκℵ0[Σ, X], C ,⊧⟩, where the class C ⊆ Str[Σ] of interpret-
ations consists of those Σ-structures A such that I(A) is defined.

Exercise 5.3. Prove that a morphism ⟨α, β⟩ ∶ L0 → L1 is a monomor-
phism if, and only if, α is injective and β is surjective. Show that it is an
epimorphism if, and only if, α is surjective and β is injective.

Lemma 5.11. Let ⟨α, β⟩ ∶ L0 → L1 be a morphism of logics.
(a) ⟨α, β⟩ is a monomorphism if, and only if, it has a left inverse.
(b) ⟨α, β⟩ is an epimorphism if, and only if, it has a right inverse.

Lemma 5.12. Let ⟨α, β⟩ ∶ L0 → L1 be a morphism of logics, Φ ⊆ L0,
φ,ψ ∈ L0, and J an L1-interpretation.

(a) φ ⊧ ψ implies α(φ) ⊧ α(ψ) .
(b) If Φ is inconsistent then so is α[Φ].
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(c) ThL0(β(J)) = α−1[ThL1(J)] .

(d) ModL1(α[Φ]) = β−1[ModL0(Φ)] .

Proof. (a) For every L1-interpretation J, we have the following chain of
implications :

J ⊧ α(φ) ⇒ β(J) ⊧ φ
⇒ β(J) ⊧ ψ ⇒ J ⊧ α(ψ) .

It follows that α(φ) ⊧ α(ψ).
(b) Suppose that α[Φ] has a model J. Then J ⊧ α[Φ] implies that

β(J) ⊧ Φ. Hence, Φ is satisfiable.
(c) For a formula φ ∈ L0 and an L1-interpretation J, we have

β(J) ⊧ φ iff J ⊧ α(φ) iff φ ∈ α−1[ThL1(J)] .

(d) By definition of a morphism, we have

J ⊧ α[Φ] iff β(J) ⊧ Φ iff J ∈ β−1[ModL1(Φ)] . ◻

Corollary 5.13. Let ⟨α, β⟩ ∶ L0 → L1 be a comorphism of logics and
suppose that J0 , J1 are L0-interpretations.

J0 ≡L0 J1 implies β(J0) ≡L1 β(J1) .

Proof. The claim follows immediately from Lemma 5.12 (c). ◻

Every monomorphism of logics is an embedding. Statement (a) of the
following lemma states that, conversely, every embedding is a monomor-
phism ‘up to logical equivalence’.

Lemma 5.14. Let ⟨α, β⟩ ∶ L0 → L1 be an embedding of logics, Φ ⊆ L0,
and φ,ψ ∈ L0 formulae.

(a) φ ⊧ ψ iff α(φ) ⊧ α(ψ).

(b) ModL0(Φ) = β[ModL1(α[Φ])] .
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Proof. (a) We have already seen in Lemma 5.12 (a) that φ ⊧ ψ implies
α(φ) ⊧ α(ψ). Conversely, suppose that α(φ) ⊧ α(ψ) and let J0 be an
L0-interpretation. By assumption, there is some L1-interpretation J1
with β(J1) = J0. Hence, we have

J0 ⊧ φ ⇒ J1 ⊧ α(φ) ⇒ J1 ⊧ α(ψ) ⇒ J0 ⊧ ψ .

It follows that φ ⊧ ψ.
(b) By Lemmas a2.1.10 and 5.12 (d), it follows that

β[ModL1(α[Φ])] = β[β
−1[ModL0(Φ)]] =ModL0(Φ) . ◻

6. Extensions of first-order logic

Lindström quantifiers

First-order logic seems to be ill-suited to talk about cardinalities. To
express that there are infinitely many elements we had to use an infinite
set of formulae, and we will see in Lemma c2.4.9 that, even if we allow
infinitely many formulae, we cannot express that something is finite.

To obtain a logic where these things can be expressed, we add to
ordinary first-order logic a cardinality quantifier ∃λ with the meaning of
‘there are at least λ many’.

Definition 6.1. By FOκℵ0(∃
λ)[Σ, X] we denote the logic obtained from

FOκℵ0[Σ, X] by adding the syntax rule:

◆ if φ ∈ FOκℵ0(∃
λ)[Σ, X ∪ {x}] then ∃λxφ ∈ FOκℵ0(∃

λ)[Σ, X].

We define the semantics of this quantifier by

A ⊧ ∃λxφ[β] : iff ∣{ a ∈ A ∣ A ⊧ φ[β[x/a]] }∣ ≥ λ .
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Example. We can axiomatise the order ⟨ω, <⟩ up to isomorphism by the
formula

∀x¬(x < x) ∧ ∀x∀y∀z(x < y ∧ y < z → x < z)
∧ ∀x∀y(x < y ∨ x = y ∨ y < x)
∧ ∀x∃y(x < y)
∧ ∀x¬∃ℵ0 y(y < x) .

Another property that infinitary first-order logic is unable to express
is well-foundedness. As above, we can introduce a new quantifier ex-
pressing that a definable relation is a well-order. This logic will play an
important role in Section c5.6.

Definition 6.2. Let FOκℵ0(wo) be the extension of FOκℵ0 by the well-
ordering quantifier W whose semantics is given by

A ⊧Wx̄ ȳφ(x̄ , ȳ, c̄) iff the relation φA(x̄ , ȳ, c̄) is
a well-ordering of its field.

Note that the quantifier W cannot be used to express ‘there exists
a well-order’. We can only check whether some definable relation is a
well-order.

Generalising the above examples we can define extensions of (infinit-
ary) first-order logic by quantifiers for any given property.

Definition 6.3. Let Γ = {R0 , . . . , Rn} be a finite relational signature and
K a class of Γ-structures. The Lindström quantifier forK is of the form
QK x̄0 . . . x̄nφ0(x̄0 , z̄) . . . φn(x̄n , z̄). The semantics of such a formula is
defined by

A ⊧ QK x̄0 . . . x̄nφ0(x̄0 , c̄) . . . φn(x̄n , c̄)

: iff ⟨A, φ0(x̄0 , c̄)A , . . . , φn(x̄n , c̄)A⟩ ∈ K .

Example. (a) The cardinality quantifier ∃λ is the quantifier QK where

K ∶= { ⟨A, P⟩ ∣ A a set , P ⊆ A , ∣P∣ ≥ λ } .
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6. Extensions of first-order logic

(b) The cardinality comparison quantifier is defined by the class

K ∶= { ⟨A, P, Q⟩ ∣ ∣P∣ = ∣Q∣ } .

(c) The well-ordering quantifier W is defined by the class

K ∶= { ⟨A, R⟩ ∣ R is a well-order on its field} .

Second-order logic

In second-order logicwe extend first-order logic by variables for relations
and functions and we allow quantification over such variables. When we
equip each variable with a type, the set of variables becomes a signature
where the constant symbols play the role of the first-order variables. This
particular point of view makes the definition of syntax and semantics
much more streamlined. We could also have adopted this convention
for the definition of first-order logic. But for expositionary reasons we
have refrained from doing so.

Definition 6.4. Let Σ and Ξ be S-sorted signatures. The set SOκℵ0[Σ, Ξ]
of infinitary second-order formulae is the smallest set of terms satisfying
the following closure conditions :

◆ If t0 , t1 ∈ T[Σ∪ Ξ,∅] are terms of the same sort, we have t0 = t1 ∈
SOκℵ0[Σ, Ξ].

◆ If R ∈ Σ ∪ Ξ is of type s0 . . . sn−1 and t i ∈ Ts i [Σ ∪ Ξ,∅], for i < n,
then Rt0 . . . tn−1 ∈ SOκℵ0[Σ, Ξ].

◆ If φ ∈ SOκℵ0[Σ, Ξ], then ¬φ ∈ SOκℵ0[Σ, Ξ].

◆ If Φ ⊆ SOκℵ0[Σ, Ξ] and ∣Φ∣ < κ, then ⋀Φ, ⋁Φ ∈ SOκℵ0[Σ, Ξ].

◆ If φ ∈ SOκℵ0[Σ, Ξ ∪ {ξ}], then ∃ξφ, ∀ξφ ∈ SOκℵ0[Σ, Ξ].

We define monadic second-order logic MSOκℵ0[Σ, Ξ] as the restriction
of SOκℵ0[Σ, Ξ] were we allow only constant symbols and unary relation
symbols in the variable signature Ξ.
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c1. First-order logic

For a (Σ ∪ Ξ)-structure A and an SOκℵ0[Σ, Ξ]-formula φ, we define
the satisfaction relation A ⊧ φ by induction on φ.

A ⊧ t0 = t1 : iff tA
0 = tA

1 ,

A ⊧ Rt0 . . . tn−1 : iff ⟨tA
0 , . . . , tA

n−1⟩ ∈ RA ,

A ⊧ ¬φ : iff A ⊭ φ ,
A ⊧⋁Φ : iff there is some φ ∈ Φ such that A ⊧ φ ,
A ⊧⋀Φ : iff A ⊧ φ for all φ ∈ Φ ,

A ⊧ ∃ξφ : iff there is some relation or function ξA

such that ⟨A, ξA⟩ ⊧ φ ,

A ⊧ ∀ξφ : iff ⟨A, ξA⟩ ⊧ φ for all suitable relations or

functions ξA .

Example (Peano Axioms). The structure ⟨ω, s, 0⟩, where s ∶ n ↦ n + 1
is the successor function, can be axiomatised in monadic second-order
logic up to isomorphism by the Peano Axioms.

∀x(sx ≠ 0) ,
∀x∀y(sx = sy → x = y) ,
∀Z[Z0 ∧ ∀x(Zx → Zsx)→ ∀xZx] .

The third axiom which states the induction principle is not first-order.

Example. (a) The class of all well-orders can be axiomatised by the MSO-
formulae

∀x∀y(x ≤ y ∧ y ≤ x ↔ x = y) ,
∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z) ,
∀x∀y(x ≤ y ∨ y ≤ x) ,
∀Z[∃xZx → (∃x .Zx)(∀y.Zy)(x ≤ y)] ,

which express that ≤ is a linear order such that every nonempty set Z
has a minimal element.
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6. Extensions of first-order logic

(b) Let ⟨V , E⟩ be a graph. The transitive closure of the relation E can
be defined by the monadic second-order formula

φ(x , y) ∶= ∀Z[Zx ∧ ∀u∀v(Zu ∧ Euv → Zv)→ Zy] .

Consequently, we can express that a graph is strongly connected by

ψ ∶= ∀x∀yφ(x , y) .

(c) Let φ(x) and ψ(x) be second-order formulae. We can express that
the sets defined by φ andψ have the same cardinality by the second-order
formula

∃ f [(∀x .φ(x))(∀y.φ(y))(x ≠ y → f x ≠ f y)

∧ (∀x .φ(x))(∃y.ψ(y))( f x = y)

∧ (∀x .ψ(x))(∃y.φ(y))( f y = x)]

which states that there exists a bijection between these sets.

Logical systems
We have already introduced several logics and we will define some more
below. To facilitate a uniform treatment let us define a general framework
for the kind of logicwe are interested in. We have two basic requirements.
Firstly, the logic should talk about structures and, secondly, it should be
well-behaved with respect to reducts and expansions of signatures. Like
in the first-order case we will therefore consider not a single logic but a
family of them, one logic for each signature. We start by giving a general
definition of a family of logics.

Definition 6.5. Let S be a category. A logical system parametrised by S
is a functor L ∶ S → Logi$. To each logical system L we associate a
covariant functor L and a contravariant functor C such that

L[s] = ⟨L[s], C[s],⊧s⟩ , for s ∈ S ,
L[ f ] = ⟨L[ f ], C[ f ]⟩ , for f ∈ S(s, s′) .

L is called the syntax functor of L and C is the semantics functor.
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c1. First-order logic

Remark. (a) An alternative, more concrete definition of a logical system
would be as follows. A logical system consists of a covariant functor
L ∶ S→ L, a contravariant functor C ∶ S→ Jnt, and a family (⊧s)s∈S of
binary relations ⊧s ⊆ C[s] × L[s] that satisfy the following conditions :

◆ ⟨L[s], C[s],⊧s⟩ is a logic, for all s ∈ S.

◆ For every morphism f ∶ s → t of S, all formulae φ ∈ L[s], and
each interpretation J ∈ C[t], we have

C[ f ](J) ⊧s φ iff J ⊧t L[ f ](φ) .

Note that the second condition is a generalisation of the property of
terms stated in Lemma b3.1.16.

(b) Usually the category S specifies a signature Σ and a set of vari-
ables X, and C[Σ, X] is the class of all pairs ⟨A, β⟩ where A is a Σ-struc-
ture and β a variable assignment for the variables in X. In fact, we will
mostly deal with logics without free variables where the interpretations
consists of only a structure (see Definition 6.7 below).

Example. We define a logical system based on Zariski logic. The cat-
egory S of parameters consists of all pairs ⟨K, X⟩ where K is a field and
X a set of variables. If L is an extension of K then S(⟨K, X⟩, ⟨L,Y⟩) con-
sists of all functions f ∶ X → Y . If L is not an extension of K then there
are no morphisms ⟨K, X⟩→ ⟨L,Y⟩.

The logical system maps a parameter ⟨K, X⟩ ∈ S to the Zariski logic
ZL[K, X]. Each morphism f ∶ ⟨K, X⟩ → ⟨L,Y⟩ of S is mapped to the
morphism ⟨α, β⟩ ∶ ZL[K, X]→ ZL[L,Y] where

◆ α maps a polynomial p(x̄) ∈ K[X] to p( f (x̄)) ∈ L[Y] and

◆ β maps a variable assignment γ ∈MY to γ ○ f ∈MX .

Note that ⟨α, β⟩ is indeed a morphism since

γ ○ f ⊧ p(x0 , . . . , xn−1) iff γ ⊧ p( f (x0), . . . , f (xn−1)) .

Recall the categories Sig, SigVar, and Str introduced in Section b3.1.
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6. Extensions of first-order logic

Definition 6.6. By FOκℵ0 we denote the logical system SigVar→ Logi$
with

⟨Σ, X⟩↦ ⟨FOκℵ0[Σ, X], Str[Σ, X],⊧⟩ ,

and FOs̄
κℵ0

∶ Sig→ Logi$ is the subsystem with

Σ ↦ ⟨FOs̄
κℵ0
[Σ], Str,⊧⟩ .

Exercise 6.1. Prove that FOκℵ0 and FOs̄
κℵ0

are indeed logical systems.

Exercise 6.2. Let L ∶ S→ Logi$ be a logical system with

L(s) = ⟨L[s], C[s],⊧s⟩ , for s ∈ S ,
L( f ) = ⟨α f , β f ⟩ , for f ∈ S(s, t) .

Show that the function Lop ∶ Sop → Logi$ defined by

Lop(s) ∶= ⟨C[s], L[s], (⊧s)
−1⟩ , for s ∈ S ,

Lop( f ) ∶= ⟨β f , α f ⟩ , for f ∈ S(s, t)

is a logical system.

We are mainly interested in logical systems that, like first-order logic,
talk about structures.

Definition 6.7. An algebraic logic is a logical system L ∶ Sig → Logi$
parametrised by Sig such that

◆ the semantics functor is the canonical functor Str ∶ Sig→ Str and
◆ every logic L[Σ] is invariant under isomorphisms, that is,

A ≅ B implies A ≡L[Σ] B , for all A,B ∈ Str[Σ] .

Example. We will prove in Lemma c2.1.3 (c) that first-order logic is
invariant under isomorphisms. Consequently, FO0

κℵ0
is algebraic. Clearly,

FOα
κℵ0

is not, for α > 0, since the interpretations are not structures.
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c1. First-order logic

Remark. Note that it follows immediately from the definition of an
algebraic logic that the reduct operation A ↦ A∣Σ is a comorphism
L[Γ]→ L[Σ], for every algebraic logic L.
When defining the semantics of second-order logic we have treated

the variables as symbols of a signature. This trick can be used to simulate
free variables in every algebraic logic.

Definition 6.8. Let L be an algebraic logic, Σ a signature, and X a set of
variables disjoint from Σ. We set

L[Σ, X] ∶= L[Σ ∪ X] ,

where we regard the elements of X as constant symbols. If A is a Σ-
structure and β ∶ X → A a variable assignment, we define

A ⊧ φ[β] : iff Aβ ⊧ φ ,

whereAβ is the (Σ∪X)-expansion of Awherewe assign to the additional
constants x ∈ X the value xAβ ∶= β(x).
We define φA, free(φ), A ⊧ φ(ā), and L s̄[Σ] in the same way as for

first-order logic.

Lindenbaum algebras
Usually we are only interested in the expressive power of a logic and,
hence, we will not distinguish between equivalent formulae. To this end
we associate with every logic L a partial order that reflects the structural
properties of L while abstracting away from the concrete syntax. We
have seen in Lemma 3.2 that the entailment relation ⊧ is a preorder. If
we identify equivalent formulae, we obtain the partial order ⟨L,⊧⟩/≡. In
this way we can define a functor Logi$→ PO where PO is the category
of all partial orders with homomorphisms.

Definition 6.9. The Lindenbaum functor Lb ∶ Logi$→ PO is defined by

Lb(L) ∶= ⟨L,⊧⟩/≡ , for L ∈ Logi$ ,
Lb(µ)([φ]≡) ∶= [α(φ)]≡ , for µ = ⟨α, β⟩ ∈ Logi$(L0 , L1) .

488



6. Extensions of first-order logic

The partial order Lb(L) is called the Lindenbaum algebra of L.

Remark. Note that it follows by Lemma 5.12 (a) that the image Lb(µ)
of a morphism µ ∶ L0 → L1 is well-defined and that it is indeed a
homomorphism of partial orders.

Example. (a) Let K be an algebraically closed field. For Zariski logic
ZL[K, X], we have shown that

p ≡ q iff pm = aqn for some a ∈ K and m, n < ω .

The Lindenbaum algebra Lb(ZL[K, X]) is an upper semilattice where

⊺ = [0]≡ , � = [1]≡ , and [p]≡ ⊔ [q]≡ = [pq]≡ .

(b) Let B be a boolean algebra. The Lindenbaum algebra Lb(BL(B))
is isomorphic to B since, for a, b ∈ B,

a ≡ b implies a = b .

Lemma 6.10. Let µ ∶ L0 → L1 be a morphism of logics.

(a) If µ is an epimorphism then so is Lb(µ).

(b) If µ is an embedding then so is Lb(µ).

Proof. Suppose that µ = ⟨α, β⟩.
(a) Let [φ]≡ ∈ Lb(L1). The map α is surjective since µ is an epi-

morphism. Consequently, there is some ψ ∈ L0 with α(ψ) = φ. Hence,
Lb(µ)([ψ]≡) = [φ]≡, as desired.

(b) follows immediately from Lemma 5.14 (a). ◻

Definition 6.11. Let L be a logic and φ,ψ ∈ L formulae.
(a) A negation of φ is a formula ϑ ∈ L such that, for all L-interpreta-

tions J, we have

J ⊧ ϑ iff J ⊭ φ .
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c1. First-order logic

If φ has negations, we fix one and denote it by ¬φ.
(b) A disjunction of φ and ψ is a formula ϑ ∈ L such that, for all

L-interpretations J, we have

J ⊧ ϑ iff J ⊧ φ or J ⊧ ψ or both.

If disjunctions of φ and ψ exist, we fix one and denote it by φ ∨ ψ.
(c) A conjunction of φ and ψ is a formula ϑ ∈ L such that, for all

L-interpretations J, we have

J ⊧ ϑ iff J ⊧ φ and J ⊧ ψ .

If conjunctions of φ and ψ exist, we fix one and denote it by φ ∧ ψ.
(d) We say that L is closed under negation, disjunction, or conjunction

if all L-formulae have, respectively, negations, disjunctions, or conjunc-
tions. We call L boolean closed if L is closed under all three operations.

Remark. (a) Note that ¬φ, φ ∨ ψ, and φ ∧ ψ are only determined up to
logical equivalence, but they are unique when regarded as elements of
Lb(L).

(b) If L is closed under conjunction and disjunction, the Lindenbaum
algebra Lb(L) is a lattice where

[φ]≡ ⊓ [ψ]≡ = [φ ∧ ψ]≡ and [φ]≡ ⊔ [ψ]≡ = [φ ∨ ψ]≡ .

Exercise 6.3. Define a logic L such that Lb(L) is a boolean algebra but
L is closed under neither negation, nor disjunction, nor conjunction.

Lemma 6.12. Let ⟨L,K,⊧⟩ be a logic.
(a) If L is closed under conjunction and disjunction then Lb(L) is a

distributive lattice.
(b) If L is boolean closed then Lb(L) is a boolean algebra.

Proof. (a) Lb(L) is clearly a lattice if it has the above closure properties.
To show that it is distributive note that the function

f ∶ Lb(L)→ ℘(K) ∶ [φ]≡ ↦ModL(φ)
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6. Extensions of first-order logic

is an embedding of Lb(L) into a power-set lattice and such lattices are
always distributive.

(b) If L is boolean closed, it contains tautologies φ ∨ ¬φ and unsatis-
fiable formulae φ ∧ ¬φ. Hence, Lb(L) forms a boolean algebra. ◻

When investigating a logical theory T we usually are only interested
in the class of models of T . In these cases we can restrict the logic by
removing all interpretations that do not satisfy T .

Definition 6.13. Let ⟨L,K,⊧⟩ be a logic, Φ ⊆ L a set of formulae, and let
i ∶ Φ → L and j ∶ ModL(Φ)→ K be the corresponding inclusion maps.

(a) The restriction of L to Φ is the logic

L∣Φ ∶= ⟨Φ,K,⊧⟩ ,

where the set of formulae is restricted to Φ. The morphism

⟨i , idK⟩ ∶ L∣Φ → L

is the inclusion morphism associated with Φ and L.
(b) The localisation of L to Φ is the logic

L/Φ ∶= ⟨L, ModL(Φ), ⊧⟩ ,

where the class of interpretations is restricted to those satisfying Φ. The
morphism

⟨idL , j⟩ ∶ L → L/Φ

is the localisation morphism associated with Φ and L. We define the
relations

φ ⊧Φ ψ : iff Φ ∪ {φ} ⊧ ψ ,
φ ≡Φ ψ : iff φ ≡ ψ modulo Φ .

(c) If L is an algebraic logic and Φ ⊆ L0[Σ] then we set

L s̄/Φ ∶= L s̄[Σ]/Φ .
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c1. First-order logic

The next lemma and its corollary state that the restriction and the
localisation of a logic yield something like ‘short exact sequences’ of
logics and Lindenbaum algebras

L∣Φ → L → L/Φ and Lb(L∣Φ)→ Lb(L)→ Lb(L/Φ) .

Lemma 6.14. Let ⟨L,K,⊧⟩ be a logic and Φ ⊆ L a set of formulae.

(a) The inclusion morphism i ∶ L∣Φ → L is a monomorphism of logics.

(b) The localisation morphism λ ∶ L → L/Φ is an epimorphism of logics.

Corollary 6.15. Let L be a logic and Φ ⊆ L.

(a) There exists an embedding Lb(L∣Φ)→ Lb(L).

(b) There exists a surjective homomorphism Lb(L)→ Lb(L/Φ).

Proof. The claims follow from Lemmas 6.14 and 6.10. ◻

We can describe the entailment relation of a localisation as follows.

Lemma 6.16. Let L be a logic and T ⊆ L.

(a) φ ⊧ ψ in L/T iff φ ⊧T ψ in L .

(b) Lb(L/T) = ⟨L,⊧T⟩/≡T .

Proof. (a) We have φ ⊧ ψ in L/T if, and only if, every model of T that
satisfies φ also satisfies ψ. This is equivalent to T ∪ {φ} ⊧ ψ.

(b) follows immediately from (a). ◻
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embeddings

1. Homomorphisms and embeddings
We can compare structures by looking at the functions between them.
In this section we investigate how such maps are related to the theories
of the structures in question.

Definition 1.1. Let L be an algebraic logic and f ∶ A → B a partial
function between Σ-structures.

(a) We say that f preserves a formula φ(x̄) ∈ L[Σ, X] if

A ⊧ φ(ā) implies B ⊧ φ( f ā) , for all ā ⊆ dom f .

(b) Let ∆ ⊆ L[Σ, X] be a set of formulae. We call f a ∆-map if it
preserves every formula in ∆. A ∆-embedding is a ∆-map that is an
embedding. We say that f is strict if we have

A ⊧ φ(ā) iff B ⊧ φ( f ā) ,

for all formulae φ(x̄) ∈ ∆ and every ā ⊆ dom f .
If C ⊆ A ⊆ B then we say that f ∶ A→ B is a ∆-map or a ∆-embedding

over C if f additionally satisfies f ↾ C = idC . For historical reasons
FO-maps and FO-embeddings are usually called elementary.

(c) We denote by EmbL(A,B) the set of all L<ω[Σ]-embeddings h ∶
A→ B. We write EmbL(Σ) for the category of all L<ω[Σ]-embeddings
between Σ-structures.
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c2. Elementary substructures and embeddings

Remark. If ∆ is closed under negation then every ∆-map is strict.

Example. Let f ∶ A→ B. Immediately from the definition it follows that

(a) f is injective if and only if it preserves the formula x ≠ y ;

(b) f is a homomorphism if and only if it preserves every atomic
formula ;

(c) f is an embedding if and only if it preserves every literal.

Definition 1.2. (a) We write QFκℵ0[Σ, X] for the set of all quantifier-free
FOκℵ0[Σ, X]-formulae.

(b) For ∆ ⊆ FOκℵ0[Σ, X] we denote by ∃∆ the closure of ∆ under
existential quantifiers and conjunctions and disjunctions of less than κ
formulae. Similarly, ∀∆ denotes the closure of ∆ under conjunctions,
disjunctions, and universal quantifiers. The intended value of κ should
always be clear from the context.

(c) The set of existential formulae is ∃κℵ0[Σ, X] ∶= ∃QFκℵ0[Σ, X] and
the set of universal formulae is ∀κℵ0[Σ, X] ∶= ∀QFκℵ0[Σ, X]. For κ = ℵ0,
we simply write ∃[Σ, X] and ∀[Σ, X].

(d) The set ∃+κℵ0
[Σ, X] of positive existential formulae consists of all

FOκℵ0 -formulae containing neither negations nor universal quantifiers.

Lemma 1.3. Let f ∶ A→ B.

(a) f is a homomorphism if, and only if, it preserves all ∃+∞ℵ0
-formulae.

(b) f is an embedding if, and only if, it preserves all ∃∞ℵ0 -formulae.

(c) If f is an isomorphism, it preserves all FO∞ℵ0 -formulae.

Proof. One direction follows immediately from the definition (see the
above example) since every function preserving all atomic formulae is a
homomorphism and every function preserving all literals is an embed-
ding.

For the other direction, we prove all three claims simultaneously by
induction on the structure of φ. For claims (b) and (c), we may assume
that φ is in negation normal form.
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If φ = Rt0 . . . tn then we have

A ⊧ (Rt0 . . . tn−1)(ā)⇒ ⟨tA
0(ā), . . . , tA

n−1(ā)⟩ ∈ RA

⇒ ⟨ f (tA
0(ā)), . . . , f (tA

n−1(ā))⟩ ∈ RB

⇒ ⟨tB
0 ( f ā), . . . , tB

n−1( f ā)⟩ ∈ RB

⇒ B ⊧ (Rt0 , . . . , tn−1)( f ā) .

The proof for φ = t0= t1 is similar.
For (b) and (c), we also have to consider the case that φ = ¬Rt0 . . . tn .

Since in these cases f is a strict homomorphism we have

A ⊧ ¬(Rt0 , . . . , tn−1)(ā)⇒ ⟨tA
0(ā), . . . , tA

n−1(ā)⟩ ∉ RA

⇒ ⟨ f (tA
0(ā)), . . . , f (tA

n−1(ā))⟩ ∉ RB

⇒ ⟨tB
0 ( f ā), . . . , tB

n−1( f ā)⟩ ∉ RB

⇒ B ⊧ ¬(Rt0 , . . . , tn−1)( f ā) .

The proof for φ = t0≠ t1 is similar.
The cases that φ = ⋀Φ or φ = ⋁Φ follow immediately from the in-

ductive hypothesis. Therefore, it remains to consider quantifiers. Suppose
that φ = ∃yψ(x̄ , y). We have

A ⊧ ∃yψ(ā, y)⇒ A ⊧ ψ(ā, b) for some b ∈ A
⇒ B ⊧ ψ( f ā, f b) for some b ∈ A
⇒ B ⊧ ∃yψ( f ā, y) .

Finally, for claim (c) there is the case that φ = ∀yψ(x̄ , y). Then we
have

A ⊧ ∀yψ(ā, y)⇒ A ⊧ ψ(ā, b) for all b ∈ A
⇒ B ⊧ ψ( f ā, f b) for all b ∈ A
⇒ B ⊧ ∀yψ( f ā, y) ,

since f is surjective. ◻
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Corollary 1.4. Let A be a Σ-structure. For every relation R ∶= φA defined
by some formula φ(x̄) ∈ FO<ω

∞ℵ0
[Σ], we have

ā ∈ R iff πā ∈ R , for each automorphism π ∶ A→ A .

Example. We can use the above characterisation to prove that certain
relations are not definable. Let A be a structure and R a relation. If we
can find an automorphism of A that is not an automorphism of the
expansion ⟨A, R⟩ then we know that R is not definable in A.

(a)Addition is not definable in the structure ⟨N, ⋅⟩.Define the function
π ∶ N→ N that maps anumber of the form 2m3nk,where k is notdivisible
by 2 or 3, to the number 2n3mk. Then π is an automorphism of ⟨N, ⋅ ⟩,
but it is not an automorphism of ⟨N, ⋅ ,+⟩ since we have

4 + 3 = 7 and π(4) + π(3) = 9 + 2 ≠ 7 = π(7) .

(b) Similarly, we can show that multiplication is not definable in the
structure ⟨Z,+⟩ since the mapping π ∶ x ↦ −x is an automorphism of
⟨Z,+⟩ but not of ⟨Z,+, ⋅ ⟩.

Definition 1.5. A formula φ(x̄) is preserved in substructures if

A ⊧ φ(ā) implies A0 ⊧ φ(ā) ,

whenever A0 ⊆ A is a substructure containing ā.

Lemma 1.6. ∀∞ℵ0 -formulae are preserved in substructures.

Proof. This is just the dual statement of Lemma 1.3 (b). Let φ ∈ ∀∞ℵ0

and suppose there exist structures A0 ⊆ A and elements ā ⊆ A0 such
that

A ⊧ φ(ā) but A0 ⊭ φ(ā) .

Let id ∶ A0 → A be the embedding of A0 into A. Since ¬φ is equivalent
to some existential formula ψ ∈ ∃∞ℵ0 it follows from Lemma 1.3 (b) that

A0 ⊧ ¬φ(ā) implies A ⊧ ¬φ(ā) .

Contradiction. ◻

496



1. Homomorphisms and embeddings

Example. Groups can be axiomatised by universal sentences :

∀x∀y∀z(x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z)
∀x(x ⋅ e = x)
∀x(x ⋅ x−1 = e)

It follows that every substructure of a group ⟨G , ⋅ , −1 , e⟩ is itself a group.
Note that, ifwe use the smaller signature consisting only of group mul-

tiplication ⋅, this property fails since the axioms are no longer universal :

∀x∀y∀z(x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z)
∃e∀x[x ⋅ e = x ∧ ∃y(x ⋅ y = e)]

For instance, the group ⟨Z,+⟩ has the substructure ⟨N,+⟩ which is not
a group.

Definition 1.7. A formula φ(x̄) is preserved in unions of chains if, for all
chains (Ai)i<α and every tuple ā ⊆ A0,

Ai ⊧ φ(ā) , for all i < α , implies ⋃
i<α

Ai ⊧ φ(ā) .

Lemma 1.8. Every ∀∃∞ℵ0 -formula φ is preserved in unions of chains.

Proof. Let (Ai)i<α be a chain with union B ∶= ⋃i<α Ai . Suppose that
φ ∈ ∀∃∞ℵ0 is a formula such that Ai ⊧ φ(ā), for all i < α, where ā ⊆ A0.
We prove by induction on φ that B ⊧ φ(ā).

If φ ∈ ∃∞ℵ0 then A0 ⊧ φ(ā) and A0 ⊆ B implies that B ⊧ φ(ā), by
Lemma1.3 (b). If φ = ⋀Φ or φ = ⋁Φ, for Φ ⊆ ∀∃∞ℵ0 then the claim
follows immediately from the inductive hypothesis.

Hence, it remains to consider the case that φ = ∀yψ(x̄ , y), for some
ψ ∈ ∀∃∞ℵ0 . For every b ∈ B, there is some index k such that b ∈ Ak .
By assumption, we have Ai ⊧ ψ(ā, b), for every i ≥ k. By inductive
hypothesis, it follows that ⋃i≥k Ai ⊧ ψ(ā, b). Since ⋃i≥k Ai = B we
have shown that B ⊧ ψ(ā, b), for all b ∈ B. This implies that B ⊧
∀yψ(ā, y). ◻
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Remark. Similarly to Lemma ??, we can show that ∀∃∞ℵ0 -formulae are
preserved in direct limits of diagrams of embeddings. Analogously it
follows that ∀∃+∞ℵ0

-formulae are preserved in arbitrary direct limits.

Example. The class of all fields is ∀∃-axiomatisable. It follows that the
union of a chain of fields is again a field.

Exercise 1.1. Prove that every ∀∃+∞ℵ0
-formula is preserved in direct

limits.

2. Elementary embeddings
Definition 2.1. Let L be an algebraic logic, ∆ ⊆ L[Σ, X] a set of formulae,
and A and B Σ-structures.
We say that B is a ∆-extension of A, or that A is a ∆-substructure

of B, if A ⊆ B and the inclusion map A → B is a ∆-embedding. We
write A ⪯∆ B to indicate that A is a ∆-substructure of B. In the case
∆ = FO[Σ] we also speak of elementary embeddings and extensions, and
we write A ⪯ B instead of A ⪯FO B.

Example. (a) ⟨N, ≤⟩ ⊆ ⟨Q, ≤⟩ is not elementary since

⟨N, ≤⟩ ⊧ ∃x∀y(x ≤ y) but ⟨Q, ≤⟩ ⊭ ∃x∀y(x ≤ y) .

(b) There are structures A ⊆ B such that A ≡ B but A ⪯̸ B. For
instance, let A ∶= ⟨2Z, ≤⟩ and B ∶= ⟨Z, ≤⟩. Then we even have A ≅ B but
A ⊀ B since

⟨2Z, ≤⟩ ⊭ ∃x(0 < x ∧ x < 2) but ⟨Z, ≤⟩ ⊧ ∃x(0 < x ∧ x < 2) .

(c) ⟨Q, ≤⟩ ⪯FO ⟨R, ≤⟩. (The easiest proof of this statement is based
on so-called ‘back-and-forth’ arguments which will be introduced in
Chapter c4. See Lemma c4.1.4).

Exercise 2.1. Find an elementary extension of ⟨Z, s⟩ where s ∶ x ↦ x + 1
is the successor function.
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Remark. If L is closed under negation then A ⪯L B implies A ≡L B.

Definition 2.2. Let L be an algebraic logic and A a Σ-structure.
(a) For a set U ⊆ A, we denote by AU the expansion of A by one

constant ca , for each element a ∈ U ,with value cA
a ∶= a. By ΣU we denote

the corresponding expansion of the signature. In the following we will
not distinguish between the element a and the symbol ca denoting it,
and we simply write a in both cases.

(b) If T is a complete theory and A a model of T with U ⊆ A then we
define T(U) ∶=ThL(AU). For U = A, we call T(A) the L-diagram of A.

Let ∆0 ⊆ FO[Σ] be the set of all atomic first-order formulae and
∆1 ⊆ FO[Σ] the set of all literals. The ∆0-diagram of A is called the
atomic diagram, and the ∆1-diagram is the algebraic diagram. As usual,
the FO-diagram is called elementary.

The next lemma states that in order to construct an L-extension of a
structure A we can take any model of its L-diagram.

Lemma 2.3 (Diagram Lemma). Let L be an algebraic logic and A and B
Σ-structures. There exists an L-map g ∶ A→ B if and only if we have

B+ ⊧ThL(AA) , for some ΣA-expansion B+ of B .

Proof. (⇒) By definition, B ⊧ φ(g ā), for all φ(ā) ∈Th(AA). Hence, if
ā is an enumeration of A then we can define the desired expansion of B
by B+ ∶= ⟨B, g(ā)⟩.
(⇐)We claim that the function g ∶ A → B ∶ a ↦ cB+

a is the desired
L-embedding. Since ThL(B+) =ThL(AA) we have

A ⊧ φ(a0 , . . . , an−1) iff φ(ca0 , . . . , can−1) ∈ThL(AA)

⇒ B+ ⊧ φ(ca0 , . . . , can−1)

iff B ⊧ φ(g(a0), . . . , g(an−1)) . ◻

Corollary 2.4. Let A and B be structures. Let ∆0(A) be the atomic dia-
gram of A and ∆1(A) the algebraic diagram.
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(a) There exists a homomorphism A→ B if and only if

BA ⊧ ∆0(A) , for some expansion BA of B .

(b) There exists an embedding A→ B if and only if

BA ⊧ ∆1(A) , for some expansion BA of B .

For first-order logic there is a simple test to check whether some
extension is elementary.

Theorem 2.5 (Tarski-Vaught Test). Let A ⊆ B be Σ-structures and suppose
that ∆ ⊆ FO∞ℵ0[Σ] is closed under negation, subformulae, and negation
normal forms.
We have A ⪯∆ B if and only if, for every formula ∃yφ(x̄ , y) ∈ ∆ and

all tuples ā ⊆ A,

B ⊧ ∃yφ(ā, y) implies B ⊧ φ(ā, b) , for some b ∈ A .

Proof. (⇒) Since A ⪯∆ B and ∆ is closed under negation we have

B ⊧ ∃yφ(ā, y) iff A ⊧ ∃yφ(ā, y)
iff A ⊧ φ(ā, b) for some b ∈ A
iff B ⊧ φ(ā, b) for some b ∈ A .

(⇐) Since ∆ is closed under subformulae we can prove by induction
on φ that

A ⊧ φ(ā) implies B ⊧ φ(ā) , for all φ ∈ ∆ .

Moreover, it is sufficient to consider only formulae φ in negation normal
form.
We will only give the inductive step for the universal quantifier. The

other cases are handled in the same way as in the proof of Lemma 1.3.
Suppose that

A ⊧ ∀yψ(ā, y) but B ⊭ ∀yψ(ā, y) .
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Since ∀yψ ∈ ∆ we have nnf(¬∀yψ) = ∃y(nnf(¬ψ)) ∈ ∆. Therefore,
B ⊧ ∃y¬ψ(ā, y) implies that B ⊧ ¬ψ(ā, b), for some b ∈ A. On the
other hand, A ⊧ ∀yψ(ā, y) implies that A ⊧ ψ(ā, b) and, by inductive
hypothesis, it follows that B ⊧ ψ(ā, b). Contradiction. ◻

Proposition 2.6. Let D ∶ J → Homs(Σ) be a directed diagram of strict
homomorphisms with cone h i ∶ D(i) → lim

Ð→
D, i ∈ I, and suppose that

∆ ⊆ FO∞ℵ0[Σ, X] is closed under subformulae and negation. If each map
D(i , j) is a ∆-map then so is every h i .

Proof. By induction on φ ∈ ∆ we prove that

D(i) ⊧ φ(ā) iff lim
Ð→
D ⊧ φ(h i(ā)) .

Since∀yψ(x̄ , y) ≡ ¬∃y¬ψ(x̄ , y) and ∆ is closed under negationwemay
w.l.o.g. assume that φ does not contain universal quantifiers.

If φ is atomic then the claim follows from the fact that h i is a strict
homomorphism. The cases that φ = ¬ψ, φ = ⋀Φ, or φ = ⋁Φ follow
immediately from inductive hypothesis.

Suppose that φ = ∃yψ(x̄ , y). IfD(i) ⊧ ∃yψ(ā, y) then there is some
b ∈ D(i) such thatD(i) ⊧ ψ(ā, b). By inductive hypothesis, it follows
that lim
Ð→
D ⊧ ψ(h i(āb)). Hence, lim

Ð→
D ⊧ φ(h i(ā)). Conversely, sup-

pose that lim
Ð→
D ⊧ ∃yψ(h i(ā), y). Then there is some element b such

that lim
Ð→
D ⊧ ψ(h i(ā), b). By definition of a direct limit there is some in-

dex k with b ∈ rng hk . Let l ∈ I be an index with i , k ≤ l and let c ∈ D(l)
be an element with h l(c) = b. By inductive hypothesis, it follows that
D(l) ⊧ ψ(D(i , l)(ā), c). Hence, D(l) ⊧ φ(D(i , l)(ā)). Since D(i , l)
is a ∆-map and ∆ is closed under negation we have D(i) ⊧ φ(ā), as
desired. ◻

Definition 2.7. A chain (Ai)i<α is an L-chain if Ai ⪯L Ak , for all i < k.
As usual, FO-chains are also called elementary.

Corollary 2.8. If (Ai)i<α is an FOκℵ0 -chain then Ak ⪯FOκℵ0 ⋃i<α Ai , for
all k < α.
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c2. Elementary substructures and embeddings

If ∆ ⊆ FOκℵ0 is not closed under negation then obtain a similar result
if we require the diagram to be κ-directed and ∆ to not contain universal
quantifiers.

Proposition 2.9. Let D ∶ J → Hom(Σ) be a κ-directed diagram with
cone h i ∶ D(i)→ lim

Ð→
D, i ∈ I, and suppose that ∆ ⊆ FOκℵ0[Σ, X] is closed

under subformulae and no formula in ∆ contains universal quantifiers. If
each mapD(i , j) is a ∆-map then so is every h i .

Proof. By induction on φ ∈ ∆ we prove that

lim
Ð→
D ⊧ φ(ā) iff there is some i ∈ I and a tuple b̄ with

h i(b̄) = ā such thatD(i) ⊧ φ(b̄) .

(φ atomic) follows from the definition of lim
Ð→
D.

(φ = ⋁Ψ) IfD(i) ⊧ φ(b̄) then there is a formula ψ ∈ Ψ withD(i) ⊧
ψ(b̄). By inductive hypothesis it follows that lim

Ð→
D ⊧ φ(ā). Conversely,

if lim
Ð→
D ⊧ ψ(ā), for some ψ ∈ Ψ , then we have D(i) ⊧ ψ(b̄) and

h i(b̄) = ā, for suitable i and b̄.
(φ = ⋀Ψ) IfD(i) ⊧ φ(b̄) then the inductive hypothesis implies that

lim
Ð→
D ⊧ ψ(ā), for each ψ ∈ Ψ . Conversely, if lim

Ð→
D ⊧ φ(ā) then we can

find, for every ψ ∈ Ψ , an index iψ ∈ I and a tuple b̄ψ with h iψ(b̄ψ) = ā
andD(iψ) ⊧ ψ(b̄ψ). Since h iψ(b̄ψ) = h iϑ (b̄ϑ), for ψ, θ ∈ Ψ , there exists,
by definition of lim

Ð→
D, an index lψϑ ≥ iψ , iθ with

D(iψ , lψϑ)(b̄ψ) = D(iϑ , lψϑ)(b̄ϑ) .

Since J is κ-directed we can find index k ∈ I with lψϑ ≤ k, for all ψ, ϑ.
Let c̄ ∶= D(iψ , k)(b̄ψ), for some/all ψ. It follows that hk(c̄) = ā and
D(k) ⊧ ψ(c̄), for every ψ ∈ Ψ .
(φ = ¬ψ) Since all homomorphismsD(i , k) are ∆-maps and ¬ψ ∈ ∆

we have

D(i) ⊧ ψ(b̄) iff D(k) ⊧ ψ(D(i , k)(b̄)) , for all i ≤ k .
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Consequently, h i(b̄) = h j(c̄), for arbitrary i , j ∈ I, implies

D(i) ⊧ ψ(b̄) iff D( j) ⊧ ψ(c̄) .

Therefore, we have

lim
Ð→
D ⊭ ψ(ā)

iff D(i) ⊭ ψ(b̄) for all i and b̄ ∈ h−1
i (ā) ,

iff D(i) ⊧ ¬ψ(b̄) for all i and b̄ ∈ h−1
i (ā) ,

iff D(i) ⊧ ¬ψ(b̄) for some i and b̄ ∈ h−1
i (ā) .

(φ = ∃yψ(x̄ , y)) If D(i) ⊧ ∃yψ(b̄, y) then there is some c ∈ D(i)
such thatD(i) ⊧ ψ(b̄, c). By inductive hypothesis, it follows that

lim
Ð→
D ⊧ ψ(h i(b̄c)) .

Hence, lim
Ð→
D ⊧ φ(h i(b̄)). Conversely, suppose that lim

Ð→
D ⊧ ∃yψ(ā, y).

Then there is some element c such that lim
Ð→
D ⊧ ψ(ā, c). By inductive

hypothesis, we can find an index i and elements b̄d ∈ h−1
i (āc) such that

D(i) ⊧ ψ(b̄, d). Hence,D(i) ⊧ φ(b̄). ◻

Exercise 2.2. Find an example showing that the above Proposition does
not hold if ∆ contains a formula with a universal quantifier.

We conclude this section with the observation that interpretations
preserve elementary embeddings.

Lemma 2.10. Let Σ and Γ be signatures. Every first-order interpretation I
from Σ to Γ induces a functor I ∶ EmbI → EmbFO(Γ),whereEmbI denotes
the subcategory of EmbFO(Σ) consisting of all structures A such that I(A)
is defined.

Proof. Suppose that I = ⟨α, (δs)s , (εs)s , (φξ)ξ⟩, let h ∶ A → B be an
elementary embedding such that I(A) and I(B) are defined, and let

ιs ∶ δA
s → I(A) and κs ∶ δB

s → I(B)
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be the canonical functions mapping a tuple to the element it encodes.
We define I(h) ∶ I(A)→ I(B) as follows. For every element c of I(A)
of sort s, we set

I(h)(c) ∶= κs(h(ā)) , for any ā ∈ ι−1
s (c) .

We claim that I(h) is a well-defined elementary embedding.
To show that it is well-defined, suppose that ā, ā′ ∈ ι−1

s (c). Then

A ⊧ εs(ā, ā′) implies B ⊧ εs(h(ā), h(ā′)) .

Consequently,

κs(h(ā)) = κs(h(ā′)) ,

as desired.
Hence, it remains to show that I(h) is an elementary embedding. Let

c̄ be an n-tuple in I(A)with sorts s̄ and let φ(x̄) be a first-order formula.
Choosing tuples ā i ∈ ι−1

s i
(c i), it follows by Lemma c1.5.9 that

I(A) ⊧ φ(c̄)

iff A ⊧ φI(ā0 , . . . , ān−1)

iff B ⊧ φI(h(ā0), . . . , h(ān−1))

iff I(B) ⊧ φ(κs0(h(ā0)), . . . , κsn−1(h(ān−1)))

iff I(B) ⊧ φ(I(h)(c̄)) . ◻

3. The Theorem of Löwenheim and Skolem
A general method to eliminate existential quantifiers consists in replacing
them by functions. Consider a formula ψ = ∃yφ(x̄ , y) which states that,
for a given value of x̄, there exists some element y satisfying φ. If we
define a function f that maps all suitable values of x̄ to such an element y
then we can write ψ equivalently as φ(x̄ , f x̄). Informally we say that the
function f we constructed yields a ‘witness’ that asserts the truth of ∃yφ.
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3. The Theorem of Löwenheim and Skolem

Definition 3.1. Let Φ ⊆ FO0
∞ℵ0
[Σ] and ∆ ⊆ FO<ω

∞ℵ0
[Σ].

(a) A Σ-term t(x̄) defines a Skolem function for a formula ∃yφ(x̄ , y)
(w.r.t. Φ) if

Φ ⊧ ∀x̄[∃yφ(x̄ , y)→ φ(x̄ , t(x̄))] .

A formula of the form ∀x̄[∃yφ(x̄ , y) → φ(x̄ , t)] is called a Skolem
axiom for ∃yφ.

(b) A ∆-Skolemisation of Φ is a set Φ+ ⊆ FO0
∞ℵ0
[Σ+], for some signa-

ture Σ+ ⊇ Σ, such that
◆ Φ ⊆ Φ+,
◆ every model M ⊧ Φ has an Σ+-expansion M+ ⊧ Φ+ and,
◆ for every formula ∃yφ ∈ ∆, there exists a Σ+-term defining a

Skolem function for ∃yφ.
(c) We say that a theory T ⊆ FO0

∞ℵ0
[Σ] is a ∆-Skolem theory if T is a

∆-Skolemisation of itself. If ∆ = FO<ω
κℵ0
[Σ] we simply speak of a Skolem-

isation and a Skolem theory. The intended value of κ and Σ should always
be clear from the context.

Example. Consider the ordered additive group of the real numbers R =
⟨R,+, <, f ⟩ expanded by the (definable) function f (x) ∶= x/2. The term
f (x0 + x1) defines a Skolem function for the formula

φ(x0 , x1) ∶= ∃y(x0 < y < x1) .

The main reason why Skolem theories are interesting is the property
of their models that all substructures are elementary.

Lemma 3.2. Let T ⊆ FO0
κℵ0
[Σ] be a ∆-Skolem theory where the set ∆ ⊆

FO<ω
κℵ0
[Σ] is closed under negation, subformulae, and negation normal

forms. If A ⊧ T and B ⊆ A then B ⪯∆ A.

Proof. We apply the Tarski-Vaught Test. Suppose that ∃yφ(x̄ , y) ∈ ∆ is
a formula and ā ⊆ B a tuple such that

A ⊧ ∃yφ(ā, y) .
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c2. Elementary substructures and embeddings

Let t be a term defining a Skolem function for ∃yφ. Then

A ⊧ φ(ā, t(ā)) .

Since ā ⊆ B and B is closed under all functions of A it follows that
tA(ā) ∈ B, as desired. ◻

Syntactically we can use Skolemisation to eliminate existential quanti-
fiers.

Lemma 3.3. Suppose that T ⊆ FO0
κℵ0
[Σ] is a Skolem theory. For every

formula φ ∈ FO<ω
κℵ0
[Σ], we can construct a formula φ∗ ∈ ∀<ω

κℵ0
[Σ] such

that

φ∗ ⊧ φ and T ⊧ φ → φ∗ .

In particular, φ ≡ φ∗ modulo T.

Proof. We define φ∗ by induction on φ. W.l.o.g. we may assume that φ is
in negation normal form. For φ ∈ ∀κℵ0 we set φ∗ ∶= φ. For conjunctions,
disjunctions, and universal quantifiers, we set

(⋀Ψ)∗ ∶=⋀{ψ∗ ∣ ψ ∈ Ψ } ,
(⋁Ψ)∗ ∶=⋁{ψ∗ ∣ ψ ∈ Ψ } ,
(∀yψ)∗ ∶= ∀yψ∗ .

Finally, for φ = ∃yψ(x̄ , y) we set φ∗ ∶= ψ∗(x̄ , tφ) where the term tφ
defines a Skolem function for φ. ◻

Corollary 3.4. For every Skolem theory T ⊆ FO0
κℵ0
[Σ] there exists a set

Φ ⊆ ∀κℵ0[Σ] such that T ≡ Φ.

Proof. Let Φ ∶= {φ ∈ ∀0
κℵ0
[Σ] ∣ T ⊧ φ }. Then we have T ⊧ Φ. Con-

versely,we can use the preceding lemma to assign to every formula φ ∈ T
a formula φ∗ ∈ Φ with φ∗ ⊧ φ. This implies that Φ ⊧ T . ◻
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3. The Theorem of Löwenheim and Skolem

Constructing ∆-Skolemisations is easy. We just have to add Skolem
axioms for all formulae in ∆.

Lemma 3.5. For all Φ ⊆ FO0
κℵ0
[Σ] and ∆ ⊆ FO<ω

κℵ0
[Σ], there exists a

∆-Skolemisation Φ+ ⊆ FO0
κℵ0
[Σ+] of Φ with ∣Φ+∣ ≤ ∣Φ∣⊕ ∣∆∣ and ∣Σ+∣ ≤

∣Σ∣⊕ ∣∆∣.

Proof. Let Σ+ be the signature obtained from Σ by adding new function
symbols f∃yφ , for every formula ∃yφ ∈ ∆. We construct Φ+ by adding
to Φ all Skolem axioms

χ∃yφ ∶= ∀x̄[∃yφ(x̄ , y)→ φ(x̄ , f∃yφ x̄)]

with ∃yφ ∈ ∆. Clearly, ∣Φ+∣ ≤ ∣Φ∣⊕ ∣∆∣ and ∣Σ+∣ ≤ ∣Σ∣⊕ ∣∆∣.
We claim that Φ+ is a ∆-Skolemisation of Φ. By construction, we

have Φ ⊆ Φ+ and every formula ∃yφ ∈ ∆ has the Skolem function f∃yφ .
Hence, it remains to prove that every model of Φ can be expanded to
one of Φ+.

Suppose that A ⊧ Φ. We construct an expansion A+ ⊧ Φ+ as follows.
Let ∃yφ ∈ ∆ and ā ⊆ A. If A ⊧ ∃yφ(ā, y) thenwe select some b ∈ A such
that A ⊧ φ(ā, b) andwe set f A+

∃yφ(ā) ∶= b. Otherwise,we set f A+

∃yφ(ā) ∶= b,
for an arbitrary element b ∈ A. This ensures that A+ ⊧ χ∃yφ . Since A ⊧ Φ
and the function symbols f∃yφ do not appear in Φ we further have
A+ ⊧ Φ. Consequently, A+ ⊧ Φ+. ◻

In order to obtain a Skolem theory we can iterate this construction.

Theorem 3.6. Let κ be a regular cardinal. Every set Φ ⊆ FO0
κℵ0
[Σ] has a

Skolemisation Φ+ ⊆ FO0
κℵ0
[Σ+] such that ∣Φ+∣ ≤ (∣Σ∣⊕ℵ0)

<κ and (Φ+)⊧

is a Skolem theory.

Proof. We construct an increasing sequence of sets (Φα)α<κ with Φα ⊆
FO0

κℵ0
[Σα]. We set Φ0 ∶= Φ and Φδ ∶= ⋃α<δ Φα , for limit ordinals δ. For

the successor step, we use Lemma 3.5 to obtain a FO<ω
κℵ0
[Σα]-Skolemisa-

tion Φα+1 of Φα such that

∣Φα+1∣ ≤ ∣Φα ∣⊕ ∣FO<ω
κℵ0
[Σα]∣ and ∣Σα+1∣ ≤ ∣Σα ∣⊕ ∣FO<ω

κℵ0
[Σα]∣ .
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We claim that the union Φ+ ∶= ⋃α<κ Φα is the desired Skolemisa-
tion. Let Σ+ ∶= ⋃α<κ Σα . First, we show by induction on α that ∣Σα ∣ ≤
(∣Σ∣⊕ ℵ0)

<κ . Clearly, this holds for Σ0 = Σ. For the successor step, we
have

∣Σα+1∣ ≤ ∣Σα ∣⊕ ∣FO<ω
κℵ0
[Σα]∣

≤ ∣Σα ∣⊕ (∣Σα ∣⊕ ℵ0)
<κ = (∣Σα ∣⊕ ℵ0)

<κ

≤ ((∣Σ∣⊕ ℵ0)
<κ ⊕ ℵ0)

<κ = (∣Σ∣⊕ ℵ0)
<κ .

For limit ordinals δ < κ, it follows that

∣Σδ ∣ = sup
α<δ
∣Σα ∣ ≤ ∣δ∣⊗ (∣Σ∣⊕ ℵ0)

<κ = (∣Σ∣⊕ ℵ0)
<κ .

Consequently, we have

∣Σ+∣ = sup
α<κ
∣Σα ∣ ≤ κ ⊗ (∣Σ∣⊕ ℵ0)

<κ = (∣Σ∣⊕ ℵ0)
<κ ,

by Corollary a4.4.32. This implies that

∣Φ+∣ ≤ ∣FO0
κℵ0
[Σ+]∣ ≤ (∣Σ+∣⊕ ℵ0)

<κ ≤ (∣Σ∣⊕ ℵ0)
<κ .

Next, we prove that (Φ+)⊧ is a Skolem theory. Let ∃yφ ∈ FO<ω
κℵ0
[Σ+].

Since κ is regular it follows by induction on φ that ∃yφ ∈ FO<ω
κℵ0
[Σα], for

some α < κ. Hence, there is a Σα+1-term that defines a Skolem function
for ∃yφ.

Finally, to show that Φ+ is a Skolemisation of Φ it remains to prove
that every model of Φ can be expanded to one of Φ+. Let A ⊧ Φ be a
model of Φ. We construct a sequence (Aα)α≤κ of models Aα ⊧ Φα with
A0 = A such that, for all α ≤ β, Aβ is an expansion of Aα . Aκ ⊧ Φ+ is the
desired expansion of A.
We start with A0 ∶= A. For the successor step, suppose that Aα has

already been defined. Since Φα+1 is a Skolemisation of Φα we can ex-
pand Aα to a Σα+1-structure Aα+1 such that Aα+1 ⊧ Φα+1. For limit or-
dinals δ, we let Aδ be the ‘union’ of all the Aα , α < δ, that is, its universe
is A and, for each function f ∈ Σα , we add the function f Aα to Aδ . (Note
that this is well-defined since, if f ∈ Σα and α < β then f Aα = f Aβ .) ◻
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An important application of the technique of Skolemisation is the
following result.

Theorem 3.7 (Downward Löwenheim-Skolem Theorem).
Let ∆ ⊆ FO<ω

κℵ0
[Σ], for a regular cardinal κ, and set µ ∶= ∣Σ∣ ⊕ ∣∆∣ ⊕ κ−

where κ− ∶= sup{ λ ∣ λ < κ }.
For each Σ-structure A, every subset X ⊆ A, and all cardinals λ with

∣X∣ ⊕ µ ≤ λ ≤ ∣A∣, there exists a ∆-substructure B ⪯∆ A of size ∣B∣ = λ
with X ⊆ B.

Proof. Let Γ be the closure of ∆ under subformulae, negation, and neg-
ation normal form. Since every formula φ ∈ FO<ω

κℵ0
[Σ] has less that κ

subformulae it follows that ∣Γ∣ ≤ ∣∆∣⊗ κ−. By Lemma 3.5, we can choose
a Γ-Skolemisation T+ ⊆ FO0

κ+ℵ0
[Σ+] of ThΓ(A) such that

∣T+∣ ≤ ∣ThΓ(A)∣⊕ ∣Γ∣ and ∣Σ+∣ ≤ ∣Σ∣⊕ ∣Γ∣ ≤ µ .

Let A+ be a Σ+-expansion of A such that A+ ⊧ T+, and choose some
set X ⊆ Z ⊆ A of size ∣Z∣ = λ. By Corollary b3.1.11, the substructure
B+ ∶= ⟪Z⟫A+ has cardinality

λ = ∣Z∣ ≤ ∣B+∣ ≤ ∣Z∣⊕ ∣Σ+∣⊕ ℵ0 = λ .

By Lemma 3.2, we have B+ ⪯Γ A+. Let B be the Σ-reduct of B+. Then
B ⪯∆ A, as desired. ◻

Corollary 3.8. Let A be a Σ-structure. For each set X ⊆ A and every
cardinal ∣X∣⊕ ∣Σ∣⊕ ℵ0 ≤ κ ≤ ∣A∣, there exists an elementary substructure
B ⪯ A of size ∣B∣ = κ such that X ⊆ B.

Example. The field R = ⟨R,+, ⋅, 0, 1⟩ of real numbers contains a count-
able elementary substructure R0 ≺ R.

We can generalise the technique of Skolemisation to FOκℵ0(∃
λ) and

FOκℵ0(wo) in a straightforward way. As a result we obtain a variant of
the Löwenheim-Skolem Theorem for these logics.
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Theorem 3.9. Let ∆ ⊆ FO<ω
κℵ0
(∃λ)[Σ], for a regular cardinal κ, and set

µ ∶= ∣Σ∣⊕ ∣∆∣⊕ λ ⊕ κ− where κ− ∶= sup{ λ ∣ λ < κ }.
For each Σ-structure A, every subset X ⊆ A, and all cardinals ν with

∣X∣⊕ µ ≤ ν ≤ ∣A∣, there exists a ∆-substructure B ⪯∆ A of size ∣B∣ = ν with
X ⊆ B.

Proof. The proof is analogous to that of Theorem 3.7.We adapt thenotion
of a Skolem function and a ∆-Skolemisation as follows. We say that a
sequence (t i)i<λ defines a Skolem function for a formula of the form
∃λ yφ(x̄ , y) if, for all i , k < λ with i ≠ k,

Φ ⊧ ∀x̄(∃λ yφ(x̄ , y)→ φ(x̄ , t i(x̄))) ,

Φ ⊧ ∀x̄(∃λ yφ(x̄ , y)→ t i(x̄) ≠ tk(x̄)) .

A ∆-Skolemisation of Φ is a set Φ+ ⊇ Φ such that

◆ every model of Φ can be extended to one of Φ+,

◆ for every formula ∃yφ ∈ ∆, there is a term defining a Skolem
function for ∃yφ,

◆ for every formula ∃λ yφ ∈ ∆, there is a sequence of terms defining
a Skolem function for ∃λ yφ.

With these definitions it follows as above that if A ⊧ Φ+ and B ⊆ A then
B ⪯∆ A. Furthermore, for every set Φ, we can find a ∆-Skolemisation of
size ∣Φ∣⊕ ∣∆∣⊕ λ. Consequently, we can repeat the construction in the
proof of Theorem 3.7. ◻

Theorem 3.10. Let ∆ ⊆ FO<ω
κℵ0
(wo)[Σ], for a regular cardinal κ, and set

µ ∶= ∣Σ∣⊕ ∣∆∣⊕ κ− where κ− ∶= sup{ λ ∣ λ < κ }.
For each Σ-structure A, every subset X ⊆ A, and all cardinals λ with

∣X∣ ⊕ µ ≤ λ ≤ ∣A∣, there exists a ∆-substructure B ⪯∆ A of size ∣B∣ = λ
with X ⊆ B.

Proof. We adapt the notion of a Skolem function and a ∆-Skolemisation
as follows.A sequence (tn)n<ω defines a Skolem function for the formula
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4. The Compactness Theorem

Wx̄ ȳφ(x̄ , ȳ, z̄) if, for all n < ω,

Φ ⊧ ∀z̄[¬Wx̄ ȳφ(x̄ , ȳ, z̄)→ φ(tn+1(z̄), tn(z̄), z̄)] ,

that is, the sequence (tn)n yields witnesses for the fact that the relation
defined by φ is not well-founded.
A ∆-Skolemisation of Φ is a set Φ+ ⊇ Φ such that

◆ every model of Φ can be extended to one of Φ+,

◆ for every formula ∃yφ ∈ ∆, there is a term defining a Skolem
function for ∃yφ,

◆ for every formulaWx̄ ȳφ ∈ ∆, there is a sequence of terms defining
a Skolem function for Wx̄ ȳφ.

With these definitions it follows as above that if A ⊧ Φ+ and B ⊆ A then
B ⪯∆ A. (Note that, if φ(x̄ , ȳ, c̄)A, for c̄ ⊆ B, is a well-order of its field
then so is φ(x̄ , ȳ, c̄)A ∩ Bn = φ(x̄ , ȳ, c̄)B. Conversely, if φ(x̄ , ȳ, c̄)A is
not a well-order then the Skolem function yields an infinite strictly
decreasing sequence of elements of B. Hence, φ(x̄ , ȳ, c̄)A ∩ Bn is also
not a well-order.)

Furthermore, for every set Φ, we can find a ∆-Skolemisation of size
∣Φ∣⊕ ∣∆∣⊕ λ. Consequently, we can repeat the construction in the proof
of Theorem 3.7. ◻

Exercise 3.1. Work out the missing details in the above proofs.

4. The Compactness Theorem
In this section we introduce an important method to construct models
from diagrams. These models M will have the additional nice property
that every element is denoted by some term, that is, M = ⟪∅⟫M.

Definition 4.1. Let Φ ⊆ FO0
∞ℵ0
[Σ]. A structure H is a Herbrand model

of Φ if H ⊧ Φ and, for every a ∈ H, there is some term t ∈ T[Σ,∅] with
tH = a.
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We start by characterising those sets of formulae that contain sufficient
information to extract a model.

Definition 4.2. A set Φ ⊆ FO0
∞ℵ0
[Σ] is =-closed if

◆ t = t ∈ Φ, for all t ∈ T[Σ,∅], and

◆ if φ(x) is an atomic formula and s, t ∈ T[Σ,∅] are terms with
s = t ∈ Φ then we have φ(s) ∈ Φ iff φ(t) ∈ Φ.

Lemma 4.3. Let Φ ⊆ FO0
∞ℵ0
[Σ] be =-closed. The relation

s ∼ t : iff s = t ∈ Φ

is a congruence relation of the term algebra T[Σ,∅].

Proof. ∼ is reflexive since t = t ∈ Φ, for all t. For symmetry, suppose that
s = t ∈ Φ and set φ(x) ∶= x = s. It follows that

φ(s) = s = s ∈ Φ implies φ(t) = t = s ∈ Φ .

Similarly, if r = s ∈ Φ and s = t ∈ Φ then setting φ(x) ∶= r = x we see that

φ(s) = r = s ∈ Φ implies φ(t) = r = t ∈ Φ .

Consequently, ∼ is an equivalence relation.
Suppose that s i ∼ t i , for i < n, and let f ∈ Σ be an n-ary function

symbol. In the same way as above we can show, by induction on i, that

f s0 . . . s i s i+1 . . . sn−1 = f t0 . . . t i s i+1 . . . sn−1 ∈ Φ .

It follows that f T[Σ ,∅](s0 , . . . , sn−1) ∼ f T[Σ ,∅](t0 , . . . , tn−1), as desired.
◻

Lemma 4.4. Every =-closed set of atomic sentences Φ ⊆ FO0
∞ℵ0
[Σ] has a

Herbrand model H such that

Φ = {φ ∣ φ atomic and H ⊧ φ } .
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4. The Compactness Theorem

Proof. By Lemma 4.3, the relation

s ∼ t : iff s = t ∈ Φ

is a congruence relation of the term algebra T[Σ,∅]. Hence, we can take
the quotient H0 ∶= T[Σ,∅]/∼. Let H be the expansion of H0 by relations

RH ∶= { ⟨[t0]∼ , . . . , [tn−1]∼⟩ ∣ Rt0 . . . tn−1 ∈ Φ } ,

for each n-ary relation R ∈ Σ. We claim that H is the desired model.
Clearly, every element of H is denoted by some term. Furthermore,

by definition of H, we have H ⊧ φ, for every φ ∈ Φ. Conversely, suppose
that H ⊧ φ, for some atomic sentence φ. If φ = s = t then we have
[s]∼ = [t]∼ which, by definition of H, implies that s = t ∈ Φ. Similarly, if
φ = Rt0 . . . tn−1 then ⟨[t0]∼ , . . . , [tn−1]∼⟩ ∈ RH. Hence, there are terms
s i ∼ t i such that Rs0 . . . sn−1 ∈ Φ. Since Φ is =-closed it follows that
Rt0 . . . tn−1 ∈ Φ. ◻

We have shown how to construct a model for a set of atomic formulae.
Next we turn to the case of formulae with quantifiers.

Definition 4.5. A Hintikka set is a set Φ ⊆ FO0
∞ℵ0
[Σ] of sentences with

the following closure properties :

(h1) Φ is =-closed.

(h2) If φ ∈ Φ then ¬φ ∉ Φ.

(h3) If ¬¬φ ∈ Φ then φ ∈ Φ.

(h4) If ⋀Ψ ∈ Φ then Ψ ⊆ Φ.

(h5) If ¬⋀Ψ ∈ Φ then there is some ψ ∈ Ψ such that ¬ψ ∈ Φ.

(h6) If ⋁Ψ ∈ Φ then there is some ψ ∈ Ψ such that ψ ∈ Φ.

(h7) If ¬⋁Ψ ∈ Φ then ¬ψ ∈ Φ, for all ψ ∈ Ψ .

(h8) If ∀xφ(x) ∈ Φ then φ(t) ∈ Φ, for all t ∈ T[Σ,∅].

(h9) If ¬∀xφ(x) ∈ Φ then there is some t ∈ T[Σ,∅] with ¬φ(t) ∈ Φ.
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(h10) If ∃xφ(x) ∈ Φ then there is some t ∈ T[Σ,∅] with φ(t) ∈ Φ.
(h11) If ¬∃xφ(x) ∈ Φ then ¬φ(t) ∈ Φ, for all t ∈ T[Σ,∅].

Remark. Every elementary diagram is a Hintikka set.

Lemma 4.6. Every Hintikka set Φ ⊆ FO0
∞ℵ0
[Σ] has a Herbrand model.

Proof. Let Φ0 ⊆ Φ consist of all atomic sentences in Φ. By the definition
of a Hintikka set it follows that Φ0 is =-closed. Hence, we can apply
Lemma 4.4 to obtain a Herbrand model H of Φ0. We claim that H ⊧ Φ.
We prove by induction on the structure of a formula φ that

φ ∈ Φ implies H ⊧ φ and ¬φ ∈ Φ implies H ⊧ ¬φ .

If φ is atomic then the claim follows by Lemma 4.4.
Suppose that φ = ¬ψ. If φ ∈ Φ then we can apply the inductive

hypothesis to ψ and it follows that H ⊧ ¬ψ. Similarly, if ¬φ ∈ Φ then we
have ψ ∈ Φ, which implies that H ⊧ ψ and H ⊧ ¬φ.
Consider the case that φ = ⋀Ψ . If ⋀Ψ ∈ Φ then Ψ ⊆ Φ implies that

H ⊧ ψ, for all ψ ∈ Ψ , and we have H ⊧ ⋀Ψ . Analogously, if ¬⋀Ψ ∈ Φ
then there is some ψ ∈ Ψ with ¬ψ ∈ Φ. By inductive hypothesis it follows
that H ⊧ ¬ψ which implies that H ⊧ ¬⋀Ψ .

Suppose that φ = ∀xψ(x). If φ ∈ Φ then ψ(t) ∈ Φ, for all t ∈ T[Σ,∅].
Hence,H ⊧ ψ(t), for all t ∈ T[Σ,∅]. Since every element of H is denoted
by a term it follows that H ⊧ ψ(a), for all a ∈ H, that is, H ⊧ ∀xψ(x).
Finally, if¬∀xψ(x) ∈ Φ then there is some t ∈ T[Σ,∅] such that¬ψ(t) ∈
Φ. Therefore, we have H ⊧ ¬ψ(t) which implies that H ⊧ ¬∀xψ(x). The
remaining cases are proved analogously. ◻

It is quite tedious to check that a set Φ satisfies conditions (h1)–(h11).
The following lemma provides a simpler criterion for Φ being a Hintikka
set.

Lemma 4.7. Let Φ ⊆ FO0
∞ℵ0
[Σ] be a set of sentences with the following

properties :
(1) Every finite subset Φ0 ⊆ Φ is satisfiable.
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(2) For every sentence φ ∈ FO0
∞ℵ0
[Σ] we have φ ∈ Φ or ¬φ ∈ Φ.

(3) If ∃xφ(x) ∈ Φ then there exists some term t ∈ T[Σ,∅] such that
φ(t) ∈ Φ.

(4) If ⋁Ψ ∈ Φ where ∣Ψ ∣ ≥ ℵ0 then there is some ψ ∈ Ψ with ψ ∈ Φ.

(5) If ¬⋀Ψ ∈ Φ where ∣Ψ ∣ ≥ ℵ0 then there is some ψ ∈ Ψ with ¬ψ ∈ Φ.

Then Φ is a Hintikka set.

Proof. First we show that

(∗) if Φ0 ⊆ Φ is finite and Φ0 ⊧ φ then φ ∈ Φ.

Suppose otherwise. By (2), φ ∉ Φ implies ¬φ ∈ Φ. Hence, (1) implies that
Φ0 ∪ {¬φ} is satisfiable, and it follows that Φ0 ⊭ φ. A contradiction.

From (∗) we can conclude that Φ satisfies (h1), (h3), (h4), (h7), (h8),
and (h11). Furthermore, (1) implies (h2), and (3) and (∗) imply that
Φ satisfies (h9) and (h10).

It remains to prove (h5) and (h6). If Ψ = {ψ0 , . . . ,ψn−1} is finite
then ψ0 , . . . ,ψn−1 ∈ Φ implies, by (∗), that ⋀Ψ ∈ Φ. Hence, ¬⋀Ψ ∉ Φ.
Similarly, If ¬ψ0 , . . . ,¬ψn−1 ∈ Φ then it follows that ⋁Ψ ∉ Φ. If, on the
other hand, Ψ is infinite then (h5) and (h6) follow immediately from
(4) and (5). ◻

Hintikka sets can be used to prove the Compactness Theorem which
is the most fundamental result in first-order model theory. Most results
in the remainder of this book are based on this theorem. It is frequently
used to construct structures with some given properties. To do so, one de-
scribes the desired structure by a set of first-order formulae and then uses
the Compactness Theorem to prove that this set of axioms is satisfiable.

Theorem 4.8 (Compactness Theorem). Let Φ ⊆ FO[Σ, X] be a set of
first-order formulae and φ ∈ FO[Σ, X].

(a) Φ is satisfiable if and only if every finite subset Φ0 ⊆ Φ is satisfiable.

(b) Φ ⊧ φ if and only if there exists a finite subset Φ0 ⊆ Φ such that
Φ0 ⊧ φ.
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Proof. Let us first prove that (a) implies (b). We have

Φ ⊧ φ iff Φ ∪ {¬φ} is inconsistent
iff there exists a finite subset Φ0 ⊆ Φ such that

Φ0 ∪ {¬φ} is inconsistent
iff there exists a finite subset Φ0 ⊆ Φ such that Φ0 ⊧ φ .

It remains to prove (a). For the nontrivial direction, suppose that every
finite subset of Φ is satisfiable. By replacing every free variable in Φ by a
constant symbol we may assume that every formula in Φ is a sentence.
We have to construct a model of Φ. By Lemma 4.6, it is sufficient to find
a Hintikka set Ψ ⊇ Φ.
We construct Ψ in stages. Let κ ∶= ∣FO0[Σ]∣ = ∣Σ∣⊕ ℵ0. Let C be a set

containing κ+ constant symbols of each sort and set ΣC ∶= Σ ∪ C. We fix
an enumeration (φα)α<κ+ of FO0[ΣC] such that, for every ψ ∈ FO0[ΣC],
the set { α < κ+ ∣ φα = ψ } is cofinal in κ+.
We construct an increasing sequence (Ψα)α<κ+ of sets Φ ⊆ Ψα ⊆

FO0[ΣC] such that every finite subset of Ψα is satisfiable and such that
the limit Ψ ∶= ⋃α Ψα is a Hintikka set. By Lemma 4.7 it is sufficient to
ensure that

◆ φα ∈ Ψα+1 or ¬φα ∈ Ψα+1,
◆ If φα = ∃xϑ and φα ∈ Ψα+1 then ϑ(c) ∈ Ψα+1, for some constant

c ∈ C.
Set Ψ0 ∶= Φ. For limit ordinals δ, we set Ψδ ∶= ⋃α<δ Ψα . For the

successor step, suppose that Ψα has already been defined. If every finite
subset of Ψα ∪ {φα} is satisfiable then set ψ ∶= φα else set ψ ∶= ¬φα . We
claim that every finite subset of Ψα∪{ψ} is satisfiable. If ψ = φα then this
holds by choice of ψ. Hence, suppose that ψ = ¬φα and there is a finite
subset Γ0 ⊆ Ψα ∪ {¬φα} that is inconsistent. By construction there is
also a finite subset Γ1 ⊆ Ψα ∪{φα} which is inconsistent. Hence, Γ0 ⊧ φα
and Γ1 ⊧ ¬φα . It follows that Γ ∶= Γ0 ∪ Γ1 is a finite subset of Ψα with
Γ ⊧ φα ∧¬φα . Thus, Γ is inconsistent in contradiction to our assumption
on Ψα .
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We have found a set Ψα ∪ {ψ} that satisfies the first of our conditions.
If ψ is not of the form ∃xϑ then we can set Ψα+1 ∶= Ψα ∪ {ψ} and we
are done. Hence, suppose that ψ = ∃xϑ(x). Since ∣Ψα ∣ ≤ κ we can
find a constant symbol c ∈ C that does not appear in Ψα . We define
Ψα+1 ∶= Ψα∪{ψ, ϑ(c)}. Note that, since every finite subset of Ψα∪{∃xϑ}
is satisfiable so is every finite subset of Ψα+1. ◻

Exercise 4.1. Let φ ∈ FO and Φ, T ⊆ FO. Prove that, if φ ≡ Φ modulo T
then there exists a finite subset Φ0 ⊆ Φ such that φ ≡ ⋀Φ0 modulo T .

Exercise 4.2. LetKi , i ∈ I, be a family of first-order axiomatisable classes
such that,⋂i∈I0 Ki ≠ ∅, for every finite set I0 ⊆ I. Show that⋂i∈I Ki ≠ ∅.

Exercise 4.3. Let T be a first-order theory and A a structure. Prove that
A can be embedded into some model of T if, and only if, every finitely
generated substructure of A can be embedded into some model of T .

We conclude this section with some simple applications of the Com-
pactness Theorem. First, we show that first-order logic is not able to
count.

Lemma 4.9. Let Σ be an S-sorted signature and s ∈ S a sort. There exists
no set Φ ⊆ FO0[Σ] such that

A ⊧ Φ iff ∣As ∣ < ℵ0 , for all Σ-structures A .

Proof. For a contradiction, suppose that there is such a set Φ. Let

ψn ∶= ∃x0⋯∃xn−1⋀
i<k

x i ≠ xk

be the sentence expressing that there are at least n elements of sort s. We
claim that

Γ ∶= Φ ∪ {ψn ∣ n < ω }

is satisfiable. This yields the desired contradiction.
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By the Compactness Theorem, we only need to check that every finite
subset of Γ is satisfiable. If Γ0 ⊆ Γ is finite then there exists a number
k < ω such that

Γ0 ⊆ Φ ∪ {ψn ∣ n < k } .

Choose any finite Σ-structure A with ∣As ∣ ≥ k. Since A is finite we have
A ⊧ Φ. Furthermore,A ⊧ ψn , for all n < k. Hence,A is amodel of Γ0. ◻

Example. Let us show that there is no set of first-order formulae ex-
pressing that a graph is connected. Suppose that Φ ⊆ FO[E] is a set of
formulae such that

G ⊧ Φ iff G is a connected undirected graph .

We define formulae φn(x , y) saying that there exists a path of length at
most n from x to y by

φ0(x , y) ∶= x = y
and φn+1(x , y) ∶= φn(x , y) ∨ ∃z(Exz ∧ φn(z, y)) .

Let c, d be new constant symbols and set

Ψ ∶= Φ ∪ {¬φn(c, d) ∣ n < ω } .

Then Ψ is inconsistent since any model would be a connected graph that
does not contain a path from c to d. Let Ψ0 ⊆ Ψ be a finite subset. There
is some number k such that

Ψ0 ⊆ Φ ∪ {¬φn(c, d) ∣ n < k } .

Let Pk be the graph consisting of a single path with k edges where the
endpoints are denoted by c and d.

c Ð ●Ð ⋅ ⋅ ⋅Ð ●Ð d

Then we have Pk ⊧ Ψ0. Hence, every finite subset of Ψ is satisfiable and,
by the Compactness Theorem, it follows that Ψ has a model. A contra-
diction.
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Exercise 4.4. (a) Show that the class of all undirected, acyclic graphs is
first-order axiomatisable. (A graph is acyclic if it does not contain a path
v0 , v1 , . . . , vn−1 , vn , v0 where all the v i are distinct.)

(b) Show that the class of all undirected graph that are not acyclic is
not first-order axiomatisable.

(c) Use (b) to prove that the class of all undirected acyclic graphs is
not finitely first-order axiomatisable.

Lemma 4.10. The Compactness Theorem fails for FOκℵ0[Σ] if κ > ℵ0.

Proof. Let φn ∶= ∃x0⋯∃xn−1⋀i≠k x i ≠ xk and

φfin ∶=⋁{¬φn ∣ n < ω } .

The set Φ ∶= {φfin} ∪ {φn ∣ n < ω } is unsatisfiable but each of its finite
subsets has a model. ◻

Lemma 4.11. Let K be a class of Σ-structures. If both K and Str[Σ] ∖K
are first-order axiomatisable then the class K is finitely axiomatisable.

Proof. Let Φ+ and Φ− be sets such that

K =Mod(Φ+) and Str[Σ] ∖K =Mod(Φ−) .

Then Φ+ ∪ Φ− is inconsistent. Hence, there are finite subsets Φ+
0 ⊆ Φ+

and Φ−
0 ⊆ Φ− such that Φ+

0 ∪ Φ−
0 is inconsistent. Setting φ ∶= ⋀Φ−

0 it
follows that Φ+ ⊧ ¬φ−. Hence,

A ⊧ ¬φ− , for all A ∈ K .

Conversely, we have

A ⊧ φ− , for all A ∉ K .

Consequently, Mod(¬φ−) = K, as desired. ◻

Generalising the idea behind Lemma 4.9 we obtain a converse to the
Downward Löwenheim-Skolem Theorem.
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c2. Elementary substructures and embeddings

Theorem 4.12 (Upward Löwenheim-Skolem-Tarski Theorem).
Let T ⊆ FO0[Σ]. If there exists a sort s such that, for every n < ℵ0, T has
a model A with ∣As ∣ ≥ n then T has models A where ∣As ∣ has arbitrarily
large cardinality.

Proof. Suppose that T has, for every n < ℵ0, a model whose domain
of sort s has size at least n. Let κ be an arbitrary cardinal and fix a set
C ∶= { cα ∣ α < κ } of κ constant symbols of sort s such that Σ and C are
disjoint. We claim that the set

Φ ∶= T ∪ { c ≠ d ∣ c, d ∈ C , c ≠ d }

has a model. By the Compactness Theorem, it is sufficient to show that
every finite subset Φ0 ⊆ Φ is satisfiable. Since Φ0 is finite, there exists a
finite set C0 ⊆ C such that

Φ0 ⊆ T ∪ { c ≠ d ∣ c, d ∈ C0 , c ≠ d } .

By assumption, there exists a model A ⊧ φ with ∣As ∣ ≥ ∣C0∣. We can turn
it into a model of Φ0 by interpreting the constant symbols c ∈ C0 by
distinct elements of As . ◻

The next example shows that, again, the above theorem fails for FOκℵ0

with κ > ℵ0. (Another counterexample is given by Lemma c1.1.7.)

Example. Let φ ∈ FO be a sentence axiomatising the class of ordered
fields. The FOℵ1ℵ0 -sentence

ψ ∶= φ ∧ ∀x ⋁
n<ω

x < 1 +⋯ + 1

axiomatises the class of all archimedian ordered fields. It follows that
ψ has only models of cardinality κ with ℵ0 ≤ κ ≤ 2ℵ0 .

As an immediate consequence of the Upward Löwenheim-Skolem-
Tarski Theorem we obtain the result that infinite structures cannot be
characterised up to isomorphism in first-order logic.
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Corollary 4.13. If A is a structure with at least one infinite domain then
there exists no set Φ ⊆ FO such that

B ⊧ Φ iff B ≅ A .

5. Amalgamation
We can use the Upward Löwenheim-Skolem-Tarski Theorem to con-
struct elementary extensions of a single structure. In this section we
present a way to find a common elementary extension of several struc-
tures.

Definition 5.1. Let L be a logic.
(a) For sets Φ, ∆ ⊆ L of formulae, we define the set of all ∆-conse-

quences of Φ by

Φ⊧∆ ∶= Φ⊧ ∩ ∆ .

(b) Suppose that L is algebraic. For structures A and B and tuples
ā ⊆ A and b̄ ⊆ B, we write

⟨A, ā⟩ ≤∆ ⟨B, b̄⟩ : iff A ⊧ φ(ā) implies B ⊧ φ(b̄) ,
for all φ ∈ ∆ .

Theorem 5.2 (Amalgamation Theorem). Let B and C be Σ-structures,
∆ ⊆ FO, and ā ⊆ B, c̄ ⊆ C sequences such that

⟨C, c̄⟩ ≤∃∆ ⟨B, ā⟩ .

There exists an elementary extensions D ⪰ B and a ∆-map g ∶ C → D
with g(c̄) = ā.

⟪ā⟫B

B C

D

⊆ ā ↦ c̄

⪯ g
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Proof. By taking an isomorphic copy of C we may assume that ā = c̄ and
B ∩ C = ā. To find the desired structure D we prove that

T ∶=Th(BB) ∪Th∆(CC)

is satisfiable. By the Compactness Theorem, it is sufficient to show that
every finite subset T0 ⊆ T has a model. Given T0 ⊆ T set

φ(ā, d̄) ∶=⋀(T0 ∩Th∆(CC))

where d̄ ⊆ C ∖ ā. Suppose, for a contradiction, that

Th(BB) ⊧ ¬∃ ȳφ(ā, ȳ) .

Then we have ⟨B, ā⟩ ⊧ ¬∃ ȳφ(ā, ȳ) and, since ∃ ȳφ ∈ ∃∆, it follows
that ⟨C, ā⟩ ⊧ ¬∃ ȳφ(ā, ȳ). Consequently, we have Th∆(CC) ⊧ ¬φ(ā, d̄).
Contradiction.

Since Th(BB) is complete it follows that Th(BB) ⊧ ∃ ȳφ(ā, ȳ). Thus,
there exists some tuple b̄ ⊆ B such that BB ⊧ φ(ā, b̄). The structure
⟨BB , b̄⟩ ⊧ T0 is our desired model.
We have shown that there exists a model D ⊧ T . Since D ⊧Th(BB)

there exists an elementary embedding h ∶ B → D and, by taking iso-
morphic copies, we may assume that D ⪰ B. We define a function
g ∶ C → D by setting g(d) ∶= dD, for d ∈ C. (dD is the value of the
constant symbol d in D.) Since D ⊧Th∆(CC) it follows that g ∶ C → D
is a ∆-map. Furthermore, we have g(c̄) = c̄D = ā. ◻

Corollary 5.3. If A ≡ B then there exists a structure C such that A ⪯ C
and B ⪯ C.

Let us record a special instance of the Amalgamation Theorem that
will be used in the next section.

Corollary 5.4. Let B and C be Σ-structures and ā ⊆ B a sequence of
elements. If f ∶ ⟨ā⟩→ C is a homomorphism such that

⟨C, f ā⟩ ≤∃ ⟨B, ā⟩ ,
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5. Amalgamation

then there exists an elementary extension D ⪰ B and an embedding
g ∶ C → D such that g f (ā) = ā.

Lemma 5.5. Let T , ∆ ⊆ FO where ∆ is closed under disjunctions. Then
A ⊧ T⊧∆ if, and only if, there exists a model B ⊧ T such that B ≤∆ A.

Proof. (⇐) Obviously, B ⊧ T⊧∆ and B ≤∆ A implies that A ⊧ T⊧∆ .
(⇒) Set Φ ∶=Th∆¬(A) where ∆¬ ∶= {¬φ ∣ φ ∈ ∆ }. It is sufficient to

find a model B of Ψ ∶= Φ ∪ T . If Ψ is unsatisfiable then there exists a
finite subset {φ0 , . . . , φk} ⊆ Φ such that

T ⊧ ¬φ0 ∨⋯ ∨ ¬φk .

Suppose that φ i = ¬ψ i , for ψ i ∈ ∆. Then T ⊧ ψ0 ∨ ⋅ ⋅ ⋅ ∨ ψk implies that
ψ0 ∨ ⋅ ⋅ ⋅ ∨ ψk ∈ T⊧∆ and, hence, A ⊧ ψ0 ∨ ⋅ ⋅ ⋅ ∨ ψk in contradiction to
A ⊧ φ i , for all i ≤ k. ◻

Corollary 5.6. Let T , ∆ ⊆ FO where ∆ is closed under disjunctions, and
set ∆¬ ∶= {¬φ ∣ φ ∈ ∆ }. For every model A ⊧ T⊧∀∆ , there exists a model
B ⊧ T and a ∆¬-map g ∶ A→ B.

Proof. Suppose that A ⊧ T⊧∀∆ . By Lemma 5.5, we can find a model C ⊧ T
such that A ≤∃∆¬ C. By the Amalgamation Theorem, it follows that there
exists some elementary extension B ⪰ C and a ∆¬-map g ∶ A→ B. ◻

We can amalgamate several structures by iterating the Amalgamation
Theorem.

Lemma 5.7. Let Bi , i < α, be a family of structures and suppose that
A ⊆ Bi , for all i < α, is a common substructure with universe A = B i ∩Bk ,
for all i ≠ k. There exists a structure C such that Bi ⪯ C, for all i < α.

Proof. We construct an elementary chain (Ci)i<α such that Bi ⪯ Ci ,
for i < α. The structure C ∶= ⋃i<α Ci has the desired properties since
Bi ⪯ Ci ⪯ C.
We define Ci by induction on i. We start with C0 ∶= B0 and, for limit

ordinals δ, we set Cδ ∶= ⋃i<δ Ci . For the successor step, we can apply the
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c2. Elementary substructures and embeddings

Amalgamation Theorem to obtain a common elementary extension Ci+1
of Ci and Bi+1.

A

Ci Bi+1

Ci+1

⪯ ⪯

⪯ ⪯

◻

We conclude this section with an amalgamation theorem for expan-
sions instead of extensions. We also record two applications.

Theorem 5.8. Let Γ0 and Γ1 be signatures and set Σ ∶= Γ0 ∩ Γ1. Suppose
that Ai is a Γi -structure, for i < 2, and let ā ⊆ A0 ∩ A1 be a sequence such
that

⟨A0∣Σ , ā⟩ ≡ ⟨A1∣Σ , ā⟩ .

Then there exists a (Γ0∪Γ1)-structureBwith A0 ⪯ B∣Γ0 and an elementary
embedding g ∶ A1 → B∣Γ1 with g(ā) = ā.

Proof. We construct structures An
i for i < 2 and n < ω as follows. We

start with A0
i ∶= Ai . If An

0 and An
1 are already defined then we apply the

Amalgamation Theorem twice. First, we use it to obtain an elementary
extension An+1

0 ⪰ An
0 and an elementary embedding An

1 ∣Σ → An+1
0 ∣Σ .

Thenwe construct an elementary extension An+1
1 ⪰ An

1 and an elementary
embedding An+1

0 ∣Σ → An+1
1 ∣Σ .

⟪ā⟫

A0
0

A0
1

A1
0

A1
1

A2
0

A2
1

⋯

⋯

⪯

⪯

⪯

⪯
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Let Bi ∶= ⋃n An
i . The elementary embeddings induce an isomorphism

h ∶ B0∣Σ → B1∣Σ . We use h to expand the Γ0-structure B0 to a (Γ0 ∪ Γ1)-
structure B by setting

ξB ∶= h−1[ξB1] , for ξ ∈ Γ1 ∖ Σ .

Since B∣Γ0 ⪰ A0 the claim follows. ◻

Corollary 5.9. Let T ⊆ FO0[Σ] and A a Σ0-structure where Σ0 ⊆ Σ. We
have A ⊧ T⊧ ∩ FO0[Σ0] if and only if A ⪯ B∣Σ0 for some model B of T.

Proof. (⇐) is trivial. For (⇒), we set ∆ ∶= FO0[Σ0] and we assume that
A ⊧ T⊧∆ . We can use Lemma 5.5 to find a model C ⊧ T such that C ≤∆ A.
By choice of ∆ this implies that C∣Σ0 ≡ A∣Σ0 . Applying Theorem 5.8 we
obtain an elementary extension B ⪰ C and the desired elementary map
g ∶ A→ B∣Σ0 . ◻

The second application is the Interpolation Theorem of Craig. We will
prove a much more general version in Section c5.5.

Theorem 5.10 (Craig). Let Γ0 and Γ1 be signatures and set Σ ∶= Γ0 ∩ Γ1.
Suppose that φ0 ⊧ φ1 where φ0 ∈ FO0[Γ0] and φ1 ∈ FO0[Γ1]. Then there
exists a formula ψ ∈ FO0[Σ] such that

φ0 ⊧ ψ and ψ ⊧ φ1 .

Proof. If φ0 is inconsistent, we can set ψ ∶= false. Hence, suppose that
φ0 has a model A0 and set Ψ ∶=Th(A0∣Σ).

If Ψ ⊧ φ1, then we can use the Compactness Theorem to find a finite
subset Ψ0 ⊆ Ψ with Ψ0 ⊧ φ1. Hence, ψ ∶= ⋀Ψ0 is the desired formula.

Suppose that Ψ ⊭ φ1. Then Ψ ∪ {¬φ1} has a model A1. Since

Th(A1∣Σ) = Ψ =Th(A0∣Σ) ,

we can use Theorem 5.8, to find a (Γ0 ∪ Γ1)-structure B with

Th(B∣Γ0) =Th(A0) and Th(B∣Γ1) =Th(A1) .

In particular, we have B ⊧ φ0 and B ⊧ ¬φ1. Consequently, φ0 ⊭ φ1.
A contradiction. ◻
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1. Types

In the same way that we can classify structures by their theory, we can
distinguish elements of a structure by the formulae they satisfy. Such
theories of elements are called types.

Definition 1.1. Let L be a logic.

(a) A (partial) L-type is a satisfiable set of L-formulae.

(b) An L-type p is complete if it is a complete L-theory.

(c) We denote by S(L) the set of all complete L-types.

(d) For Φ ⊆ L, we define the set

⟨Φ⟩L ∶= { p ∈ S(L) ∣ Φ ⊆ p}

of all types containing Φ. Usually we will omit the index L and
just write ⟨Φ⟩. Furthermore, for single formulae φ we write ⟨φ⟩
instead of ⟨{φ}⟩.

Example. For boolean logic BL(B) introduced in Section c1.1, interpret-
ations are ultrafilters and the theory of an ultrafilter u is u itself. Hence,

S(BL(B)) = {Th(u) ∣ u ∈ spec(B) }
= { u ∣ u ∈ spec(B) } = spec(B) .

Definition 1.2. Let L be an algebraic logic and s̄ a sequence of sorts.
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c3. Types and type spaces

(a) Let M be a Σ-structure. The L-type of a tuple ā ∈ M s̄ is the set

tpL(ā/M) ∶= {φ(x̄) ∈ L s̄[Σ] ∣M ⊧ φ(ā) } .

If the structure M is known from the context we will omit it and simply
write tpL(ā). Similarly, we omit the index L in case L = FO.

(b) Let T ⊆ L0[Σ] be an L-theory.An s̄-type of T is an L-type p ⊆ L s̄[Σ]
such that p ∪ T is consistent. The set of all complete s̄-types of T is

S s̄
L(T) ∶= { p ∈ S(L s̄[Σ]) ∣ T ⊆ p} .

An α-type of T , for an ordinal α, is an s̄-type of T where ∣s̄∣ = α. The set
of all complete α-types is

Sα
L(T) ∶=⋃{ S s̄

L(T) ∣ ∣s̄∣ = α } .

(c) We also need types with parameters. If M is a model of T and
U ⊆ M then we say that a type of T(U) is a type over U. In particular,
the set tpL(ā/U) ∶= tpL(ā/MU) is the L-type of ā over U . We set

S s̄
L(U) ∶= S s̄

L(T(U)) .

To simplify notation, we define S<ω
L (U) ∶= ⋃n<ω Sn

L(U). Again, we usu-
ally omit the index if L = FO.

(d) An s̄-type p over U is realised in M if there is some tuple ā ∈ M s̄

such that p ⊆ tpL(ā/U). Otherwise, we say that M omits p.

Example. Let N = ⟨ω, s, 0⟩ where s(n) ∶= n + 1 is the successor function.
We have

S1(∅) = {p0 , p1 , . . . , p∞}

where, for n < ω,

pn ∶= tp(n) ⊧ x0= sn(0) ,

and p∞ ⊧ x0 ≠ sn(0), for all n. Hence, p∞ is not realised in N.
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Example. Consider ⟨Q, <⟩. The elements of S1(Q) correspond to the set
of cuts. For every cut ⟨A, B⟩ ofQ, i.e., every partition A∪B = Q such that
A is an initial segment and B is a final one, there exists a non-realised
type p such that

p ⊧ x > a for all a ∈ A ,
and p ⊧ x < b for all b ∈ B .

It follows that ∣S1(Q)∣ = 2ℵ0 . Depending on whether A has a maximal
element or B has a minimal one, we obtain the following classification.

(realised) For each a ∈ Q, we have a type p ⊧ x = a, i.e., p = tp(a/Q).
(a+) For each a ∈ Q, there exists a type p of an element ‘immediately

above a’. That is,

p ⊧ x > b for all b ≤ a ,
and p ⊧ x < b for all b > a .

(a−) Similarly, for each a ∈ Q, we have the type of an element ‘imme-
diately below a’.

(+∞) We have one type p of an infinite positive element. That is,

p ⊧ x > a for all a ∈ Q.

(−∞) Similarly, there is the type of an infinite negative element.
(irrational) Finally, for each cut ⟨A, B⟩ such that A has no maximal

element and B has no minimal one, there is one type p such that

p ⊧ x > a for all a ∈ A ,
and p ⊧ x < b for all b ∈ B .

Exercise 1.1. Let T ∶=Th(Z) where Z ∶= ⟨Z, s⟩ and s ∶ x ↦ x + 1 is the
successor function. Determine Sn(T), for every n < ω. In particular,
compute ∣Sn(T)∣. Hint. Note that,modulo T , every formula is equivalent
to a quantifier-free one.

The set of types of L∣Φ and L/Φ can be computed as follows.
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Lemma 1.3. Let L be a logic and Φ ⊆ L.

(a) S(L/Φ) = ⟨Φ⟩L ⊆ S(L) .

(b) S(L∣Φ) = { p ∩ Φ ∣ p ∈ S(L) } .

Proof. (a) We have

p ∈ S(L/Φ) iff p =ThL/Φ(J) for some J ∈ModL(Φ)
iff p =ThL(J) for some J ⊧ Φ
iff p ∈ S(L) and Φ ⊆ p .

(b) We have

S(L∣Φ) = {ThL∣Φ(J) ∣ J an L-interpretation}

= {ThL(J) ∩ Φ ∣ J an L-interpretation}

= { p ∩ Φ ∣ p ∈ S(L) } . ◻

The relationship between a logic L and its set of types S(L) is similar
to that between a boolean algebra B and its spectrum spec(B). In fact,
if L is boolean closed there exists an embedding S(L)→ spec(Lb(L)).

Lemma 1.4. Let L be a logic that is closed under disjunction and conjunc-
tion and that contains an unsatisfiable formula.

(a) If Φ ⊆ L then Φ⊧ is a filter of ⟨L,⊧⟩ and Φ⊧/≡ is a filter of Lb(L).

(b) Every complete L-theory T is an ultrafilter of ⟨L,⊧⟩.

Proof. Since (a) is obvious, we only need to prove (b). By (a), we know
that T = T⊧ is a filter. Since there is an unsatisfiable formula, this filter
is proper.

To prove that T is an ultrafilter consider a disjunction φ∨ψ ∈ T . Since
T is complete there exists an interpretation J with ThL(J) = T . Hence,
J ⊧ φ ∨ ψ implies that J ⊧ φ or J ⊧ ψ. In the former case we have φ ∈ T
and, otherwise, we have ψ ∈ T . ◻
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Remark. If u is a proper filter of Lb(L) then the finite intersection prop-
erty implies that every finite subset of u is satisfiable.

In general the converse of statement (b) is not true, but there are some
logics where every ultrafilter is a type. We have already seen in Section 1
that this is the case for boolean logic. A more important example of this
phenomenon is first-order logic.

Lemma 1.5. Every ultrafilter u of ⟨FO[Σ, X],⊧⟩ is a complete type.

Proof. If u is an ultrafilter, it has the finite intersection property. Hence,
every finite subset Φ ⊆ u is satisfiable. By the Compactness Theorem it
follows that u is satisfiable. Consequently, u is a type. Since FO is boolean
closed we can use Theorem b2.4.11 and Lemma c1.3.4 (d) to show that
u is complete. ◻

Corollary 1.6. We have

S(FO[Σ, X]) = spec(⟨FO[Σ, X],⊧⟩) .

Remark. In the next section we will see that the Stone topology on the
spectrum induces a topology on the type space where the closed sets are
precisely those of the form ⟨Φ⟩, for Φ ⊆ FO. The name ‘Compactness
Theorem’ stems from the fact that this theorem implies that the topology
obtained in this way is compact.

For logics where the Compactness Theorem fails, there are ultrafilters
that do not correspond to types. In fact, the Compactness Theorem is
equivalent to the statement of Lemma 1.5.

Example. There are ultrafilters of Lb(FOℵ1ℵ0[Σ]) which are not types.
Let ψ ∶= ⋀n<ω φn where φn is the formula stating that there are at least n
elements. The formula ¬ψ ∧ φn is satisfiable, for every n. Hence, the
set {¬ψ} ∪ {φn ∣ n < ω } has the finite intersection property and there
exists an ultrafilter

u ⊇ {¬ψ} ∪ {φn ∣ n < ω } .

This ultrafilter is not a type since it is not satisfiable.
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This example shows that, for κ > ℵ0, the inclusion S(FOκℵ0[Σ, X]) ⊂
spec(⟨FOκℵ0[Σ, X],⊧⟩) is proper. We can describe the subset of the
spectrum corresponding to S(FOκℵ0[Σ, X]) as follows. Using Chang’s
reduction we can find a signature Σ+ ⊇ Σ and a first-order theory T ⊆
FO[Σ+ , X] such that

spec(⟨FOκℵ0[Σ, X],⊧⟩) ≅ S(T) .

Then we can characterise S(FOκℵ0) as a subset of S(T) by describing
the types in S(T) ∖ S(FOκℵ0).

Lemma 1.7. Let φ ∈ FOκ+ℵ0[Σ, X] and ∣Σ∣ ≤ κ. There exists a signature
Σ+ ⊇ Σ and set C of (partial) FO[Σ+ , X]-types such that

M ⊧ φ iff there is some Σ+-expansion of M that omits
every type in C.

Furthermore, we can choose Σ+ and C of size at most κ.

Proof. By Lemma c1.4.12, there exists an FOκℵ0 -theory Tφ such that
M ⊧ φ if, and only if, some expansion of M satisfies Tφ . We define a
set C of types such that M+ ⊧ Tφ iff M+ omits all types in C.

For every first-order formula ϑ ∈ Tφ , we define the type

pϑ ∶= {¬ϑ} .

Every formula ϑ ∈ Tφ ∖ FO is of the form ϑ = ∀x̄⋁i<λ ψ i . For these
formulae, we set

pϑ ∶= {¬ψ i ∣ i < λ } .

By construction, a structure satisfies ϑ ∈ Tφ if, and only if, it omits pϑ .
Consequently, we can set C ∶= { pϑ ∣ ϑ ∈ Tφ } . ◻
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2. Type spaces
In this section we investigate the analogy between type spaces and spec-
tra. We start by defining a topology on the set of type S(L) that is ana-
logous to the Stone topology of a spectrum.

Definition 2.1. The type space of a logic L is the topological space S(L)
with universe S(L) where the basic closed sets are of the form

⟨φ0⟩L ∪ ⋅ ⋅ ⋅ ∪ ⟨φn−1⟩L , for n < ω and φ0 , . . . , φn−1 ∈ L .

If L is closed under disjunctions, the closed sets can be written in the
simpler form ⟨Φ⟩L , for Φ ⊆ L.

Lemma 2.2. If L is closed under disjunctions, every nonempty closed set
of S(L) is of the form ⟨Φ⟩L , for Φ ⊆ L.

Proof. Let C ∶= {∅} ∪ { ⟨Φ⟩L ∣ Φ ⊆ L }. Since ⟨Φ⟩L = ⋂φ∈Φ⟨φ⟩L , every
set of C is closed in S(L). To prove the converse, it is sufficient to show
that C forms a topology. Since ⋂i⟨Φ i⟩L = ⟨⋃i Φ i⟩L , C is closed under
arbitrary intersections. Furthermore, note that ∅ ∈ C and S(L) = ⟨∅⟩L ∈
C.

Hence, it remains to show that C is closed under finite unions. We
claim that

⟨Φ⟩L ∪ ⟨Ψ⟩L = ⟨{φ ∨ ψ ∣ φ ∈ Φ, ψ ∈ Ψ }⟩L .

For the non-trivial inclusion, let p ∈ ⟨{φ ∨ ψ ∣ φ ∈ Φ, ψ ∈ Ψ }⟩L . We
have to show that p ∈ ⟨Φ⟩L ∪ ⟨Ψ⟩L . If p ∈ ⟨Ψ⟩L , we are done. Hence,
suppose there is some formula ψ ∈ Ψ ∖ p. For every φ ∈ Φ, we have
φ ∨ ψ ∈ p. Since ψ ∉ p it follows as in the proof of Lemma 1.4 that φ ∈ p.
Therefore, Φ ⊆ p. ◻

For first-order logic, we have seen in Corollary 1.6 that types and
ultrafilters coincide. Since the definitions of the respective topologies
are also the same, it follows that the type space of a first-order logic is
just its spectrum.

533



c3. Types and type spaces

Theorem 2.3. We have

S(FO[Σ, X]) = spec(⟨FO[Σ, X],⊧⟩) .

In particular, the type space S(FO[Σ, X]) is a Stone space.

Proof. By Corollary 1.6 both spaces have the same universe and, accord-
ing to Lemma 2.2, the closed sets are also the same. ◻

Example. Let T ∶=Th(C) where C ∶= ⟨2ω , (Pn)n<ω⟩ and

Pn ∶= { α ∈ 2ω ∣ α(n) = 1} .

Then S1(T) = { pα ∣ α ∈ 2ω } where

pα ⊧ Pnx for n ∈ α−1(1) ,
pα ⊧ ¬Pnx for n ∈ α−1(0) .

The basic closed sets of S1(T) are of the form

⟨Pi0x ∧ ⋅ ⋅ ⋅ ∧ Pik x ∧ ¬Pj0x ∧ ⋅ ⋅ ⋅ ∧ ¬Pjm x⟩ .

Since these sets are clopen it follows that the open sets are of the form

OW ∶= { pα ∣ there is some w ≺ α with w ∈W }

with W ⊆ 2<ω . Consequently, the type space S1(T) is homeomorphic
to the Cantor discontinuum.

For logics different from first-order logic, the type spaces usually are
not Stone spaces.

Definition 2.4. A topological space X is a T0-space if, for every pair
x , y ∈ X of distinct points, there exists a closed set C such that

x ∈ C and y ∈ X ∖ C , or x ∈ X ∖ C and y ∈ C .

Lemma 2.5. Let L be a logic. The type space S(L) is a T0-space.

534



2. Type spaces

Proof. If p, q ∈ S(L) are distinct types, there exists a formula φ such that
φ ∈ p ∖ q or φ ∈ q ∖ p. Consequently, p ∈ ⟨φ⟩ and q ∈ S(L) ∖ ⟨φ⟩, or
p ∈ S(L) ∖ ⟨φ⟩ and q ∈ ⟨φ⟩. ◻

As an application of the Stone topology of the type space, consider the
question of whether a first-order theory T has a model that realises all
types in a given set X but no other ones. This is not possible for every set
of types. The next lemma provides a first, topological condition X has to
satisfy.

Lemma 2.6. Let T be a complete first-order theory, M a model of T ,
U ⊆ M, s̄ a sequence of sorts, and let X be the set of all s̄-types over U that
are realised in M. Then X is dense in Ss̄(U).

Proof. For a contradiction, suppose that there exists a type p ∈ S s̄(U)
with p ∉ cl(X). Thenwe can find some formula φ(x̄) over U with p ∈ ⟨φ⟩
and ⟨φ⟩ ∩ X = ∅. It follows that M ⊧ ¬φ(ā), for all ā ∈ M s̄ . Hence,
M ⊧ ∀x̄¬φ(x̄) which implies that ∀x̄¬φ(x̄) ∈ T ⊆ p. Consequently,
φ(x̄) ∧ ∀x̄¬φ(x̄) ∈ p and p is inconsistent. Contradiction. ◻

Example. Let N ∶= ⟨ω, s, 0⟩ where s ∶ n ↦ n+ 1 is the successor function.
We have seen on page 528 that the types of Th(N) are pn ∶= tp(n),
for n < ω, and the type p∞ of an infinite element. The set of realised
types is X ∶= { pn ∣ n < ω }, while p∞ is not realised. Note that a set
C ⊆ S(∅) with p∞ ∉ C is closed if, and only if, it is finite. Hence, p∞ is
an accumulation point of X and X is dense in S1(∅).

For most logics, the type space is not a spectrum. But, for a boolean
closed logic L, we can at least prove the existence of an embedding
S(L)→ spec(Lb(L)). It turns out that this map is a homeomorphism
if, and only if, the type space is compact.

Lemma 2.7. Let L be a boolean closed logic. The type space S(L) is
compact if, and only if, every ultrafilter of ⟨L,⊧⟩ is a complete type.

Proof. (⇐) If every ultrafilter is a type, then S(L) = spec(⟨L,⊧⟩). Since
the topologies of both spaces also coincide, they are homeomorphic.
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Consequently, the compactness of spec(⟨L,⊧⟩) implies the compactness
of S(L).
(⇒) Let u be an ultrafilter of ⟨L,⊧⟩. First, we show that u is satisfiable.

For a contradiction, suppose otherwise. Then

∅ = ⟨u⟩L = ⋂
φ∈u
⟨φ⟩L .

Since S(L) is compact, there is a finite subset Φ0 ⊆ u such that

∅ = ⋂
φ∈Φ0

⟨φ⟩L .

Hence, ⋀Φ0 ≡ � and Φ0 ⊆ u implies � ∈ u. A contradiction.
Consequently, there is some model J ⊧ u. Since L is boolean closed, it

follows that ThL(J) = u. Therefore, u is a complete type. ◻

Lemma 2.8. Let L be a boolean closed logic.
(a) The function

h ∶ S(L)→ spec(Lb(L)) ∶ p↦ p/≡

is continuous and injective.
(b) h is a homeomorphism if, and only if, S(L) is compact.

Proof. (a) First, note that, according to Lemma 1.4, for every p ∈ S(L),
h(p) = p/≡ is indeed an ultrafilter of Lb(L).

For injectivity, consider types p ≠ q. By symmetry, we may assume
that there is some formula φ ∈ p ∖ q. If h(p) = h(q) then

[φ]≡ ∈ p/≡ = h(p) = h(q) = q/≡

would imply that φ ∈ q. A contradiction.
To show that h is continuous, let Φ ⊆ Lb(L). Then

h−1[⟨Φ⟩Lb(L)] = { p ∈ S(L) ∣ Φ ⊆ p/≡}

= { p ∈ S(L) ∣ ⋃Φ ⊆ p} = ⟨⋃Φ⟩L

536



2. Type spaces

is closed.
(b) (⇒) If h is a homeomorphism, then S(L) ≅ spec(Lb(L)) is a

Stone space and, hence, compact.
(⇐) By (a), it remains to show that h is closed and surjective. For

surjectivity, fix an ultrafilter u ∈ spec(Lb(L)). Then ⋃ u is an ultrafilter
of ⟨L,⊧⟩. Hence, Lemma 2.7 implies that ⋃ u ∈ S(L). Consequently,

h(⋃ u) = (⋃ u)/≡ = u ,

as desired.
It remains to prove that h is closed. By Lemma b5.2.3, it is sufficient to

show that h[⟨Φ⟩L] is closed, for every Φ ⊆ L. For Φ ⊆ L, it follows that

h[⟨Φ⟩L] = { p/≡ ∣ p ∈ S(L), Φ ⊆ p}

= { p/≡ ∣ p ∈ S(L), Φ/≡ ⊆ p/≡}

= ⟨Φ/≡⟩Lb(L) ∩ rng h
= ⟨Φ/≡⟩Lb(L)

is closed. ◻

Corollary 2.9. Let L be a boolean closed logic. The following conditions
are equivalent :

(1) S(L) is compact.
(2) S(L) ≅ spec(Lb(L)) .
(3) Every ultrafilter of ⟨L,⊧⟩ is a complete type.

Many results of Section b5.6 on spectra generalise to type spaces. In
particular, the type space operation L ↦ S(L) is a functor form the
category of logics to the category of topological spaces.

Definition 2.10. Let µ ∶= ⟨α, β⟩ ∶ L0 → L1 be a morphism of logics. We
define a function S(µ) by setting

S(µ)(p) ∶= α−1[p] , for p ∈ S(L1) .
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Example. For the inclusion morphism i ∶ L∣Φ → L and the localisation
morphism λ ∶ L → L/Φ from Lemma c1.6.14, we obtain

S(i)(p) = p ∩ Φ and S(λ)(p) = p .

Proposition 2.11. Let µ ∶= ⟨α, β⟩ ∶ ⟨L0 ,K0 ,⊧⟩→ ⟨L1 ,K1 ,⊧⟩ be a morph-
ism of logics.

(a) S(µ) is the unique function that makes the following diagram
commute:

K1 K0

S(L1) S(L0)

β

ThL1 ThL0

S(µ)

(b) S(µ) ∶ S(L1)→ S(L0) is continuous.

(c) If µ is an embedding then S(µ) is surjective.

(d) If α is surjective then S(µ) is injective.

(e) If α is surjective and rng β = ModL0(Φ), for some Φ ⊆ L0, then
S(µ) is closed and injective.

(f) If S(µ) is surjective, then Lb(µ) ∶ Lb(L0)→ Lb(L1) is injective.

Proof. (a) We have seen in Lemma c1.5.12 (c) that S(µ)○ThL1 =ThL0 ○β.
In particular, rng S(µ) ⊆ rng ThL0 = S(L0) and the above diagram
commutes. For uniqueness, note that ThL1 ∶ K1 → S(L1) is surjective.
Hence, for every function f making the above diagram commute,

S(µ) ○ThL1 =ThL0 ○ β = f ○ThL1 implies S(µ) = f ,

by Lemma a2.1.10.
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(b) For every φ ∈ L0, we have

p ∈ S(µ)−1[⟨φ⟩L0] iff S(µ)(p) = α−1[p] ∈ ⟨φ⟩L0

iff φ ∈ α−1[p]

iff α(φ) ∈ p iff p ∈ ⟨α(φ)⟩L1 .

Hence, S(µ)−1[⟨φ⟩L0] = ⟨α(φ)⟩L1 . The claim follows by Lemma b5.2.3
since the sets ⟨φ⟩L0 , for φ ∈ L0, form a closed subbase of the topology
of S(L0).

(c) Since β and ThL0 are surjective, so is ThL0 ○ β = S(µ) ○ ThL1 .
Consequently, S(µ) is also surjective.

(d) Suppose that α is surjective and let p, q ∈ S(L1) be types such that
S(µ)(p) = S(µ)(q). Then α−1[p] = α−1[q] implies, by Lemma a2.1.10,
that

p = α[α−1[p]] = α[α−1[q]] = q .

(e) We have already seen in (d) that S(µ) is injective. To show that it
is closed, it is sufficient, by Lemma b5.2.3, to prove that S(µ)[⟨φ⟩L1] is
closed, for every φ ∈ L1. We claim that

S(µ)[⟨φ⟩L1] = ⟨Φ ∪ α−1(φ)⟩L0 .

(⊆) Let p ∈ ⟨φ⟩L1 and fix an L1-interpretation J with ThL1(J) = p.
Then β(J) ∈ rng β = ModL0(Φ) implies Φ ⊆ ThL0(β(J)) = S(µ)(p).
Furthermore, φ ∈ p implies α−1(φ) ⊆ α−1[p] = S(µ)(p). Consequently,
S(µ)(p) ∈ ⟨Φ ∪ α−1(φ)⟩L0 .
(⊇) Let p ∈ ⟨Φ ∪ α−1(φ)⟩L0 and let J0 be an L0-interpretation with

ThL0(J0) = p. Then J0 ⊧ Φ and rng β = ModL0(Φ) implies that there
is some L1-interpretation J with β(J) = J0. Set q ∶=ThL1(J). Since α is
surjective, we have

α−1(φ) ⊆ p ⇒ β(J) ⊧ α−1(φ)
⇒ J ⊧ α[α−1(φ)] = {φ} ⇒ φ ∈ q .
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Hence, q ∈ ⟨φ⟩L1 and S(µ)(q) = p.
(f) Let φ,ψ ∈ L0 be formulae with α(φ) ≡L1 α(ψ). We claim that

φ ≡L0 ψ. By symmetry, it is sufficient to show that φ ⊧ ψ.
Let J be an L0-interpretation with J ⊧ φ. Since S(µ) is surjective,

there is some type p ∈ S(L1) with S(µ)(p) =ThL0(J). Consequently,

φ ∈ThL0(J) = S(µ)(p) = α−1[p] implies α(φ) ∈ p .

Since α(ψ) ≡L1 α(φ), it follows that α(ψ) ∈ p. Hence, ψ ∈ α−1(p) =
ThL0(J) and J ⊧ ψ. ◻

Corollary 2.12. S is a contravariant functor from Logi$ to Top0, the cat-
egory of all T0-spaces.

Corollary 2.13. Let µ ∶ L0 → L1 be a morphism of logics.
(a) If µ is an embedding then S(µ) is a continuous surjection.
(b) If µ is an epimorphism then S(µ) is a continuous injection.
(c) If µ is an isomorphism then S(µ) is a homeomorphism.

We can strengthen statement (c) of this corollary as follows.

Corollary 2.14. Let µ = ⟨α, β⟩ ∶ L0 → L1 be a morphism of logics where
α and β are surjective. Then S(µ) ∶ S(L1) → S(L0) is a homeomorph-
ism.

Proof. As µ is an embedding, Corollary 2.13 (a) implies that S(µ) is
continuous and surjective. Furthermore, rng β =ModL0(∅). Therefore,
we can use Proposition 2.11 (e) to show that S(µ) is closed and injective.

◻

Corollary 2.15. Let L be a logic, Φ ⊆ L, and λ ∶ L → L/Φ the localisation
morphism. The function

S(λ) ∶ S(L/Φ)→ S(L) ∶ p↦ p

is continuous, closed, and injective.
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Proof. Note that λ = ⟨id, j⟩ where j ∶ ModL(Φ) → ModL(∅) is the
inclusion map. Since rng j = ModL(Φ), the claim follows by Proposi-
tion 2.11 (e). ◻

Example. In analogy to boolean logic, we define the Lindenbaum quo-
tient Q(L) of a logic L by

Q(L) ∶= ⟨Lb(L),S(L),⊧⟩

where, for p ∈ S(L) and φ ∈ L,

p ⊧ [φ]≡ : iff φ ∈ p .

We can turn Q into a functor Q ∶ Logi$ → Logi$ by setting, for a
morphism µ ∶ L0 → L1,

Q(µ) ∶= ⟨Lb(µ),S(µ)⟩ ∶ Q(L0)→ Q(L1) .

The functorQ is idempotent in the sense that there exists a natural
isomorphism η ∶ Q ○Q → Q. This natural isomorphism is defined as
follows. For p ∈ S(L), we have

ThQ(L)(p) = { [φ]≡ ∣ φ ∈ p} = p/≡ .

Hence,

S(Q(L)) = {ThQ(L)(p) ∣ p ∈ S(L) } = { p/≡ ∣ p ∈ S(L) } .

Since p/≡ = q/≡ implies p = q, it follows that the function

β ∶ S(L)→ S(Q(L)) ∶ p↦ p/≡

is a homeomorphism. Furthermore, since [[φ]≡]≡ = {[φ]≡}, the map

α ∶ Lb(Q(L))→ Lb(L) ∶ [[φ]≡]≡ ↦ [φ]≡
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is awell-defined isomorphism of partial orders. Consequently,we obtain
an isomorphism of logics

ηL ∶= ⟨α, β⟩ ∶ Q(Q(L))→ Q(L) .

Since, for every morphism µ ∶ L0 → L1, we have

ηL1 ○Q(Q(µ)) = Q(µ) ○ ηL0 ,

it follows that (ηL)L is a natural isomorphism.

For boolean closed logics where the type space is compact and, hence,
homeomorphic to the spectrum of the Lindenbaum algebra, we can
strengthen Corollary 2.13 (a) as follows.

Lemma 2.16. Let L0 and L1 be boolean closed logics where S(L1) is
compact. If µ ∶ L0 → L1 is an embedding, S(µ) ∶ S(L1) → S(L0) is
continuous, closed, and surjective.

Proof. We have already seen in Corollary 2.13 that S(µ) is continuous
and surjective. Hence, it remains to prove that it is closed. Note that it
follows by Lemma b5.3.10 that S(L0) = S(µ)[S(L1)] is also compact.
By Lemma 2.8, there exist homeomorphisms

h i ∶ S(L i)→ spec(Lb(L i)) ∶ p↦ p/≡ , for i ∈ [2] .

Furthermore, we have seen in Lemma c1.6.10 that Lb(µ) is injective.
Hence, Lemma b5.6.7 implies that the function g ∶= spec(Lb(µ)) is
continuous, closed, and surjective.

S(L1) S(L0)

spec(Lb(L1)) spec(Lb(L0))

S(µ)

h1 h2

g
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Since S(µ) = h−1
0 ○ g ○ h1, it follows that S(µ) is closed. ◻

Lemma 2.17. Let L be a logic and Φ ⊆ L. If S(L) is compact, then so are
S(L∣Φ) and S(L/Φ).

Proof. Let λ ∶ L → L/Φ and i ∶ L∣Φ → L be the canonical morphisms.We
have seen in Corollary 2.13 that S(i) ∶ S(L) → S(L∣Φ) is continuous
and surjective. Since S(L) is compact, it follows by Lemma b5.3.10 that
S(i)[S(L)] = S(L∣Φ) is also compact.

By Corollary 2.15, S(λ) ∶ S(L/Φ)→ S(L) is continuous, closed, and
injective. Consequently, S(L/Φ) is homeomorphic to a closed subset
rng S(λ) ⊆ S(L) of S(L). By Lemma b5.3.9, it follows that S(L/Φ) is
compact. ◻

As a consequence, we obtain the following generalisation of The-
orem 2.3.

Theorem 2.18. For all first-order theories T ⊆ FO0[Σ],

Ss̄(T) ≅ spec(Lb(FOs̄[Σ]/T))

is a Stone space.

Proof. By Lemma 2.17, Ss̄(T) = S(FOs̄[Σ]/T) is compact. Hence, the
claim follows by Lemma 2.8 (b). ◻

For algebraic logics L, every map µ ∶ Σ → Γ between signatures gives
rise to amorphism L[µ] ∶ L[Σ]→ L[Γ] and a corresponding continuous
map S(L[µ]) ∶ S(L[Γ]) → S(L[Σ]). In the lemma below, we take a
closer look at such amap,where µ ∶ ΣU → ΣV corresponds to a renaming
of parameters.

Definition 2.19. Let L be an algebraic logic. For a type p over U and a
function f ∶ U → V , we write

f (p) ∶= {φ(x̄; f (ā)) ∣ φ(x̄; ā) ∈ p} .
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Remark. Suppose that f is a strict L-map and let p ∶= tpL(ā/U) where
ā,U ⊆ dom f . Then

f (p) = tpL( f (ā) / f [U]) .

Lemma 2.20. Suppose that L is an algebraic logic, let A and B be Σ-struc-
tures, and U ⊆ A. Every injective, strict L-map h ∶ U → B induces a
homeomorphism

Ss̄
L(U)→ Ss̄

L(h[U]) ∶ p↦ h(p) .

Proof. Set V ∶= h[U]. Let µ ∶ ΣU → ΣV be the morphism of signatures
with µ ↾ Σ = idΣ and µ ↾U = h, and let

⟨α, β⟩ ∶= L s̄[µ] ∶ L s̄[ΣU]→ L s̄[ΣV ]

be the corresponding morphism of logics. Since µ is bijective so are
α and β and we have L s̄[µ−1] = ⟨α−1 , β−1⟩.
We claim that β induces a bijection ModL(T(V))→ModL(T(U)).

Let M ⊧ T(V), φ(x̄) ∈ L[Σ, X], and c̄ ⊆ U . As h is a strict L-map, it
follows that

β(M) ⊧ φ(c̄) iff M ⊧ α(φ(c̄)) = φ(h(c̄))
iff φ(h(c̄)) ∈ T(V)
iff B ⊧ φ(h(c̄))
iff A ⊧ φ(c̄)
iff φ(c̄) ∈ T(U) .

Similarly, it follows that β−1(M) ∈ Mod(T(V)), for every model M
of T(U). Therefore, ⟨α, β⟩ induces a morphism

⟨α, β0⟩ ∶ L s̄/T(U)→ L s̄/T(V)

where β0 = β ↾ModL(T(V)) is bijective. As α is also bijective, it follows
by Corollary 2.13 that the induced map

Ss̄
L⟨α, β0⟩ ∶ S

s̄
L(V)→ Ss̄

L(U) ∶ h(p)↦ p

is a homeomorphism. ◻
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For first-order type spaces, we can say more on the dependence of a
type space on the signature.

Proposition 2.21. Let Σ0 ⊆ Σ be signatures, T ⊆ FO0[Σ] a theory, and set
T0 ∶= T ∩ FO0[Σ0].

(a) For every ∆ ⊆ FO0[Σ0], we have

S((FO0[Σ0]/T0)∣∆) = S((FO0[Σ]/T)∣∆) .

(b) The function

h ∶ S(FO0[Σ]/T)→ S(FO0[Σ0]/T0) ∶ p↦ p ∩ FO0[Σ0]

is continuous, closed, and surjective.

Proof. To simplify notation, set L ∶= FO0[Σ] and L0 ∶= FO0[Σ0].
(a) We start by showing that both type spaces have the same universe.
Let p ∈ S((L/T)∣∆). Then there is some M ∈ ModL(T) with p =

Th∆(M). Setting M0 ∶=M∣Σ0 we obtain a model M0 ∈ModL0(T0) with
p =Th∆(M0). It follows that p ∈ S((L0/T0)∣∆).
Conversely, let p ∈ S((L0/T0)∣∆). Then there is some model M0 ∈

ModL0(T0) with p = Th∆(M0). We can use Corollary c2.5.9 to find a
model M ∈ModL(T) such that M0 ⪯M∣Σ . It follows that p =Th∆(M).
Hence, p ∈ S((L/T)∣∆).

It remains to show that the two topologies coincide. For Φ ⊆ ∆, it
follows by definition that

⟨Φ⟩(L0/T0)∣∆ = { p ∈ S((L0/T0)∣∆) ∣ Φ ⊆ p}

= { p ∈ S((L/T)∣∆) ∣ Φ ⊆ p} = ⟨Φ⟩(L/T)∣∆ .

(b) Consider the inclusion map i ∶ (L/T)∣L0 → L/T . By Lemma 2.16,
the map

S(i) ∶ S(L/T)→ S((L/T)∣L0) ∶ p↦ p ∩ L
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is continuous, closed, and surjective. Furthermore, we have seen in (a)
that the identity map

id ∶ S((L/T)∣L0)→ S(L0/T0)

is a homeomorphism. It follows that the composition h = id ○S(i) is
continuous, closed, and surjective. ◻

A special case of Proposition 2.21 (b) is worth singling out.

Corollary 2.22. Let T ⊆ FO0[Σ] be a first-order theory, U ⊆ V sets of
parameters, and

i ∶ FOs̄[ΣU]/T(U)→ FOs̄[ΣV ]/T(V)

the inclusion morphism. The induced map

S(i) ∶ Ss̄(V)→ Ss̄(U)

is continuous, closed, and surjective.

3. Retracts
For every fragment ∆ of a logic L, we have seen above that the inclusion
morphism i ∶ ∆ → L induces a surjective, continuous map

S(i) ∶ S(L)→ S(∆) ∶ p↦ p ∩ ∆ .

It follows that the type space of ∆ is a quotient of the type space of L. In
this section we take a closer look at the relationship between these two
type spaces.

Definition 3.1. Let L be a logic, L0 ⊆ L a fragment, and i ∶ L0 → L the
inclusion morphism.

(a) A morphism r ∶ L → L0 is a retraction if r ○ i = id.
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(b) L0 is a retract of L if there exists a retraction L → L0.

The type space of a retract is homeomorphic to the type space of the
full logic.

Lemma 3.2. Let r = ⟨α, β⟩ ∶ L → L0 be a retraction and i ∶ L0 → L the
inclusion morphism.

(a) β = id.
(b) α(φ) ≡L φ, for every φ ∈ L.
(c) S(r) = S(i)−1.

Proof. (a) Note that i = ⟨ι, id⟩,where ι ∶ L0 → L is the inclusion function.
Hence, r ○ i = id implies that id ○ β = id.

(b) To show that α(φ) ≡L φ, let J be an L-interpretation. We have
seen in (a) that β(J) = J. Since r is a morphism of logics, it follows that

J ⊧ φ iff J ⊧ α(φ) .

(c) Note that r ○ i = id implies S(i) ○S(r) = id. Hence, it remains to
show that S(r) ○S(i) = id. Consider p ∈ S(L). By (b), it follows that

φ ∈ p iff α(φ) ∈ p , for all φ ∈ L .

Hence, p = α−1[p] = S(i ○ r)(p) = (S(r) ○S(i))(p). ◻

Corollary 3.3. Let r ∶ L → L0 be a retraction and i ∶ L0 → L the inclusion
morphism.

(a) S(i) ∶ S(L)→ S(L0) is a homeomorphism.
(b) S(r) ∶ S(L0)→ S(L) is a homeomorphism.

Proof. Both statements follow from Lemma 3.2 (c). ◻

Lemma 3.4. Let L be a logic, L0 ⊆ L a fragment, and i = ⟨ι, id⟩ ∶ L0 → L
the inclusion morphism. The following statements are equivalent :

(1) L0 is a retract of L.
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(2) For every formula φ ∈ L, there is a formula φ0 ∈ L0 such that
φ ≡L φ0.

(3) The function Lb(i) ∶ Lb(L0)→ Lb(L) is an isomorphism.

Proof. (1)⇒ (2) follows immediately by Lemma 3.2 (b).
(2)⇒ (3)We have seen in Lemma c1.6.10 that Lb(i) is an embedding.

Hence, it remains to show that it is surjective. Let [φ]≡ ∈ Lb(L). By (2),
there is some formula φ0 ∈ L0 with φ0 ≡L φ. It follows that

Lb(i)([φ0]≡) = [φ0]≡ = [φ]≡ .

(3)⇒ (1)We define a function α ∶ L → L0 as follows. For φ ∈ L0, we
set α(φ) ∶= φ. For φ ∈ L ∖ L0, we choose an arbitrary formula ψ such
that [ψ]≡ ∈ Lb(i)−1([φ]≡) and set α(φ) ∶= ψ. Note that, for every φ ∈ L,

α(φ) ∈ Lb(i)−1([φ]≡)

implies that

[φ]≡ = Lb(i)([α(φ)]≡) = [α(φ)]≡ .

Hence, α(φ) ≡L φ, for all φ ∈ L. By definition of α, we further have

(α ○ ι)(φ) = α(φ) = φ , for all φ ∈ L0 .

Hence, to show that r ∶= ⟨α, id⟩ is a left inverse of i it remains to prove
that r is a morphism of logics. Let φ ∈ L be a formula and J an L-
interpretation. Since φ ≡L α(φ), we have

J ⊧ φ iff J ⊧ α(φ) ,

as desired. ◻

Below we will present several results that assume ∆ to be boolean
closed. The following lemma can sometimes be used to replace this
restriction by the requirement that ∆ is closed under negation.
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Lemma 3.5. Let L be a boolean closed logic, ∆ ⊆ L closed under negation,
and let i ∶ ∆ → L be the inclusion morphism. If every formula in L is
equivalent to a finite boolean combination of formulae in ∆, then

S(i) ∶ S(L)→ S(∆)

is a homeomorphism.

Proof. By Corollary 2.13, S(i) is continuous and surjective.
For injectivity, suppose that S(i)(p) = S(i)(q). Then p ∩ ∆ = q ∩ ∆.

Since every formula in L is equivalent to a boolean combination of
formulae in ∆, it follows that p = q.

It remains to show that S(i) is closed. By Lemma b5.2.3, it is suffi-
cient to prove that S(i)[⟨φ⟩L] is closed, for every φ ∈ L. Fix φ ∈ L.
By assumption on ∆ and L, there are sets Ψ0 , . . . , Ψn−1 ⊆ ∆ such that
φ ≡L ⋁k<n ⋀Ψk . Since, trivially, Ψk ≡L Ψk , it follows by Lemma 3.9 that

S(i)[⟨Ψk⟩L] = ⟨Ψk⟩∆ .

Consequently,

S(i)[⟨φ⟩L] = S(i)[⋃
k<n
⟨Ψk⟩L] = ⋃

k<n
S(i)[⟨Ψk⟩L] = ⋃

k<n
⟨Ψk⟩∆

is closed. ◻

Exercise 3.1. Show that the preceding lemma may fail if ∆ is not closed
under negation.

Corollary 3.6. Let L be a boolean closed logic such that S(L) is compact,
let ∆0 ⊆ ∆ ⊆ L be closed under negation, and let i ∶ ∆0 → ∆ be the
inclusion morphism. The induced map

S(i) ∶ S(∆)→ S(∆0)

is continuous, closed, and surjective.
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Proof. Let ∆+0 ⊆ ∆+ ⊆ L be the boolean closures of ∆0 and ∆, and let
j0 ∶ ∆0 → ∆+0 , j ∶ ∆ → ∆+, and i+ ∶ ∆+0 → ∆+ be the corresponding inclu-
sion morphisms. By Lemma 3.5, S( j0) and S( j) are homeomorphisms.
Hence,

j ○ i = i+ ○ j0 implies S(i) = S( j0) ○S(i+) ○S( j)−1 .

Since, by Lemma 2.16, the functions on the right-hand side are continu-
ous, closed, and surjective, so is S(i). ◻

In the remainder of this section we consider to which extend the
reverse of Corollary 3.3 (a) holds : in which cases is S(i) being a homeo-
morphism sufficient for ∆ to have the same expressive power as L.

Lemma 3.7. Let L0 and L1 be logics and µ ∶ S(L0) → S(L1) a homeo-
morphism. Then

p ⊆ q iff µ(p) ⊆ µ(q) , for all p, q ∈ S(L0) .

Proof. It is sufficient to prove that p ⊆ q implies µ(p) ⊆ µ(q). Thenwe can
prove the converse implication, by considering the homeomorphism µ−1.
Note that we have

p ⊆ q iff for all Φ , p ∈ ⟨Φ⟩L0 ⇒ q ∈ ⟨Φ⟩L0 ,
and µ(p) ⊆ µ(q) iff for all Ψ , µ(p) ∈ ⟨Ψ⟩L1 ⇒ µ(q) ∈ ⟨Ψ⟩L1 .

Let us show that the condition

p ∈ ⟨Φ⟩L0 ⇒ q ∈ ⟨Φ⟩L0 , for all Φ ⊆ L0

is equivalent to

p ∈ C ⇒ q ∈ C , for all closed C ⊆ S(L0) .

Clearly, if the implication holds for all closed sets C, it in particular
holds for closed sets of the form ⟨Φ⟩L0 . Hence, it is sufficient to prove the
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converse. Suppose that every set ⟨Φ⟩L0 containing p also contains q and
let C be a closed set with p ∈ C. By definition, there is a family (Ψi)i∈I of
finite sets Ψi ⊆ L0 such that

C =⋂
i∈I
⋃

ψ∈Ψi

⟨ψ⟩L0 .

Since p ∈ C, there are formulae ψ i ∈ Ψi , for i ∈ I, such that p ∈ ⟨ψ i⟩L0 . By
assumption, this implies that q ∈ ⟨ψ i⟩L0 . Hence,

q ∈⋂
i∈I
⟨ψ i⟩L0 ⊆⋂

i∈I
⋃

ψ∈Ψi

⟨ψ⟩L0 = C .

To prove the lemma, suppose that p ⊆ q. We have just seen that this
implies that

p ∈ C ⇒ q ∈ C , for all closed C ⊆ S(L0) .

Hence,

µ(p) ∈ µ[C]⇒ µ(q) ∈ µ[C] , for all closed C ⊆ S(L0) .

Since µ is a homeomorphism, it follows that

µ(p) ∈ D⇒ µ(q) ∈ D , for all closed D ⊆ S(L1) .

As we have seen above, this implies that

p ∈ ⟨Ψ⟩L1 ⇒ q ∈ ⟨Ψ⟩L1 , for all Ψ ⊆ L1 .

Consequently, we have µ(p) ⊆ µ(q). ◻

Corollary 3.8. Let L be a logic, ∆ ⊆ L, and i ∶ ∆ → L the inclusion
morphism. If S(i) ∶ S(L)→ S(∆) is a homeomorphism, then

p ∩ ∆ ⊧ p , for all p ∈ S(L) .
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Proof. Suppose that J ⊧ p∩∆. To show that J ⊧ p, consider q ∶=ThL(J).
Since S(i) is bijective we have

S(i)−1(p ∩ ∆) = S(i)−1(S(i)(p)) = p

and S(i)−1(q ∩ ∆) = S(i)−1(S(i)(q)) = q .

Hence, p ∩ ∆ ⊆Th∆(J) = q ∩ ∆ implies, by Lemma 3.7, that

p = S(i)−1(p ∩ ∆) ⊆ S(i)−1(q ∩ ∆) = q =ThL(J) .

Consequently, J ⊧ p. ◻

Below we will provide several characterisations of when ∆ has the
same expressive power as L. We start with a technical lemma containing
a condition on when two sets Φ, Ψ of formulae are equivalent.

Lemma 3.9. Let L be a logic, ∆ ⊆ L, and i ∶ ∆ → L the inclusion morphism.
If S(i) ∶ S(L)→ S(∆) is bijective, we have

Φ ≡L Ψ iff S(i)[⟨Φ⟩L] = ⟨Ψ⟩∆ ,

for all sets Φ ⊆ L and Ψ ⊆ ∆.

Proof. (⇒) Suppose that Φ ≡L Ψ . For (⊆), let p ∈ ⟨Φ⟩L . Then Φ ⊆ p
implies

Ψ ⊆ Φ⊧ ∩ ∆ ⊆ p ∩ ∆ = S(i)(p) .

Hence, S(i)(p) ∈ ⟨Ψ⟩∆ .
For (⊇), let p ∈ ⟨Ψ⟩∆ . Since S(i) is surjective, there is some q ∈ S(L)

with S(i)(q) = p. Hence,

Ψ ⊆ p = S(i)(q) = q ∩ ∆ ⊆ q .

Since Ψ ⊧ Φ, it follows that Φ ⊆ q. Consequently, we have q ∈ ⟨Φ⟩L ,
which implies that p = S(i)(q) ∈ S(i)[⟨Φ⟩L].
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(⇐)We have to show that Φ ≡L Ψ . First, suppose that J ⊧ Φ and let
p ∶=Th∆(J). Then p ∈ ⟨Φ⟩L implies that

Th∆(J) = p ∩ ∆ = S(i)(p) ∈ S(i)[⟨Φ⟩L] = ⟨Ψ⟩∆ .

Hence, J ⊧ Ψ . Conversely, suppose that J ⊧ Ψ and let p ∶=ThL(J). Then
S(i)(p) = p ∩ ∆ ∈ ⟨Ψ⟩∆ . Since S(i) is injective, we have

p ∈ S(i)−1(p ∩ ∆) ⊆ S(i)−1[⟨Ψ⟩∆] = ⟨Φ⟩L

and, therefore, J ⊧ Φ. ◻

For fragments ∆ ⊆ L that are closed under disjunctions, we obtain the
following characterisation of when every L-formula is equivalent to a
set of ∆-formulae.

Proposition 3.10. Let L be a logic, ∆ ⊆ L, and let i ∶ ∆ → L be the inclusion
morphism. If ∆ is closed under disjunctions, the following statements are
equivalent.

(1) For every Φ ⊆ L, there is some Ψ ⊆ ∆ such that Φ ≡L Ψ.

(2) Φ ≡L Φ⊧ ∩ ∆, for all Φ ⊆ L.

(3) S(i) ∶ S(L)→ S(∆) is a homeomorphism.

Proof. (1)⇒ (2) Let Φ ⊆ L. Clearly, Φ ⊧ Φ⊧ ∩ ∆. Hence, we only need
to prove that Φ⊧ ∩ ∆ ⊧ Φ. By (1), there is a set Ψ ⊆ ∆ such that Ψ ≡L Φ.
Hence, Φ ⊧ Ψ implies that Ψ ⊆ Φ⊧∩∆. Since Ψ ⊧ Φ, it therefore follows
that Φ⊧ ∩ ∆ ⊧ Φ.

(2)⇒ (3) Suppose that every Φ ⊆ L is equivalent to Φ⊧ ∩ ∆. We have
to prove that S(i) is continuous, closed, and bijective. Continuity and
surjectivity follow from Corollary 2.13.

For injectivity, suppose that p, q ∈ S(L) are two types with S(i)(p) =
S(i)(q). By (2), p ≡L p ∩ ∆ and q ≡L q ∩ ∆. Consequently, we have

p ≡L p ∩ ∆ = S(i)(p) = S(i)(q) = q ∩ ∆ ≡L q .
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It follows that p = q, as desired.
It remains to prove that S(i) is closed. Since S(i) is injective, it is

sufficient, by Lemma b5.2.3, to prove that S(i)[⟨Φ⟩L] is closed, for every
Φ ⊆ L. By (2), Φ ≡L Φ⊧ ∩ ∆. Hence, it follows by Lemma 3.9 that the set
S(i)[⟨Φ⟩L] = ⟨Φ⊧ ∩ ∆⟩∆ is closed.

(3)⇒ (1) Suppose that S(i) is a homeomorphism. To show that every
Φ ⊆ L is equivalent to some Ψ ⊆ ∆, we fix Φ ⊆ L. Since ⟨Φ⟩L is closed
in S(L), it follows that C ∶= S(i)[⟨Φ⟩L] is a closed subset of S(∆).
By Lemma 2.2, there exists a set Ψ ⊆ ∆ such that C = ⟨Ψ⟩∆ . Hence,
S(i)[⟨Φ⟩L] = ⟨Ψ⟩∆ implies, by Lemma 3.9, that Φ ≡L Ψ . ◻

Exercise 3.2. Show that the preceding lemma may fail if ∆ is not closed
under disjunctions.

For logicswith compact type space,we can strengthen this proposition
as follows.

Proposition 3.11. Let L be a boolean closed logic such that S(L) is com-
pact, let ∆ ⊆ L, and let i ∶ ∆ → L be the inclusion morphism. The following
statements are equivalent :

(1) For every φ ∈ L, there is some ψ ∈ ∆ with ψ ≡L φ.

(2) ∆ is a retract of L.

(3) ∆ is boolean closed and

spec(Lb(i)) ∶ spec(Lb(L))→ spec(Lb(∆))

is a homeomorphism.

(4) ∆ is boolean closed andS(i) ∶ S(L)→ S(∆) is a homeomorphism.

Proof. (1)⇔ (2) was already proved in Lemma 3.4.
(3)⇒ (2) According to Lemma b5.6.7, Lb(i) ∶ Lb(∆)→ Lb(L) is an

isomorphism. Hence, the claim follows by Lemma 3.4.
(1)⇒ (4)S(i) is a homeomorphism by Corollary 3.3 (a). Therefore,

we only need to show that ∆ is boolean closed. Let φ, ϑ ∈ ∆. Then φ ∧ ϑ,
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φ ∨ ϑ, and ¬φ are L-formulae. By (1), there are formulae ψ0 ,ψ1 ,ψ2 ∈ ∆
with

ψ0 ≡L φ ∧ ϑ , ψ1 ≡L φ ∨ ϑ , and ψ2 ≡L ¬φ .

Hence, ∆ is boolean closed.
(4)⇒ (3) According to Lemma 2.17, S(L) and S(∆) are both com-

pact. Therefore, we can use Lemma 2.8 to obtain homeomorphisms

h ∶ S(L)→ spec(Lb(L)) and h0 ∶ S(∆)→ spec(Lb(∆)) .

If S(i) is a homeomorphism, then so is spec(Lb(i)) = h0 ○S(i) ○ h−1.
◻

Corollary 3.12. Let L be a boolean closed logic such that S(L) is compact,
and let ∆ ⊆ Φ ⊆ L. The following statements are equivalent.

(1) Every formula in Φ is equivalent to a finite boolean combination of
formulae in ∆.

(2) p ∩ ∆ = q ∩ ∆ implies p ∩ Φ = q ∩ Φ, for all p, q ∈ S(L).

Proof. (1)⇒ (2) is obvious. For (2)⇒ (1), let ∆+ and Φ+ be the boolean
closures of, respectively, ∆ and Φ and let i ∶ ∆+ → Φ+ be the inclu-
sion morphism. By Proposition 3.11, it is sufficient to show that S(i) ∶
S(Φ+)→ S(∆+) is a homeomorphism.
According to Lemma 2.16, S(i) is continuous, closed, and surjective.

Hence, it remains to prove that it is injective. Suppose that S(i)(p) =
S(i)(q). Fix models J0 ⊧ p and J1 ⊧ q, and set p+ ∶= ThL(J0) and
q+ ∶=ThL(J1). Then

p+ ∩ ∆+ = p ∩ ∆+ = S(i)(p) = S(i)(q) = q ∩ ∆+ = q+ ∩ ∆+ .

In particular, we have p+ ∩∆ = q+ ∩∆. By (2), we obtain p+ ∩Φ = q+ ∩Φ,
which implies that

p = p+ ∩ Φ+ = q+ ∩ Φ+ = q . ◻
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As an application we prove the intuitively obvious fact that, if there
are more formulae than types, many formulae have to be equivalent.

Proposition 3.13. Let L be a boolean closed logic such that S(L) is com-
pact. There exists a retract L0 of L of size ∣L0∣ ≤ ∣S(L)∣⊕ ℵ0.

Proof. Let (pα)α<κ be an enumeration of S(L) without repetitions. For
every pair of indices α, β < κ, α ≠ β, fix a formula ψαβ ∈ pα ∖ pβ .
Set Ψ ∶= {ψαβ ∣ α, β < κ } and let L0 be the set of all finite boolean
combinations of formulae in Ψ . Then ∣L0∣ ≤ κ ⊗ κ ⊗ ℵ0 ≤ κ ⊕ ℵ0 and

pα ∩ Ψ = pβ ∩ Ψ implies pα = pβ .

Therefore, Corollary 3.12 implies that L0 is a retract of L. ◻

Corollary 3.14. Let T ⊆ FO0[Σ] be a first-order theory. There exists a
subset Σ0 ⊆ Σ of size ∣Σ0∣ ≤ ∣S<ω(T)∣ and a family of formulae φξ(x̄), for
ξ ∈ Σ ∖ Σ0, such that, for every model M of T ,

ξM = φM∣Σ0
ξ , for all ξ ∈ Σ ∖ Σ0 .

Proof. For each finite tuple s̄ of sorts, we can use Proposition 3.13 to
obtain a retract ∆ s̄ of FOs̄[Σ]/T such that ∣∆ s̄ ∣ ≤ ∣S s̄(T)∣. Let Σ0 be the
set of all symbols from Σ that appear in some ∆ s̄ . Note that S s̄(T) ≠ ∅
implies that

∣S<ω(T)∣ = ∣⋃
s̄

S s̄(T)∣ ≥ ℵ0 .

Hence,

∣Σ0∣ ≤∑
s̄
∣∆ s̄ ∣⊕ ℵ0 = ∣S<ω(T)∣⊕ ℵ0 = ∣S<ω(T)∣ .

Furthermore, for every relation symbol R ∈ Σ ∖ Σ0 of type s̄, there exists
a formula φR(x̄) ∈ ∆ s̄ ⊆ FOs̄[Σ0] such that Rx̄ ≡ φR(x̄). Similarly, for
every function symbol f ∈ Σ ∖ Σ0 of type s̄ → t, there exists a formula
φ f (x̄ , y) ∈ ∆ s̄ t ⊆ FOs̄ t[Σ0] such that f x̄ = y ≡ φ f (x̄ , y). ◻
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4. Local type spaces
For technical reasons we will consider in the next section certain quo-
tients of first-order type spaces Ss̄(U). To define these quotients we
consider a restriction L∣∆ of some logic L and we equip the correspond-
ing set of types S(L∣∆) with a topology that is finer than the usual one.
Our aim is to show that, for first-order logic, this topology coincides
with the usual one. For simplicity, we only consider logics L that are
closed under disjunction.

Definition 4.1. Let L be a logic that is closed under disjunction, ∆ ⊆ L
a fragment, and let i ∶ ∆ → L be the inclusion morphism. We denote
by S∆(L) the topological space with universe S(∆) where the topology
consists of all sets

⟨Φ⟩∆ ∶= S(i)[⟨Φ⟩L] , for Φ ⊆ L .

Lemma 4.2. Let L be a logic that is closed under disjunctions, ∆ ⊆ L, and
let i ∶ ∆ → L be the inclusion morphism.

(a) The restriction function

ρ∆ ∶ S(L)→ S∆(L) ∶ p↦ p ∩ ∆

is closed and surjective.
(b) The identity function

h ∶ S∆(L)→ S(∆) ∶ p↦ p

is continuous and bijective.
(c) S∆(L) = S(∆) if, and only if, S(i) ∶ S(L)→ S(∆) is closed and

ρ∆ is continuous.

S(L)

S∆(L)

S(∆)

ρ∆

S(i)

h
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Proof. First, note that S(i) = h ○ ρ∆ since

h(ρ∆(p)) = h(p ∩ ∆) = p ∩ ∆ = S(i)(p) , for every p ∈ S(L) .

(a) Since L is closed under disjunctions, each closed set of S(L) is
of the form ⟨Φ⟩L , for some Φ ⊆ L. The function ρ∆ is closed since, for
every Φ ⊆ L,

ρ∆[⟨Φ⟩L] = { p ∩ ∆ ∣ p ∈ ⟨Φ⟩L } = {S(i)(p) ∣ p ∈ ⟨Φ⟩L } = ⟨Φ⟩∆

is a closed set of S(∆).
For surjectivity, note that h−1 and S(i) are both surjective. Therefore,

so is ρ∆ = h−1 ○S(i).
(b) h is clearly bijective. For continuity, note that h ○ ρ∆ = S(i). Since

S(i) is surjective, it follows by Lemma a2.1.10 for a closed set C ⊆ S(∆)
that

h−1[C] = h−1[S(i)[S(i)−1[C]]]
= h−1[h[ρ∆[S(i)−1[C]]]] = ρ∆[S(i)−1[C]] .

This set is closed, since S(i) is continuous and ρ∆ is closed.
(c) (⇒) If S∆(L) = S(∆), then h is a homeomorphism. Hence, ρ∆ =

h−1 ○ S(i) is a composition of continuous functions and, therefore,
continuous. Similarly,S(i) = h○ρ∆ is a composition of closed functions
and, therefore, closed.
(⇐) It is sufficient to show that the identity function

h ∶ S∆(L)→ S(∆) ∶ p↦ p

is a homeomorphism. We have already seen in (b) that it is bijective and
continuous. Hence, it remains to prove that h is closed.

By assumption, ρ∆ is continuous andS(i) is closed. It follows as in (b)
that

h[C] = S(i)[ρ−1
∆ [C]]

is closed, for every closed set C ⊆ S∆(L). ◻
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In the applications below we are interested in the case where S(L) is
compact and ∆ closed under negation. In this situation the topologies of
S∆(L) and S(∆) coincide.

Theorem 4.3. Let L be a boolean closed logic such that S(L) is compact
and let ∆ ⊆ L.

(a) The restriction function

ρ∆ ∶ S(L)→ S∆(L) ∶ p↦ p ∩ ∆

is continuous, closed, and surjective.

(b) If ∆ is closed under negation, then S∆(L) = S(∆).

Proof. (a) We have already seen in Lemma 4.2 (a) that ρ∆ is closed and
surjective. Hence, it remains to prove that it is continuous.

Let ∆+ be the set of all finite boolean combinations of formulae in ∆.
We claim that

ρ−1
∆ [⟨Φ⟩∆] = ⟨Φ

⊧ ∩ ∆+⟩L .

(⊆) Let p ∈ ρ−1
∆ [⟨Φ⟩∆]. Then p ∩ ∆ = ρ∆(p) ∈ ⟨Φ⟩∆ and there is some

type q ∈ ⟨Φ⟩L with q ∩ ∆ = p ∩ ∆. Since every formula in q ∩ ∆+ is a
boolean combination of formulae in q∩∆, it follows that q∩∆+ = p∩∆+.
Hence,

Φ⊧ ⊆ q implies Φ⊧ ∩ ∆+ ⊆ q ∩ ∆+ = p ∩ ∆+ .

Consequently, p ∈ ⟨Φ⊧ ∩ ∆+⟩L .
(⊇) Let p ∈ ⟨Φ⊧ ∩ ∆+⟩L and set p0 ∶= p ∩ ∆+. If there is some q ∈ S(L)

with Φ ∪ p0 ⊆ q, then

q ∩ ∆+ = p0 implies ρ∆(p) = p ∩ ∆ = p0 ∩ ∆ = q ∩ ∆ ∈ ⟨Φ⟩∆ .

Hence, p ∈ ρ−1
∆ [⟨Φ⟩∆]. Consequently, it remains to show that Φ ∪ p0 is

satisfiable.
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For a contradiction, suppose otherwise. Then

⟨Φ⟩L ∩ ⋂
ψ∈p0
⟨ψ⟩L = ⟨Φ ∪ p0⟩L = ∅ .

Since S(L) is compact, we can find a finite subset Ψ ⊆ p0 such that

⟨Φ⟩L ∩ ⋂
ψ∈Ψ
⟨ψ⟩L = ∅ .

Hence, Φ ⊧ ¬⋀Ψ . Note that Ψ ⊆ ∆+ implies ¬⋀Ψ ∈ ∆+. Hence,
¬⋀Ψ ∈ Φ⊧ ∩ ∆+ ⊆ p0 and p0 is inconsistent. A contradiction.

(b) We have seen in (a) that ρ∆ is continuous. By Lemma 4.2 (c), it
is therefore sufficient to show that S(i) ∶ S(L) → S(∆) is closed. Let
∆+ ⊆ L be the set of all finite boolean combinations of formulae in ∆,
and let i0 ∶ ∆ → ∆+ and i+ ∶ ∆+ → L be the corresponding inclusion
morphisms. Then S(i+) is closed by Lemma 2.16, and S(i0) is closed
by Lemma 3.5. Hence, S(i) = S(i0) ○S(i+) is also closed. ◻

We will mainly use type spaces of the form S∆(L) in the case of
first-order logic. In this case the definitions are as follows.

Definition 4.4. Let T ⊆ FO0[Σ] be a theory and ∆ ⊆ FO[Σ, X ∪ Y] a set
of formulae where X and Y are disjoint sets of variables. For a set U of
parameters, we set

∆¬U ∶= {φ(x̄; c̄) ∣ φ(x̄; ȳ) ∈ ∆, x̄ ⊆ X , ȳ ⊆ Y , c̄ ⊆ U }
∪ {¬φ(x̄; c̄) ∣ φ(x̄; ȳ) ∈ ∆, x̄ ⊆ X , ȳ ⊆ Y , c̄ ⊆ U } .

(a) A partial type p over a set U is a ∆-type if p ⊆ ∆¬U . For ∆ = {φ} we
simply speak of a φ-type.

(b) The restriction of a partial type p is the type

p∣∆ ∶= p ∩ ∆¬U .

(c) Let M be a structure. The ∆-type of a tuple ā ⊆ M over a set U ⊆ M
is

tp∆(ā/U) ∶= tp(ā/U)∣∆ .
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4. Local type spaces

(d) A ∆-type p over U is complete if, for every formula φ(x̄; ȳ) ∈ ∆
and each tuple c̄ ⊆ U , we have φ(x̄; c̄) ∈ p or ¬φ(x̄; c̄) ∈ p.

(e) The space of all complete ∆-types over U is

S∆(U) ∶= S∆¬U (FO[ΣU , X]/T(U)) .

As usual we also write S∆(T) for S∆(∅).

Since first-order type spaces are compact, it follows by the above
results that S∆(U) is equal to S((FO[ΣU , X]/T(U))∣∆¬U ). Our aim is
to show that this definition does not depend on the signature Σ.

Theorem 4.5. Let T ⊆ FO0[Σ] be a theory and ∆ ⊆ FO[Σ, X ∪ Y] a set
of formulae where X and Y are disjoint sets of variables. For a set U of
parameters, set

∆¬U ∶= {φ(x̄; c̄) ∣ φ(x̄; ȳ) ∈ ∆, c̄ ⊆ U }
∪ {¬φ(x̄; c̄) ∣ φ(x̄; ȳ) ∈ ∆, c̄ ⊆ U } .

(a) S∆(U) = S((FO[ΣU , X]/T(U)) ∣∆¬U
) .

(b) If ∆ ⊆ FO[Σ0 , X0 ∪ Y], for some Σ0 ⊆ Σ and X0 ⊆ X, then

S∆(T) = S∆(T ∩ FO0[Σ0]) ,

where the local type space on the left-hand side is with respect to the
logic FO[Σ, X] and the one one the right-hand side with respect to
FO[Σ0 , X0].

Proof. (a) follows by Theorem 4.3 (b), while (b) follows from (a) and
Proposition 2.21 (a) (treating the free variables from X and X0 as constant
symbols). ◻

Corollary 4.6. Let T ⊆ FO0[Σ] be a theory, ∆ ⊆ FO[Σ, X ∪ Y] a set of
formulae, U a set of parameters, and ∆¬U the set from Definition 4.4. Then

S∆(U) ≅ spec(Lb(∆¬U)) ,

where Lb(∆¬U) denotes the subalgebra of Lb(FO[ΣU , X]/T(U)) generated
by ∆¬U .
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c3. Types and type spaces

Proof. Set L ∶= FO[ΣU , X]/T(U) and let ∆+ be the boolean closure
of ∆¬U . By Theorems 4.5 (a) and 2.18 and Lemma 3.5, it follows that

S∆(U) = S(∆¬U) ≅ S(∆+)
≅ spec(Lb(∆+)) = spec(Lb(∆¬U)) . ◻

5. Stable theories
In this section we consider the size of first-order type spaces. First, let us
state two trivial bounds.

Lemma 5.1. Let T be a complete first-order theory and s̄ a sequence of
sorts. Then

∣U ∣ ≤ ∣S s̄(U)∣ ≤ 2∣T∣⊕∣U ∣⊕∣s̄∣ , for every set U of parameters.

One situation where the size of a type space is important is when we
want to construct a model realising all types. First note that we can use
the Compactness Theorem to show that, for every structure A, we can
add a tuple realising any given type p over a subset U ⊆ A.

Lemma 5.2. Let A be a Σ-structure, U ⊆ A, and p ∈ Sα(U). There exists
an elementary extension B ⪰ A of size ∣B∣ ≤ ∣A∣⊕ ∣Σ∣⊕ ∣α∣⊕ ℵ0 in which
p is realised.

Proof. Let Φ ∶= p∪Th(AA). We regard the free variables x i , i < α, of p as
constant symbols. If Φ is satisfiable then, by the Theorem of Löwenheim
and Skolem, there exists a model B ⊧ Φ of size ∣B∣ ≤ ∣A∣⊕ ∣Σ∣⊕ ∣α∣⊕ℵ0.
Furthermore, we have B ⪰ A, by Lemma c2.2.3, and there exists some
ā ∈ Bα with tp(ā/U) = p.

Hence, it is sufficient to show that Φ is satisfiable. Let Φ0 ⊆ Φ be finite.
We write

⋀Φ0 = φ(x̄ , ā) ∧ ψ(ā, b̄)
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5. Stable theories

where ā ⊆ U , b̄ ⊆ A∖U , p ⊧ φ(x̄ , ā), andA ⊧ ψ(ā, b̄). The last statement
implies that ∃ ȳψ(ā, ȳ) ∈Th(AU). By definition of a type, there exists a
model C ⊧ p ∪Th(AU). In particular, we have

C ⊧ φ(x̄ , ā) ∧ ∃ ȳψ(ā, ȳ) .

Choose a tuple c̄ ⊆ C such that C ⊧ ψ(ā, c̄). We obtain a model of Φ0 by
interpreting the constant symbol b i by the element c i , for every i. ◻

Corollary 5.3. For every Σ-structure A, there exists an elementary exten-
sion B ⪰ A of size at most ∣S<ω(A)∣ in which every type p ∈ S<ω(A) is
realised.

Proof. According to Corollary 3.14, we can find a signature Σ0 ⊆ ΣA of
size ∣Σ0∣ ≤ ∣S<ω(A)∣ such that there exists a retraction

⟨α, β⟩ ∶ FO<ω[ΣA]/T(A)→ FO<ω[Σ0]/T0 ,

where T0 ∶= T(A)∩FO0[Σ0]. If we can show that there exists a model B
of T0 realising every type in S<ω(T0), it follows that its expansion β(B)
is a model of T(A) realising every type in S<ω(A). Therefore, we may
assume without loss of generality that ∣Σ∣ ≤ ∣S<ω(A)∣.

Fix an enumeration (pα)α<κ of S<ω(A). We can use Lemma 5.2 to
find, for every α < κ, an elementary extension Cα ⪰ A realising pα . By
Lemma c2.5.7, there exists a common elementary extension C of all Cα .
It follows that C realises every type pα . By the Theorem of Löwenheim
and Skolem, we can find an elementary substructure A ⪯ B ⪯ C of size
at most ∣S<ω(A)∣ ⊕ ∣Σ∣ ⊕ ℵ0 such that every pα is realised in B. Since
S<ω(A) = ⋃n<ω Sn(A) is infinite,we have ∣S<ω(A)∣⊕∣Σ∣⊕ℵ0 = ∣S<ω(A)∣
and the claim follows. ◻

The number of different types a theory possesses also serves as a rough
measure of its complexity. Intuitively, if there are only a few types the
number of different configurations that can appear in a model is small.
Before considering full type spaces Ss̄(U), we start by looking at those
of the form Sφ(U).

563



c3. Types and type spaces

Definition 5.4. Let T be a complete first-order theory and κ an infinite
cardinal. A formula φ(x̄; ȳ) is κ-stable (with respect to T) if we have
∣Sφ(U)∣ ≤ κ, for all sets U of size ∣U ∣ ≤ κ. We call φ(x̄; ȳ) stable if it is
κ-stable, for some infinite cardinal κ. Otherwise, φ(x̄; ȳ) is unstable.

Example. If ∼ is an equivalence relation with infinitely many classes,
then the formula x ∼ y is κ-stable, for all infinite κ, since

∣Sx∼y(U)∣ = ∣U/∼∣⊕ 1 ≤ ∣U ∣⊕ 1 .

The definition does not tell us much about stable formulae. We will
therefore present three equivalent characterisations, two combinatorial
ones that can be checked more easily, and one logical characterisation.

The equivalence proofs rest on two combinatorial results. The first
one is a special case of the Theorem of Ramsey. We will prove the full
version in Section e5.1 below.

Lemma 5.5. Let (an)n<ω be a sequence of elements and let (Bn)n<ω be a
sequence of sets. There exists an infinite set I ⊆ ω such that either

a i ∈ Bk , for all i < k in I ,
or a i ∉ Bk , for all i < k in I .

Proof. We construct an increasing sequence n0 < n1 < ⋯ of indices,
a sequence m0 ,m1 , . . . ∈ [2] of numbers, and a decreasing sequence
J0 ⊇ J1 ⊇ ⋯ of infinite sets such that, for every i < ω, we have n i ∈ J i and
either

m i = 0 and an i ∉ Bk , for all k ∈ J i+1 ,
or m i = 1 and an i ∈ Bk , for all k ∈ J i+1 .

We start with n0 ∶= 0 and J0 ∶= ω. By induction, suppose that we have
already defined n i and J i . Set

L0 ∶= { k ∈ J i ∣ an i ∉ Bk } and L1 ∶= { k ∈ J i ∣ an i ∈ Bk } .
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5. Stable theories

Then J i = L0 ∪ L1. As J i is infinite, at least one of L0 and L1 must also be
infinite. Choose m i < 2 such that Lm i is infinite. We set

J i+1 ∶= Lm i ∖ [n i + 1] and n i+1 ∶= min J i+1 .

Having defined (n i)i<ω , (m i)i<ω , and (J i)i<ω , we consider the sets

M0 ∶= { i < ω ∣ m i = 0} and M1 ∶= { i < ω ∣ m i = 1} .

Note that n j ∈ J j ⊆ J i implies that

an i ∉ Bn j , for all i < j in M0 ,
and an i ∈ Bn j , for all i < j in M1 .

Since M0 ∪ M1 = ω, at least one of M0 and M1 is infinite. If M0 is
infinite, we can therefore set I ∶= { n i ∣ i ∈ M0 }. Otherwise, we use
I ∶= { n i ∣ i ∈ M1 }. ◻

Theorem 5.6 (Erdős, Makkai). Let X be an infinite set and S ⊆ ℘(X) a
family of size ∣S∣ > ∣X∣. Then there are sequences (a i)i<ω in X and (B i)i<ω
in S such that either

a i ∈ Bk iff i ≤ k , for all i , k < ω ,
or a i ∈ Bk iff i ≥ k , for all i , k < ω .

Proof. For every pair of disjoint finite subsets Y , Z ⊆ X, choose, if pos-
sible, a set B ∈ S with Y ⊆ B and Z ⊆ X ∖ B. Let S0 ⊆ S be the set of
the chosen subsets B. As there are only ∣X<ω × X<ω ∣ = ∣X∣ pairs of finite
subsets, it follows that ∣S0∣ ≤ ∣X∣ < ∣S∣. Consequently, there exists a set
A ∈ S that cannot be expressed as a finite boolean combination of sets
from S0. (We allow empty boolean combinations, so that A is different
from ∅ and X.)
We inductively construct sequences (cn)n<ω in A, (dn)n<ω in X ∖ A,

and (Bn)n<ω in S0 such that, for all n,
◆ {c0 , . . . , cn} ⊆ Bn ,
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c3. Types and type spaces

◆ {d0 , . . . , dn} ⊆ X ∖ Bn , and
◆ c i ∈ Bn ⇔ d i ∈ Bn , for all i > n.

For the inductive step, suppose that we have already defined elements
c0 , . . . , cn−1, d0 , . . . , dn−1, and sets B0 , . . . , Bn−1. Since A is not a boolean
combination of B0 , . . . , Bn−1, there are elements cn ∈ A and dn ∈ X ∖ A
such that

cn ∈ Bk iff dn ∈ Bk , for all k < n .

Then {c0 , . . . , cn} ⊆ A and {d0 , . . . , dn} ⊆ X ∖ A. By choice of S0, it
follows that we can choose a set Bn ∈ S0 with {c0 , . . . , cn} ⊆ Bn and
{d0 , . . . , dn} ⊆ X ∖ Bn . This concludes the inductive step.
We have constructed sequences such that

c i ∈ Bk and d i ∉ Bk , for i ≤ k ,

c i ∈ Bk ⇔ d i ∈ Bk , for i > k .

By Lemma 5.5, there exists an infinite subset I ⊆ ω such that either
◆ c i ∉ Bk , for all indices i > k in I, or
◆ c i ∈ Bk , for all indices i > k in I.

In the first case, the sequences (cn)n∈I and (Bn)n∈I satisfy

c i ∈ Bk iff i ≤ k , for all i , k ∈ I .

In the second case, the sequences (dn)n∈I and (Bn)n∈I satisfy

d i ∈ Bk iff i > k , for all i , k ∈ I .

Shifting the sequence (d i)i∈I by one, we obtain the desired sequences
(a i)i<ω and (B i)i<ω . ◻

Using these two results, we can present our characterisations. We
introduce each in turn, before proving that they are all equivalent to
(un-)stability. The first combinatorial characterisation is based on the
non-existence of a definable linear order.
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Definition 5.7. Let T be a theory. A formula φ(x̄ , ȳ) has the order prop-
erty (with respect to T) if there exists a model M ⊧ T containing two
sequences (ān)n<ω and (b̄n)n<ω such that

M ⊧ φ(ā i , b̄k) iff i ≤ k .

Using compactness we obtain several equivalent definitions of the
order property.

Lemma 5.8. Let T be a complete first-order theory and φ(x̄ , ȳ) a formula.
The following statements are equivalent.

(1) φ has the order property with respect to T.
(2) For every linear order ⟨I, ≤⟩, there exists a model M of T that con-

tains sequences (ā i)i∈I and (b̄ i)i∈I such that

M ⊧ φ(ā i , b̄k) iff i ≤ k .

(3) For every model M of T and all finite linear orders ⟨I, ≤⟩, there are
sequences (ā i)i∈I and (b̄ i)i∈I in M such that

M ⊧ φ(ā i , b̄k) iff i ≤ k .

Proof. (2)⇒ (1) The claim follows from (2) if we set I = ω.
(3)⇒ (2) This is a direct application of the Compactness Theorem.

Given I, choose new constant symbols c̄ i and d̄ i , for i ∈ I, and define

Φ ∶= T ∪ {φ(c̄ i , d̄k) ∣ i , k ∈ I, i ≤ k }

∪ {¬φ(c̄ i , d̄k) ∣ i , k ∈ I, i > k } .

Clearly, everymodel of Φ contains two sequenceswith the desired proper-
ties. Hence, it remains to prove that Φ is satisfiable. By the Compactness
Theorem, we only have to show that every finite subset of Φ has a model.
Let Φ0 ⊆ Φ be finite. Then there exists a finite subset I0 ⊆ I such that

Φ0 ⊆ T ∪ {φ(c̄ i , d̄k) ∣ i , k ∈ I0 , i ≤ k }

∪ {¬φ(c̄ i , d̄k) ∣ i , k ∈ I0 , i > k } .
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Let M be an arbitrary model of T . By (3), we can find sequences (ā i)i∈I0
and (b̄ i)i∈I0 in M such that

M ⊧ φ(ā i , b̄k) iff i ≤ k .

Consequently, we can satisfy Φ0 in the structure M if we interpret the
constants c̄ i by ā i and the constants d̄ i by b̄ i .

(1)⇒ (3) Fix a model N of T that contains sequences (ān)n<ω and
(b̄n)n<ω such that

N ⊧ φ(ā i , b̄k) iff i ≤ k .

Consider the formula

ψm ∶= ∃x̄0⋯∃x̄m−1∃ ȳ0⋯∃ ȳm−1

⋀
i<k
[φ(x̄ i , ȳk) ∧ φ(x̄ i , x̄ i) ∧ ¬φ(x̄k , ȳ i)] .

Suppose that ∣I∣ = m < ω and let M be an arbitrarymodel of T . SinceN ⊧
φm we have T ⊧ φm which, in turn, implies that M ⊧ φm . Consequently,
M contains two finite sequences (ān)n<m and (b̄n)n<m with the desired
properties. ◻

The second combinatorial characterisation is based on the non-exist-
ence of certain trees.

Definition 5.9. Let T be a complete first-order theory, φ(x̄; ȳ) a formula,
U a set of parameters, and γ an ordinal. A φ-tree of height γ over U is a
family (c̄w)w∈2<γ of parameters c̄w ⊆ U such that, for every η ∈ 2γ , the
set

T(U) ∪ {φη(α)(x̄; c̄η↾α) ∣ α < γ }

is consistent, where

φ0(x̄; ȳ) ∶= φ(x̄; ȳ) and φ1(x̄; ȳ) ∶= ¬φ(x̄; ȳ) .
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Lemma 5.10. Let T be a first-order theory and φ(x̄; ȳ) a formula such
that, for every n < ω, there exists a model of T containing a φ-tree of
height n. Then, for every ordinal γ, there exists a model of T containing a
φ-tree of height γ.

Proof. Given γ, set

Φγ ∶= T ∪ {φη(α)(x̄η ; ȳη↾α) ∣ α < γ, η ∈ 2γ } .

If this set is satisfiable, there exists a model of T containing elements
āη and c̄w , for η ∈ 2γ and w ∈ 2<γ , such that every āη satisfies

T(⋃w c̄w) ∪ {φη(α)(x̄; c̄η↾α) ∣ α < γ } .

Hence, (c̄w)w∈2<γ is a φ-tree of height γ.
It therefore remains to show that Φγ is satisfiable. By the Compactness

Theorem, it is sufficient to prove that every finite subset is satisfiable.
Hence, consider a finite set Ψ ⊆ Φγ . Let α0 < ⋅ ⋅ ⋅ < αn−1 be an enu-
meration of all ordinals α such that Ψ contains a formula of the form
φη(α)(x̄η ; ȳη↾α) and let σ ∶ 2≤γ → 2≤n be the function mapping a se-
quence η ∈ 2β of length β ≤ γ to its restriction ⟨η(α0), . . . , η(αk)⟩,
where k < n is themaximal index such that αk < β. By assumption, there
exists a φ-tree (d̄w)w∈2<n of height n. For each branch ζ ∈ 2n , fix a tuple
āζ satisfying

T(⋃w dw) ∪ {φζ(i)(x̄; d̄ζ↾i) ∣ i < n } .

Then Ψ is satisfied if we assign the value āσ(η) to the variable x̄η and the
value d̄σ(w) to the variable ȳw . ◻

The existence of large φ-trees implies that the local type spaces are
also large. In particular, formulae with large φ-trees are unstable.

Lemma 5.11. Let T be a complete theory and φ(x̄; ȳ) a formula such that
there are φ-trees of height n, for all n < ω. For every infinite cardinal κ
there exists a set U of parameters such that ∣Sφ(U)∣ > κ = ∣U ∣.
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Proof. Let µ be the minimal cardinal such that 2µ > κ. By Lemma 5.10,
there exists a φ-tree (c̄w)w∈2<µ of height µ. Since 2<µ ≤ κ, we can choose
a set U of size ∣U ∣ = κ containing all parameters c̄w , for w ∈ 2<µ . For
every branch η ∈ 2µ , fix a tuple āη satisfying

{φη(α)(x̄; c̄η↾α) ∣ α < µ } .

For η ≠ ζ, it follows that tpφ(āη/U) ≠ tpφ(āζ/U). Hence,

∣Sφ(U)∣ ≥ 2µ > κ = ∣U ∣ . ◻

Before proving the converse, let us present a third, logical character-
isation of stability.

Definition 5.12. Let M be a structure, C ,U ⊆ M sets of parameters, ∆ a
set of formulae, and φ(x̄; ȳ) a formula.

(a) A φ-definition of a type p ∈ Sφ(U) over C is a formula δ( ȳ) over C
such that

φ(x̄; c̄) ∈ p iff M ⊧ δ(c̄) , for all c̄ ⊆ U .

(b) A complete type p ∈ S∆(U) is definable over C if, for every φ ∈ ∆,
the type p∣φ has a φ-definition over C.

Example. Recall the example on page 529, where we described S1(Q)
for the theory T ∶=Th(⟨Q, <⟩). The definable types are those of the form
(a+), (a−), (+∞), (−∞), and all realised types. The irrational types are
not definable. For instance, for (a+) and φ(x; y) ∶= x < y, we can use
the definition δ(y) ∶= y > a.

The number of definable types is always small.

Lemma 5.13. Let φ(x̄; ȳ) ∈ FO[Σ, X ∪ Y]. Then Sφ(U) contains at most

∣Σ∣⊕ ∣C∣⊕ ℵ0

types that are definable over C.
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Proof. W.l.o.g. we may assume that X and Y are finite. Then there are
∣Σ∣⊕ ∣C∣⊕ℵ0 first-order formulae over C and, hence, at most that many
φ-definitions. Furthermore, if p, q ∈ Sφ(U) are types with the same
φ-definition then p = q. ◻

Lemma 5.14. Let U be a set of parameters and let φ(x̄; ȳ) be a first-order
formula that has no φ-tree of height N < ω. Then every φ-type in Sφ(U)
is definable over U.

Proof. For a formula ψ(x̄) over U , let Dφ(ψ) be the maximal number n
such that there exists a φ-tree (c̄w)w∈2<n of height n such that, for every
η ∈ 2n , the set

T(U) ∪ {ψ(x̄)} ∪ {φη(i)(x̄; c̄η↾i) ∣ i < n }

is consistent. By assumption, Dφ(ψ) < N . In particular, the maximum
is well-defined. Furthermore, Dφ is monotone in the sense that

ψ ⊧ ϑ implies Dφ(ψ) ≤ Dφ(ϑ) .

Given p ∈ Sφ(U), choose a finite subset Φ ⊆ p such that Dφ(⋀Φ) is
minimal. By choice of Φ and monotonicity of Dφ , it follows for every
c̄ ⊆ U that

φ(x̄; c̄) ∈ p iff Dφ(⋀Φ(x̄) ∧ φ(x̄; c̄)) = Dφ(⋀Φ(x̄)) .

Since the non-existence of a φ-tree of height n with the above property
is definable in first-order logic, it follows that, for every n < ω and every
formula ψ(x̄; ȳ) over U , there is a formula δn

ψ( ȳ) over U such that

M ⊧ δn
ψ(c̄) iff Dφ(ψ(x̄; c̄)) < n .

Hence,we can use the formula δn
⋀Φ∧φ with n ∶= Dφ(⋀Φ)+ 1 to define p.

◻

After having introduced three properties of formulae, we can show
that they are all equivalent to (un-)stability.

571



c3. Types and type spaces

Theorem 5.15. Let T be a complete first-order theory and φ(x̄; ȳ) a for-
mula. The following statements are equivalent :

(1) φ is stable.

(2) φ is κ-stable, for all infinite cardinals κ.

(3) φ does not have the order property.

(4) There exists some n < ω such that there is no φ-tree of height n.

(5) Every complete φ-type is definable over its domain.

Proof. (2)⇒ (1) is trivial and (1)⇒ (4)⇒ (5)⇒ (1) were already proved
in, respectively, Lemmas 5.11, 5.14, and 5.13.

(4)⇒ (3) Suppose that φ has the order property. Let ≤ be the infix
ordering on I ∶= 2≤ω , which is defined by

u < v : iff v = u1x , for some x ∈ 2≤ω ,
or u = w0x and v = w1y , for some w ∈ 2<ω and

x , y ∈ 2≤ω .

By Lemma 5.8, we can find a model M of T that contains sequences
(āw)w∈I and (b̄w)w∈I such that

M ⊧ φ(āu , b̄v) iff u ≤ v .

For η ∈ 2ω and n < ω, it follows that

M ⊧ φ(āη , b̄η↾n) iff η ≤ η ↾ n iff η(n) = 0 .

Consequently, for every η ∈ 2ω and every n < ω, the tuple āη satisfies

T(U) ∪ {φη(i)(x̄; b̄η↾i) ∣ i < n } ,

and (b̄w)w∈2<n is a φ-tree of height n.
(3)⇒ (2) Suppose that there is an infinite set U with ∣Sφ(U)∣ > ∣U ∣.

Fix a model M containing realisations of every φ-type over U . Let s̄ be
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the sorts of those variables in x̄ that actually appear in φ and let t̄ be
those in ȳ. For ā ∈ M s̄ , we set

S(ā) ∶= { c̄ ∈ U t̄ ∣M ⊧ φ(ā; c̄) } .

Note that tpφ(ā/U) ≠ tpφ(b̄/U) implies S(ā) ≠ S(b̄). Hence,

S ∶= { S(ā) ∣ ā ∈ M s̄ } ⊆ ℘(U t̄)

is a family of size ∣S ∣ = ∣Sφ(U)∣ > ∣U ∣ = ∣U t̄ ∣. By Theorem 5.6, there exist
sequences (c̄ i)i<ω in U t̄ and (ā i)i<ω in M s̄ such that either

c̄ i ∈ S(āk) iff i ≤ k ,
or c̄ i ∈ S(āk) iff i ≥ k .

It follows that

M ⊧ φ(ā i ; c̄k) iff i ≤ k
or M ⊧ φ(ā i ; c̄k) iff i ≥ k .

In the first case, φ has the order property and we are done. In the second
case, we can take, for every n < ω, a prefix of length n of these two
sequences and reverse their ordering to obtain sequences (ā′i)i<n and
(c̄′i)i<n such that

M ⊧ φ(ā′i ; c̄
′
k) iff i ≤ k .

Consequently, it follows by Lemma 5.8 (3) that φ has the order property.
◻

Having characterised stable formulae, we turn to theories and their
type spaces.

Definition 5.16. (a) A complete first-order theory T is κ-stable if we
have ∣S s̄(U)∣ ≤ κ, for all finite tuples of sorts s̄ and every set U of size
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c3. Types and type spaces

∣U ∣ ≤ κ. We call T stable if it is κ-stable, for some infinite cardinal κ.
Otherwise, T is unstable.

(b) A complete first-order theory T is totally transcendental if

rkCB(S
s̄(U)) <∞ for all sets U and all finite tuples s̄ .

We obtain equivalent characterisations to those of Theorem 5.15.

Theorem 5.17. Let T be a complete first-order theory. The following state-
ments are equivalent :

(1) T is stable.
(2) T is κ-stable, for every cardinal κ such that κ∣T∣ = κ.
(3) Every first-order formula is stable.
(4) Every complete type is definable over its domain.
(5) rkCB(S∆(U)) <∞, for all sets U and all finite sets ∆.
(6) ∣S∆(U)∣ ≤ κ, for all infinite cardinals κ, all finite sets ∆, and all

sets U of size ∣U ∣ ≤ κ.

Proof. (2)⇒ (1) is trivial.
(1)⇒ (3) Suppose that some formula φ(x̄ , ȳ) is not stable. By The-

orem 5.15, it follows that, for every infinite cardinal κ, there exists a set U
of size ∣U ∣ ≤ κ such that

κ < ∣Sφ(U)∣ ≤ ∣S s̄(U)∣ ,

where s̄ are the sorts of x̄. Consequently, T is not κ-stable, for any κ ≥ ℵ0.
(3)⇒ (4) Every type p ∈ S s̄(U) is definable over its domain since, by

Theorem 5.15, all of its restrictions p∣φ are definable.
(4)⇒ (6) Let ∆ be a finite set of formulae and U a set of size ∣U ∣ ≤ κ.

There exists an injective function S∆(U) → ∏φ∈∆ Sφ(U) mapping a
∆-type p to the tuple of its restrictions (p∣φ)φ∈∆ . If every type is definable
over its domain, it follows by Theorem 5.15 that

∣S∆(U)∣ ≤∏
φ∈∆
∣Sφ(U)∣ ≤ κ∣∆∣ = κ .

574



5. Stable theories

(6)⇒ (2) Let κ be a cardinal with κ∣T∣ = κ and let U be a set of size
∣U ∣ ≤ κ. Since there exists an injective function

S<ω(U)→∏φ Sφ(U) ∶ p↦ (p∣φ)φ ,

it follows that

∣S<ω(U)∣ ≤∏φ ∣Sφ(U)∣ ≤ κ∣T∣ = κ .

(6)⇒ (5) Suppose that rkCB(S∆(U)) = ∞. We have seen in Corol-
lary 4.6 that

S∆(U) ≅ spec(Lb(∆¬U)) .

By Lemma b2.5.15, there exists an embedding (ψw)w∈2<ω of 2<ω into
Lb(∆¬U). Let U0 ⊆ U be the set of all parameters appearing in these
formulae ψw . Then U0 is countable and (ψw)w∈2<ω is an embedding
of 2<ω into Lb(∆¬U0

). Consequently,

rkCB(S∆(U0)) = rkCB(spec(Lb(∆¬U0
))) =∞ .

It follows by Corollary b5.7.4 that ∣S∆(U0)∣ ≥ 2ℵ0 > ∣U0∣. This contra-
dicts (6).

(5)⇒ (6) Suppose that there is some infinite set U with ∣S∆(U)∣ > ∣U ∣.
We have seen in Corollary 4.6 that

S∆(U) ≅ spec(Lb(∆¬U)) .

Consequently, ∣spec(Lb(∆¬U))∣ > ∣Lb(∆¬U)∣ implies, by Corollary b2.5.22,
that

rkCB(S∆(U)) = rkCB(spec(Lb(∆¬U))) =∞ . ◻

ℵ0-stable theories are particularly simple. They are κ-stable, for every
cardinal κ, and not only the local type spaces S∆(U), but even the full
type space S<ω(U) has a Cantor-Bendixson rank.
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Theorem 5.18. Let T be a complete theory over a countable signature. The
following statements are equivalent :

(1) T is ℵ0-stable.

(2) T is κ-stable, for all infinite cardinals κ.

(3) T is totally transcendental.

Proof. By Theorem 2.18, we have

Ss̄(U) ≅ spec(B(U)) where B(U) ∶= Lb(FOs̄[ΣU]/T(U)) .

(2)⇒ (1) is trivial.
(3)⇒ (2) Suppose that there is some infinite cardinal κ such that T is

not κ-stable, that is,we have ∣S s̄(U)∣ > ∣U ∣, for some set U of size ∣U ∣ = κ.
By Corollary b2.5.22 there is some type p ∈ S s̄(U) with rkP(φ) = ∞.
Hence, Theorem b5.7.8 implies that rkCB(Ss̄(U)) =∞.

(1)⇒ (3) Suppose that rkCB(Ss̄(U)) =∞, for some set U and some
finite tuple s̄. By Theorem b5.7.8, there is some formula φ ∈ B(U) with
rkP(φ) = ∞. Hence, we an use Lemma b2.5.15 to find an embedding
(ψw)w∈2<ω of 2<ω into B(U). Let U0 ⊆ U be the set of all parameters
appearing in these formulae ψw . Then U0 is countable and (ψw)w∈2<ω is
an embedding of 2<ω into B(U0). By Lemma b5.7.3, it follows that

∣S s̄(U0)∣ = ∣spec(B(U0))∣ ≥ 2ℵ0 > ∣U ∣ .

Hence, T is not ℵ0-stable. ◻
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1. Partial isomorphisms
In many constructions and proofs we will have to find two sequences
ā and b̄ that cannot be told apart by any formula of a given logic, i.e., we
are interested in the relation ⟨A, ā⟩ ≡L ⟨B, b̄⟩. In the present chapter we
take a closer look at such relations for L = FO∞ℵ0 and L = FO.

Definition 1.1. Let A and B be Σ-structures, ā ⊆ A and b̄ ⊆ B sequences
of the same length, and α an ordinal.

(a) We write ⟨A, ā⟩ ≡α ⟨B, b̄⟩ iff

A ⊧ φ(ā) iff B ⊧ φ(b̄) ,

for all formulae φ ∈ FO∞ℵ0[Σ] of quantifier rank qr(φ) ≤ α. If A ≡α B
we say that A is α-equivalent to B.

(b) We write ⟨A, ā⟩ ≡∞ ⟨B, b̄⟩ iff ⟨A, ā⟩ ≡α ⟨B, b̄⟩, for all ordinals α.
Hence, we have

⟨A, ā⟩ ≡∞ ⟨B, b̄⟩ iff ⟨A, ā⟩ ≡FO∞ℵ0
⟨B, b̄⟩ .

The relations ≡α can be computed by induction on α. Note that we
have ⟨A, ā⟩ ≡0 ⟨B, b̄⟩ if and only if the function a i ↦ b i induces an
isomorphism ⟪ā⟫A ≅ ⟪b̄⟫B.

Definition 1.2. Let A and B be Σ-structures. A partial isomorphism
from A to B is a function p with dom p ⊆ A and rng p ⊆ B such that
p can be extended to an isomorphism

⟪dom p⟫A ≅ ⟪rng p⟫B .
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c4. Back-and-forth equivalence

We denote the set of all partial isomorphisms from A to B whose
domains have cardinality less than κ by pIsoκ(A,B). The union for all
cardinals κ is pIso(A,B) ∶= ⋃κ pIsoκ(A,B).

For sequences (a i)i<α and (b i)i<α we simplify notation by writing
p ∶ ā ↦ b̄ for the function p = { ⟨a i , b i⟩ ∣ i < α }. (Note that, if we
reorder the sequences ā and b̄ then we obtain the same function p.)

Remark. (a) Note that, by Theorem b3.1.9, in the above definition the
isomorphism

π ∶ ⟪dom p⟫A → ⟪rng p⟫B

extending p is unique, if it exists.
(b) If Σ is a relational signature then ⟪X⟫A = X and a function p is a

partial isomorphism iff p ∶ dom p ≅ rng p.
(c) Finally, note that ⟨⟩ ↦ ⟨⟩ = ∅ is the unique function p with

dom p = ∅ and rng p = ∅. It is a partial isomorphism iff ⟪∅⟫A ≅ ⟪∅⟫B,
that is, if the substructures generated by the constants of A and B are
isomorphic and if the same relations of arity 0 hold in A and B.

Definition 1.3. Let A and B be Σ-structures.
(a) A partial isomorphism p ∈ pIso(A,B) has the back-and-forth

property with respect to a set I ⊆ pIso(A,B) of partial isomorphisms if
the following conditions are satisfied:
Forth. For all a ∈ A, there is some q ∈ I such that p ⊆ q and a ∈ dom q.
Back. For all b ∈ B, there is some q ∈ I such that p ⊆ q and b ∈ rng q.

A set J ⊆ pIso(A,B) of partial isomorphisms has the back-and-forth
property with respect to I if every element of J has the back-and-forth
property.

(b) A back-and-forth system between A and B is a sequence (Iα)α of
sets Iα ⊆ pIso(A,B) such that

◆ for every α, Iα+1 has the back-and-forth property with respect
to Iα , and

◆ Iδ ⊆ ⋂α<δ Iα , for limit ordinals δ.
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The canonical back-and-forth system (Iα(A,B))α between A and B is
defined inductively by

I0(A,B) ∶= pIso(A,B) ,
Iα+1(A,B) ∶= { p ∈ Iα(A,B) ∣ p has the back-and-forth

property w.r.t. Iα(A,B) } ,
and Iδ(A,B) ∶= ⋂

α<δ
Iα(A,B) , for limit ordinals δ .

We will also need the restrictions

Iκ
α(A,B) ∶= Iα(A,B) ∩ pIsoκ(A,B)

to domains of size less than κ.

Example. Let A = ⟨Z, <⟩ and B = ⟨Q, <⟩. We have

I0(A,B) = { ā ↦ b̄ ∣ a i < ak ⇔ b i < bk } ,

I1(A,B) = { ā ↦ b̄ ∣ a i < ak ⇔ b i < bk and ∣a i − ak ∣ ≠ 1}
I2(A,B) = {⟨⟩↦ ⟨⟩} ,
I3(A,B) = ∅ .

Recall that an open dense linear order is a linear order without first
and last element such that between any two elements there is a third one.

Lemma 1.4. If A = ⟨A, <⟩ and B = ⟨B, <⟩ are open dense linear orders
then pIsoℵ0

(A,B) has the back-and-forth property with respect to itself.

Proof. Suppose that ā ↦ b̄ ∈ pIsoℵ0
(A,B)wherew.l.o.g.wemay assume

that a0 ≤ ⋅ ⋅ ⋅ ≤ an−1. By symmetry it is sufficient to prove the forth
property. Let c ∈ A. If c = a i , for some i, then āc ↦ b̄b i is a partial
isomorphism and we are done. Suppose that there is some i such that
a i < c < a i+1. Since B is dense we can select an arbitrary element
b i < d < b i+1 and the mapping āc ↦ b̄d is a partial isomorphism.
Similarly, if c < a0 or c > an−1 then we can take any element d < b0 or
d > bn−1 to obtain a partial isomorphism āc ↦ b̄d. ◻
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c4. Back-and-forth equivalence

Theorem 1.5 (Cantor). Any two countable open dense linear orders are
isomorphic.

Proof. Let A = ⟨A, <⟩ and B = ⟨B, <⟩ be countable open dense linear
orders and fix enumerations (a i)i<ω and (b i)i<ω ofA and B, respectively.
Let I ∶= pIsoℵ0

(A,B). We construct an increasing chain p0 ⊆ p1 ⊆ . . . of
partial isomorphisms p i ∈ I such that a i ∈ dom p2i+1 and b i ∈ dom p2i+2.
Their union p ∶= ⋃i p i is a partial isomorphism with domain dom p = A
and range rng p = B, that is, it is the desired total isomorphism p ∶ A ≅ B.
We define p i by induction on i. Let p0 ∶= ∅. Suppose that p i ∈ I

has already been defined and that i = 2n is even. Since I has the forth
property with respect to itself we can find some p i+1 ∈ I extending p i
such that an ∈ dom p i+1. Similarly, if i = 2n + 1 is odd then we use the
back property to find a partial isomorphism p i+1 ∈ I extending p i with
bn ∈ rng p i+1. ◻

Exercise 1.1. Let R = ⟨R,+⟩ be the additive group of real numbers. Show
that pIsoℵ0

(R,R) has the back-and-forth property with respect to itself.

Exercise 1.2. Prove that any two countable atomless boolean algebras
are isomorphic.

Remark. (a) The canonical back-and-forth system (Iα(A,B))α is max-
imal, that is, for any back-and-forth system (Iα)α we have Iα ⊆ Iα(A,B),
for all α.

(b) Obviously, a back-and-forth system forms a descending chain

I0 ⊇ I1 ⊇ ⋅ ⋅ ⋅ ⊇ Iα ⊇ . . . .

Furthermore, if there is some ordinal α such that

Iα(A,B) = Iα+1(A,B)

then Iα(A,B) = Iβ(A,B), for all β ≥ α. Hence, there always exists an
ordinal α < ∣I0(A,B)∣+ such that

Iα(A,B) = Iβ(A,B) , for all β ≥ α .
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Definition 1.6. Let α be the minimal ordinal such that

Iα(A,B) = Iα+1(A,B) .

We denote this limit by I∞(A,B) ∶= Iα(A,B) and the corresponding
restrictions by Iκ

∞(A,B) ∶= Iκ
α(A,B).

Remark. I∞(A,B) has the back-and-forth property with respect to
itself.

Exercise 1.3. Let A and B be finite structures with ∣A∣, ∣B∣ ≤ n. Prove
that In(A,B) = I∞(A,B).

Lemma 1.7. If p ∈ Iα(A,B) and q ⊆ p then q ∈ Iα(A,B).

Proof. The claim follows by a straightforward induction on α. ◻

Corollary 1.8. Iα(A,B) ≠ ∅ iff ⟨⟩↦ ⟨⟩ ∈ Iα(A,B) .

Lemma 1.9. Let A and B be structures and κ an infinite cardinal. The
sequence (Iκ

α(A,B))α is a back-and-forth system.

Proof. The claim follows by induction on α since, if

ā ↦ b̄ ∈ Iκ
α+1(A,B) and āc ↦ b̄d ∈ Iα(A,B)

then the set āc has cardinality less than κ. Therefore,

āc ↦ b̄d ∈ pIsoκ(A,B)

which implies that āc ↦ b̄d ∈ Iκ
α(A,B). ◻

Definition 1.10. Let A and B be Σ-structures, ā ⊆ A, b̄ ⊆ B, and α an
ordinal. We define

⟨A, ā⟩ ≅α ⟨B, b̄⟩ : iff ā ↦ b̄ ∈ Iα(A,B) ,

⟨A, ā⟩ ≅∞⟨B, b̄⟩ : iff ā ↦ b̄ ∈ I∞(A,B) .

If A ≅α B we say that A is α-isomorphic to B. For an arbitrary back-and-
forth system (Iβ)β we write

(Iβ)β ∶ ⟨A, ā⟩ ≅α ⟨B, b̄⟩ : iff ā ↦ b̄ ⊆ p , for some p ∈ Iα .
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Example. Let Σ = { Pi ∣ i < n } be a signature consisting of n unary
predicates. For a Σ-structure A = ⟨A, P̄⟩ and a set I ⊆ [n], we set

PA
I ∶= { a ∈ A ∣ a ∈ PA

i iff i ∈ I } .

For k, l ,m < ω, define

k =m l : iff k = l or k, l ≥ m .

We claim that ⟨A, ā⟩ ≅m ⟨B, b̄⟩ if and only if ā ↦ b̄ ∈ pIso(A,B) and

∣PA
I ∖ ā∣ =m ∣PB

I ∖ b̄∣ , for all I ⊆ [n] .

We prove the claim by induction on m. If m = 0 then ā ↦ b̄ ∈ I0(A,B)
iff ā ↦ b̄ is a partial isomorphism. Suppose that m > 0.

For one direction, assume that there is some I such that

∣PA
I ∖ ā∣ ≠m ∣PB

I ∖ b̄∣ .

By symmetry we may assume that ∣PA
I ∖ ā∣ > ∣PB

I ∖ b̄∣. If c ∈ PA
I ∖ ā then

we have

∣PA
I ∖ āc∣ ≠m−1 ∣PB

I ∖ b̄d∣ , for every d ∈ PB
I ∖ b̄ .

By inductive hypothesis it follows that āc ↦ b̄d ∉ Im−1(A,B), for all
d ∈ B. Consequently, ā ↦ b̄ ∉ Im(A,B).

For the other direction, let ā ↦ b̄ be a partial isomorphism such that

∣PA
I ∖ ā∣ =m ∣PB

I ∖ b̄∣ , for all I ⊆ [n] ,

and let c ∈ A ∖ ā. Set I ∶= { i < n ∣ c ∈ PA
i } and choose an arbitrary

element d ∈ PB
I ∖ b̄. It follows that

∣PA
I ∖ āc∣ =m−1 ∣PB

I ∖ b̄d∣ .

By inductive hypothesis, this implies that āc ↦ b̄d ∈ Im−1(A,B), as
desired. The back property follows by symmetry.
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We will show below that the relations ≅α and ≡α coincide. Hence,
we can determine whether A ≡α B holds by defining a back-and-forth
system (Iβ)β ∶ A ≅α B with Iα ≠ ∅.

Lemma 1.11. We have A ≅∞ B if and only if there exists a nonempty set
I ⊆ pIsoℵ0

(A,B) that has the back-and-forth property with respect to
itself.

Proof. (⇒) By Lemma 1.9, we can set I ∶= Iℵ0
∞ (A,B).

(⇐)We prove by induction on α that I ⊆ Iα(A,B), for all α. Then
we have I ⊆ I∞(A,B) which implies that I∞(A,B) ≠ ∅.

Clearly, I ⊆ pIso(A,B) = I0(A,B). Suppose that I ⊆ Iα(A,B). Each
p ∈ I has the back-and-forth property with respect to I and, therefore,
also with respect to Iα(A,B) ⊇ I. Hence, p ∈ Iα+1(A,B). Finally, if δ is
a limit ordinal and I ⊆ Iα(A,B), for all α < δ, then

I ⊆ ⋂
α<δ

Iα(A,B) = Iδ(A,B) .
◻

As an application we consider discrete linear orders.

Definition 1.12. Let A = ⟨A, ≤⟩ be a linear order.
(a) A is discrete if every element of A that is not the least one has an

immediate predecessor, and every element that is not the greatest one
has an immediate successor. We say that A is bounded if it has a least
and a greatest element.

(b) We define the distance d(a, b) of two elements a, b ∈ A by

d(a, b) ∶= ∣{ c ∈ A ∣ a ≤ c < b or b ≤ c < a }∣ .

Furthermore, we set

d(−∞, b) ∶= ∣⇓b∣ ,
d(a,∞) ∶= ∣⇑a∣ ,

and d(−∞,∞) ∶= ∣A∣⊕ 1 .

(c) For numbers m, n, k < ω, we define

m =k n : iff m = n or m, n ≥ k .
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Lemma 1.13. Let A = ⟨A, ≤⟩ and B = ⟨B, ≤⟩ be bounded discrete linear
orders, ā ∈ Am and b̄ ∈ Bm , and n < ω. We have

⟨A, ā⟩ ≅n ⟨B, b̄⟩

if and only if ā ↦ b̄ is a partial isomorphism such that, for all i , k,

d(a i , ak) =2n d(b i , bk) , d(a i ,∞) =2n d(b i ,∞) ,
d(−∞, ak) =2n d(−∞, bk) , d(−∞,∞) =2n d(−∞,∞) .

Proof. (⇒)We prove the claim by induction on n. Let m ∶= ∣ā∣. To avoid
case distinctions we add new least and greatest elements −∞ and ∞
to A and B and we set a−1 ∶= −∞ and am ∶= ∞, and similarly for
b−1 and bm .

For n = 0, we have

⟨A, ā⟩ ≅0 ⟨B, b̄⟩ iff ā ↦ b̄ ∈ pIso(A,B) .

Note that every partial automorphism trivially satisfies the condition
d(a i , ak) =1 d(b i , bk).
Consider the case that n > 0 and suppose that ⟨A, ā⟩ ≅n ⟨B, b̄⟩.

Clearly, the first condition is satisfied since ā ↦ b̄ is a partial isomorph-
ism. Therefore, it remains to show that

d(a i , ak) =2n d(b i , bk) , for all −1 ≤ i , k ≤ m .

For a contradiction, suppose that there are i and k such that

d(a i , ak) ≠2n d(b i , bk) .

By symmetry we may assume that a i < ak and d(a i , ak) < d(b i , bk). In
particular,we have d(a i , ak) < 2n . Furthermore, by inductive hypothesis,
we have

d(a i , ak) =2n−1 d(b i , bk) ,
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which is only possible if d(a i , ak) ≥ 2n−1. Hence, there exists some ele-
ment b i < d ≤ bk with d(b i , d) = 2n−1. By the back-and-forth property,
we can find an element c ∈ A such that

⟨A, āc⟩ ≅n−1 ⟨B, b̄d⟩ .

By inductive hypothesis, we have d(a i , c) =2n−1 d(b i , d) which implies
that d(a i , c) ≥ 2n−1 = d(b i , d). Consequently, we have

d(c, ak) = d(a i , ak) − d(a i , c) ≤ 2n − 1 − 2n−1 = 2n−1 − 1

which implies that d(c, ak) = d(d , bk). Together, it follows that that

d(a i , ak) = d(a i , c) + d(c, ak)

≥ d(b i , d) + d(d , bk) = d(b i , bk) .

A contradiction.
(⇐) Let In be the set of all partial functions ā ↦ b̄ where the tuples

ā and b̄ satisfy the above conditions. We claim that (In)n<ω is a back-
and-forth system. Clearly, every ā ↦ b̄ ∈ I0 is a partial isomorphism. It
remains to check the back-and-forth property. By symmetry, we only
need to prove one direction. Let ā ↦ b̄ ∈ In and c ∈ A. Fix indices i and k
such that a i ≤ c ≤ ak and there is no index l with a i < a l < ak .
We distinguish three cases. If d(a i , c) < 2n−1 then let d ∈ B be the

element such that b i ≤ d ≤ bk and d(b i , d) = d(a i , c). If d(a i , ak) =
d(b i , bk) thenwe clearly have d(c, ak) = d(d , bk). If, on the other hand,
d(a i , ak), d(b i , bk) ≥ 2n then d(c, ak) ≥ 2n−1 and d(d , bk) ≥ 2n−1.
Hence, in both cases we have d(d , bk) =2n−1 d(c, ak).

Similarly, if d(a i , c) ≥ 2n−1 but d(c, ak) < 2n−1 then we choose d ∈ B
such that b i ≤ d ≤ bk and d(d , bk) = d(c, ak). As above it follows that
d(a i , c) =2n−1 d(b i , d).

Finally, suppose that d(a i , c), d(c, ak) ≥ 2n−1. Then we select an ele-
ment b i < d < bk such that d(b i , d) = 2n−1. Since d(a i , ak), d(b i , bk) ≥
2n it follows that d(d , bk) = d(b i , bk) − d(b i , c) ≥ 2n−1. ◻
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Corollary 1.14. For discrete linear orders A and B and n < ω, we have

A ≅n B iff ∣A∣ =2n−1 ∣B∣ .

Lemma 1.15. Let Ai = ⟨A i , <, P̄⟩ andBi = ⟨B i , <, P̄⟩, for i ∈ [2], be linear
orders expanded by unary predicates P̄.

A0 ≅α B0 and A1 ≅α B1 implies A0 + A1 ≅α B0 +B1 .

Proof. Fix back-and-forth systems (I i
β)β≤α ∶ Ai ≅α Bi . We claim that

(Jβ)β≤α ∶ A0 + A1 ≅α B0 +B1

where

Jβ ∶= { āc̄ ↦ b̄d̄ ∣ ā ↦ b̄ ∈ I0β and c̄ ↦ d̄ ∈ I1
β } .

We have Jα ≠ ∅ since I i
α ≠ ∅, for both i. Furthermore, Jδ = ⋂β<δ Jβ ,

for limit ordinals δ. It remains to prove the back-and-forth property.
Suppose that āc̄ ↦ b̄d̄ ∈ Jβ+1 and e ∈ A. If e ∈ A0 then there is some
f ∈ B0 with āe ↦ b̄ f ∈ I0β . Hence, it follows that āec̄ ↦ b̄ f d̄ ∈ Jβ . If
e ∈ A1 then the same argument provides a suitable element f ∈ B1. The
back property follows analogously. ◻

2. Hintikka formulae
The relations ≅α are definable in FO∞ℵ0 by a formula of quantifier rank α.
Consequently, we have ≡α ⊆ ≅α . The other inclusion will be shown in
Section 3.

Lemma 2.1. Let A be a Σ-structure, ā ⊆ A, and α an ordinal. There exists
a formula φα

A, ā(x̄) ∈ FO∞ℵ0[Σ] of quantifier rank qr(φα
A, ā) = α such that

B ⊧ φα
A, ā(b̄) iff ā ↦ b̄ ∈ Iα(A,B) ,

for all Σ-structures B and every b̄ ⊆ B.
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2. Hintikka formulae

Proof. We construct φα
A, ā by induction on α.

(α = 0) Let Φ be the set of all literals ψ(x̄) such that A ⊧ ψ(ā). We
set φ0

A, ā ∶= ⋀Φ.
(α = β + 1)We have to express the back-and-forth property.

φβ+1
A, ā (x̄) ∶= φβ

A, ā(x̄) ∧ ⋀
c∈A

∃yφβ
A, āc(x̄ y) ∧ ∀y⋁

c∈A
φβ

A, āc(x̄ y) .

(α limit)We take the conjunction over all β < α.

φα
A, ā(x̄) ∶= ⋀

β<α
φβ

A, ā(x̄) .
◻

Remark. Formulae of the form φα
A, ā are called Hintikka formulae. Note

that φα
A, ā ∈ FOκ+ℵ0[Σ] where κ ∶= ∣A∣ ⊕ ∣Σ∣ ⊕ ∣α∣ ⊕ ℵ0. If Σ, ā, and α

are finite then it follows by induction on α that there are only finitely
many formulae of the form φα

A, ā and that we can choose them to be in
FO<ω[Σ].

Since ≅∞ = ≅α , for some ordinal α, we can also define the relation ≅∞.

Definition 2.2. Let A be a structure. The Scott height of A is the least
ordinal α such that Iℵ0

∞ (A,A) = Iℵ0
α (A,A). The Scott sentence φ∞A of A

is defined by

φ∞A ∶= φα
A,⟨⟩ ∧ ⋀

ā∈A<ω
∀x̄[φα

A, ā(x̄)→ φα+1
A, ā (x̄)] ,

where α is the Scott height of A.

Lemma 2.3. The Scott height of A is less than ∣A∣+.

Proof. If A is finite then I∣A∣(A,A) = I∞(A,A) and the Scott height is at
most ∣A∣ < ℵ0. Similarly, if A is infinite then there exists some ordinal

α < ∣Iℵ0
0 (A,A)∣

+ ≤ (∣A∣<ℵ0)+ = ∣A∣+

such that Iℵ0
α (A,A) = Iℵ0

∞ (A,A). ◻
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c4. Back-and-forth equivalence

Exercise 2.1. Compute the Scott height of ⟨ω, ≤⟩.

Theorem 2.4. For all structures A and B, we have

B ⊧ φ∞A iff B ≅∞ A .

Proof. Let α be the Scott height of A.
(⇒) If B ⊧ φ∞A then ā ↦ b̄ ∈ Iℵ0

α (A,B) implies ā ↦ b̄ ∈ Iℵ0
α+1(A,B).

Hence,

Iℵ0
α+1(A,B) = Iℵ0

α (A,B) = Iℵ0
∞ (A,B) .

Furthermore, Iℵ0
∞ (A,B) is not empty since B ⊧ φα

A,⟨⟩ implies ⟨⟩↦ ⟨⟩ ∈
Iα(A,B).
(⇐) Suppose that B ≅∞ A. Then we have B ⊧ φα

A,⟨⟩. To see that
B also satisfies the second part of the formula φ∞A we have to show that

ā ↦ b̄ ∈ Iℵ0
α (A,B) implies ā ↦ b̄ ∈ Iℵ0

α+1(A,B) .

Let ā ↦ b̄ ∈ Iℵ0
α (A,B). We claim that ā ↦ b̄ has the back-and-forth

property with respect to Iℵ0
α (A,B).

For the forth property let c ∈ A. Since A ≅∞ B there exist some tuple
b̄′ ⊆ Awith ⟨A, b̄′⟩ ≅∞ ⟨B, b̄⟩. Hence,

⟨A, b̄′⟩ ≅α ⟨B, b̄⟩ ≅α ⟨A, ā⟩ .

Since α is the Scott height of A is follows that

⟨A, b̄′⟩ ≅α+1 ⟨A, ā⟩ .

Hence, we can find some d′ ∈ Awith

⟨A, b̄′d′⟩ ≅α ⟨A, āc⟩ .

Since ⟨A, b̄′⟩ ≅∞ ⟨B, b̄⟩ there is some d ∈ B such that

⟨A, b̄′d′⟩ ≅∞ ⟨B, b̄d⟩ .
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3. Ehrenfeucht-Fraïssé games

Consequently, we have

⟨A, āc⟩ ≅α ⟨A, b̄′d′⟩ ≅α ⟨B, b̄d⟩ ,

and āc ↦ b̄d ∈ Iα(A,B). The back property follows analogously. ◻

Corollary 2.5. A ≡∣A∣+ B implies A ≅∞ B.

Proof. If α is the Scott height of A then qr(φ∞A ) ≤ α + ω < ∣A∣+. ◻

3. Ehrenfeucht-Fraïssé games
Ehrenfeucht-Fraïssé games provide an intuitive way of describing back-
and-forth systems.

Definition 3.1. Let A and B Σ-structures, ā0 ⊆ A, b̄0 ⊆ B, and let α be
an ordinal.

(a) The Ehrenfeucht-Fraïssé game EFα(A, ā0 ,B, b̄0) is played by two
players (spoiler and duplicator) according to the following rules :

◆ A position in the game is a tuple ⟨β, ā, b̄⟩ where β ≤ α, ā ⊆ A,
b̄ ⊆ B, and ∣ā∣ = ∣b̄∣.

◆ The initial position is ⟨α, ā0 , b̄0⟩.

◆ In the position ⟨β, ā, b̄⟩ spoiler chooses an ordinal γ < β and
either an element c ∈ A or some d ∈ B. Duplicator responds by
selecting an element of the other structure, i.e., either d ∈ B or
c ∈ A. The new position is ⟨γ, āc, b̄d⟩.

◆ Spoiler loses if he cannot choose γ because β = 0. Duplicator loses
if a position ⟨β, ā, b̄⟩ is reached where ā ↦ b̄ ∉ pIso(A,B).

(b) The infinite version EFκ
∞(A, ā0 ,B, b̄0) of the Ehrenfeucht-Fraïssé

game is played in the same way as EFα(A, ā0 ,B, b̄0) with the exception
that the first component of all positions is omitted and every play has
length κ. Hence, duplicator wins if she can continue the game for κ steps
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while, as before, spoiler wins if a position ⟨ā, b̄⟩ is reached such that
ā ↦ b̄ is not a partial isomorphism.

(c) A winning strategy of one of the players is a function mapping
positions to moves such that, regardless of the moves of his opponent,
the player wins if he always plays the moves given by the strategy. We say
that a player wins the game EFα(A, ā,B, b̄) if he has a winning strategy.

Example. Let A = ⟨Z, <⟩ and B = ⟨Q, <⟩. Spoiler wins the 3 round game
EF3(A,B). The game starts in position

⟨3, ⟨⟩, ⟨⟩⟩ .

In the first round, spoiler chooses 2 < 3 and 0 ∈ Z. Duplicator has to
answer with some number a ∈ Q. The new position is

⟨2, ⟨0⟩, ⟨a⟩⟩ .

In the second round, spoiler chooses 1 < 2 and 1 ∈ Z. Duplicator replies
with some b ∈ Q such that b > a. The new position is

⟨1, ⟨0, 1⟩, ⟨a, b⟩⟩ .

Finally, spoiler chooses 0 < 1 and (a + b)/2 ∈ Q. Duplicator has to
respond with some element z ∈ Z such that 0 < z < 1. Since there is no
such element she loses.

Exercise 3.1. Let A be the tree consisting of one path of length n, for
every n < ω, and let B be the tree consisting of one path of length α, for
every α ≤ ω.

A B

⋯ ⋯

Find the least ordinal α such that Spoiler wins EFα(A,B).
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3. Ehrenfeucht-Fraïssé games

Immediately from the definition we obtain the following connection
between Ehrenfeucht-Fraïssé games and the back-and-forth property.

Lemma 3.2. Duplicator wins EFα(A, ā,B, b̄) if and only if
◆ for all β < α and every c ∈ A there is some d ∈ B such that she wins

EFβ(A, āc,B, b̄d), and
◆ for all β < α and every d ∈ B there is some c ∈ A such that she wins

EFβ(A, āc,B, b̄d).

By induction it follows that the winning positions in the game form a
back-and-forth system.

Lemma 3.3. Duplicator wins EFα(A, ā,B, b̄) iff ā ↦ b̄ ∈ Iα(A,B).

Proof. We show the claim by induction on α.
(α = 0) By definition, duplicator wins EF0(A, ā,B, b̄) iff ā ↦ b̄ ∈

pIso(A,B) = I0(A,B).
(α = β + 1) Duplicator wins EFβ+1(A, ā,B, b̄)

iff for all c ∈ A there is d ∈ B such that she wins EFβ(A, āc,B, b̄d)

and for all d ∈ B there is c ∈ A such that she wins EFβ(A, āc,B, b̄d)
iff for all c ∈ A there is d ∈ B such that āc ↦ b̄d ∈ Iβ(A,B)

and for all d ∈ B there is c ∈ A such that āc ↦ b̄d ∈ Iβ(A,B)
iff ā ↦ b̄ has the back-and-forth property w.r.t Iβ(A,B)
iff ā ↦ b̄ ∈ Iβ+1(A,B) .

(α limit) Duplicator wins EFα(A, ā,B, b̄)

iff she wins EFβ(A, ā,B, b̄) for all β < α
iff ā ↦ b̄ ∈ Iβ(A,B) for all β < α
iff ā ↦ b̄ ∈ Iα(A,B) . ◻

We have seen that the relation ≡α refines ≅α . The following lemma
establishes the converse.
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Lemma 3.4. Let A and B be structures with elements ā ⊆ A and b̄ ⊆ B. If
there exists a formula φ(x̄) ∈ FO∞ℵ0[Σ, X] of quantifier rank qr(φ) ≤ α
such that

A ⊧ φ(ā) and B ⊭ φ(b̄)

then spoiler wins EFα(A, ā,B, b̄).

Proof. W.l.o.g. we may assume that φ is in negation normal form. We
prove the claim by induction on φ.
(φ literal) As ā and b̄ are distinguished by an atomic formula the

mapping ā ↦ b̄ cannot be a partial isomorphism. Hence, spoiler wins
the game EF0(A, ā,B, b̄) immediately.
(φ = ⋀Φ)There is some formula ψ ∈ Φ such that

A ⊧ ψ(ā) and B ⊭ ψ(b̄) .

Since qr(ψ) ≤ α spoiler wins EFα(A, ā,B, b̄), by inductive hypothesis.
(φ = ⋁Φ) follows in the same way.
(φ = ∃xψ) Let β ∶= qr(ψ) < α. There is some element c ∈ A such that

A ⊧ ψ(ā, c), but B ⊭ ψ(b̄, d), for all d ∈ B. In the first move spoiler
can choose β and the element c ∈ A. Duplicator responds with some
element d ∈ B. By inductive hypothesis, spoiler can win the resulting
game EFβ(A, āc,B, b̄d). Therefore, he also wins EFα(A, ā,B, b̄).
(φ = ∀xψ) analogously by choosing some d ∈ B. ◻

Theorem 3.5 (Karp). Let A and B be structures and α an ordinal.

(a) The following statements are equivalent :

(1) ⟨A, ā⟩ ≡α ⟨B, b̄⟩ .
(2) ⟨A, ā⟩ ≅α ⟨B, b̄⟩ .
(3) ⟨B, b̄⟩ ⊧ φα

A, ā .
(4) Duplicator wins EFα(A, ā,B, b̄).

(b) The following statements are equivalent :
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3. Ehrenfeucht-Fraïssé games

(1) ⟨A, ā⟩ ≡∞ ⟨B, b̄⟩ .
(2) ⟨A, ā⟩ ≅∞ ⟨B, b̄⟩ .
(3) ⟨B, b̄⟩ ⊧ φ∞A, ā .
(4) Duplicator wins EFℵ0

∞ (A, ā,B, b̄).

Proof. (a) We have already shown in Lemmas 2.1 and 3.3 that (2), (3),
and (4) are equivalent.

(1)⇒ (3) follows directly from the definition of ≡α since qr(φα
A, ā) ≤ α.

(4)⇒ (1) If ⟨A, ā⟩ ≢α ⟨B, b̄⟩ then there is some formula φ ∈ FO∞ℵ0

of quantifier rank qr(φ) ≤ α such that A ⊧ φ(ā) and B ⊭ φ(b̄). By
Lemma 3.4, spoiler wins EFα(A, ā,B, b̄).

(b) The equivalence (2)⇔ (3) was proved in Theorem 2.4, and the
implication (1)⇒ (3) is trivial.

(2)⇒ (4) Duplicator can win if she ensures that only positions ⟨c̄, d̄⟩
are reached where c̄ ↦ d̄ ∈ I∞(A,B) ⊆ pIso(A,B). But this is easily
done since I∞(A,B) has the back-and-forth property with respect to
itself. If spoiler chooses some element c ∈ A then there exists an element
d ∈ B with āc ↦ b̄d ∈ I∞(A,B). Similarly, if spoiler plays in B then
duplicator can respond in A.

(4)⇒ (1) If ⟨A, ā⟩ ≢∞ ⟨B, b̄⟩ then there is some formula φ ∈ FO∞ℵ0

such that A ⊧ φ(ā) and B ⊭ φ(b̄). Let α ∶= qr(φ). By Lemma 3.4,
spoiler wins EFα(A, ā,B, b̄). He can use the same strategy to win the
infinite game EFℵ0

∞ (A, ā,B, b̄). ◻

Corollary 3.6 (Ehrenfeucht, Fraïssé). Let Σ be a relational signature
and A and B Σ-structures. For m < ω, let ∆m ⊆ FO[Σ] be the set of all
first-order formulae of quantifier rank at most m.

(a) A ≡∆m B iff A∣Σ0 ≅m B∣Σ0 for all finite Σ0 ⊆ Σ ,
(b) A ≡FO B iff A∣Σ0 ≅ω B∣Σ0 for all finite Σ0 ⊆ Σ .

Exercise 3.2. Find structures A and B such that A ≡FO B but A ≇ω B.

Corollary 3.7. Every formula ψ ∈ FO∞ℵ0[Σ, X] of quantifier rank α is
equivalent to a disjunction of Hintikka formulae of quantifier rank α. For
ψ ∈ FO[Σ, X] and relational Σ,we can choose this disjunction in FO[Σ, X].
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Proof. We have ψ ≡ ⋁Φ where

Φ ∶= {φα
A, ā ∣ A ⊧ ψ(ā) }

is the set of all Hintikka formulae corresponding to models of ψ.
If ψ ∈ FO[Σ, X] then α < ω and there exist finite subsets Σ0 ⊆ Σ and

X0 ⊆ X such that ψ ∈ FO[Σ0 , X0]. Hence, we have ψ ≡ ⋁Φ0 where
Φ0 ∶= Φ ∩ FO[Σ0 , X0] is finite. ◻

We conclude this section with several applications of Ehrenfeucht-
Fraïssé games.

Lemma 3.8. There exists no first-order formula φ such that, for every
finite structure A, we have

A ⊧ φ iff ∣A∣ is even.

Proof. Suppose that such a formula φ exists and let m ∶= qr(φ). By
Corollary 1.14, we have

⟨[2m], ≤⟩ ⊧ φ iff ⟨[2m + 1], ≤⟩ ⊧ φ .

A contradiction. ◻

Let us apply Ehrenfeucht-Fraïssé games to equivalence relations. Re-
call that we write m =k n iff m = n or m, n ≥ k. If E is an equivalence
relation then we denote by N=k (E) the number of E-classes [a]E of size
∣[a]E ∣ = k and N>k (E) denotes the number of classes of size ∣[a]E ∣ > k.

Lemma 3.9. Let E and F be equivalence relations on the sets A and B,
respectively. We have ⟨A, E⟩ ≅m ⟨B, F⟩ if and only if

N=k (E) =m−k N=k (F) and N>k (E) =m−k N>k (F) ,

for all k ≤ m.

594



3. Ehrenfeucht-Fraïssé games

Proof. (⇒) First, suppose that N=k (E) > N=k (F) =∶ s. We claim that
spoiler wins EFs+k+1(A,B). Since N=k (E) > s we can find s + 1 different
E-classes [a0]E , . . . , [as]E of size ∣[a i]E ∣ = k. In the first part of the
game spoiler plays their representatives a0 , . . . , as . Duplicator has to
answer with elements b0 , . . . , bs of different F-classes in B. Since we
have N=k (F) < s + 1 there is an index i such that l ∶= ∣[b i]F ∣ ≠ k. If l < k
then spoiler continues by playing k − 1 different elements

c0 , . . . , ck−2 ∈ [a i]E ∖ {a i} .

Since ∣[b i]F ∖ {b i}∣ < k − 1 duplicator cannot answer all of them. Con-
sequently, spoiler wins after at most s+ 1+ k − 1 = s+ k rounds. Similarly,
if l > k then spoiler plays k different elements

d0 , . . . , dk−1 ∈ [b i]F ∖ {b i} ,

and again duplicator cannot answer all of them. In this case spoiler wins
after at most s + 1 + k rounds.

It remains to consider the case that N>k (E) > N>k (F) =∶ s. By a sim-
ilar argument as above we show that spoiler wins EFs+k+1(A,B). Since
N>k (E) > s we can find s + 1 different E-classes [a0]E , . . . , [as]E of size
∣[a i]E ∣ > k. In the first part of the game spoiler plays their represent-
atives a0 , . . . , as . Duplicator has to answer with elements b0 , . . . , bs of
different F-classes in B. Since we have N>k (F) < s + 1 there is an index i
such that ∣[b i]F ∣ ≤ k. In the second part of the game spoiler plays k
different elements

c0 , . . . , ck−1 ∈ [a i]E ∖ {a i} .

Since ∣[b i]F ∖ {b i}∣ < k duplicator cannot answer all of them. Con-
sequently, spoiler wins after at most s + 1 + k rounds.
(⇐) For k ≤ m, let Ik be the set of all partial isomorphisms ā ↦ b̄

with ā ∈ Am−k and b̄ ∈ Bm−k such that

∣[a i]E ∖ ā∣ =k ∣[b i]F ∖ b̄∣ , for all i < m − k .
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We claim that (Ik)k ∶ ⟨A, E⟩ ≅m ⟨B, F⟩. Clearly, we have ⟨⟩ ↦ ⟨⟩ ∈ Im .
By symmetry, it is therefore sufficient to prove the forth property.

Let ā ↦ b̄ ∈ Ik+1, and c ∈ A. We have to find some d ∈ B such that
āc ↦ b̄d ∈ Ik . We consider several cases. If c = a i , for some i, then
āc ↦ b̄b i ∈ Ik . If c ∈ [a i]E ∖ ā, for some i, then

∣[a i]E ∖ ā∣ =k+1 ∣[b i]E ∖ b̄∣

implies that there is some d ∈ [b i]E ∖ b̄. It follows that āc ↦ b̄d ∈ Ik .
It remains to consider the case that c ∉ [a i]E , for all i. Set s ∶= ∣[c]E ∣.

We are looking for an element d ∈ B with s =k+1 ∣[d]F ∣ and [d]F ∩ b̄ = ∅.
First, consider the case that s ≤ k. Then we have

∣[a i]E ∣ = s iff ∣[b i]F ∣ = s .

Let l be the number of indices i with ∣[a i]E ∣ = s. Since

N=s (E) =m−s N=s (F) and l + 1 ≤ m − k − 1 + 1 ≤ m − s ,

it follows that N=s (E) ≥ l + 1 implies N=s (F) ≥ l + 1. Consequently, we
can choose some element d ∈ B such that ∣[d]F ∣ = s and [d]F ∩ b̄ = ∅.

The proof for the case that s > k is analogous. Then we have

∣[a i]E ∣ > k iff ∣[b i]F ∣ > k ,

and we denote by l the number of indices i with ∣[a i]E ∣ > k. Since

N>k (E) =m−k N>k (F) and l + 1 ≤ m − k ,

it follows that N>k (E) ≥ l+1 implies N>k (F) ≥ l+1. Consequently,we can
choose some element d ∈ B such that ∣[d]F ∣ > k and [d]F ∩ b̄ = ∅. ◻

We have seen in Lemma c1.1.7 that we can define every ordinal α < κ
in FOκℵ0[<]. Nevertheless there is no FO∞ℵ0[<]-formula that axiomat-
ises the class of all well-orders.
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Lemma 3.10. For every ordinal α, there exists an ordinal δ > α such that
δ ≡δ δ + δ ⋅ τ, for each linear order τ.

Proof. By Lemma a4.5.6, we can choose δ > α such that ω(δ) = δ. Then
δ is a limit ordinal such that δ = ω(β)δ, for all β < δ. Hence, for each
β < δ, we can write δ as sum of δ copies of the order ω(β). We call such
a summand a ω(β)-interval of δ.

δ∶
δ

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ——
ω(β)

——
ω(β)

——
ω(β)

——
ω(β)

⋯

In the same way we can write linear orders of the form δ + δτ as a sum
of ω(β)-intervals.

For β < δ, let Iβ be the set of all finite partial isomorphisms ā ↦
b̄ ∈ pIsoℵ0

(δ, δ + δτ) satisfying the following conditions. For notational
simplicity we assume that a0 < ⋯ < an−1.

(1) a i and a i+1 belong to the same ω(β)-interval iff b i and b i+1 belong
to the same ω(β)-interval.

(2) a i is the α-th element of the ω(β)-interval containing a i if and
only if b i is the α-th element of the ω(β)-interval containing b i .

(3) a0 is in the first ω(β)-interval if and only if b0 is in the first ω(β)-
interval.

Further, we set Iδ ∶= {⟨⟩↦ ⟨⟩}. We claim that (Iβ)β<δ ∶ δ ≅δ δ + δτ .
To prove the back property, suppose that ā ↦ b̄ ∈ Iβ+1 where a0 <

⋯ < an−1, and let d ∈ δ + δτ.
If d belongs to the ω(β)-interval of some b i then let c be the corres-

ponding element in the ω(β)-interval of a i . It follows that āc ↦ b̄d ∈ Iβ .
If d belongs to the first ω(β)-interval or if d > bn−1 then we can easily
find a suitable element c ∈ δ such that āc ↦ b̄d ∈ Iβ .

It remains to consider the case that the ω(β)-interval of d lies strictly
between those of b i and b i+1. Since a i and a i+1 do not belong to the
same ω(β)-interval we can choose some ω(β)-interval between those
containing a i and a i+1. Let c be the α-th element of this interval, where
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α is the position of d in its ω(β)-interval. Again, it follows that āc ↦
b̄d ∈ Iβ .

In the same way, we can prove the forth property. Since ⟨⟩↦ ⟨⟩ ∈ Iβ ,
for all β < δ, it follows that (Iβ)β<δ ∶ δ ≅δ δ + δτ. ◻

Theorem 3.11. There is no sentence φ ∈ FO∞ℵ0[≤] such that

A ⊧ φ iff A is a well-order.

Proof. Suppose there is such a formula φ. Let α ∶= qr(φ). By the preced-
ing lemma we can find an ordinal δ > α such that δ ≡δ δ + δζ where
ζ ∶= ⟨Z, ≤⟩. Since δ is a well-order we have δ ⊧ φ. This implies that
δ + δζ ⊧ φ. Contradiction. ◻

4. κ-complete back-and-forth systems
Sometimes the partial isomorphisms of a back-and-forth systems can
be used to construct a total isomorphism between two structures.

Definition 4.1. Let κ be an infinite cardinal and I ⊆ pIso(A,B).
(a) The set I is κ-complete if, for every increasing chain (p i)i<α ⊆ I

and every subset X ⊆ ⋃i<α p i of size ∣X∣ < κ, there is some q ∈ I with
⋃i<α p i ↾ X ⊆ q.

(b) I is κ-bounded if, for every p ∈ I and each subset X ⊆ dom p,
there is a partial isomorphism q ∈ I of size ∣q∣ < ∣X∣+ ⊕ κ such that
p ↾ X ⊆ q ⊆ p.

(c) We call I κ-finitary if, for every p ∈ pIsoκ(A,B), we have

p ∈ I iff p ↾ X ∈ I for all finite X ⊆ dom p .

Remark. Note that every κ-finitary set is κ-complete and ℵ0-bounded.

Definition 4.2. For structures A and B and a cardinal κ, we set

Iκ
FO(A,B) ∶= { ā ↦ b̄ ∈ pIsoκ(A,B) ∣ ⟨A, ā⟩ ≡FO ⟨B, b̄⟩ } .
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4. κ-complete back-and-forth systems

Remark. Since every first-order formula refers only to finitely many
constants it follows that the sets Iκ

FO(A,B) are κ-finitary and, hence,
κ-complete.

Definition 4.3. Let A and B be structures and κ an infinite cardinal.
(a) For a set I ⊆ pIso(A,B), we write I ∶ ⟨A, ā⟩ ⊑κ

iso ⟨B, b̄⟩ if
◆ ā ↦ b̄ ⊆ p, for some p ∈ I with ∣dom p ∖ ā∣ < κ,
◆ I is κ-complete and κ-bounded,
◆ I has the forth property with respect to itself. (We do not require

the back property.)
Similarly, we define I ∶ ⟨A, ā⟩ ≅κ

iso ⟨B, b̄⟩ if
◆ ā ↦ b̄ ⊆ p, for some p ∈ I with ∣dom p ∖ ā∣ < κ,
◆ I is κ-complete and κ-bounded,
◆ I has the back-and-forth property with respect to itself,

that is, if

I ∶ ⟨A, ā⟩ ⊑κ
iso ⟨B, b̄⟩ and I ∶ ⟨A, ā⟩ ⊒κ

iso ⟨B, b̄⟩ .

We write A ≅κ
iso B if there exists some set I with I ∶ A ≅κ

iso B, and
similarly for ⊑κ

iso.
(b) Of particular interest are the following special cases.

⟨A, ā⟩ ⊑κ
0 ⟨B, b̄⟩ : iff Iκ

0(A,B) ∶ ⟨A, ā⟩ ⊑
κ
iso ⟨B, b̄⟩ ,

⟨A, ā⟩ ≅κ
0 ⟨B, b̄⟩ : iff Iκ

0(A,B) ∶ ⟨A, ā⟩ ≅
κ
iso ⟨B, b̄⟩ ,

⟨A, ā⟩ ⊑κ
FO ⟨B, b̄⟩ : iff Iκ

FO(A,B) ∶ ⟨A, ā⟩ ⊑
κ
iso ⟨B, b̄⟩ ,

⟨A, ā⟩ ≅κ
FO ⟨B, b̄⟩ : iff Iκ

FO(A,B) ∶ ⟨A, ā⟩ ≅
κ
iso ⟨B, b̄⟩ ,

⟨A, ā⟩ ⊑κ
∞ ⟨B, b̄⟩ : iff Iκ

∞(A,B) ∶ ⟨A, ā⟩ ⊑
κ
iso ⟨B, b̄⟩ ,

⟨A, ā⟩ ≅κ
∞ ⟨B, b̄⟩ : iff Iκ

∞(A,B) ∶ ⟨A, ā⟩ ≅
κ
iso ⟨B, b̄⟩ .

Remark. (a) Iℵ0
∞ (A,B) is trivially ℵ0-complete and ℵ0-bounded. Hence,

we have

A ≅ℵ0
∞ B iff A ≅∞ B .
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c4. Back-and-forth equivalence

(b) The sets Iκ
0(A,B) and Iκ

FO(A,B) are κ-finitary and, hence, κ-com-
plete and κ-bounded. Consequently, we have

A ⊑κ
0 B iff Iκ

0(A,B) is nonempty and it has the forth
property with respect to itself.

and similarly for the relations ≅κ
0, ⊑κ

FO, and ≅κ
FO.

(c) Note that we have

Iκ
∞(A,B) ⊆ Iκ

FO(A,B) ⊆ Iκ
0(A,B) .

Furthermore, we have shown in Lemma 1.11 that

I ∶ A ≅κ
iso B implies I ⊆ I∞(A,B) .

Let us summarise these remarks in the following lemma.

Lemma 4.4. Let κ be a cardinal and x ∈ {0, FO}.
(a) The following statements are equivalent :

(1) A ⊑κ
x B.

(2) The set Iκ
x(A,B) is nonempty and it has the forth property

with respect to itself.
(b) The following statements are equivalent :

(1) A ≅κ
x B.

(2) Iκ
x(A,B) = Iκ

∞(A,B) ≠ ∅.
(3) The set Iκ

x(A,B) is nonempty and it has the back-and-forth
property with respect to itself.

As an example we consider dense linear orders.

Definition 4.5. Let A = ⟨A, <⟩ be a linear order.
(a) For C ,D ⊆ A, we write C < D if c < d, for all c ∈ C and d ∈ D.
(b) A is κ-dense if, for all sets C ,D ⊆ A of size ∣C∣, ∣D∣ < κ with C < D,

there exists an element a ∈ A such that C < a < D. Note that we allow
C = ∅ or D = ∅.
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Lemma 4.6. If B = ⟨B, <⟩ is a κ-dense linear order then we have

A ⊑κ
0 B , for every linear order A .

Proof. We have already noted that pIsoκ(A,B) is κ-complete. Further-
more, since linear orders are relational structures we have

⟨⟩↦ ⟨⟩ ∈ pIsoκ(A,B) ≠ ∅ .

Consequently, it remains to prove the forth property.
Let p ∈ pIsoκ(A,B) and a ∈ A. If a ∈ dom p then we are done.

Otherwise, we can partition the domain of p into

C ∶= { c ∈ dom p ∣ c < a } and D ∶= { d ∈ dom p ∣ a < d } .

Then C < D which implies that p[C] < p[D]. Since B is κ-dense and
∣C∣, ∣D∣ ≤ ∣dom p∣ < κ we can find some element b ∈ B with

p[C] < b < p[D] .

Hence, p∪{⟨a, b⟩} is the desired partial isomorphism extending p. ◻

Corollary 4.7. If A and B are κ-dense linear orders then A ≅κ
0 B.

The relation ≅κ
iso can also be characterised via Ehrenfeucht-Fraïssé

games. The proof is completely analogous to that of Lemma 3.3.

Theorem 4.8. Let A and B be structures and κ a cardinal. The following
statements are equivalent :

(1) ⟨A, ā⟩ ≅κ
iso ⟨B, b̄⟩.

(2) Duplicator wins EFκ
∞(A, ā,B, b̄).

κ-complete sets with the back-and-forth property can be used to
construct embeddings and isomorphisms.

Lemma 4.9. Let A and B be structures and κ an infinite cardinal.
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c4. Back-and-forth equivalence

(a) Suppose that I ∶ A ≅κ
iso B. For all sequences ā ∈ Aκ and b̄ ∈ Bκ ,

there exist sequences c̄ ∈ Aκ and d̄ ∈ Bκ such that, for all α < κ,

I ∶ ⟨A, (a i)i<α , (c i)i<α⟩ ≅
κ
iso ⟨B, (d i)i<α , (b i)i<α⟩ .

In particular, we have ⟨A, āc̄⟩ ≅0 ⟨B, d̄b̄⟩.
(b) Suppose that I ∶ A ⊑κ

iso B. For every sequence ā ∈ Aκ , there exist a
sequence b̄ ∈ Bκ such that

I ∶ ⟨A, (a i)i<α⟩ ⊑
κ
iso ⟨B, (b i)i<α⟩ , for all α < κ .

In particular, we have ⟨A, ā⟩ ≅0 ⟨B, b̄⟩.

Proof. (a) We construct an increasing chain (p i)i<κ of partial isomorph-
isms p i ∈ I with ∣p i ∣ < κ such that a i ∈ dom p i+1 and b i ∈ rng p i+1, for
all i < κ. Then we obtain the desired sequences c̄ and d̄ by setting

c i ∶= (p i+1)
−1(b i) and d i ∶= p i+1(a i) .

Since I ∶ A ⊑κ
iso B there is some p0 ∈ I with ∣p0∣ < κ. Suppose that we

have already defined p i ∈ I, for i < α. If α is a limit ordinal then, I being
κ-complete, there is some pα ∈ I such that

⋃
i<α

p i ↾ [{ a i ∣ i < α } ∪ { p−1
i+1(b i) ∣ i < α }] ⊆ pα .

Finally, suppose that α = γ + 1 is a successor. By the forth property we
can find some q ∈ I extending pγ with aγ ∈ dom q. Analogously, there is
some pα ∈ I extending q with bγ ∈ rng pα .

(b) is proved in the same way as (a). We define an increasing chain
(p i)i<κ of partial isomorphisms such that a i ∈ dom p i+1. For every a i ,
we can use the forth property to find a suitable b i . ◻

Lemma 4.10. Let A and B be structures generated by A0 ⊆ Aand B0 ⊆ B,
respectively.

(a) If κ ≥ ∣A0∣⊕ ∣B0∣ and I ∶ A ≅κ
iso B then A ≅ B.
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4. κ-complete back-and-forth systems

(b) If κ ≥ ∣A0∣ and I ∶ A ⊑κ
iso B then there exists an embedding A→ B.

Proof. (a) Let ā be an enumeration of A0 and b̄ one of B0. By the pre-
ceding lemma, there are sequences c̄ ⊆ A and d̄ ⊆ B such that

⟨A, āc̄⟩ ≅0 ⟨B, d̄b̄⟩ .

In particular, themap p ∶ āc̄ ↦ d̄b̄ is a partial isomorphism.By definition,
there exists an isomorphism

π ∶ ⟪dom p⟫A ≅ ⟪rng p⟫B

extending p. Since dom p ⊇ ā = A0 and rng p ⊇ b̄ = B0 it follows that
π is a total isomorphism between A and B.

(b) Given an enumeration ā of A0 we can find a sequence b̄ ⊆ B such
that ⟨A, ā⟩ ≅0 ⟨B, b̄⟩. Hence, ā ↦ b̄ is a partial isomorphism that can
be extended to an isomorphism

π ∶ ⟪ā⟫A ≅ ⟪b̄⟫B .

Since ⟪ā⟫A = A it follows that π is the desired embedding. ◻

Corollary 4.11. If A and B are countable structures with A ≡ω1 B then
A ≅ B.

Proof. Let α be the Scott height of A. Then α < ∣A∣+ ≤ ℵ1. Hence,A ≡ω1 B
implies that B ⊧ φ∞A where φ∞A is the Scott sentence of A.ByTheorem 2.4,
it follows that A ≅∞ B. This is equivalent to A ≅ℵ0

∞ B since Iℵ0
∞ (A,B) is

always ℵ0-complete. Hence, Lemma 4.10 (a) implies that A ≅ B. ◻

Corollary 4.12. (a) If A and B are κ-dense linear orders of size at most κ
then A ≅ B.

(b) If B is a κ-dense linear order then every linear order A of size at
most κ can be embedded into B.

Proof. Immediately from Lemma 4.6 and Corollary 4.7. ◻
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c4. Back-and-forth equivalence

We can show that the relation ≅κ
iso is reflexive and symmetric, but it is

unknown whether it is also transitive. The relations ≅κ
0, ≅κ

FO, and ≅κ
∞, on

the other hand, are transitive and symmetric but not reflexive.

Lemma 4.13. If A ≅ B then A ≅κ
iso B, for all κ.

Proof. Fix an isomorphism π ∶ A ≅ B. The set

I ∶= { p ∈ pIsoκ(A,B) ∣ p ⊆ π }

is nonempty, κ-finitary, and it has the back-and-forth property with
respect to itself. Hence, we have I ∶ A ≅κ

iso B. ◻

Remark. The above lemma fails for the relations ≅κ
0, ≅κ

FO, and ≅κ
∞. In

fact, we can even find structures A such that A ≇ℵ0
0 A or A ≇ℵ0

FO A. For
instance, if we take A ∶= ⟨ω, ≤⟩ then 0 ↦ 1 ∈ Iℵ0

0 (A,A) but there exists
no element a ∈ ω with ⟨0, a⟩↦ ⟨1, 0⟩ ∈ Iℵ0

0 (A,A). Structures such that
A ≅κ

FO A are called κ-homogeneous. They are the subject of Section e1.1.

Lemma 4.14. Let κ be a cardinal and x ∈ {0, FO,∞}.

A ⊑κ
x B ⊑κ

x C implies A ⊑κ
x C .

Proof. Let Lx ⊆ FO∞ℵ0 be the logic such that

ā ↦ b̄ ∈ Iκ
x(A,B) iff ⟨A, ā⟩ ≡Lx ⟨B, b̄⟩ .

We start by showing that

Iκ
x(A,C) = { q ○ p ∣ p ∈ Iκ

x(A,B) , q ∈ Iκ
x(B,C) } .

Clearly, if p and q preserve all Lx -formulae then so does q ○ p. Therefore,
we only have to show that, for every ā ↦ c̄ ∈ Iκ

x(A,C), there is some
tuple b̄ such that ā ↦ b̄ ∈ Iκ

x(A,B) and b̄ ↦ c̄ ∈ Iκ
x(B,C).

Given ā of length ∣ā∣ < κ, we can find, by Lemma 4.9, some tuple b̄
such that ā ↦ b̄ ∈ Iκ

x(A,B). Since the maps b̄ ↦ ā and ā ↦ c̄ preserve
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5. The theorems of Hanf and Gaifman

all Lx -formulae it follows that so does b̄ ↦ c̄. Consequently,we also have
b̄ ↦ c̄ ∈ Iκ

x(B,C), as desired.
To prove the lemma, first note that the claim implies that ⟨⟩ ↦ ⟨⟩ ∈

Iκ
x(A,C) ≠ ∅. Therefore, it remains to check that Iκ

x(A,C) has the forth
property with respect to itself. Let π ∈ Iκ

x(A,C) and a ∈ A. Then π = q○ p,
for some p ∈ Iκ

x(A,B) and q ∈ Iκ
x(B,C). Since these sets have the forth

property, we can find elements b ∈ B and c ∈ C such that

p′ ∶= p ∪ {⟨a, b⟩} ∈ Iκ
x(A,B)

and q′ ∶= q ∪ {⟨b, c⟩} ∈ Iκ
x(B,C) .

It follows that π ∪ {⟨a, c⟩} = q′ ○ p′ ∈ Iκ
x(A,C). ◻

Since the relations ≅κ
x are clearly symmetric we have the following

corollaries.

Corollary 4.15. Let κ be a cardinal and x ∈ {0, FO,∞}.
(a) If A ≅κ

x B then A ≅κ
x A.

(b) The relation ⊑κ
x is a preorder on the class

C ∶= {A ∣ A ≅κ
x A} .

5. The theorems of Hanf and Gaifman
In nontrivial applications the combinatorics involved in playing Ehren-
feucht-Fraïssé games quickly become unmanageable. Therefore, it is
desirable to develop methods to simplify such games.

Definition 5.1. Let A be a relational Σ-structure. The Gaifman graph
of A is the graph G(A) ∶= ⟨A, E⟩ with edge relation

E ∶= { ⟨a, b⟩ ∈ A2 ∣ a ≠ b and a, b ∈ c̄ for some c̄ ∈ RA , R ∈ Σ } .

Definition 5.2. Let A be a relational structure. The following definitions
will only be used in this section.
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(a) We denote by d(a, b) the distance between a and b in G(A).
(b) For X ,Y ⊆ A, we set d(X ,Y) ∶= min{ d(a, b) ∣ a ∈ X , b ∈ Y }.
(c) The r-neighbourhood of a ∈ A is the set

N(r, a) ∶= { b ∈ A ∣ d(a, b) < r } .

For ā ∈ An , we set N(r, ā) ∶= ⋃i N(r, a i). In particular, we have
N(r, ⟨⟩) ∶= ∅. Finally,

N(r, ā) ∶= ⟨A∣N(r , ā) , ā⟩

is the substructure induced by N(r, ā).
(d) The N(r)-type of ā ⊆ A is the isomorphism type of N(r, ā), i.e.,

the ≅-class of this structure.
(e) For a N(r)-type τ, let #τ(A) be the number of tuples ā ⊆ A that

have N(r)-type τ.
(f) Finally, for k,m, n < ω, recall that

m =k n : iff m = n or m, n ≥ k .

Theorem 5.3 (Hanf). Let m < ω and let A and B be relational structures
such that every 3m-neighbourhood in A andB has at most k < ℵ0 elements.
If

#τ(A) =mk #τ(B) , for every N(n)-type τ with n ≤ 3m ,

then A ≡m B.

Proof. Let In be the set of all partial isomorphisms ā ↦ b̄ with ā ∈ Am−n

and b̄ ∈ Bm−n such that N(3n , ā) ≅ N(3n , b̄). We claim that (In)n ∶ A ≅m
B.
We have ⟨⟩↦ ⟨⟩ ∈ Im . By symmetry, we therefore only need to prove

the forth property. Suppose that ā ↦ b̄ ∈ In+1. By definition, there exists
an isomorphism

π ∶ N(3n+1 , ā) ≅ N(3n+1 , b̄) .
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5. The theorems of Hanf and Gaifman

Let c ∈ A. If c ∈ N(2 ⋅ 3n , ā) then N(3n , āc) ⊆ N(3n+1 , ā) and setting
d ∶= π(c) we have

π ∶ N(3n , āc) ≅ N(3n , b̄d) , that is, āc ↦ b̄d ∈ In .

If, on the other hand, c ∉ N(2 ⋅ 3n , ā) then d(N(3n , ā), N(3n , c)) > 1.
Let τ be the N(3n)-type of c. Since π is an isomorphismwe have the same
number of elements of 3n-type τ in N(2 ⋅ 3n , ā) and N(2 ⋅ 3n , b̄). This
number is at most ∣ā∣ ⋅ k = (m− n− 1) ⋅ k < mk. Since #τ(A) =mk #τ(B)
there exists some d ∈ B∖N(2 ⋅ 3n , b̄) of N(3n)-type τ. Let σ ∶ N(3n , c) ≅
N(3n , d) be the corresponding isomorphism of neighbourhoods. It fol-
lows that

π ∪ σ ∶ N(3n , āc) ≅ N(3n , b̄d) ,

which implies that āc ↦ b̄d ∈ In . ◻

Example. (a) We have already seen in the example on page 518 that
there is no first-order formula expressing that a graph is connected. The
Theorem of Hanf allows an easy alternate proof. For a contradiction,
suppose that there is such a formula φ and let m be its quantifier rank.

C3m+1 C3m+1 C2⋅3m+1≡m

Let A ∶= C3m+1 ⊍ C3m+1 be the graph consisting of two disjoint copies of
the cycle of length 3m+1 and let B ∶= C2⋅3m+1 be the cycle of length 2 ⋅ 3m+1.
Then we have

#τ(A) = #τ(B) , for every N(r)-type τ with r ≤ 3m .

By the Theorem of Hanf, it follows that A ≡m B. In particular, A ⊧ φ iff
B ⊧ φ. Contradiction.
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(b) In the same way we can prove that planarity of a graph is not
expressible in first-order logic. If φ is a formula of quantifier rank m
then, by the Theorem of Hanf, it cannot distinguish between the graphs

where each line represents a path of length 3m+1. Since one of the graphs
if planar while the other one is not it follows that φ does not define the
class of planar graphs.

With the help of the Theorem of Hanf we can avoid playing Ehren-
feucht-Fraïssé games, but the theorem can only be applied to structures
where the r-neighbourhoods are finite. Ifwewant to drop this restriction
we have to replace the isomorphism type of a neighbourhood by its α-
equivalence type. This is the idea behind the Theorem of Gaifman below.

Remark. Let Σ be a finite signature. For all n < ω, there exists a formula
φn(x , y) ∈ FO[Σ] such that

A ⊧ φn(a, b) iff d(a, b) < n , for every Σ-structure A .

Definition 5.4. (a)A set X ⊆ A is r-scattered if d(a, b) ≥ r, for all distinct
elements a, b ∈ X.

(b) For φ(x̄) ∈ FO[Σ, X], we denote by φ(r)(x̄) the relativisation of φ
to the (definable) set N(r, x̄).

(c) A sentence of the form

∃x0⋯∃xn−1⋀
i<k
(d(x i , xk) ≥ 2r ∧ ψ(r)(x i))

is called basic local. A boolean combination of basic local sentences is
called local.
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Lemma 5.5. Let A and B be Σ-structures. We have A ≡FO B if and only if

A ⊧ φ iff B ⊧ φ for all basic local sentences φ .

Proof. We have to show that A∣Σ0 ≡m B∣Σ0 , for all m < ω and all finite
Σ0 ⊆ Σ. Fix m and Σ0 and let In be the set of all partial isomorphisms
ā ↦ b̄ ∈ pIso(A∣Σ0 ,B∣Σ0) with ∣ā∣ ∈ Am−n and ∣b̄∣ ∈ Bm−n such that

N(7n , ā) ≡g(n) N(7n , b̄) ,

where g ∶ ω → ω is some function that will be specified below. We claim
that (In)n ∶ A∣Σ0 ≡m B∣Σ0 .

Since ⟨⟩↦ ⟨⟩ ∈ Im it remains to prove the forth property. Let ā ↦ b̄ ∈
In+1 and c ∈ A. By Lemma 2.1, there exist formulae φn

D,d̄ such that

C ⊧ φn
D,d̄(c̄) iff ⟨C, c̄⟩ ≡n ⟨D, d̄⟩ .

If we define

ψn
d̄ ∶= (φ

g(n)
N(7n ,d̄))

(7n)

then we have

C ⊧ ψn
d̄(c̄) iff N(7n , d̄) ≡g(n) N(7n , c̄) .

We distinguish two cases. If c ∈ N(2 ⋅ 7n , ā) then

N(7n+1 , ā) ⊧ ∃z(d(ā, z) < 2 ⋅ 7n ∧ ψn
āc(āz)) .

Choose g(n + 1) such that it is larger than the quantifier rank of this
formula. Then it follows that

N(7n+1 , b̄) ⊧ ∃z(d(b̄, z) < 2 ⋅ 7n ∧ ψn
āc(b̄z)) .

Therefore, there is some d ∈ N(7n+1 , b̄) such that

N(7n , āc) ≡g(n) N(7n , b̄d) , that is, āc ↦ b̄d ∈ In .
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It remains to consider the case that c ∉ N(2 ⋅ 7n , ā). Then

d(N(7n , ā), N(7n , c)) > 1 .

The formula

δs(x̄) ∶= ⋀
l<k<s

d(x l , xk) ≥ 4 ⋅ 7n ∧⋀
l<s

ψn
c (x l)

says that the set {x0 , . . . , xs−1} is (4 ⋅ 7n)-scattered and the 7n-neigh-
bourhood of every x l is g(n)-equivalent to N(7n , c). Choose e maximal
such that

N(7n+1 , ā) ⊧ χe ∶= ∃x0⋯∃xe−1(δe(x̄) ∧ ⋀
k<e

d(ā, xk) < 2 ⋅ 7n) .

Note that e is well-defined since N(2 ⋅ 7n , ā) does not contain a (4 ⋅ 7n)-
scattered set of size greater than ∣ā∣ = m − n − 1. If we choose g(n + 1)
large enough such that qr(χe ∧ ¬χe+1) ≤ g(n + 1) it follows that

N(7n+1 , b̄) ⊧ χe ∧ ¬χe+1 .

Since the sentence ϑ i ∶= ∃x0⋯∃x i−1δ i(x̄) is basic local we have

B ⊧ ϑ i iff A ⊧ ϑ i .

If B ⊧ ϑe+1 then there exists some d ∈ B ∖ N(2 ⋅ 7n , b̄) such that
B ⊧ ψn

c (d). It follows that N(7n , c) ≡g(n) N(7n , d) and āc ↦ b̄d ∈ In .
It remains to consider the case that B ⊭ ϑe+1. Then the distance

between ā and every element satisfying ψn
c (x) is less than

4 ⋅ 7n + 2 ⋅ 7n = 6 ⋅ 7n < 7n+1 .

Since c ∉ N(2 ⋅ 7n , ā) we have

N(7n+1 , ā) ⊧ ∃z[2 ⋅ 7n ≤ d(ā, z) < 6 ⋅ 7n ∧ ψn
c (z) ∧ ψn

ā(ā)]
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which implies that

N(7n+1 , b̄) ⊧ ∃z[2 ⋅ 7n ≤ d(b̄, z) < 6 ⋅ 7n ∧ ψn
c (z) ∧ ψn

ā(b̄)]

if we choose g(n + 1) larger than the quantifier rank of this formula.
Therefore, there exists some element d ∈ N(7n+1 , b̄) with

2 ⋅ 7n ≤ d(b̄, d) < 6 ⋅ 7n

such that

N(7n , c) ≡g(n) N(7n , d) .

It follows that N(7n , āc) ≡g(n) N(7n , b̄d) and āc ↦ b̄d ∈ In , as desired.
◻

The preceding lemma implies that every sentence is equivalent to a
local one.

Theorem 5.6 (Gaifman). Every sentence φ ∈ FO0 is equivalent to some
local sentence.

Proof. Let Φ ∶= {ψ ∣ ψ is local and φ ⊧ ψ }. We claim that Φ ⊧ φ. By
the Compactness Theorem, it then follows that Φ0 ⊧ φ, for some finite
subset Φ0 ⊆ Φ. This implies that φ ≡ ⋀Φ0.

Suppose that A ⊧ Φ. We have to show that A ⊧ φ. Set

Ψ ∶= {ψ ∣ ψ is local and A ⊧ ψ } .

If Ψ ∪ {φ} has some model B then, since B ⊧ Ψ and local sentences are
closed under negation, it follows by the preceding lemma that B ≡FO A
and

B ⊧ φ implies A ⊧ φ .

Therefore, it is sufficient to show that Ψ ∪ {φ} is satisfiable. Suppose
otherwise. Then, by the Compactness Theorem, there are finitely many
formulae ψ0 , . . . ,ψn ∈ Ψ such that

ψ0 ∧⋯ ∧ ψn ⊧ ¬φ .
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Hence,we have¬ψ0∨⋯∨¬ψn ∈ Φ which implies that A ⊧ ¬ψ0∨⋯∨¬ψn .
It follows that there is some i ≤ n with ψ i ∉ Ψ . Contradiction. ◻
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1. Classifying logical systems
In this chapterwe startwith amore systematic investigation of the various
extensions of first-order logic. Let us isolate some desirable properties a
logic may have.

Definition 1.1. Let L and L′ be logics. We write L ≤ L′ if, for every φ ∈ L,
there exists a formula φ′ ∈ L′ such that ModL′(φ′) =ModL(φ).

Similarly, if L ∶ S → Logi$ and L′ ∶ S′ → Logi$ are logical systems
then we write L ≤ L′ if there exists a functor F ∶ S→ S′ such that

L[s] ≤ L′[F(s)] , for all s ∈ S .

We write L ≡ L′ if L ≤ L′ and L ≥ L′. By L < L′ we denote the fact that
L ≤ L′ and L ≢ L′. The same notation is used for logical systems.

Definition 1.2. Let L be a logical system.
(a) L has the finite occurrence property if L is algebraic and, for every

φ ∈ L[Σ], there exists a finite set S of sorts and a finite S-sorted signature
Σ0 ⊆ Σ such that φ is equivalent to some formula in L[Σ0].

(b) L is compact if every inconsistent set Φ ⊆ L[s] has a finite subset
that is already inconsistent. Similarly,we call L countably compact if every
countable inconsistent set Φ ⊆ L[s] has a finite inconsistent subset.

(c) L has the Löwenheim-Skolem property if it is algebraic and every
formula φ ⊆ L[Σ] that is satisfiable has a countable model.

(d) L has the Karp property if it is algebraic and

A ≅∞ B implies A ≡L B .
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c5. General model theory

(e) L is closed under relativisations if it is algebraic and, for all formulae
φ ∈ L[Σ] and χ i ∈ Ls i [Σ∪Γ], for i < n, there exists a formula φ( χ̄) ∈ L[Σ]
such that we have

A ⊧ φ( χ̄) iff (A∣Σ)∣⋃i χA
i
⊧ φ ,

whenever A is a (Σ ∪ Γ)-structure such that the set ⋃i χA
i induces a

substructure of A∣Σ .
(f) L is closed under substitutions if it is algebraic and, for all formulae

φ ∈ L[Σ ∪ {R}] and χ ∈ L s̄[Σ] where R is a relation symbol of type s̄,
there exists a formula φ′ ∈ L[Σ] such that

A ⊧ φ′ iff ⟨A, χA⟩ ⊧ φ , for every Σ-structure A .

(g) L has the Tarski union property if it is algebraic and, for every
L-chain (Aα)α<δ , we have Aβ ⪯L ⋃α<δ Aα , for all β < δ.

(h) Let us define the following abbreviations :

(a) L is algebraic.
(b) L is boolean closed.
(b+) L is closed under finite conjunctions and disjunctions.
(c) L is compact.
(cc) L is countably compact.
(fop) L has the finite occurrence property.
(kp) L has the Karp property.
(lsp) L has the Löwenheim-Skolem property.
(rel) L is closed under relativisations.
(sub) L is closed under substitutions.
(tup) L has the Tarski union property.

(i) L is called weakly regular if it satisfies (a), (b+), and (fop). If L sat-
isfies (a), (b), (fop), (rel), and (sub) then it is called regular.

Example. FO0 has all of the above properties but, if κ > ℵ0 then FO0
κℵ0

satisfies only (a), (b), (b+), (kp), (rel), and (sub).
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Exercise 1.1. Prove that SO does not have the Karp property.

Lemma 1.3. Suppose that L0 ≤ L1. If L1 satisfies (c), (cc), (lsp), or (kp)
then so does L0.

Exercise 1.2. (a) Suppose that L is closed under disjunction. Prove that
L is compact if and only if the type space S(L) is compact.

(b) Suppose that the logic L is compact and closed under negation.
Let Φ ⊆ L and φ ∈ L. Prove that Φ ⊧ φ if and only if Φ0 ⊧ φ, for some
finite subset Φ0 ⊆ Φ.

The following lemmas summarise some consequences of compactness.

Lemma 1.4. Let L be a logic with (b) and (c). If

φ ≡⋁
i∈I
⋀Φ i , for φ ∈ L and Φ i ⊆ L , i ∈ I ,

then there exist finite sets I0 ⊆ I and Φ0
i ⊆ Φ i such that

φ ≡ ⋁
i∈I0
⋀Φ0

i .

Proof. For every i ∈ I, we have Φ i ⊧ φ which implies that Φ i ∪ {¬φ}
is inconsistent. Since L is compact it follows that there exists a finite
subset Φ0

i ⊆ Φ i such that Φ0
i ∪ {¬φ} is inconsistent, i.e., Φ0

i ⊧ φ. Set
ψ i ∶= ⋀Φ0

i and let Ψ ∶= {ψ i ∣ i ∈ I }. If the set

Γ ∶= {φ} ∪ {¬ψ ∣ ψ ∈ Ψ }

has a model J then J ⊧ φ implies that J ⊧ Φ i , for some i. In particular,
we have J ⊧ ψ i in contradiction to J ⊧ ¬ψ i .

Consequently, Γ is inconsistent and there exists a finite subset Ψ0 ⊆ Ψ
such that

{φ} ∪ {¬ψ ∣ ψ ∈ Ψ0 }

is inconsistent. Set ϑ ∶= ⋁Ψ0. It follows that φ ⊧ ϑ.
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Conversely, if J ⊧ ϑ then J ⊧ ψ i , for some i, and ψ i ⊧ φ implies that
J ⊧ φ. Hence, we also have ϑ ⊧ φ. Let I0 ∶= { i ∈ I ∣ ψ i ∈ Ψ0 }. Then we
have

φ ≡ ϑ ≡ ⋁
i∈I0
⋀Φ0

i .
◻

Lemma 1.5. Let L0 ≤ L1 be logics where L0 satisfies (b+) and L1 satisfies
(b) and (c). If

A ≡L0 B implies A ≡L1 B

then L0 ≡ L1.

Proof. Let φ be an L1-formula. Then

φ ≡⋁{⋀ThL0(J) ∣ J ∈ModL1(φ) } .

By Lemma 1.4, we can find finitely many interpretations J0 , . . . , Jn and
finite subsets Φ i ⊆ThL0(Ji) such that

φ ≡⋀Φ0 ∨ ⋅ ⋅ ⋅ ∨⋀Φn .

Since L0 satisfies (b+) it follows that there is an L0-formula ψ ≡ φ. ◻

Lemma 1.6. Let L be an algebraic logic with (b) and ∀ ≤ L. If L has the
compactness property then it has the finite occurrence property.

Proof. Suppose that φ ∈ L[Σ]. Let Σ′ ∶= { ξ′ ∣ ξ ∈ Σ } be a disjoint copy
of Σ and let µ ∶ Σ → Σ′ ∶ ξ ↦ ξ′ be the corresponding bijection. Consider
the set of first-order formulae

Φ ∶={∀x̄(Rx̄ ↔ R′ x̄) ∣ R ∈ Σ a relation symbol}
∪ {∀x̄( f x̄ = f ′ x̄) ∣ f ∈ Σ a function symbol} .

Since ∀ ≤ L there exists an equivalent set Φ̃ ⊆ L[Σ ∪ Σ′] of L-formulae.
If φ′ ∶= L[µ](φ) then

Φ̃ ∪ {φ} ⊧ φ′ and Φ̃ ∪ {φ′} ⊧ φ .
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2. Hanf and Löwenheim numbers

By (c), we can find finite subsets Φ̃0 , Φ̃1 ⊆ Φ̃ such that

Φ̃0 ∪ {φ} ⊧ φ′ and Φ̃1 ∪ {φ′} ⊧ φ .

Let Φ0 and Φ1 be the subsets of Φ corresponding to Φ̃0 and Φ̃1. Fix a
finite signature Γ such that Φ0 , Φ1 ⊆ FO[Γ ∪ Γ′]. For a Σ-structure A,
we denote by A+ the (Σ ∪ Γ′)-expansion of A where (ξ′)A+ = ξA, for all
ξ ∈ Γ. We claim that

A∣Γ ≡L B∣Γ implies A ⊧ φ⇔ B ⊧ φ ,

for all Σ-structures A and B. Suppose that A ⊧ φ. Then A+ ⊧ Φ̃0 ∪ φ,
which implies that A+ ⊧ φ′. Note that A∣Γ ≡L B∣Γ implies that A+∣Γ′ ≡L
B+∣Γ′ . Consequently, it follows that B+ ⊧ φ′. Since B+ ⊧ Φ̃1 we obtain
B ⊧ φ, as desired.

For A ∈ Str[Σ], let ΦA ∶=ThL[Γ](A∣Γ). By the above claim it follows
that

φ ≡⋁{⋀ΦA ∣ A ∈ModL[Σ](φ) } .

By Lemma 1.4, there are finitely many structures A0 , . . . ,An and finite
subsets Ψi ⊆ ΦAi such that

φ ≡⋀Ψ0 ∨ ⋅ ⋅ ⋅ ∨⋀Ψn ∈ L[Γ] . ◻

2. Hanf and Löwenheim numbers
The Compactness Theorem and the Upward and Downward Löwen-
heim-Skolem Theorems are central results in first-order model theory.
While the Compactness Theorem fails for many natural logics, we can
generalise the Löwenheim-Skolem theorems to most of them. The Hanf
and the Löwenheim number of a logic measure the extend to which a
logic satisfies these theorems. For their definition we need the following
notions.
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c5. General model theory

Definition 2.1. Let L be an algebraic logic and Φ ⊆ L[Σ] a set of L-
formulae.

(a) We say that Φ pins down a cardinal κ if there is a unary predicate
P ∈ Σ such that Φ has a model A with ∣PA∣ = κ but Φ does not have
models A where PA has arbitrarily high cardinality.

(b) Φ pins down an ordinal α if there exists a binary relation < ∈ Σ
such that

◆ in every model of Φ the relation < is a well-order of its field and
◆ there exists a model of Φ such that < is of order type α.

Definition 2.2. Let L be an algebraic logic and κ a cardinal.
(a) The Hanf number hnκ(L) of L is the supremum of all cardinals

that can be pinned down by a set of L-formulae of size at most κ. If the
supremum is undefined we set hnκ(L) ∶=∞.

(b) The Löwenheim number lnκ(L) of L is the least cardinal λ such
that every satisfiable set of L-formulae of size at most κ has a model of
cardinality at most λ. If there is no such cardinal thenwe set lnκ(L) ∶=∞.

(c) The well-ordering number wnκ(L) of L is the supremum of all
ordinals α that can be pinned down by a set of L-formulae of size at
most κ. If the supremum is undefined we set wnκ(L) ∶=∞. If wn1(L) <
∞ then L is called bounded.

(d) The occurrence number occ(L) of L is the least cardinal κ such that,
for every signature Σ and all formulae φ ∈ L[Σ], there exists a signature
Σ0 ⊆ Σ and a formula ψ ∈ L[Σ0] such that ∣Σ0∣ ≤ κ and ψ ≡ φ. Again, if
there is no such cardinal then we set occ(L) ∶=∞.

Remark. A logic L has (lsp) iff ln1(L) = ℵ0.
Hanf and Löwenheim numbers for first-order logic were already com-

puted in Theorems c2.4.12 and c2.3.7.

Theorem 2.3. hnκ(FO) = ℵ0 and lnκ(FO) = κ ⊕ ℵ0, for all κ.

Theorem 2.4. lnκ(FOκ+ℵ0) = κ .

Lemma 2.5. For every regular cardinal κ, we have wn1(FOκℵ0) ≥ κ and
occ(FOκℵ0) = κ− ∶= sup{ λ ∣ λ < κ }.

618



2. Hanf and Löwenheim numbers

Proof. We have already seen in Lemma c1.1.7 that every ordinal α < κ is
finitely FOκℵ0 -axiomatisable.

For the occurrence number note that occ(FOκℵ0) < κ since each
FOκℵ0 -formula has less than κ subformulae. Conversely, for every λ < κ,
we have the formula

⋀
i<λ

Pix

with λ different relation symbols. ◻

Lemma 2.6. wn1(MSO) =∞ .

Proof. The example on page 484 shows that the class of all well-orders is
finitely MSO-axiomatisable. ◻

In general the Hanf numbers of FOκ+ℵ0 depend on the model of set
theory. In ZFC we can only prove the following bounds.

Theorem 2.7. ℶκ+ ≤ hn1(FOκ+ℵ0) < ℶ(2κ)+ .

For the special case of FOℵ1ℵ0 the exact value can be computed. (The
proof is based on the study of Borel subsets of the type space and employs
Corollary c4.2.5.)

Theorem 2.8 (Hanf). hn1(FOℵ1ℵ0) = ℶω1 .

(Note that hn1(FOκ+ℵ0) = hnκ(FOκ+ℵ0) since we can take conjunctions
over sets of size κ.)Wewill prove the lower bound inCorollary 2.12 below.
The computation of the upper bound is deferred to Corollary e7.1.13
(where we only prove the weaker statement that hn1(FOκ+ℵ0) ≤ ℶ(2κ)+).

Lemma 2.9. Let L be a logical system with ∀∃ ≤ L.
(a) If hnκ(L) <∞ then hnκ(L) is a limit cardinal and a cardinal λ can

be pinned down by a set Φ ⊆ L of size κ if and only if λ < hnκ(L).
(b) If wnκ(L) < ∞ then wnκ(L) is a limit ordinal and an ordinal α

can be pinned down by a set Φ ⊆ L of size κ if and only if α < wnκ(L).
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Proof. (a) Let Φ be a set of size at most κ pinning down the cardinal µ
via the relation symbol P. We construct a set Ψ of the same size pinning
down µ+. Let S be the set of sorts appearing in Φ. Choose new binary
relation symbols < and Rs , for s ∈ S, a new unary relation symbol Q, and
a new binary function symbol f . Ψ consists of formulae expressing the
following properties.

◆ < is a linear order of the set Q.

◆ For every u ∈ Q, the set R(u) ∶= { x ∣ ⟨u, x⟩ ∈ Rs for some s ∈ S }
induces a substructure satisfying Φ.

◆ For every u ∈ Q, the function x ↦ f (u, x) is an injective map
from ⇓u into R(u) ∩ P.

It follows that Ψ has a model where < has the order type µ+. To see
that ∣Q∣ cannot become arbitrarily large let λ be some cardinal such
that Φ has no models with ∣P∣ = λ. Given any model of Ψ fix a strictly
increasing cofinal map f ∶ α → Q. By the third condition above we have
∣⇓ f (i)∣ < λ, for all i < α. Consequently,

Q = ⋃
i<α
⇓ f (i)

implies that ∣Q∣ ≤ λ.
(b) The statement that A = ⟨A, ≤⟩ is a linear order with exactly n < ω

elements can be expressed in∀. Since∀∃ ≤ L it follows that wnκ(L) ≥ ω.
To prove the claim we show that if α is pinned down by some Φ ⊆ L

of size ∣Φ∣ ≤ κ then so is α + 1 and every ordinal β ≤ α.
Suppose that Φ ⊆ L pins down α ≥ ω via the relation symbol <. Let

P be a new unary relation symbol and ⊏ a new binary one.
We can construct a set Φ ∪ {ψ} pinning down every ordinal β ≤ α

via ⊏ by defining

ψ ∶= ∀x∀y(x ⊏ y↔ (Px ∧ Py ∧ x < y)) ,

which expresses that ⊏ = <∣P .
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Similarly, we can define a set Φ ∪ {ψ} pinning down α + 1 via ⊏ by
defining

ψ ∶= ∀x∀y[x ⊏ y↔ [(x < y ∧ ∃z(z < x))

∨ (y < x ∧ ¬∃z(z < y))]] ,

which states that ⊏ is the order obtained from < by moving the least
element to the end. ◻

Under very general conditions, we can show that a logical system L
has a Hanf number and a Löwenheim number.

Proposition 2.10. Let L be an algebraic logic such that L[Σ] is a set, for
all Σ. If occ(L) < ∞ then we have hnκ(L) < ∞ and lnκ(L) < ∞, for
all κ.

Proof. Set µ ∶= κ⊗occ(L) and fix an universal signature Σ of size µ, that
is, Σ is S-sorted, for some set of sorts with ∣S∣ = µ, and Σ contains, for
all sorts s̄ and t, µ relation symbols of type s̄ and µ function symbols of
type s̄ → t. It is sufficient to consider sets Φ ⊆ L[Σ] since every signature
of size µ can be embedded into Σ and, by definition of a logical system,
L-formulae are invariant under such changes of the signature.

For every set Φ ⊆ L[Σ] of size ∣Φ∣ ≤ κ and every unary predicate
P ∈ Σ, we define two cardinals νΦ ,P and λΦ as follows. If Φ has models A
where PA can be arbitrarily large then we set νΦ ,P ∶= 0. Otherwise, let
νΦ ,P be the least cardinal such that Φ has only models A with ∣PA∣ ≤ νΦ .
Similarly, if Φ is satisfiable then we set

λΦ ∶= min{ ∣A∣ ∣ A ⊧ Φ } .

Otherwise, we let λΦ undefined. It follows that

hnκ(L) = sup{ νΦ ,P ∣ P ∈ Σ, Φ ⊆ L[Σ] of size ∣Φ∣ ≤ κ } ,
and lnκ(L) = sup{ λΦ ∣ Φ ⊆ L[Σ] satisfiable and of size ∣Φ∣ ≤ κ } .

Note that the supremum on the right-hand side exists since, by the
Axiom of Replacement, it is taken over a set of cardinals. ◻
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Theorem 2.11. Let L be a regular logical system with FO ≤ L such that, for
every ordinal α < wnκ(L), there exists a set Φα ⊆ L[Σα] of size ∣Φα ∣ < κ
pinning down α in a model of size at most hnκ(L). Then we have

hnκ(L) ≥ ℶwnκ(L)(λ) , for all λ < hnκ(L) .

Proof. Let X be a set of size λ. We define inductively a variant of the
cumulative hierarchy by

P0(X) ∶= X ,
Pα+1(X) ∶= ℘(Pα(X)) ,

Pδ(X) ∶= ⋃
α<δ

Pα(X) , for limit ordinals δ .

Then ∣Pα(X)∣ = ℶα(λ).
Since λ < hnκ(L) we can find a set Ψ ⊆ L[Γ] of size ∣Ψ ∣ ≤ κ pinning

down λ via a predicate Q. Suppose that Σα is S-sorted and Γ is T-sorted
with S ∩ T = ∅ and let p ∉ S ∪ T be a new sort. Choose new unary
predicates O ,U , a binary relation symbol E, unary functions ρ, ζ, and
a constant 0. We define a set Θα of formulae that is meant to describe
a structure A of the following form. We have A∣S ⊧ Φα and A∣T ⊧ Ψ .
Furthermore, U ⊆ Ap ⊆ Pα(U) for the ordinal α encoded in A∣S . The
relation E is the membership relation of sets, ρ ∶ Ap → O maps every
set in Pβ(U) to the ordinal β, and ζ ∶ Q → U is a bijection. Formally,
Θα consists of the union Ψ ∪ Φα together with the following formulae.

◆ The domains with sort T form a model of Φα and 0 is the least
element of <.

∀x(Ox ↔ x ≤ x)
(∀x .Ox)(0 ≤ x)

◆ ζ ∶ Q → U is a bijection and ρ maps Ap to the field of <.

∀x(Qx ↔ Uζx)
∀x∀y(ζx = ζ y → x = y)
∀xOρx
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(In the last formula x is of sort p.)
◆ ρ−1(α) ⊆ Pα(U) and E is the element relation.

∀x(Ux ↔ ρx = 0)
(∀x .¬Ux)[∀y.¬Uy)(∀z(Ezx ↔ Ezy)→ x = y]

∀x(∀u.Ou)[ρx = u↔ [(∀y.Eyx)(ρy < ρx)

∧ (∀v .v < u)(∃y.Eyx)(ρy ≥ v)]]

If A is a model of Θα then <A is a well-order of type β < wnκ(L) and
there exists an injective function A→ Pβ(UA). Consequently,

∣Ap ∣ ≤ ℶβ(∣UA∣) .

Since Ψ pins down a cardinal we further have

∣UA∣ = ∣QA∣ ≤ hnκ(L) .

Therefore, Θα does not have models where Ap is arbitrarily large, but it
does have a model A with ∣Ap ∣ = ℶα(λ). ◻

We have shown in Lemma c1.1.7 that every ordinal α < κ+ can be
defined in FOκ+ℵ0 . Consequently, we obtain the following lower bound
on the Hanf number.

Corollary 2.12. hnκ(FOκ+ℵ0) ≥ ℶκ+

Lemma 2.13. Suppose that L is a regular logical system with FO ≤ L. Then
L is countably compact if and only if wnℵ0(L) = ω.

Proof. A standard compactness argument shows that if L is countably
compact and Φ ⊆ L has a model such that < is of order type ω then
there also is a model where < contains an infinite descending chain.
Consequently, (cc) implies wnℵ0(L) ≤ ω.

For the converse, assume that there exists a countable inconsistent
set {φn ∣ n < ω } ⊆ L every finite subset of which is satisfiable. By
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Lemma 2.9 (b) we can prove that wnℵ0(L) > ω by constructing a count-
able set Φ ⊆ L pinning down ω.

Let S be the set of sorts appearing in some φn and choose new binary
relation symbols < and Rs , for s ∈ S. The set Φ consists of the following
statements all of which can be expressed in first-order logic:

◆ < is a linear ordering of its field.

◆ For all elements a of the field of < there is some element b with
⟨a, b⟩ ∈ R.

◆ If there are at least n elements <-less than a then the set { b ∣
⟨a, b⟩ ∈ Rs for some s ∈ S } induces a substructure satisfying φn .

It follows that if A is a model of Φ then every element in the field of <A

has only finitely many elements below. Consequently, Φ pins down all
ordinals α ≤ ω. ◻

3. The Theorem of Lindström

We have seen that first-order logic has many pleasant properties like
compactness and the Löwenheim-Skolem property. On the other hand,
its expressive power is rather restricted as far as certain aspects like
counting and recursion are concerned. The question naturally arises
of whether there is a stronger logic that shares the good properties of
first-order logic. Surprisingly, it turns out that one can prove that such a
logic does not exist.

In many of the following proofs we consider a structure containing
two other structures, say, specified by unary predicates P and Q. We use
additional relations to encode a back-and-forth systems between these
substructures.

Definition 3.1. Suppose that Σ and Γ are signatures and µ ∶ Σ → Γ is an
isomorphism of Sig. Let A be a (Σ ∪ Γ)-structure and P, Q ⊆ A subsets
of A.
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(a)A partial isomorphism modulo µ from P to Q is a function p ∶ ā ↦ b̄
with ā ⊆ P and b̄ ⊆ Q such that, for all term-reduced atomic first-order
formulae φ(x̄), we have

A ⊧ φ(ā) iff A ⊧ FO[µ](φ)(b̄) .

(b) A pseudo back-and-forth system (modulo µ from P to Q) is a se-
quence (Iα)α∈U where

◆ each Iα is a set of partial isomorphisms modulo µ from P to Q,
◆ U is a nonempty linear order such that every element α ∈ U has

an immediate successor α + 1, except possibly for the last element,
◆ we have Iδ ∶= ⋂α<δ Iα , for elements δ ∈ U without immediate

predecessor, and
◆ every Iα+1 has the back-and-forth property restricted to P and Q

with respect to Iα , that is,
– if ā ↦ b̄ ∈ Iα+1 and c ∈ P then there is some d ∈ Q with

āc ↦ b̄d ∈ Iα , and
– if ā ↦ b̄ ∈ Iα+1 and d ∈ Q then there is some c ∈ P with

āc ↦ b̄d ∈ Iα .
(c) We say that a tuple ⟨U , <, P̄, Q̄ , I, F , Ḡ⟩ encodes a pseudo back-and-

forth system (Iα)α∈X modulo µ from P to Q if there exist a finite set of
sorts S and sorts u and f such that

◆ P̄ = (Ps)s∈S , Q̄ = (Qs)s∈S , and Ḡ = (Gs)s∈S ,
◆ P = ⋃s Ps and Q = ⋃s Qs ,
◆ U ⊆ Au , F ⊆ A f , Ps ⊆ As , Qs ⊆ Aµ(s) ,

I ⊆ U × F , < ⊆ U ×U , Gs ⊆ F × Ps × Qs ,
◆ there exists an isomorphism ι ∶ ⟨U , <⟩ ≅ ⟨X , <⟩,
◆ there exists a bijection π ∶ F → ⋃α Iα ,
◆ I = { ⟨u, p⟩ ∈ U × F ∣ πp ∈ Iιu } ,

◆ Gs = { ⟨p, a, b⟩ ∈ F × Ps × Qs ∣ (πp)(a) = b } .
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Lemma 3.2. Suppose that Σ and Γ are finite signatures and µ ∶ Σ → Γ an
isomorphism of Sig. There exists a first-order formula

βµ(U , <, P̄, Q̄ , I, F , Ḡ)

that holds if and only if ⟨U , <, P̄, Q̄ , I, F , Ḡ⟩ encodes a pseudo back-and-
forth system modulo µ from P to Q.

Proof. We have to express the following properties :
(a) ⟨U , <⟩ is a nonempty linear order and every element has an imme-

diate successor, except for the last one.

∃uUu
∀u∀v(u < v → Uu ∧Uv)
∀u(¬u < u)
∀u∀v∀w(u < v ∧ v < w → u < w)
(∀u.Uu)(∀v .Uv)(u < v ∨ u = v ∨ u > v)
∀u[∃v(u < v)→ ∃v(u < v ∧ ¬∃w(u < w ∧w < v))]

(b) Gs ⊆ F × Ps ×Qs encodes a set of partial isomorphisms modulo µ.

∀p∀a∀b(Gs pab → F p ∧ Psa ∧ Qsb)
∀p∀a0∀a1∀b0∀b1[Gs pa0b0 ∧Gs pa1b1 → (a0 = a1 ↔ b0 = b1)]

For all n-ary relation symbols R ∈ Σ,

∀p∀ā∀b̄[Gs0 pa0b0 ∧ ⋅ ⋅ ⋅ ∧Gsn−1 pan−1bn−1 → (Rā↔ µ(R)b̄)] .

For all n-ary function symbols f ∈ Σ,

∀p∀ā∀c∀b̄∀d[Gs0 pa0b0 ∧ ⋅ ⋅ ⋅ ∧Gsn−1 pan−1bn−1 ∧Gt pcd →

( f ā = c↔ µ( f )b̄ = d)] .
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(c) I ⊆ U × F encodes a sequence of nonempty sets with the back-and-
forth property.

∀u∀p(Iup → Uu ∧ F p)
∀u∃pIup
∀u∀v∀p[Iup ∧ v < u → (∀c.Psc)∃d∃qηs)]

∀u∀v∀p[Iup ∧ v < u → (∀d .Qsd)∃c∃qηs)]

where ηs ∶= Ivq ∧Gs qcd ∧⋀t ∀a∀b(Gt pab → Gt qab) . ◻

Lemma 3.3. Let Σ and Γ be finite signatures and µ ∶ Σ → Γ an isomorph-
ism of Sig. Let A be a (Σ ∪ Γ)-structure and P, Q ⊆ A. Suppose that
P and Q induce substructures of, respectively, A∣Σ and A∣Γ .

If there exists a pseudo back-and-forth system (Iα)α∈U modulo µ from
P to Q where U is not well-ordered then

A∣Σ ∣P ≅∞ A∣Γ ∣Q ∣µ .

Proof. Fix an infinite descending sequence α0 > α1 > . . . in U . We claim
that J = ⋃n Iαn has the back-and-forth property with respect to itself. If
p ∈ J then p ∈ Iαn , for some n. Hence, for every c ∈ P or d ∈ Q, we can
find a suitable extension q ∈ Iαn+1 ⊆ J with, respectively, c ∈ dom q or
d ∈ rng q. Consequently,

J ∶ A∣Σ ∣P ≅∞ A∣Γ ∣Q ∣µ . ◻

Definition 3.4. Let L and L′ be logical systems and φ,ψ ∈ L[s].
(a) φ and ψ are contradictory if

ModL(φ) ∩ModL(ψ) = ∅ .

(b) A formula χ ∈ L′[t] separates φ from ψ if

ModL′(χ) ⊇ModL(φ) and ModL′(χ) ∩ModL(ψ) = ∅ .
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We start by investigating logical systems containing first-order logic
that have the Löwenheim-Skolem property. First, we show that if the
logic is strictly more expressive than first-order logic then it can express
finiteness.

Lemma 3.5. Let L be a weakly regular logical system with FO0 ≤ L and
(lsp).

If there are contradictory formulae φ,ψ ∈ L[Σ] that are not separated
by any first-order formula χ ∈ FO[Σ] then there exists a signature Γ, a
unary predicate U ∈ Γ, and a formula ϑ ∈ L[Γ] satisfying the following
conditions :

(1) If A ⊧ ϑ then UA is finite and nonempty.
(2) For every 0 < n < ω, there exists a model A ⊧ ϑ with ∣UA∣ = n.

Proof. For a contradiction, suppose that φ,ψ ∈ L[Σ] are not separated
by any first-order formula but there is no formula ϑ satisfying (1) and (2).
By (fop), we may assume that Σ is finite. We proceed in several steps.

(a) First, we prove that every formula χ ∈ L[Γ] that is not equivalent
to a first-order formula has a model of cardinality ℵ0. Let χ be such
a formula. If χ has infinite models then choose a new unary function
symbol f ∉ Γ and consider the formula

χ′ ∶= χ ∧ “ f is injective but not surjective” .

Since χ has infinite models it follows that χ′ is satisfiable. By (lsp), there
exists a countable model of χ′. Since there are no finite models of χ′ it
follows that this model is countably infinite.

It remains to consider the case that χ has only finite models. By (fop),
we may assume that Γ is finite. Thus, for every n < ω, there are only
finitely many non-isomorphic Γ-structures A of cardinality n and each
of them can be axiomatised by a first-order formula ηA. Consequently,
χ must have models of arbitrarily large finite cardinality since, otherwise,
χ would be equivalent to a finite disjunction of first-order formulae ηA.
If U ∉ Γ is a new unary relation symbol then the formula

ϑ ∶= χ ∧ ∃xUx
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satisfies (1) and (2). A contradiction.
(b) Second,we prove that, for every n < ω, there are countably infinite

structures An and Bn such that

An ⊧ φ , Bn ⊧ ψ , and An ≡n Bn .

Let ηn
A be the Hintikka-formula of A of quantifier-rank n and set

χn ∶=⋁{ ηn
A ∣ A ⊧ φ } .

Since Σ is finite we have ηn
A ∈ FO[Σ] and there are only finitely many

different Hintikka-formulae of quantifier rank n. Consequently, χn ∈
FO[Σ].

Since φ ⊧ χn we have Mod(φ) ⊆ Mod(χn). As φ and ψ cannot be
separated it follows that

Mod(χn) ∩Mod(ψ) ≠ ∅ .

Hence, ψ ∧ χn is satisfiable and it is not equivalent to any first-order
formula. By (a), there exists a countably infinite model Bn ⊧ ψ ∧ χn .
In particular, we have Bn ⊧ ηA, for some A ⊧ φ. Moreover, φ ∧ ηA is
satisfiable and not equivalent to any first-order formula. Thus, by (a), we
can find a countably infinite model An ⊧ φ ∧ ηA. Note that An ≡n Bn
because both An and Bn satisfy ηA. Hence, An and Bn have the desired
properties.

(c) Finally, we derive a contradiction as follows. Let Σ′ be a disjoint
copy of Σ and let µ ∶ Σ → Σ′ be the corresponding bijection. If C is a
model of the L-formula

ϑ ∶= φ ∧ L[µ](ψ)
∧ βµ(U , <, P̄, Q̄ , I, F , Ḡ)
∧ ⋀s ∀x(Psx ∧ Qsx)
∧ ∃x(∀y.Uy)(y = x ∨ x < y)
∧ ∃x(∀y.Uy)(y = x ∨ y < x)
∧ ∀x[∃y(y < x)→ (∃y.y < x)¬∃z(y < z ∧ z < x)]
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then ⟨U , <, P̄, Q̄ , I, F , Ḡ⟩ encodes a pseudo back-and-forth system mod-
ulo µ from C to C where ⟨U , <⟩ is a discrete linear order with a least
and greatest element. Furthermore, the Σ-reduct of C satisfies φ and its
Σ′-reduct satisfies µ(ψ).

For every n < ω, we can find a model Cn of ϑ with ∣UCn ∣ = n + 1 as
follows. By (b), there are countably infinite structures An and Bn with
An ≡n Bn such that An ⊧ φ and Bn ⊧ ψ. Since ∣An ∣ = ∣Bn ∣ we may
w.l.o.g. assume that An = Bn . We form the structure Cn with universe
An = Bn where, for every ξ ∈ Σ, we have two relations or functions

ξCn ∶= ξAn and µ(ξ)Cn ∶= ξBn .

Hence, the Σ-reduct of Cn equals An and its Σ′-reduct equals µ(Bn).
Furthermore, since An ≡n Bn we can add relations U , <, I, P̄, Q̄ , F , Ḡ
encoding some back-and-forth system modulo µ where ∣U ∣ = n + 1.

Consequently, the formula ϑ ∧ ∣U ∣ = n is satisfiable, for all 0 < n < ω.
This concludes the proof of (2). For (1), assume that ϑ has models where
U is infinite. If f is a new unary function symbol then it follows that the
formula

ϑ′ ∶= ϑ ∧ “ f is injective but not surjective”

is satisfiable. By (lsp), ϑ′ has a countable model C. Let u0 be the greatest
element of UC. Since every element of UC has an immediate prede-
cessors we obtain an infinite descending sequence u0 > u1 > . . . . Hence,
Lemma 3.3 implies that

A ≅ C∣Σ ≅∞ Str[µ](C∣Σ′) ≅ B .

Since A and B are countable structures it follows by Corollary c4.4.11
that A ≅ B. But A ⊧ φ and B ⊧ ψ. This contradicts the fact that φ and ψ
are contradictory. ◻

Lemma 3.6. If L is a regular logic with FO0 ≤ L then (lsp) implies (kp).
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Proof. For a contradiction, suppose that L is a regular logic with the
Löwenheim-Skolem property but there are structures A ≅∞ B such that
A ⊧ φ and B ⊭ φ, for some L-formula φ. By (fop) we may assume that
the signature of φ is finite.

Let U , <, P̄, Q̄ , I, F , Ḡ be new relation symbols. By Lemma 3.2, there
exists a formula βid(U , <, P̄, Q̄ , I, F , Ḡ) saying that ⟨U , <, P̄, Q̄ , I, F , Ḡ⟩
encodes a pseudo back-and-forth system from P ∶= ⋃s Ps to Q ∶= ⋃s Qs .
The formula

χ ∶= βid ∧ φ(P̄) ∧ (¬φ)(Q̄) ∧ (∀x .Ux)∃y(y < x)

has a model C where ⟨U , <⟩ is an arbitrary discrete order without least
element, C∣P ≅ A, and C∣Q ≅ B. (Note that, if there exists a pseudo
back-and-forth system (Iu)u∈U from P to Q and the ordering U has
arbitrarily large finite increasing chains then P and Q are closed under
the functions of Σ. Hence, the formula implies that the sets P and Q
induce substructures of C∣Σ .)
By (lsp), it follows that χ has a countable model C. Since ⟨UC , <C⟩

is not well-ordered we have C∣P ≅∞ C∣Q , by Lemma 3.3. Because these
substructures are countable it follows that C∣P ≅ C∣Q . But C∣P ⊧ φ and
C∣Q ⊭ φ. Contradiction. ◻

Lemma 3.7. Let L be a weakly regular logical system with FO0 ≤ L.
If L is countably compact and L has the Löwenheim-Skolem property

then every pair of contradictory L-formulae can be separated by some
FO0-formula.

Proof. Suppose that L satisfies (lsp) but there exists a pair of contradict-
ory L-formulae that cannot be separated by any first-order formula. By
Lemma 3.5, there exists a formula ϑ ∈ L[Γ] and a unary predicate U ∈ Γ
such that in models A of ϑ the set UA can have any finite cardinality,
but no infinite one. Let φn ∈ L[Γ] be the L-formula equivalent to the
first-order formula

∃x0⋯∃xn−1(⋀
i

Ux i ∧⋀
i≠k

x i ≠ xk)
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which expresses that ∣U ∣ ≥ n. By construction, the set

{ϑ} ∪ {φn ∣ n < ω }

is inconsistent, but each of its finite subsets is satisfiable. Consequently,
L is not countably compact. ◻

Combining the preceding technical lemmas we can prove that there
does not exist a proper extension of first-order logic that has the Löwen-
heim-Skolem property and that is countably compact.

Theorem 3.8 (Lindström). Let L be a weakly regular logical system with
(b) and FO0 ≤ L. If L has the Löwenheim-Skolem property and L is
countably compact then L ≡ FO0.

Proof. Let φ ∈ L[Σ]. By Lemma 3.7, there exists a first-order formula χ
separating φ from ¬φ. It follows that Mod(χ) =Mod(φ). ◻

We conclude this section with several variants of the Theorem of
Lindström where (lsp) and (cc) are replaced by other properties.

Lemma 3.9. Let L be a regular logical system with FO0 < L. If L has the
Karp property then there exists a satisfiable formula φ(U , <) ∈ L such
that, for all models A ⊧ φ, we have

⟨UA , <A⟩ ≅ ⟨ω, <⟩ .

Proof. Fix a formula φ ∈ L[Σ] that is not equivalent to any first-order
formula. By (fop), we may assume that Σ is finite. For every n < ω, there
are structures An ≡n Bn such that

An ⊧ φ and Bn ⊭ φ .

Let U , <, P̄, Q̄ , I, F , Ḡ ∉ Σ be new relation symbols where U is unary,
<, P̄, Q̄ , F are binary, I is ternary, and Ḡ are of arity four. We modify
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the formula βid(U , <, P̄, Q̄ , I, F , Ḡ) of Lemma 3.2 as follows. Let x be a
variable not occurring in βid and set

α(x ,U , <, P̄, Q̄ , I, F , Ḡ) ∶=
βid(U , <, (Psx )s , (Qsx )s , Ix , Fx , (Gsx )s) ,

that is, we add x as new argument to every atom containing Ps , Qs , I,
F, Gs . The formula α states that these relations encode a sequence of
pseudo back-and-forth systems indexed by x. Define

χ ∶= ∃x .Ux ∧ (∀x .Ux)[ϑ(x) ∧ α(x) ∧ φ(P̄x ) ∧ (¬φ)(Q̄x )] ,

where

ϑ(x) ∶= ∃y(x < y)
∧ (∃y(y < x)→ (∃y.y < x)¬∃z(y < z ∧ z < x))

says that x has a successor and, if it is not the first element then it also
has an immediate predecessor. The formula χ says that

◆ U is a nonempty discrete linear order without last element,

◆ for every u ∈ U , there is a pseudo back-and-forth system (Iα)α<u
from Au ∶= { a ∣ ⟨u, a⟩ ∈ ⋃s Ps } to Bu ∶= { b ∣ ⟨u, b⟩ ∈ ⋃s Qs } of
length ↓u,

◆ Au induces a substructure that satisfies φ while Bu induces a sub-
structure that does not satisfy φ.

Consequently, χ has a model where ⟨U , <⟩ ≅ ⟨ω, <⟩ and the substruc-
tures induced by An and Bn , for n < ω, are isomorphic to An and Bn ,
respectively. Let C be an arbitrary model of χ. We have to show that
the order type of ⟨UC , <C⟩ is ω. Suppose otherwise. Then there exists
some element u ∈ U such that ↓u is infinite. Since every element except
for the first one has an immediate predecessor it follows that < is not a
well-order. By Lemma 3.3, we can conclude that C∣Au ≅∞ C∣Bu . Hence,
C∣Au ⊧ φ and C∣Bu ⊭ φ contradicts (kp). ◻
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Theorem 3.10. Let L be a regular logical system with FO0 ≤ L. If L has
the Karp property and L is countably compact then L ≡ FO0.

Proof. The claim follows immediately from the Lemma 3.9 since ⟨ω, <⟩
cannot be axiomatised in a countably compact logic. ◻

For the next theorem we need the following variant of the Diagram
Lemma.

Lemma 3.11. Suppose that L is a regular logical system such that L is
compact and FO ≤ L. Let A be a structure and Φ ⊆ L.

There exists an elementary extension B ⪰FO A with B ⊧ Φ if and only
if ThFO(A) ∪ Φ is satisfiable.

Proof. (⇒) Clearly, B ⪰FO A and B ⊧ Φ implies that B ⊧ThFO(A)∪Φ.
(⇐) Let Γ ∶=ThFO(AA). If B ⊧ Γ∪Φ then B is the desired elementary

extension of A. Hence, it is sufficient to show that Γ ∪ Φ is satisfiable.
For a contradiction, suppose otherwise. Since L is compact there exist
finite subsets Γ0 ⊆ Γ and Φ0 ⊆ Φ such that Γ0 ∪ Φ0 is inconsistent. Let
γ(ā) ∶= ⋀ Γ0 where ā are the constant symbols appearing in Γ0. Then
A ⊧ ∃x̄γ(x̄). Hence, Φ0 ∪ {∃x̄γ(x̄)} ⊆ThFO(A) ∪ Φ. This contradicts
the assumption that the latter set is satisfiable. ◻

Theorem 3.12. Let L be a regular logical system with FO0 ≤ L. If L has the
Tarski union property and L is compact then L ≡ FO0.

Proof. Suppose that FO0 < L. By Lemma 1.5, there are structures A ≡ B
such that A ⊧ φ and B ⊧ ¬φ, for some L-formula φ. We construct an
elementary chain (An)n<ω such that

◆ An ⪯L An+2, for all n, and
◆ An ⊧ φ iff n is even.

Then, C ∶= ⋃n An = ⋃n A2n = ⋃n A2n+1. By (tup) it follows that A0 ⪯L C
and A1 ⪯L C. Consequently, we have

A0 ⊧ φ iff C ⊧ φ iff A1 ⊧ φ .
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A contradiction.
It remains to define the chain (An)n . Let A0 ∶= A. Since

ThFO(A) ∪ {¬φ} =ThFO(B) ∪ {¬φ}

is satisfiable we can use Lemma 3.11 to find an elementary extension
A1 ⪰ A0 with A1 ⊧ ¬φ. Suppose that An has already been defined. Since

ThFO(A
n
An−1
) =ThFO(A

n−1
An−1
) ⊆ThL(A

n−1
An−1
)

it follows that

ThFO(A
n
An−1
) ∪ThL(A

n−1
An−1
)

is a satisfiable set of L-formulae. By Lemma 3.11, there exists an element-
ary extension An+1 ⪰ An with An+1 ⪰L An−1, as desired. ◻

Theorem 3.13. Let L be a regular logical system with FO0 ≤ L. If L has the
Karp property and L is bounded then L ≤ FO∞ℵ0 .

Proof. For a contradiction, suppose that there exists an L-formula φ that
is not equivalent to any FO∞ℵ0 -formula.

First, we show that there are structures Aα ≡α Bα , for α ∈ On, such
that Aα ⊧ φ and Bα ⊭ φ. Set

ψα ∶=⋁{ ηα
A ∣ A ⊧ φ } ,

where ηα
A is the Hintikka-formula of A of quantifier rank α. Then φ ⊧ ψα

and, by assumption, ψα ⊭ φ. Hence, there exist structures Bα ⊧ ψα with
Bα ⊭ φ. By definition of ψα , it follows that Bα ≡α Aα , for some Aα ⊧ φ.
As in Lemma 3.9 we can define a formula χ stating that,

◆ U is a discrete linear order without last element,

◆ for every u ∈ U , there exists a pseudo back-and-forth system from
Au ∶= { a ∣ ⟨u, a⟩ ∈ ⋃s Ps } to Bu ∶= { b ∣ ⟨u, b⟩ ∈ ⋃s Qs } of
length ↓u,
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◆ Au induces a substructure that satisfies φ while Bu induces a sub-
structure that does not satisfy φ.

For every ordinal α, we can define a model Cα of χ where ⟨U , <⟩ is of
order type α, Cα ∣Aβ ≅ Aβ , and Cα ∣Bβ ≅ Bβ . Since L is bounded it follows
that χ has a model C where ⟨U , <⟩ is not well-founded. By Lemma 3.3, it
follows that C∣Au ≅∞ C∣Bu , for some u ∈ U . But C∣Au ⊧ φ and C∣Bu ⊭ φ
contradicts (kp). ◻

4. Projective classes

The common idea behind Skolemisation and Chang’s Reduction consists
in constructing a theory T such that every structure in a given class has
an expansion to a model of T . This section contains a more systematic
investigation of such reductions.

Definition 4.1. (a) Let K be a class of Σ-structures and let Γ ⊆ Σ be a
subsignature. The Γ-projection ofK is the class

prΓ(K) ∶= {A∣Γ ∣ A ∈ K }

of all Γ-reducts of structures inK.
(b) Let L be an algebraic logic and κ either a cardinal or ∞. A classK

of Σ-structures is a κ-projective L-class if there exists a signature Σ+ ⊇ Σ
and a set Ψ ⊆ L[Σ+] of size ∣Ψ ∣ ≤ κ such that

K = prΣ(ModL[Σ+](Ψ)) .

The class of all such classesK is denoted by PCκ(L, Σ). Furthermore, we
set

PC<κ(L, Σ) ∶= ⋃
λ<κ

PCλ(L, Σ) .

Projective FO-classes are also called pseudo-elementary.
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(c) Let L0 and L1 be algebraic logics and κ a cardinal or ∞. We say
that L0 is κ-projectively reducible to L1 and we write L0 ≤

κ
pc L1 if

ModL0[Σ](φ) ∈ PCκ(L1 , Σ) , for all Σ and every φ ∈ L0[Σ] .

Example. The class of all ordered abelian groups is first-order axiomatis-
able. It follows that the class of all abelian groups that can be ordered is
pseudo-elementary.

Exercise 4.1. Prove that L ≤1
pc SOκℵ0 implies L ≤ SOκℵ0 .

The results of Section c2.3 can be restated in the following form.

Lemma 4.2. FOκℵ0 ≤
1
pc ∀κℵ0 .

Proof. For every formula φ ∈ FOκℵ0[Σ, X] we can use Lemma c2.3.3 to
find a formula φ∗ ∈ ∀κℵ0[Σ∗ , X] with φ∗ ⊧ φ such that we can expand
every model A of φ to a model A∗ of φ∗. Consequently,

Mod(φ) = prΣ(Mod(φ∗)) . ◻

Lemma 4.3. If L0 ≤
κ
pc L1 then

ModL0[Σ](Φ) ∈ PCκ⊕∣Φ∣(L1 , Σ) , for all Φ ⊆ L0[Σ] .

Proof. For every φ ∈ Φ, there exists a signature Σ(φ) ⊇ Σ and a set
Ψ(φ) ⊆ L1[Σ(φ)] of size at most κ such that

Mod(φ) = prΣ(ModL[Σ(φ)](Ψ(φ))) .

We can choose these signatures such that Σ(φ) ∩ Σ(ψ) = Σ, for φ ≠ ψ.
Setting Ψ ∶= ⋃φ∈Φ Ψ(φ) it follows that

Mod(Φ) = prΣ(Mod(Ψ)) . ◻

Lemma 4.4. L0 ≤
κ
pc L1 implies that

(a) hnκ(L0) ≤ hnκ(L1) ,
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(b) wnκ(L0) ≤ wnκ(L1) ,
(c) lnκ(L0) ≤ lnκ(L1) .

Proof. For (a) and (b), note that if there is a set Φ ⊆ L0[Σ] of size ∣Φ∣ ≤ κ
that pins down a cardinal λ or an ordinal α then we can find a signature
Σ+ ⊇ Σ and a set Φ+ ⊆ L1[Σ+] of size ∣Φ+∣ ≤ ∣Φ∣ ⊕ κ = κ that does the
same.

(c) Let λ be a cardinal such that every set Φ of L1-formulae of size
∣Φ∣ ≤ κ has a model of size at most λ. We claim that lnκ(L0) ≤ λ. For
each Ψ ⊆ L0[Σ] of size at most κ we can find a set Ψ+ ⊆ L1[Σ+] of size
∣Ψ+∣ ≤ ∣Ψ ∣⊕ κ = κ such that Mod(Ψ) = prΣ(Mod(Ψ+)). Consequently,
Mod(Φ) contains a structure of size at most λ. ◻

Lemma 4.5. Let L0 and L1 be algebraic logics.
(a) If L0 ≤

∞
pc L1 and L1 is compact then so is L0.

(b) If L0 ≤
ℵ0
pc L1 and L1 is countably compact then so is L0.

Proof. Both claims can be proved in the same way. Suppose that every
finite subset of Φ ⊆ L0[Σ] is satisfiable. For every finite Φ0 ⊆ Φ, fix a
signature Σ(Φ0) ⊇ Σ and a set Φ+

0 ⊆ L1[Σ(Φ0)] such that

Mod(Φ0) = prΣ(Mod(Φ+
0)) .

For (b), we can choose Φ+
0 to be countable. By replacing

Σ(Φ0) by ⋃{Σ(Ψ) ∣ Ψ ⊆ Φ0 }

and Φ+
0 by ⋃{Ψ+ ∣ Ψ ⊆ Φ0 }

we may assume that Φ0 ⊆ Φ1 implies Σ(Φ0) ⊆ Σ(Φ1) and Φ+
0 ⊆ Φ+

1 .
We claim that the set

Φ+ ∶=⋃{Φ+
0 ∣ Φ0 ⊆ Φ finite}

is satisfiable. Note that, in case (b), Φ+ is a countable union of count-
able sets. Since L1 is, respectively, compact and countably compact it is
sufficient to prove that every finite subset of Φ+ is satisfiable.
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4. Projective classes

For every finite subset Ψ ⊆ Φ+ we can find finitely many finite subsets
Φ0 , . . . , Φn ⊆ Φ such that Ψ ⊆ Φ+

0 ∪ ⋅ ⋅ ⋅ ∪Φ+
n . Setting Γ ∶= Φ0 ∪ ⋅ ⋅ ⋅ ∪Φn

it follows that Ψ ⊆ Γ+. Hence, Mod(Γ) ≠ ∅ implies that Mod(Ψ) ≠ ∅,
as desired.

Consequently, there exists a model A+ ⊧ Φ+. Let A ∶= A+∣Σ . Then we
have A ⊧ Φ0, for all finite subsets Φ0 ⊆ Φ. This implies that A ⊧ Φ. ◻

Lemma 4.6. Let L0 , L1 be algebraic logics and ⟨α, β⟩ ∶ L0[Σ0]→ L1[Σ1]
a comorphism such that, for every signature Γ0 ⊇ Σ0, there exist a signature
Γ1 ⊇ Σ1 an epimorphism ⟨α+ , β+⟩ ∶ L1[Γ1]→ L0[Γ0], and a set Ψ ⊆ L1[Γ1]
such that

β+(A)∣Σ1 = β(A∣Σ1) , for all Γ0-sructures A ,

and rng β+ =ModL1[Γ1](Ψ).

Str[Γ0] Str[Γ1]

Str[Σ0] Str[Σ1]

β+

prΣ0
prΣ1

β

Then K ∈ PCκ(L0 , Σ0) implies β[K] ∈ PCκ(L1 , Σ1).

Proof. Suppose that K = prΣ0
(Mod(Φ0)), for some Φ0 ⊆ L0[Γ0]. Let

⟨α+ , β+⟩ ∶ L1[Γ1] → L0[Γ0] be the corresponding epimorphism of the
expansion and ⟨γ, δ⟩ ∶ L0[Γ0]→ L1[Γ1] its right inverse. We set

Φ1 ∶= γ[Φ0] ∪ Ψ .

Then we have

B ⊧ Φ1 iff B ⊧ γ[Φ0] and B = β+(A) for some A

iff B = β+(A) for some A with β+(A) ⊧ γ[Φ0]

iff B = β+(A) for some A with A ⊧ (α ○ γ)[Φ0]

iff B = β+(A) for some A with A ⊧ Φ0 .
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c5. General model theory

Hence, ModL1(Φ1) = β+[ModL0(Φ0)] and it follows that

A ∈ β[K] iff A = β(A′∣Σ0) for some A′ ⊧ Φ0

iff A = β+(A′)∣Σ1 for some A′ ⊧ Φ0

iff A = A′∣Σ1 for some A′ ⊧ Φ1 .

Consequently, we have β[K] = prΣ1
(Mod(Φ1)). ◻

Corollary 4.7. Suppose that Σ0 ⊆ Σ1 are signatures and (φξ)ξ∈Σ1∖Σ0 is
a sequence of FOκℵ0[Σ0]-formulae. Let ⟨α, β⟩ ∶ FOκℵ0[Σ0]→ FOκℵ0[Σ1]
be the comorphism where β maps a structure A to its expansion defined
by (φξ)ξ . If K ∈ PCκ(FOκℵ0 , Σ0) then β[K] ∈ PCκ(FOκℵ0 , Σ1).

Proof. We have to show that ⟨α, β⟩ satisfies the condition of the preced-
ing lemma. Given Γ0 set Γ1 ∶= Σ1 ⊍ Γ0. We define ⟨α+ , β+⟩ as follows.
The function β+ maps a Γ0-structure A to the Γ1-structure B such that
B∣Γ0 = A and B∣Σ1 = β(A∣Σ0). Then ⟨α+ , β+⟩ is an epimorphism whose
right inverse is given by the reduct operation. By definition, it satisfies
β+(A)∣Σ1 = β(A∣Σ0). Furthermore, we can define the range of β+ by
formulae of the form

∀x̄[Rx̄ ↔ φR(x̄)] and ∀x̄∀y[ f x̄ = y↔ φ f (x̄ , y)] . ◻

We can generalise the notion of a projective class by replacing the
reduct operation by a combination of a reduct and a domain restriction.

Definition 4.8. Let Σ be an S-sorted signature.
(a) Let A be a Σ-structure. A relativised reduct of A is a structure of

the form A∣Σ0 ∣P where Σ0 ⊆ Σ and P ⊆ A induces a substructure of A∣Σ0 .
(b) Let L be an algebraic logic and κ either a cardinal or∞.A classK of

Σ-structures is a relativised κ-projective L-class if there exists a signature
Σ+ ⊇ Σ, a set Ψ ⊆ L[Σ+] of size ∣Ψ ∣ ≤ κ, and unary predicates Ps ∈ Σ+,
for s ∈ S, such that

K = {A∣Σ ∣⋃s PA
s
∣ A ∈ModL[Σ+](Ψ) } .
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4. Projective classes

The class of all such classes is denoted by RPCκ(L, Σ).
(c) Let L0 and L1 be algebraic logics and κ a cardinal or∞. We say that

L0 is relativised κ-projectively reducible to L1 and we write L0 ≤
κ
rpc L1, if

ModL0[Σ](φ) ∈ RPCκ(L1 , Σ) , for all Σ and every φ ∈ L0[Σ] .

Lemma 4.9. L0 ≤
κ
rpc L1 implies that lnκ(L0) ≤ lnκ(L1).

Proof. Let λ be a cardinal such that each satisfiable set Φ of L1-formulae
of size ∣Φ∣ ≤ κ has a model of size at most λ. We claim that lnκ(L0) ≤ λ.
For each Φ ⊆ L0[Σ] of size at most κ we can find a set Φ+ ⊆ L1[Σ+] of
size ∣Φ+∣ ≤ ∣Φ∣⊕ κ = κ such that

Mod(Φ) = {A∣Σ ∣⋃s PA
s
∣ A ∈ModL[Σ+](Φ+) } .

Consequently, if Φ is satisfiable then Mod(Φ) contains a structure of
size at most λ. ◻

Example. Let us show that SO ≤1
rpc MSO. Suppose that φ ∈ SO[Σ, X]

where Σ is S-sorted for a finite set S. W.l.o.g. we may assume that φ con-
tains no quantifiers over functions. Fix a number n < ω such that every
second-order quantifier in φ ranges over a relation of arity at most n.
For every sequence s̄ ∈ S≤n of sorts of length at least 2, we add to Σ a new
sort p s̄ and a function g s̄ of type s̄ → p s̄ . Let χ s̄ be the formula stating
that g s̄ ∶ As0 × ⋅ ⋅ ⋅ × Ask−1 → Ap s̄ is bijective. We construct a formula φ′
by replacing in φ

◆ every second-order quantifier over a relation R of type s̄ by a
quantifier over a set XR of sort p s̄ ,

◆ every atom Rt̄ where R is such a relation by the formula XR g s̄ t̄.
Setting ψ ∶= φ′ ∧⋀s̄∈S≤n χ s̄ it follows that

Mod(φ) = {A∣Σ ∣S ∣ A ∈Mod(ψ) } .

Exercise 4.2. State and prove a version of Lemma 4.6 for relativised pro-
jective classes and use it to show that the image of a relativised projective
classK under an interpretation is again a relativised projective class.
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Below we will show that for first-order logic there is no difference
between projective and relativised projective classes. To do so we need
some technical results about recovering a structure from a substructure.

Definition 4.10. Let A be a Σ-structure and C ⊆ A.
(a) Let Γ0(Σ) be the signature consisting of n-ary relation symbols Rφ ,

for every atomic formula φ ∈ FO<ω[Σ] with free(φ) = {x0 , . . . , xn−1}.
We assume that Γ0(Σ) ∩ Σ = ∅ and we set Γ(Σ) ∶= Σ ⊍ Γ0(Σ).

(b) By ⟪C⟫+A we denote the Γ(Σ)-expansion of ⟪C⟫A by the relations

Rφ ∶= { ā ∈ Cn ∣ A ⊧ φ(ā) } ,

and we define

⟪C⟫0A ∶= ⟪C⟫
+
A∣Γ0(Σ)∣C .

(c) Let Ξ(Σ) be the first-order theory of the class

K(Σ) ∶= {⟪C⟫0A ∣ A a Σ-structure with C ⊆ A} .

Remark. Note that

⟪C⟫0A ≅ ⟪D⟫
0
B implies ⟪C⟫+A ≅ ⟪D⟫

+
B .

Lemma 4.11. If C ⊧ Ξ(Σ)⊧∀ then there exists a Σ-structure A with A ⊇ C
such that C generates A and C = ⟪C⟫0A.

Proof. We define an equivalence relation ∼ on the set

Z ∶= { t(c̄) ∣ t a Σ-term and c̄ ⊆ C }

by s(ā) ∼ t(b̄) : iff āb̄ ∈ RC
φ where φ ∶= s(x̄)= t( ȳ) .

Note that C ⊆ Z since we can choose t = x. Set A ∶= Z/∼. If a, b ∈ C are
elements with a ≠ b then ⟨a, b⟩ ∉ RC

x=y since

∀x∀y(Rx=yxy → x = y) ∈ Ξ(Σ)∀ .
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4. Projective classes

This implies that [a]∼ ≠ [b]∼. Hence, the function e ∶ C → A ∶ a ↦ [a]∼
is an embedding. Let D be the range of this function. We construct a
Γ(Σ)-structure A with universe A such that ⟪D⟫0A ≅ C.

For Rφ ∈ Γ(Σ)0, we define

RA
φ ∶= { e(ā) ∣ ā ∈ RC

φ } .

For atomic formulae ψ ∈ FO<ω[Σ], we define

A ⊧ ψ([t0(ā0)]∼ , . . . , [tn−1(ān−1)]∼) : iff ā0 . . . ān−1 ∈ RC
φ ,

where φ(x̄0 , . . . , x̄n−1) ∶= ψ(t0(x̄0), . . . , tn−1(x̄n−1)).
It remains to show that D generates A and that ⟪D⟫0A ≅ C. Let t(x̄) be

a Σ-term and ā ∈ Cn . Then

tA(e(ā)) = [t(ā)]∼

since setting ψ(x̄ , y) ∶= t(x̄) = y and φ ∶= t(x̄) = t( ȳ) we have

A ⊧ t(e(ā)) = [t(ā)]∼
iff A ⊧ ψ([a0]∼ , . . . , [an−1]∼ , [t(ā)]∼)
iff āā ∈ RC

φ ,

and ∀x̄Rφ x̄ x̄ ∈ Ξ(Σ)∀. In particular, D generates A.
If φ(x̄) ∈ FO[Σ] is an atomic formula and ā ∈ Cn then

⟪D⟫0A ⊧ Rφe(ā) iff A ⊧ Rφe(ā) iff C ⊧ Rφ ā

implies that e ∶ C ≅ ⟪D⟫0A. By taking isomorphic copies we may assume
that D = C ⊆ A. ◻

Definition 4.12. For every model C ⊧ Ξ(Σ)⊧∀, we denote by Ĉ some
structure as in the preceding lemma. Note that, up to isomorphism, Ĉ is
unique.
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c5. General model theory

Lemma 4.13. For every theory T ⊆ ∀[Σ], there exists a theory T̂ ⊆
FO[Γ(Σ)0] such that

Â ⊧ T iff A ⊧ T̂ .

Proof. For every universal sentence φ we will construct a set Φ(φ) of
FO<ω[Γ(Σ)0]-sentences such that

Â ⊧ φ iff A ⊧ Φ(φ) .

Then we can set T̂ ∶= ⋃{Φ(φ) ∣ φ ∈ T }.
W.l.o.g. assume that φ = ∀x̄⋀i ⋁k ϑ i k where the quantifier-free part

is in conjunctive normal form. For an atomic formula ϑ(x0 , . . . , xn−1),
we have

Â ⊧ ϑ([t0(ā0)]∼ , . . . , [tn−1(ān−1)]∼)

iff A ⊧ Rψ(ā0 , . . . , ān−1)

where ψ ∶= ϑ(t0(x̄0), . . . , tn−1(x̄n−1)). Consequently, if, for each tuple t̄
of Σ-terms, we define

ϑ̂ i k[t̄] ∶=
⎧⎪⎪
⎨
⎪⎪⎩

Rψ ik x̄0 . . . x̄n−1 if ϑ i k is an atom ,
¬Rψ ik x̄0 . . . x̄n−1 if ϑ i k is a negated atom ,

where ψ i k ∶= ϑ i k(t0(x̄0), . . . , tn−1(x̄n−1)), then it follows that

Â ⊧⋀
i
⋁
k

ϑ i k([t0(ā0)]∼ , . . . , [tn−1(ān−1)]∼)

iff A ⊧⋀
i
⋁
k

ϑ̂ i k[t̄](ā0 , . . . , ān−1) .

Hence, we can set

Φ(φ) ∶= {∀x̄⋀i ⋁k ϑ̂[t̄] ∣ t̄ a tuple of Σ-terms} .

(Note that every element of Â is denoted by a term with parameters
from A.) ◻
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4. Projective classes

Exercise 4.3. Let κ be an infinite cardinal with κ > ∣Σ∣. Prove that,
for every ∀κℵ0[Σ]-theory T , there exists an FOκℵ0[Γ(Σ)0]-theory T̂ as
above.

Theorem 4.14. Let Σ− ⊆ Σ+ be signatures and P ∈ Σ+ a unary predicate.
Suppose that

K = {A∣Σ− ∣⋃s PA
s
∣ A ∈Mod(Φ) } , for some Φ ⊆ FO0[Σ+] .

(a) There exists a signature Γ ⊇ Σ− of size ∣Γ∣ ≤ ∣Σ+∣⊕ ℵ0 and a theory
Ψ ⊆ FO0[Γ] such that

K = prΣ−(Mod(Ψ)) .

(b) If Φ is finite and every structure in K is infinite then we can choose
a finite set Ψ as above.

(c) K is a pseudo-elementary class.

Proof. W.l.o.g. we may assume that Σ− = Σ+. Hence, we drop the sub-
scripts and just write Σ.

(b) Since Φ is finitewemay assume that the signature Σ is finite. By the
Theorem of Löwenheim and Skolem, it follows that, for every structure
A ∈ K, we can find a structure B ∈Mod(Φ) of cardinality ∣B∣ = ∣A∣ such
that A = B∣⋃s PB

s
. Let Σ′ = { ξ′ ∣ ξ ∈ Σ } be a disjoint copy of Σ, and set

Γ ∶= Σ ⊍ Σ′ ⊍ { f }, where f is a new unary function symbol. Since Φ is
finite there exists a sentence ψ ∈ FO[Γ] expressing that

◆ the Σ′-reduct of the given structure is a model of Φ,
◆ f is a bijection between the whole universe and P.

It follows thatK = {A∣Σ ∣ A ⊧ ψ } .
(c) follows immediately from (a).
(a) By Skolemising we may assume that Φ ⊆ ∀. Let Ψ ⊆ FO0[Γ(Σ)]

consist of Φ̂ ∪ Ξ(Σ)⊧∀ together with with the sentences

∀x̄[φ(x̄)↔ Rφ(x̄)] for atomic φ ∈ FO<ω[Σ] ,
∀x̄[RP t x̄ x̄ → ∃yRt x̄=y x̄ y] , for every Σ-term t .
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c5. General model theory

We claim that

K = {A∣Σ ∣ A ∈Mod(Ψ) } .

(⊆) If C ∈ K then C = A∣⋃s PA
s
, for some A ⊧ Φ. Since Φ is a Skolem

theory we can assume that PA generates A. Hence, ⟪X⟫+A is defined and
C ≅ ⟨X⟩0A∣Σ . Furthermore, ⟪X⟫0A ⊧ Ψ , as desired.
(⊇) Let A ⊧ Ψ . Since A ⊧ Φ ∪ Ξ(Σ)⊧∀ it follows that Â exists and

⟪X⟫0
Â
= A. Since A ⊧ Φ̂ we have Â ⊧ Φ. Consequently, Â∣PÂ ∈ K. We

claim that Â∣PÂ = A. On the one hand, Ξ(Σ)⊧∀ ⊧ ∀xRPxx implies that
A ⊧ Pa, for every a ∈ A. Hence, A ⊆ PÂ. Conversely, suppose that a ∈ PÂ.
Then a = t(b̄), for some term t and parameters b̄ ⊆ A. Then

A ⊧ RP t x̄ b̄ ∧ ∃yRt x̄=y b̄y

which implies that a ∈ A. ◻

Corollary 4.15. L ≤∞rpc FO iff L ≤∞pc FO.

5. Interpolation
For most logics L there are projective L-classes that are not L-axioma-
tisable. In this section we study how this additional power affects the
entailment relation. Surprisingly we can find many logics where it has
no effect at all.

Definition 5.1. Let L be an algebraic logic.
(a) L has the interpolation property if, for all finite sets Φ i ⊆ L[Σ i],

i < 2, with Φ0 ⊧ Φ1, there exists a finite set Ψ ⊆ L[Σ0 ∩ Σ1] such that

Φ0 ⊧ Ψ and Ψ ⊧ Φ1 .

(b) L has the ∆-interpolation property if every classK ∈ PC<ℵ0(L, Σ)
with Str[Σ] ∖K ∈ PC<ℵ0(L, Σ) is finitely L-axiomatisable.
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5. Interpolation

Remark. If L is boolean closed then the interpolation property implies
the ∆-interpolation property since, if

K = prΣ(Mod(Φ+)) and Str[Σ] ∖K = prΣ(Mod(Φ−))

then we have

Φ+ ⊧ ¬⋀Φ−

and any set Ψ ⊆ L[Σ] with

Φ+ ⊧ Ψ and Ψ ⊧ ¬⋀Φ−

is an axiom system forK.

Theorem 5.2. FO has the interpolation property.

Proof. Since FO is closed under conjunctions it is sufficient to consider
single formulae. Hence, suppose that φ0 ⊧ φ1 where φ i ∈ FO0[Γi], for
i < 2. Let

Ψ ∶= (φ0)
⊧ ∩ FO0[Σ] , where Σ ∶= Γ0 ∩ Γ1 .

We claim that Ψ ∪{¬φ1} is inconsistent. By compactness, it then follows
that there is a finite subset Ψ0 ⊆ Ψ such that Ψ0 ∪ {¬φ1} is inconsistent.
Setting ψ ∶= ⋀Ψ0 we have φ0 ⊧ ψ and ψ ⊧ φ1, as desired.

It remains to prove the claim. For a contradiction, suppose that the set
Ψ ∪ {¬φ1} has a model A. By Corollary c2.5.9, there exists a model B
of φ0 such that A∣Σ ⪯ B∣Σ . Since A∣Σ ≡ B∣Σ we can apply Theorem c2.5.8
to obtain a (Γ0 ∪ Γ1)-structure C with B ⪯ C∣Γ0 and an elementary
embedding g ∶ A→ C∣Γ1 . In particular,we have C∣Γ0 ⊧ φ0 and C∣Γ1 ⊧ ¬φ1.
Hence, C ⊧ φ0 ∧ ¬φ1 and φ0 ⊭ φ1. Contradiction. ◻

Definition 5.3. Let L be an algebraic logic, Σ a signature, R ∉ Σ an n-ary
relation symbol, and Φ(R) ⊆ L0[Σ ∪ {R}] a set of formulae.

(a) We say that R is implicitly defined by Φ if, for all models A and B
of Φ with A∣Σ = B∣Σ , we have RA = RB.
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(b) We say that R is explicitly defined by a set Ψ ⊆ Ln[Σ] with respect
to Φ if RA = ΨA, for every model A of Φ.

(c) L has the Beth property if, for all finite sets Φ ⊆ L0[Σ ∪ {R}]
that define R implicitly, there exists a finite set Ψ ⊆ Ln[Σ] explicitly
defining R with respect to Φ.

Lemma 5.4. Every boolean closed logic L with the interpolation property
has the Beth property.

Proof. Suppose that R is implicitly defined by Φ(R) ⊆ L0[Σ ∪ {R}]. Let
R′ be a new relation symbol. It follows that

⋀Φ(R)→ Rx̄ ⊧⋀Φ(R′)→ R′ x̄ .

By the interpolation property we can find a finite set Ψ(x̄) such that

⋀Φ(R)→ Rx̄ ⊧⋀Ψ(x̄) and ⋀Ψ(x̄) ⊧⋀Φ(R′)→ R′ x̄ .

It follows that

Φ(R) ⊧ Rx̄ ↔⋀Ψ(x̄) ,

that is, Ψ explicitly defines R with respect to Φ. ◻

There is a general way to extend a given logic to one that has the
∆-interpolation property.

Definition 5.5. Let L be an algebraic logic. The interpolation closure
∆(L) of L is the logic where ∆(L)[Σ] consists of all pairs

⟨φ0 , φ1⟩ ∈ L[Σ0] × L[Σ1]

with Σ i ⊇ Σ and

prΣ(Mod(φ1)) = Str[Σ] ∖ prΣ(Mod(φ0)) .

The semantics of such a formula is defined by

A ⊧ ⟨φ0 , φ1⟩ : iff A ∈ prΣ(Mod(φ0)) .
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Lemma 5.6. Let L be an algebraic logic.

(a) If L satisfies (b+) then ∆(L) is boolean closed.

(b) If L0 is closed under negation and L0 ≤
1
pc L1, then L0 ≤ ∆(L1).

(c) If L is closed under negation then L ≤ ∆(L).

(d) L0 ≤
1
pr L1 implies ∆(L0) ≤ ∆(L1).

(e) ∆(∆(L)) ≤ ∆(L).

(f) ∆(L) has the ∆-interpolation property.

(g) If L1 has the ∆-interpolation property then

L0 ≤
1
pr L1 implies ∆(L0) ≤ L1 .

(h) occ(∆(L)) = occ(L) ,
lnκ(∆(L)) = lnκ(L) ,
wnκ(∆(L)) = wnκ(L) .

Proof. (a) We have

⟨φ,ψ⟩ ∧ ⟨φ′ ,ψ′⟩ ≡ ⟨φ ∧ φ′ , ψ ∨ ψ′⟩ ,
⟨φ,ψ⟩ ∨ ⟨φ′ ,ψ′⟩ ≡ ⟨φ ∨ φ′ , ψ ∧ ψ′⟩ ,

and ¬⟨φ,ψ⟩ ≡ ⟨ψ, φ⟩ .

(b) For every φ ∈ L0[Σ], there exist a signature Σ0 ⊇ Σ and a formula
ψ0 ∈ L1[Σ0] such that

Mod(φ) = prΣ(Mod(ψ0)) .

Similarly, there exist a signature Σ1 ⊇ Σ and a formula ψ1 ∈ L1[Σ1] such
that

Mod(¬φ) = prΣ(Mod(ψ1)) .

It follows that φ ≡ ⟨ψ0 ,ψ1⟩ ∈ ∆(L1).
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(c) follows immediately from (b).
(d) Let ⟨φ0 ,ψ0⟩ ∈ ∆(L0) where φ0 ∈ L0[Σ0] and ψ0 ∈ L0[Γ0]. Since

L0 ≤
1
pr L1 we can find formulae φ1 ∈ L1[Σ1] and ψ1 ∈ L1[Γ1] such that

Mod(φ0) = prΣ0
(Mod(φ1))

and Mod(ψ0) = prΓ0(Mod(ψ1)) .

Hence, ⟨φ0 ,ψ0⟩ ≡ ⟨φ1 ,ψ1⟩ ∈ ∆(L1).
(e) Let ⟨⟨φ0 ,ψ0⟩, ⟨φ1 ,ψ1⟩⟩ ∈ ∆(∆(L))[Σ]. Then

prΣ(Mod(φ0)) = prΣ(prΣ0
(Mod(φ0)))

= prΣ(Mod(⟨φ0 ,ψ0⟩))

= Str[Σ] ∖ prΣ(Mod(⟨φ1 ,ψ1⟩))

= Str[Σ] ∖ prΣ(prΣ1
(Mod(φ1)))

= Str[Σ] ∖ prΣ(Mod(φ1)) .

Consequently, ⟨⟨φ0 ,ψ0⟩, ⟨φ1 ,ψ1⟩⟩ ≡ ⟨φ0 , φ1⟩ ∈ ∆(L)[Σ].
(f) Let ⟨φ0 ,ψ0⟩, ⟨φ1 ,ψ1⟩ ∈ ∆(L) be formulae such that

prΣ(Mod(⟨φ0 ,ψ0⟩)) = Str[Σ] ∖ prΣ(Mod(⟨φ1 ,ψ1⟩)) .

Then ⟨⟨φ0 ,ψ0⟩, ⟨φ1 ,ψ1⟩⟩ ∈ ∆(∆(L)) and, by (e), there is a formula
⟨ϑ , χ⟩ ∈ ∆(L) such that

⟨ϑ , χ⟩ ≡ ⟨⟨φ0 ,ψ0⟩, ⟨φ1 ,ψ1⟩⟩ .

(g) Let ⟨φ0 ,ψ0⟩ ∈ ∆(L0)[Σ] where φ0 ∈ L0[Γ0] and ψ0 ∈ L0[Γ′0].
Since L0 ≤

1
pr L1 we can find formulae φ1 ∈ L1[Γ1] and ψ1 ∈ L1[Γ′1 ] such

that

Mod(φ0) = prΓ0(Mod(φ1))

and Mod(ψ0) = prΓ′0
(Mod(ψ1)) .
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5. Interpolation

Since

prΣ(Mod(φ1)) = prΣ(Mod(φ0))

= Str[Σ] ∖ prΣ(Mod(ψ0))

= Str[Σ] ∖ prΣ(Mod(ψ1))

and L1 has the ∆-interpolation property we can find a formula ϑ ∈ L1[Σ]
such that

Mod(ϑ) = prΣ(Mod(φ1)) .

It follows that ϑ ≡ ⟨φ0 ,ψ0⟩.
(h) We only prove the first equation. The other ones are left as an exer-

cise. Let ⟨φ,ψ⟩ ∈ ∆(L)[Σ] where φ ∈ L[Σ0] and ψ ∈ L[Σ1]. Then there
exist formulae φ′ ∈ L[Γ0] and ψ′ ∈ L[Γ1]where Γi ⊆ Σ i are subsignatures
of size ∣Γi ∣ ≤ occ(L) such that φ′ ≡ φ and ψ′ ≡ ψ. Let Γ ∶= Σ ∩ (Γ0 ∪ Γ1).
It follows that ⟨φ,ψ⟩ ≡ ⟨φ′ ,ψ′⟩ ∈ L[Γ] where ∣Γ∣ ≤ occ(L). ◻

Proposition 5.7. FOκ+ℵ0(∃
κ) ≤κ

pr FOκ+ℵ0 .

Proof. Let φ ∈ FOκ+ℵ0(∃
κ). Following Chang’s Reduction we introduce

a new relation symbol Rψ , for every subformula ψ(x̄) of φ, and we write
down formulae ensuring that Rψ is the set of all tuples satisfying ψ. For
the operations of FOκ+ℵ0 this can be done in the same way as in Chang’s
reduction. For a subformula ∃κ yψ(x̄ , y), we introduce a new relation
symbol <ψ and κ new function symbols f αψ , α < κ, and we add the
formulae

∀x̄(R∃κ yψ x̄ ↔ ⋀
α≠β

f αψ x̄ ≠ f βψ x̄) ∧ ∀x̄ ⋀
α<κ

Rψ x̄ f αψ x̄ ,

∀x̄(¬R∃κ yψ x̄ ↔ ⋁
α<κ

χα(x̄)) ,

where χα(c̄) is the formula of Lemma c1.1.7 stating that the relation
{ ⟨a, b⟩ ∣ c̄a <ψ c̄b } is a well-order of order type α on the set defined
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by ψ(c̄, y). Note that the first formula ensures that R∃κ yψ contains only
tuples c̄ such that there are at least κ elements satisfying ψ(c̄, y), while
the second formula ensures that all such tuples c̄ are contained in R∃κ yψ .
Finally, note that we have introduced at most κ formulae since φ has at
most that many subformulae. ◻

Proposition 5.8. FOℵ2ℵ0(∃
ℵ1) does not have the Karp property.

Proof. We consider the structures A ∶= ⟨A⟩ and B ∶= ⟨B⟩ over the empty
signature with ∣A∣ = ℵ0 and ∣B∣ = ℵ1. Then we have

pIsoℵ0
(A,B) ∶ A ≅∞ B .

But A ⊭ ∃ℵ1x(x = x) and B ⊧ ∃ℵ1x(x = x)

implies that A ≢FOℵ2ℵ0 (∃ℵ1 ) B. ◻

Corollary 5.9. ∆(FOℵ2ℵ0) does not have the Karp property.

Proof. Note that

FOκ+ℵ0(∃
κ) ≤κ

pr FOκ+ℵ0 implies FOκ+ℵ0(∃
κ) ≤1

pr FOκ+ℵ0

since FOκ+ℵ0 is closed under conjunctions of size κ. By Lemma 5.6 (b), it
follows that FOℵ2ℵ0(∃

ℵ1) ≤ ∆(FOℵ2ℵ0). Since the former does not have
the Karp property it follows that the latter does not have it either. ◻

For many logics that can be characterised via a preservation theorem
we can derive the interpolation property from a general theorem which
we will present below. Instead of considering the entailment relation
Φ0 ⊧ Φ1 for a single logic, we allow Φ0 and Φ1 to belong to different
logics L1 and L2, and we look for an interpolant Φ0 ⊧ Ψ ⊧ Φ1 in a third
logic L0.

Definition 5.10. (a) A weak amalgamation square is a commuting dia-
gram
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5. Interpolation

⟨L0 , C0 ,⊧⟩

⟨L1 , C1 ,⊧⟩ ⟨L2 , C2 ,⊧⟩

⟨L12 , C12 ,⊧⟩

⟨α− , β−⟩ ⟨γ− , δ−⟩

⟨α+ , β+⟩ ⟨γ+ , δ+⟩

in the category Logi$ such that, for every pair J1 ∈ C1 and J2 ∈ C2 of inter-
pretations with β−(J1) = δ−(J2), there exists an L12-interpretation J12
with

β+(J12) = J1 and δ+(J12) = J2 .

(b) Given a weak amalgamation square as in (a) and sets Φ1 ⊆ L1 and
Φ2 ⊆ L2 of formulae with α+[Φ1] ⊧ γ+[Φ2], we call a set Φ0 ⊆ L0 an
interpolant of Φ1 and Φ2 if

Φ1 ⊧ α−[Φ0] and γ−[Φ0] ⊧ Φ2 .

(c) Similarly, given a weak amalgamation square and classesK1 ⊆ C1
and K2 ⊆ C2 of interpretations with β−1

+ [K1] ⊆ δ−1
+ [K2] we call a class

K0 ⊆ C0 an interpolant ofK1 andK2 if

K1 ⊆ β−1
− [K0] and δ−1

− [K0] ⊆ K2 .

Lemma 5.11. Φ0 is an interpolant of Φ1 and Φ2 if and only if Mod(Φ0)
is an interpolant of Mod(Φ1) and Mod(Φ2).

The next lemma shows that each pair of classes in a weak amalgama-
tion square has an interpolant. For the interpolation property to hold
we have to strengthen this result by proving that a pair of axiomatisable
classes has an axiomatisable interpolant.

Lemma 5.12. Consider a weak amalgamation square as above.
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c5. General model theory

(a) K0 is an interpolant of K1 and K2 if and only if

β−[K1] ⊆ K0 ⊆ C0 ∖ γ−[C2 ∖K2] .

(b) K1 and K2 have an interpolant.

Proof. (a) We have

K1 ⊆ β−1
− [K0] iff β−[K1] ⊆ K0 ,

and C2 ∖K2 ⊆ γ−1
− [C0 ∖K0] iff γ−[C2 ∖K2] ⊆ C0 ∖K0 .

(b) By (a) it is sufficient to show that

β−[K1] ⊆ C0 ∖ γ−[C2 ∖K2] .

For a contradiction, suppose that there is some interpretation

J0 ∈ β−[K1] ∖ (C0 ∖ γ−[C2 ∖K2]) = β−[K1] ∩ γ−[C2 ∖K2] .

Choose interpretations J1 ∈ K1 and J2 ∈ C2 ∖K2 with

β−(J1) = J0 = γ−(J2) .

Since the diagram is a weak amalgamation square we can find an in-
terpretation J12 ∈ C12 with β+(J12) = J1 and γ+(J12) = J2. It follows
that

J12 ∈ β−1
+ (J1) ⊆ β−1

+ [K1] ⊆ γ−1
+ [K2] .

Consequently, we have J2 = γ+(J12) ∈ K2. Contradiction. ◻

If a logic can be characterised by a preservation theorem then a class
of interpretation is axiomatisable if and only if it is a fixed point for the
operations the logic is preserved under. Hence, to prove our interpolation
theorem we consider fixed points of operations.
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5. Interpolation

Definition 5.13. Let A and B be sets and α ∶ ℘(A) → ℘(A) and β ∶
℘(B)→ ℘(B) functions on their power sets.

(a) A function f ∶ A→ B preserves fixed points of α and β if

C ∈ fix α implies f [C] ∈ fix β .

(b) A function f ∶ A→ B lifts α to β if

( f −1 ○ β)[X] ⊆ (α ○ f −1)[X] , for all X ⊆ B .

Theorem 5.14 (Popescu, Roşu, Şerbănuţă). Consider a weak amalgama-
tion square

⟨L0 , C0 ,⊧⟩

⟨L1 , C1 ,⊧⟩ ⟨L2 , C2 ,⊧⟩

⟨L12 , C12 ,⊧⟩

⟨α− , β−⟩ ⟨γ− , δ−⟩

⟨α+ , β+⟩ ⟨γ+ , δ+⟩

Suppose that there are functions

µ i ∶ ℘(Ci)→ ℘(Ci) , for i ∈ {0, 1} ,
and ν j ∶ ℘(C j)→ ℘(C j) , for j ∈ {0, 2} ,

satisfying the following conditions :
(1) µ0 ○ ν0 ○ µ0 = ν0 ○ µ0 .
(2) ν0 and ν2 are closure operators.
(3) β− preserves fixed points of µ1 and µ0.
(4) γ− lifts ν2 to ν0.

Every pair of fixed points K1 ∈ fix µ1 and K2 ∈ fix ν2 with

β−1
+ [K1] ⊆ γ−1

+ [K2]

has an interpolant K0 ∈ fix µ0 ∩ fix ν0.
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c5. General model theory

Proof. We claim thatK0 ∶= (ν0 ○ β−)[K1] is the desired interpolant. We
have K0 ∈ fix ν0 since ν0 ○ ν0 = ν0. Furthermore, β−[K1] ∈ fix µ0 as
K1 ∈ fix µ1 and β− preserves fixed points. It follows that

µ0[K0] = (µ0 ○ ν0 ○ β−)[K1]

= (µ0 ○ ν0 ○ µ0 ○ β−)[K1]

= (ν0 ○ µ0 ○ β−)[K1]

= (ν0 ○ β−)[K1] = K0 ,

and, therefore,K0 ∈ fix µ0.
It remains to prove that K0 is an interpolant. Since ν0 is a closure

operator we have β−[K1] ⊆ (ν0 ○ β−)[K1] = K0 which implies that
K1 ⊆ β−1

− [K0]. For the other inclusion, note that we have

γ−1
− [K0] = (γ−1

− ○ ν0 ○ β−)[K1] ⊆ (ν2 ○ γ−1
− ○ β−)[K1]

since γ− lifts ν2 to ν0. Furthermore, (γ−1
− ○ β−)[K1] ⊆ K2 since we have

shown in Lemma 5.12 that β−[K1] is an interpolant of K1 and K2. As
ν2 is a closure operator it follows that

(ν2 ○ γ−1
− ○ β−)[K1] ⊆ ν2[K2] = K2 .

Consequently, we have

γ−1
− [K0] ⊆ (ν2 ○ γ−1

− ○ β−)[K1] ⊆ K2 ,

as desired. ◻

We can use this theorem to obtain interpolation results for logics that
can be characterised via preservation theorems.

Corollary 5.15. Consider a weak amalgamation square as above and
functions

µ i ∶ ℘(Ci)→ ℘(Ci) , for i ∈ {0, 1} ,
and ν j ∶ ℘(C j)→ ℘(C j) , for j ∈ {0, 2} ,

satisfying the conditions of the preceding theorem. Furthermore, suppose
that
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6. Fixed-point logics

(1) a class K1 ⊆ C1 is L1-axiomatisable if and only if K1 ∈ fix µ1 ;

(2) a class K2 ⊆ C2 is L2-axiomatisable if and only if K2 ∈ fix ν2 ;

(3) a class K0 ⊆ C0 is L0-axiomatisable iff K0 ∈ fix µ0 ∩ fix ν0.

Then every pair of sets Φ1 ⊆ L1 and Φ2 ⊆ L2 with

α+[Φ1] ⊧ δ+[Φ2]

has an interpolant Φ0 ⊆ L0.

Unfortunately applications of this theoremwill have towait tillChapterd2
since at the moment we still lack the required preservation theorems.

6. Fixed-point logics
As an example we investigate extensions of first-order logic by fixed-
point operators. Let A be a structure and f ∶ ℘(An)→ ℘(An) a function.
A fixed point of f is an n-ary relation on A.We are interested in operators
that compute such fixed points for definable functions f .

Note that the partial order℘(An) is complete. Hence, if f is increasing
then, byTheorem a2.4.3, it has a least fixed point lfp f and a greatest fixed
point gfp f . Similarly, if f is inflationary thenwe can useTheorem a3.3.14
to obtain the inductive fixed point ifp f of f over ∅.

If f is neither increasing nor inflationary then none of these fixed
points need to exist.Butwe stillwould like to define a fixed point operator
for such functions. Instead of asking for a real fixed point we will present
two ways to compute an approximate one.

Firstly, we can artificially make f inflationary by replacing it with
the function x ↦ x ∪ f (x). Secondly, we can compute the ‘fixed-point
induction’ ∅, f (∅), f 2(∅), . . . (which generally is not increasing) and
take some kind of limit.

Definition 6.1. Let X be a set and f ∶ ℘(X) → ℘(X) an arbitrary
function.
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c5. General model theory

(a) The inductive fixed point ifp f of f is the inductive fixed point
of the function f ′ ∶ x ↦ x ∪ f (x) over ∅. Correspondingly, by the
inductive fixed-point induction of f we mean the fixed-point induction
F ∶ On→ ℘(X) of f ′ over ∅.

(b) The lower fixed-point induction of f is the map F− ∶ On→ ℘(X)
defined by

F−(0) ∶= ∅ ,
F−(α + 1) ∶= f (F−(α)) ,

F−(δ) ∶= ⋃
α<δ
⋂

α≤β<δ
F−(β) , for limits δ .

Analogously, we define the upper fixed-point induction F+ by

F+(0) ∶= ∅ ,
F+(α + 1) ∶= f (F+(α)) ,

F+(δ) ∶= ⋂
α<δ
⋃

α≤β<δ
F+(β) , for limits δ .

(c) The least partial fixed point lim inf f of f is the set

F−(∞) ∶=⋃
α
⋂
α≤β

F−(β) .

and its greatest partial fixed point lim sup f is

F+(∞) ∶=⋂
α
⋃
α≤β

F+(β) .

Remark. Note that, in general, ifp f , lim inf f , and lim sup f are no fixed
points of f . But, if f is increasing then ifp f = lim inf f = lim sup f =
lfp f .

Before defining logics with these fixed-point operators let us compute
their closure ordinals.
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Definition 6.2. Let f ∶ ℘(X)→ ℘(X) be a function.
(a) The closure ordinal for the inductive fixed-point induction F of f

is the least ordinal α such that F(α) = F(α + 1).
(b) The closure ordinal for the lower fixed-point induction F− of f is

the least ordinal α such that

F−(α) = F−(∞) and F−(β) ⊇ F−(α) , for all β ≥ α .

Similarly, we define the closure ordinal for the upper fixed-point induc-
tion F+ as the least ordinal α such that

F+(α) = F+(∞) and F+(β) ⊆ F+(α) , for all β ≥ α .

Since the inductive fixed-point induction of a function is increasing
we obtain the same bound on the closure ordinal as for least fixed points.

Lemma 6.3. Let f ∶ ℘(X) → ℘(X). The closure ordinal of ifp f is less
than ∣X∣+.

For partial fixed points the situation is different. The following se-
quence of lemmas shows that in this case the bound is (2∣X∣)+. We will
only consider the case of upper fixed-point inductions. The closure or-
dinal of a least partial fixed point can be computed in exactly the same
way.

Lemma 6.4. Let F+ be the upper fixed-point induction of the function
f ∶ ℘(X)→ ℘(X).

(a) If F+(α) = F+(β) then F+(α + γ) = F+(β + γ), for all γ.
(b) If F+(α) = F+(α + β) then

F+(α + βn) = F+(α) , for all n < ω ,
and F+(α + βω) = ⋃

γ<β
F+(α + γ) .

(c) If F+(α) = F+(α + β) = F+(α + γ) and β ≤ γ then

F+(α + βω) ⊆ F+(α + γω) .
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(d) If F+(α) = F+(α + β) = F+(α + βω) then

F+(α + βγ) = F+(α) , for all γ ,
and F+(∞) = F+(α) .

Proof. (a) is proved by a straightforward induction on γ. For γ = 0, there
is nothing to do. If γ = η + 1 then

F+(α + η + 1) = f (F+(α + η)) = f (F+(β + η)) = F+(β + η + 1) .

Finally, for limit ordinals γ we have

F+(α + γ) = ⋂
i<α+γ

⋃
i≤k<α+γ

F+(k)

= ⋂
α≤i<α+γ

⋃
i≤k<α+γ

F+(k)

= ⋂
i<γ
⋃

i≤k<γ
F+(α + k)

= ⋂
i<γ
⋃

i≤k<γ
F+(β + k)

= ⋂
i<β+γ

⋃
i≤k<β+γ

F+(k) = F+(β + γ) .

(b) The first equation follows by induction on n. For n = 0 there is
nothing to do. For n > 0, it follows from (a) and the inductive hypothesis
that

F+(α + βn) = F+(α + β(n − 1) + β) = F+(α + β) = F+(α) .

For the second equation, we have

F+(α + βω) = ⋂
n<ω

⋃
n≤k<ω

⋃
γ<β

F+(α + βk + γ)

= ⋂
n<ω

⋃
n≤k<ω

⋃
γ<β

F+(α + γ) = ⋃
γ<β

F+(α + γ) .
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(c) By (b), we have

F+(α + βω) = ⋃
i<β

F+(α + i) ⊆ ⋃
i<γ

F+(α + i) = F+(α + γω) .

(d) Again, we use induction on γ. For γ = 0 there is nothing to do and
the inductive step follows as in (b). If γ is a limit ordinal then we have

F+(α + βγ) = ⋂
i<γ
⋃

i≤k<γ
⋃
l<β

F+(α + βk + l)

= ⋂
i<γ
⋃

i≤k<γ
⋃
l<β

F+(α + l)

= ⋃
l<β

F+(α + l) = F+(α + βω) = F+(α) ,

by inductive hypothesis and (b).
The second claim follows from (b) and the first claim. For one direc-

tion, note that we have

F+(α) = F+(α + βηω) = ⋃
γ<βη

F+(α + γ) ⊇ F+(η) ,

which implies that

F+(∞) = ⋂
γ≥α
⋃
η≥γ

F+(η) ⊆ ⋂
γ≥α
⋃
η≥γ

F+(α) = F+(α) .

Conversely, F+(α + βγ) ⊆ ⋃η≥γ F+(η) implies that

F+(α) =⋂
γ

F+(α + βγ) ⊆⋂
γ
⋃
η≥γ

F+(η) = F+(∞) .
◻

In order to prove that there exist ordinals α and β with F+(α) =
F+(α + β) = F+(α + βω) we need some results about closed unbounded
sets.

Lemma 6.5. Let F+ be the upper fixed-point induction of the function
f ∶ ℘(X)→ ℘(X). Set κ ∶= ∣X∣ and λ ∶= (2κ)+ ⊕ ℵ1.
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(a) Suppose that α < λ and S ⊆ λ is a cofinal set such that

F+(α + β) = F+(α) , for all β ∈ S .

If there is no β ∈ S such that F+(α + βω) = F+(α) then there exists
an ordinal α′ and a cofinal set S′ ⊆ λ such that

F+(α′) ⊃ F+(α) and F+(α′ + β′) = F+(α′) for all β′ ∈ S′ .

(b) There exist ordinals α, β < λ such that

F+(α) = F+(α + β) = F+(α + βω) .

Proof. (a) Since λ is regular we have ∣S∣ = λ. Let (β i)i<λ be an increasing
enumeration of S ∖ {0}. By Lemma 6.4 (c) it follows that F+(α + β i ω) ⊆
F+(α + βkω), for all i ≤ k. Consequently, there is some index m < λ
such that F+(α + β i ω) = F+(α + βmω), for all i ≥ m. Set α′ ∶= α + βmω
and

S′ ∶= { β i ω ∣ i ≥ m } .

By assumption, we have

F+(α) ≠ F+(α + βmω) = ⋃
γ<βm

F+(α + γ) ⊇ F+(α) ,

which implies that F+(α′) ⊃ F+(α).
(b) For Z ⊆ X, let

S(Z) ∶= { α < λ ∣ Z ⊆ F+(α) } .

We construct a strictly increasing sequence of sets (Z i)i<η such that each
set S(Z i) is closed unbounded in λ. Let Z0 ∶= ∅. Then S(Z0) = λ. For
limit ordinals δ, set Zδ ∶= ⋃i<δ Z i . By Proposition a4.6.4, it follows that
S(Zδ) = ⋂i<δ S(Z i) is closed unbounded.
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For the successor step, suppose that we have already defined Z i . Since
∣℘(X)∣ < λ we can find a set Y ⊇ Z i such that the set

P ∶= { α < λ ∣ F+(α) = Y }

is cofinal. Let α be the minimal element of P and set

Q ∶= { β ∣ α + β ∈ P, β > 0} .

If there is some β ∈ Q with F+(α + βω) = F+(α) then we are done.
Otherwise, we can use (a) to find an ordinal α′ and a cofinal subset
Q′ ⊆ λ such that F+(α′) ⊃ F+(α) and F+(α′ + β′) = F+(α′), for all
β′ ∈ Q′. We set Z i+1 ∶= F+(α′). It remains to show that S(Z i+1) is closed
unbounded.
By construction the set S(Z i+1) ⊇ { α + β ∣ β ∈ Q′ } is cofinal. Let

X ⊆ S(Z i+1) be a subset with sup X < λ. If sup X ∈ X then we are done.
Otherwise, δ ∶= sup X is a limit ordinal and F+(δ) = ⋂α<δ ⋃α≤β<δ F+(β).
Since, for every β < δ, there is some ordinal β ≤ γ < δ with F+(γ) ⊇ Z i+1
it follows that F+(δ) ⊇ Z i+1. Hence, δ ∈ S(Z i+1).
We continue this construction until we either find indices α and β

such that F+(α) = F+(α + β) = F+(α + βω) or we have defined Z i , for
all i < λ. In the former case we are done. The latter case cannot happen
since Z i ⊂ Zk , for i < k and there are less than λ subsets of X. ◻

Corollary 6.6. Let X be a set of size κ ∶= ∣X∣ and let F+ be the upper
fixed-point induction of f ∶ ℘(X)→ ℘(X). Set λ ∶= (2κ)+ ⊕ ℵ1.

(a) There exists some ordinal α < λ such that F+(∞) = F(α).
(b) F+(∞) = F(λ).

Proof. By the preceding lemma, we can find ordinals α, β < (2κ)+ such
that F+(α) = F+(α + β) = F+(α + βω). It follows by Lemma 6.4 (d)
that F+(∞) = F+(α). Furthermore, since λ ∶= (2κ)+ is regular we have
F+(λ) = F+(α + βλ) = F+(α) = F+(∞). ◻

In order to add these fixed-point operators to first-order logic we start
by looking at definable functions ℘(An)→ ℘(An).
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Definition 6.7. Let φ(R, x̄ , ȳ) ∈ L[Σ ∪ {R}, X] be a formula where R is
an n-ary relation symbol and x̄ a tuple of n variables.

(a) Given a Σ-structureA and parameters c̄ ⊆ A, φ defines the function

fφ ∶ ℘(An)→ ℘(An) ∶ R ↦ { ā ∈ An ∣ A ⊧ φ(R, ā, c̄) } .

(b) We say that the relation symbol R occurs positively in φ if every
occurrence of R is in the scope of an even number of negation symbols.
If R only appears in the scope of odd numbers of negation symbols, we
say that it occurs negatively in φ.

Depending on which fixed-point operators we add we obtain several
extensions of first-order logic.

Definition 6.8. (a) Least fixed-point logic FOκℵ0(LFP) is the extension
of FOκℵ0 by formulae of the form

[lfp Rx̄ ∶ φ(R, x̄ , ȳ)](z̄) and [gfp Rx̄ ∶ φ(R, x̄ , ȳ)](z̄)

wherewe require that the relation R appears positively in φ. The semantics
is defined by

A ⊧ [lfp Rx̄ ∶ φ(R, x̄ , c̄)](ā) : iff ā ∈ lfp fφ ,
A ⊧ [gfp Rx̄ ∶ φ(R, x̄ , c̄)](ā) : iff ā ∈ gfp fφ .

(b) Inflationary fixed-point logic FOκℵ0(IFP) is the extension of FOκℵ0

by formulae of the form

[ifp Rx̄ ∶ φ(R, x̄ , ȳ)](z̄)

with the semantics

A ⊧ [ifp Rx̄ ∶ φ(R, x̄ , c̄)](ā) : iff ā ∈ ifp fφ .

(c) Partial fixed-point logic FOκℵ0(PFP) is the extension of FOκℵ0 by
formulae of the form

[lim inf Rx̄ ∶ φ(R, x̄ , ȳ)](z̄)
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and [lim sup Rx̄ ∶ φ(R, x̄ , ȳ)](z̄)

with the semantics

A ⊧ [lim inf Rx̄ ∶ φ(R, x̄ , c̄)](ā) : iff ā ∈ lim inf fφ ,
A ⊧ [lim sup Rx̄ ∶ φ(R, x̄ , c̄)](ā) : iff ā ∈ lim sup fφ .

The requirement on φ in the definition of [lfp R̄x ∶ φ] ensures that
the least fixed point of fφ does exist.

Lemma 6.9. If φ(R, x̄ , ȳ) ∈ FOκℵ0(LFP) is a formula where the relation
symbol R appears only positively then fφ is increasing.

Proof. One can show by a trivial induction on φ that, if R ⊆ R′ then

A ⊧ φ(R, ā, c̄) implies A ⊧ φ(R′ , ā, c̄) . ◻

Example. We can express in FO(LFP) that a relation < is well-founded
by the formula

φwf ∶= ∀x[lfp Px ∶ (∀y.y < x)Py](x) .

The α-th stage of the fixed-point induction of this formula contains all
elements of foundation rank less than α.

Remark. Note that, by duality, we have

[gfp Rx̄ ∶ φ(R, x̄)](z̄) ≡ ¬[lfp Rx̄ ∶ ¬φ(¬R, x̄)](z̄) ,

where φ(¬R) is the formula obtained form φ by negating every atom of
the form Rt̄.

Lemma 6.10. FOκℵ0 ≤ FOκℵ0(LFP) ≤ FOκℵ0(IFP) ≤ FOκℵ0(PFP)

Proof. Clearly, FOκℵ0(LFP) is as least as expressive as FOκℵ0 . For the
second inclusion note that, if f is an increasing function then ifp f =
lfp f . Hence, we can simulate each least fixed point [lfp Rx̄ ∶ φ] by the
formula [ifp Rx̄ ∶ φ]. Similarly, we have

[ifp Rx̄ ∶ φ](z̄) ≡ [lim inf Rx̄ ∶ Rx̄ ∨ φ](z̄) ,

since the fixed-point inductions of both fixed points coincide. ◻
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In order to compare fixed-point logics with infinitary first-order logic
we construct formulae defining the various stages of a fixed point.

Definition 6.11. Let φ(R, x̄) be a formula and α an ordinal.
(a) The α-th lfp-approximation of φ is defined by induction on α as

φ0(x̄) ∶= false ,
φα+1(x̄) ∶= φ[R/φα] ,

φδ(x̄) ∶= ⋁
α<δ

φ[R/φα] , for limits δ ,

where φ[R/ψ] denotes the formula obtained from φ by replacing every
atom Rt̄ by the formula ψ(t̄).

(b) The α-th ifp-approximation of φ is the same as the α-th lfp-ap-
proximation of the formula Rx̄ ∨ φ.

(c) The α-th lim inf-approximation of φ is the formula defined by

φ0(x̄) ∶= false ,
φα+1(x̄) ∶= φ[R/φα] ,

φδ(x̄) ∶= ⋁
α<δ
⋀
i<α

φ[R/φ i] , for limits δ .

(d) The α-th lim sup-approximation of φ is the formula defined by

φ0(x̄) ∶= false ,
φα+1(x̄) ∶= φ[R/φα] ,

φδ(x̄) ∶= ⋀
α<δ
⋁
i<α

φ[R/φ i] , for limits δ .

Lemma 6.12. Let φα be the α-th fp-approximation of a formula φ where
fp is one of lfp, ifp, lim inf , or lim sup. Let A be a structure and F the
fixed-point induction of [fpRx̄ ∶ φ] on A. Then we have

(φα)A = F(α) .
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Lemma 6.13. Let φ ∈ FOκℵ0(PFP). For every regular cardinal µ, there
exists a formula ψ ∈ FOλℵ0 where λ ∶= (2µ)++ ⊕ κ ⊕ ℵ2 such that

A ⊧ φ↔ ψ , for every structure A of size ∣A∣ ≤ µ .

Proof. We prove the claim by induction on φ. Hence, we may assume
that φ = [lim sup Rx̄ ∶ χ](x̄) with χ ∈ FOλℵ0 . Let χα be the α-th lim sup-
approximation of χ. Let λ0 ∶= (2µ)+ ⊕ ℵ1. By Corollary 6.6 and the
preceding lemma it follows that the formula χλ0 defines the partial fixed
point of χ on all structures of cardinality ∣A∣ < µ. Finally, note that
χλ0 ∈ FOλℵ0 . ◻

Corollary 6.14. FO∞ℵ0(PFP) has the Karp property.

In some cases the closure ordinal of a least fixed point is independent
of the size of the structure.

Lemma 6.15. Let φ(R, x̄ , ȳ) be an existential first-order formula where
R occurs only positively. On every structureA the least fixed point [lfp Rx̄ ∶
φ(R, x̄ , ȳ)] is reached after at most ω steps.

Proof. The corresponding function fφ ∶ ℘(A)n → ℘(A)n is continuous
since fφ(R) = ⋃{ fφ(R0) ∣ R0 ⊆ R finite} . Hence, the claim follows
from Lemma a3.3.12 (c). ◻

In Chapter e1 we will study saturated structures. One of their many
properties is the fact that, for such structures, the preceding lemma holds
for all first-order formulae, not only for existential ones.

Definition 6.16. A structure A is ℵ0-saturated if A realises every type
p ∈ S1(U) where U ⊆ A is finite.

Lemma 6.17. Let φ(R, x̄) be a first-order formula where R occurs only
positively and let A be an ℵ0-saturated structure. The least fixed point of φ
on A is reached after at most ω steps.
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Proof. Let F be the fixed-point induction of φ on A. If we can show that

φ(F(ω))A = ⋃
n<ω

φ(F(n))A

then it follows that

F(ω + 1) = φ(F(ω))A = ⋃
n<ω

F(n + 1) = F(ω) ,

as desired. Note that each set F(n) with n < ω is definable by the n-th
approximation of φ.

For the induction below we prove a slightly more general statement.
We consider formulae φ(R, x̄) where the relation R occurs only pos-
itively, but where we do not require the arity of R to be equal to the
number of variables x̄. With every such formula φ(R, x̄) we associate
the function

fφ(R) ∶= { ā ⊆ A ∣ A ⊧ φ(R, ā) } ,

and we prove by induction on φ that

fφ(⋃n<ω Rn) = ⋃
n<ω

fφ(Rn) ,

for every increasing sequence (Rn)n<ω of FO-definable relations.
W.l.o.g. we may assume that φ is in negation normal form. As φ is

monotone in R we have

fφ(Rn) ⊆ fφ(⋃n Rn) , for all n < ω .

This implies that

⋃n fφ(Rn) ⊆ fφ(⋃n Rn) .

Hence, we only need to prove the converse inclusion.
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First, suppose that φ is atomic. If R does not occur in φ then there is
nothing to do. Hence, assume that φ = Rt0 . . . tm−1. Then we have

ā ∈ fφ(⋃n Rn)

⇒ ⟨t0(ā), . . . , tm−1(ā)⟩ ∈ ⋃n Rn

⇒ ⟨t0(ā), . . . , tm−1(ā)⟩ ∈ Rn , for some n < ω
⇒ ā ∈⋃n fφ(Rn) .

If φ is the negation of an atom the proof is analogous.
For φ = ψ ∧ ϑ or φ = ψ ∨ ϑ the claim follows immediately from

inductive hypothesis.
Suppose that φ = ∃yψ(R, x̄ , y). Then we have

ā ∈ fφ(⋃n Rn)

⇒ āb ∈ fψ(⋃n Rn) , for some b ∈ A
⇒ āb ∈⋃n fψ(Rn) , for some b ∈ A
⇒ ā ∈⋃n fφ(Rn) .

Finally, we consider the case that φ = ∀yψ(R, x̄ , y). For a contradic-
tion, suppose that there is some tuple

ā ∈ fφ(⋃n Rn) ∖⋃
n

fφ(Rn) .

Since A ⊭ ∀yψ(Rn , ā, b) we can find elements bn ∈ A such that

A ⊭ ψ(Rn , ā, bn) .

Let ϑn(z̄) be the formula defining Rn . We define

Φ ∶= {¬ψ(ϑn , ā, y) ∣ n < ω } ,

where ψ(ϑn , x̄ , y) is the formula obtained from ψ by replacing every
atom Rt̄ by ϑn(t̄). Since Rk ⊆ Rn , for k ≤ n, we have ϑk ⊧ ϑn . As ψ is
monotone in R it follows that

¬ψ(ϑn , ā, y) ⊧ ¬ψ(ϑk , ā, y) , for all k ≤ n .
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Therefore, every finite subset of Φ is satisfiable. Hence, Φ is a partial
type over ā. Since A is ℵ0-saturated we can find some element b∗ ∈ A
realising Φ. Consequently, we have

āb∗ ∉⋃n fψ(Rn) = fψ(⋃n Rn) .

Hence, A ⊧ ∃y¬ψ(⋃n Rn , ā, y) which implies that ā ∉ fφ(⋃n Rn). Con-
tradiction. ◻

Theorem 6.18 (Barwise, Moschovakis). Suppose thatK is a pseudo-ele-
mentary class and φ(R, x̄) a first-order formula. The following statements
are equivalent :

(1) There exists a formula ψ(x̄) ∈ FO such that

A ⊧ ∀x̄[ψ(x̄)↔ [lfp Rx̄ ∶ φ](x̄)] , for all A ∈ K .

(2) For every A ∈ K, there exists a formula ψ(x̄) ∈ FO such that

A ⊧ ∀x̄[ψ(x̄)↔ [lfp Rx̄ ∶ φ](x̄)] .

(3) On every A ∈ K the least fixed-point of φ is reached after finitely
many steps.

(4) There is a contant n < ω such that, on each A ∈ K the least fixed-
point of φ is reached after at most n steps.

Proof. Let K+ be a class such that K = prΣ(K
+) and fix a first-order

theory T axiomatisingK+. Let φn be the n-th approximation of φ.
(4)⇒ (1) If, on every structure ofK, the fixed point is reached after at

most n steps then we have

A ⊧ φn(ā)↔ [lfp Rx̄ ∶ φ](ā) , for all A ∈ K and all ā ⊆ A .

Hence, we can set ψ ∶= φn .
(1)⇒ (2) is trivial.
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(2)⇒ (3) For a contradiction, suppose that on some structure A ∈ K+

the fixed point of φ is not reached in finitely many steps. Fix some ℵ0-
saturated elementary extension B ⪰ A. Since

A∣Σ ⊧ ∃x̄[φn+1(x̄) ∧ ¬φn(x̄)] , for all n < ω ,

it follows that, on the structure B, the fixed point is also not reached in
finitely many steps. By assumption there is a first-order formula ψ(x̄)
defining the fixed point on B. Hence,

B∣Σ ⊧ ∃x̄[ψ(x̄) ∧ ¬φn(x̄)] , for all n < ω .

As B is ℵ0-saturated we can find some tuple b̄ ⊆ B such that

B∣Σ ⊧ ψ(b̄) ∧ ⋀
n<ω

¬φn(b̄) .

Note that B ∈ K+. Hence, ψB is the fixed point of φ. Since the tuple b̄
enters the fixed point at an infinite stage it follows that the fixed point
is not reached in ω steps. (Note that no tuple enters the fixed point at
stage ω.) This contradicts Lemma 6.17.

(3)⇒ (4) For a contradiction, suppose that, for each n < ω, there is a
structure An ∈ K

+ such that on An the fixed-point of φ is reached after
more than n steps. Setting

ϑn ∶= ∃x̄[φn+1(x̄) ∧ ¬φn(x̄)]

we have

An ∣Σ ⊧ ϑn .

It follows that T ⊭ ¬ϑn , for all n < ω. Let Θ ∶= { ϑn ∣ n < ω }. The theory
T ∪ Θ is consistent since, for every finite subset Θ0 ⊆ Θ, we can find
some n such that An ∣Σ ⊧ T ∪ Θ0. Let B be a model of T ∪ Θ. It follows
that on B the fixed-point of φ is not reached after finitely many steps.
Contradiction. ◻
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As an example of the expressive power of fixed-point logics we con-
sider linear orders.

Lemma 6.19. There exists a formula φ(x , y, z) ∈ FO3(LFP)[<] such that,
for every infinite cardinal κ, φ defines in the structure ⟨κ, <⟩ a bijection
κ × κ → κ.

Proof. We have shown in the proof of Theorem a4.3.8 that the formula

ψ(x0x1 , y0 y1) ∶= [(x0 < y0 ∨ x0 < y1) ∧ (x1 < y0 ∨ x1 < y1)]

∨ [x0 < y0 ∧ x1 = y1 ∧ y0 ≤ y1]

∨ [x0 < y0 ∧ x1 = y0 ∧ y1 ≤ y0]
∨ [x0 = y0 ∧ x1 < y1 ∧ y1 ≤ y0]

defines a linear order on κ × κ of order type κ. The fixed-point formula

φ(x , y, z) ∶=
[lfp Ru0u1w ∶ (∀v0v1 .ψ(v̄ , ū))(∃w′ .w′ < w)Rv̄w′

∧ (∀w′ .w′ < w)(∃v0v1 .ψ(v̄ , ū))Rv̄w′](x , y, z) .

defines the corresponding bijection. ◻

Exercise 6.1. Let N = ⟨N, <⟩. Construct FO(LFP)-formulae φ+(x , y, z)
and φ⋅(x , y, z) defining addition and multiplication on N.

To facilitate the investigation of model theoretic properties of fixed
point logicswe reduce them to a simpler logic, the extension of first-order
logic by well-ordering quantifiers.

Lemma 6.20. FOκℵ0(LFP) =1
pc FOκℵ0(wo).

Proof. We have seen in the example above that, for every FOκℵ0(LFP)-
formula φ(x̄ , ȳ, z̄), we can construct a formula ψ(z̄) ∈ FOκℵ0(LFP) ex-
pressing that φ defines a well-order. Hence, FOκℵ0(wo) ≤ FOκℵ0(LFP).
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For the converse, let φ ∈ FOκℵ0(LFP). For every subformula ψ of φ,we
introduce a new relation symbol Rψ andwe construct a set of sentences Φ
such that

RA
ψ = ψA , for every model A ⊧ Φ .

The construction of Φ proceeds by induction on φ. For atomic subfor-
mulae ψ, we add the formula

∀x̄(Rψ x̄ ↔ ψ(x̄))

to Φ. For the inductive step we use the same formulae as in the proof of
Chang’s Reduction (Lemma c1.4.12), e.g., for conjuctions we use

∀x̄(R⋀Ψ x̄ ↔ ⋀
ψ∈Ψ

Rψ x̄) .

The only nontrivial case is the case that ψ = [lfp Px̄ ∶ ϑ](x̄) is a fixed-
point formula.

Let < be a new binary relation symbol, s a new unary function symbol,
and 0 a new constant symbol. We add to Φ the sentences

∀u(u = 0 ∨ 0 < u)
∀u(u < su ∧ ¬∃v(u < v ∧ v < su))
Wuv(u < v)

which express that < is a well-order of the universe, s is the successor
function, and 0 is the minimal element. Furthermore, we add the formu-
lae

∀x̄(¬Sφ0x̄)

∀u∀x̄(Sφsux̄ ↔ χ[P/Sφu]) ,

∀u∀x̄[∀v(sv ≠ u)→ (Sφux̄ ↔ ∃v(v < u ∧ Sφvx̄))] ,

∀x̄(Rφ x̄ ↔ ∃uSφux̄) ,
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which express that Sφ = { ⟨α, ā⟩ ∣ ā ∈ F(α) }. Finally, we need the
formula

∃u∀x̄(Sφsux̄ ↔ Sφux̄) ,

which expresses that the fixed point is actually reached. For the cor-
rectness of this construction note that the closure ordinal α of every
FO∞ℵ0(LFP)-induction on a structure A is less than ∣A∣+. Hence, we can
really choose an ordering < of A of order type α. ◻

For partial fixed points we have an analogous result where the project-
ive reduction is replaced by a relativised reduct.

Lemma 6.21. FOκℵ0(PFP) =1
rpc FOκℵ0(wo).

Proof. We can basically use the same construction as in the proof of
Lemma 6.20. The only difference is that the closure ordinal for partial
fixed points is not bounded by the size of the structure. Therefore, we
cannot choose a sufficiently long well-ordering of the universe. Instead,
we add a new sort w to the given structure A and we choose the do-
main Aw large enough to contain a well-ordering < of length (2∣A∣)+.
After performing the same construction as above in the larger structure
we can take a relativised reduct to obtain the original structure A. ◻

Using this reduction we can use the Löwenheim-Skolem theorem for
FOκℵ0(wo) to derive a corresponding theorem for FOκℵ0(PFP).

Theorem 6.22. Let ∆ ⊆ FO<ω
κℵ0
(PFP)[Σ], for a regular cardinal κ, and set

µ ∶= ∣Σ∣⊕ ∣∆∣⊕ κ− where κ− ∶= sup{ λ ∣ λ < κ }.
For each Σ-structure A, every subset X ⊆ A, and all cardinals λ with

∣X∣ ⊕ µ ≤ λ ≤ ∣A∣, there exists a ∆-substructure B ⪯∆ A of size ∣B∣ = λ
with X ⊆ B.

Proof. This follows immediately by Theorem c2.3.10 and Lemma 6.21.
◻
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We conclude this section with a proof that the logics FOκℵ0(LFP) and
FOκℵ0(IFP) have the same expressive power.

Definition 6.23. Let A be a structure, φ(R, x̄) an FO∞ℵ0(IFP)-formula,
and F the fixed-point induction of [ifp Rx̄ ∶ φ].

(a) The inductive fixed-point rank rkφ(ā) of a tuple ā ∈ [ifp Rx̄ ∶ φ]A
is the ordinal α such that ā ∈ F(α + 1) ∖ F(α). For ā ∉ [ifp Rx̄ ∶ φ]A, we
set rkφ(ā) ∶=∞.

(b) The stage comparison relation ⊲φ of φ is defined by

ā ⊲φ b̄ : iff rkφ(ā) < rkφ(b̄) .

Lemma 6.24. Let φ(P, x̄) be an FOκℵ0(IFP)-formula. The stage compar-
ison relation ⊲φ for [ifp Px̄ ∶ φ] is FOκℵ0(IFP)-definable.

Proof. Let φ̂(x̄ , z̄) be the formula obtained from Px̄ ∨ φ(P, x̄) by repla-
cing every atom of the form Pt̄ by the formula Rt̄z̄. We claim that ⊲φ is
defined by the formula where

[ifp Rx̄ ȳ ∶ φ̂(x̄ , x̄) ∧ ¬φ̂( ȳ, x̄)](x̄ ȳ) .

Let (Rα)α be thefixed-point induction of this formula.A straightforward
induction on α shows that

⟨ā, b̄⟩ ∈ Rα iff ā ⊲φ b̄ and rkφ(ā) < α .

Hence, the result follows. ◻

Proposition 6.25. Let φ(P, x̄) be an FOκℵ0(LFP)-formula. The stage com-
parison relation ⊲φ for [ifp Px̄ ∶ φ] is FOκℵ0(LFP)-definable.

Proof. By φ[Pz̄/ψ(z̄)/ϑ(z̄)] we denote the formula obtained from the
formula Px̄ ∨ φ(P, x̄) by replacing every atom of the form Pt̄ by

◆ ψ(t̄), if this atom occurs positively in φ,

◆ ϑ(t̄), if it occurs negatively in φ.
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As in the proof of the preceding lemma we would like to compute ⊲φ by
the formula

[lfp Rx̄ ȳ ∶ φ[Pz̄/Rz̄x̄/Rz̄x̄](x̄) ∧ ¬φ[Pz̄/Rz̄x̄/Rz̄x̄]( ȳ)](x̄ ȳ) .

Unfortunately, this does not work since we can use R only positively
in φ and only negatively in ¬φ. Instead, we construct another formula ψ
computing ⊲φ that we can substitute for R at those places where we
cannot use it. Again the obvious definition

ψ(x̄ , ȳ) ∶= [lfp S x̄ ȳ ∶ φ[Pz̄/Sz̄x̄/Sz̄x̄](x̄)

∧ ¬φ[Pz̄/Sz̄x̄/Sz̄x̄]( ȳ)](x̄ ȳ)

does not work. But, since ψ is used in the above formula at those places
where R occurs negatively we can use R inside of ψ provided its occur-
rence is also negative. These considerations lead to following attempt to
define ⊲φ :

[lfp Rx̄ ȳ ∶ φ[Pz̄/Rz̄x̄/ψ(z̄, x̄)](x̄)∧

∧ ¬φ[Pz̄/ψ(z̄, x̄)/Rz̄x̄]( ȳ)](x̄ ȳ) ,

where ψ(x̄ , ȳ) is the formula

[lfp S x̄ ȳ ∶ φ[Pz̄/Sz̄x̄/Rz̄x̄](x̄) ∧ ¬φ[Pz̄/Rz̄x̄/Sz̄x̄]( ȳ)](x̄ ȳ) .

This definition is still not correct but we can repair it as follows. We claim
that ⊲φ is defined by the formula [lfp Rx̄ ȳ ∶ χ](x̄ ȳ) where

χ(x̄ , ȳ) ∶= φ[Pz̄/Rz̄x̄/ψ(z̄, x̄)](x̄)
∧ ¬φ[Pz̄/ψ(z̄, x̄)/Rz̄x̄]( ȳ)
∧ ∀z̄(ψ(z̄, x̄)→ Rz̄x̄) ,

ψ(x̄ , ȳ) ∶= [lfp S x̄ ȳ ∶ ϑ](x̄ ȳ) ,

ϑ(x̄ , ȳ) ∶= φ[Pz̄/Sz̄x̄/Rz̄x̄](x̄)
∧ ¬φ[Pz̄/Rz̄x̄/Sz̄x̄ ∧ Sz̄ ȳ]( ȳ)
∧ (∀z̄.Rz̄x̄)(Sz̄x̄ ∧ Sz̄ ȳ) .
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First, note that [lfp Rx̄ ȳ ∶ χ] ∈ FO(LFP) since S occurs only positively
in ϑ and R occurs only negatively in ψ. Let (Pα)α be the fixed-point
induction of [ifp Px̄ ∶ φ]. For α ∈ On, define

Rα ∶= { ⟨ā, b̄⟩ ∣ ā ⊲φ b̄ and rkφ(ā) < α } .

We will show that the sequence (Rα)α is the fixed-point induction of χ.

Claim. Let (Sβ)β be the fixed-point induction of ψ where R is interpreted
by Rα , and set S∞ ∶= ⋃β Sβ .

(a) For β ≤ α, we have

⟨ā, b̄⟩ ∈ Sβ iff ā ⊲φ b̄ and rkφ(ā) < β .

(b) For all tuples b̄ with rank rkφ(b̄) > α, there exist a tuple ā with
rkφ(ā) = α such that ⟨ā, b̄⟩ ∈ S∞.

(c) If Rα+1 = Rα then S∞ = Rα .
(d) If rkφ(ā) < α or rkφ(b̄) < α then we have

⟨ā, b̄⟩ ∈ S∞ iff ā ⊲φ b̄ .

(a) We prove the claim by induction on β. The case that β = 0 is trivial
and the limit step follows immediately from the inductive hypothesis.
For the successor step, note that

⟨ā, b̄⟩ ∈ Sβ+1 iff ⟨A, Rα , Sβ⟩ ⊧ ϑ(ā, b̄) .

First, suppose that γ ∶= rkφ(ā) < β. By inductive hypothesis, it follows
that

⟨c̄, ā⟩ ∈ Sβ iff c̄ ⊲φ ā iff c̄ ∈ Pγ .

Since β ≤ α we further have that

⟨c̄, ā⟩ ∈ Rα iff c̄ ⊲φ ā iff c̄ ∈ Pγ .
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Consequently, A ⊧ φ(Pγ , ā) implies that

⟨A, Rα , Sβ⟩ ⊧ φ[Pz̄/Sz̄ā/Rz̄ā](ā) .

If rkφ(ā) < rkφ(b̄) then, by inductive hypothesis, ⟨c̄, ā⟩ ∈ S implies
⟨c̄, b̄⟩ ∈ S. Since β ≤ α it follows that we have ⟨c̄, ā⟩ ∈ Sβ iff ⟨c̄, ā⟩ ∈ Rα .
Consequently, there is no tuple c̄ such that

⟨A, Rα , Sβ⟩ ⊧ Rc̄ ā ∧ ¬(S c̄ ā ∧ S c̄b̄) .

Finally, we have

⟨A, Rα , Sβ⟩ ⊭ φ[Pz̄/Rz̄ā/Sz̄ā ∧ Sz̄b̄](b̄)

since, otherwise, rkφ(b̄) ≤ rkφ(ā). It follows that ⟨ā, b̄⟩ ∈ Sβ+1.
Next, consider the case that rkφ(ā) > rkφ(b̄). By inductive hypothesis,

S c̄ ā ∧ S c̄b̄ is equivalent to S c̄b̄. Consequently, choosing c̄ ∶= b̄ we can
find a tuple c̄ with

⟨A, Rα , Sβ⟩ ⊧ Rc̄ ā ∧ ¬(S c̄ ā ∧ S c̄b̄) .

Hence, ⟨ā, b̄⟩ ∉ Sβ+1.
Finally, suppose that rkφ(ā) = rkφ(b̄). Then

⟨A, Rα , Sβ⟩ ⊧ φ[Pz̄/Rz̄ā/Sz̄ā ∧ Sz̄b̄](b̄)

and ⟨ā, b̄⟩ ∉ Sβ+1.
It remains to consider the case that rkφ(ā) ≥ β. By inductive hypo-

thesis, we have ⟨c̄, ā⟩ ∈ Sβ iff rk(c̄) < β. Since A ⊭ φ(Pβ , ā) it follows
that

⟨A, Sβ⟩ ⊭ φ[Pz̄, Sz̄ā, Sz̄ā](ā) .

Note that

⟨c̄, ā⟩ ∈ Sβ implies ⟨c̄, ā⟩ ∈ Rα .
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Since P′′ occurs only negatively in φ[Pz̄/P′z̄/P′′z̄] it therefore follows
that

⟨A, Rα , Sβ⟩ ⊭ φ[Pz̄/Sz̄ā/Rz̄ā](ā) .

(b) By (a), we have Sα = Rα . Let rkφ(ā) ≤ α. Then ā ∈ Pα+1 implies
that

⟨A, Rα , Sα⟩ ⊧ φ[Pz̄/Sz̄ā/Rz̄ā](ā) .

If rkφ(b̄) ≥ rkφ(ā) then S c̄ ā ∧ S c̄b̄ is equivalent to S c̄ ā and, hence,
to Rc̄ ā. Consequently, it follows in this case that

⟨A, Rα , Sα⟩ ⊧ ¬φ[Pz̄, Rz̄b̄, Sz̄ā ∧ Sz̄b̄](b̄)
iff rkφ(b̄) > rkφ(ā) .

If, on the other hand, rkφ(b̄) < rkφ(ā) then rkφ(b̄) < α and setting
c̄ ∶= b̄ we obtain a tuple such that

⟨A, Rα , Sα⟩ ⊧ Rc̄ ā ∧ ¬(S c̄ ā ∧ S c̄b̄) .

Consequently, ⟨A, Rα , Sα⟩ ⊭ ϑ(ā, b̄) .
Finally, suppose that rkφ(ā) > α. Then

⟨A, Rα , Sα⟩ ⊭ φ[Pz̄/Sz̄ā/Rz̄ā](ā)

since ⟨c̄, ā⟩ ∈ Sα iff rkφ(c̄) < α and ⟨c̄, ā⟩ ∈ Rα iff rkφ(c̄) < α.
It follows that Sα+1 contains all pairs ⟨ā, b̄⟩ with rkφ(ā) ≤ α and

rkφ(ā) < rkφ(b̄). If rkφ(b̄) > α then there exists some tuple ā with
rkφ(ā) = α and it follows that ⟨ā, b̄⟩ ∈ Sα+1.

(c) If Rα+1 = Rα then there are no tuples ā with rkφ(ā) = α. By (b) it
follows that Sα+1 = Sα . Consequently, Sα = S∞.

(d) If Rα+1 = Rα then the claim follows from (c). Hence, we may as-
sume that Rα ⊂ Rα+1. We show that, for every γ ≥ α, if rkφ(ā), rkφ(b̄) <
α then ⟨ā, b̄⟩ ∈ Sγ+1 implies ⟨ā, b̄⟩ ∈ Sα+1. Suppose otherwise and let
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γ be the minimal ordinal such that there exists a counterexample. Then
we obtain a contradiction as in the proof of (a).

It remains to show that there are no tuples with rkφ(ā) ≥ α and
rkφ(b̄) < α such that ⟨ā, b̄⟩ ∈ Sβ+1, for some β ≥ α. Suppose otherwise
and let β be the minimal ordinal such that there exists a counterexample
⟨ā, b̄⟩ ∈ Sβ+1. Then

⟨A, Rα , Sβ⟩ ⊧ ϑ(ā, b̄) .

Since rkφ(ā) ≥ α,we have ⟨c̄, ā⟩ ∈ Rα iff rkφ(c̄) < α. By minimality of β,
it follows that we have

⟨A, Rα , Sβ⟩ ⊧ S c̄ ā ∧ S c̄b̄ iff rkφ(c̄) < rkφ(b̄) .

If rkφ(b̄) < α then setting c̄ ∶= b̄ we obtain a tuple c̄ such that

⟨A, Rα , Sβ⟩ ⊧ Rc̄ ā ∧ ¬(S c̄ ā ∧ S c̄b̄) .

Consequently, ⟨A, Rα , Sβ⟩ ⊭ ϑ(ā, b̄). Contradiction.
Similarly, if rkφ(b̄) = α then

⟨A, Rα , Sβ⟩ ⊧ φ[Pz̄/Rz̄ā/Sz̄ā ∧ Sz̄b̄](b̄) ,

and again ⟨A, Rα , Sβ⟩ ⊭ ϑ(ā, b̄). This contradiction concludes the proof
of the claim.

To finish the proof of the lemmawe still have to show that (Rα)α is the
fixed-point induction of χ. We prove this statement by induction on α.
For α = 0 and for limit ordinals the proof is trivial. For the successor
step we show that

⟨A, Rα⟩ ⊧ χ(ā, b̄) iff ā ⊲φ b̄ and rkφ(ā) ≤ α .

First, we consider the case that rkφ(ā) ≤ α. Then we have ⟨c̄, ā⟩ ∈ Rα

iff c̄ ⊲φ ā. By statement (d) above, it follows that ⟨c̄, ā⟩ ∈ Rα iff ψ(c̄, ā).
Consequently, we have

⟨A, Rα⟩ ⊧ φ[Pz̄/Rz̄ā/ψ(z̄, ā)](ā)
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and every tuple c̄ satisfies ψ(c̄, ā)→ Rα c̄ ā. Since

⟨A, Rα⟩ ⊧ ¬φ[Pz̄/ψ(z̄, ā)/Rz̄ā](b̄)

it follows that

⟨A, Rα⟩ ⊧ χ(ā, b̄) iff ā ⊲φ b̄ .

It remains to consider the case that rkφ(ā) > α. Then we have ⟨c̄, ā⟩ ∈
Rα iff rkφ(c̄) < α. If Pα = Pα+1 then, by statement (c) above, it follows
that ψ(x̄ , ȳ) defines Rα and

⟨A, Rα⟩ ⊭ φ[Pz̄/Rz̄ā/ψ(z̄, ā)](ā) .

Hence, ⟨A, Rα⟩ ⊭ χ(ā, b̄).
If, on the other hand, Pα ⊂ Pα+1 then, by (b), there is a tuple c̄ ⊲φ ā

with rkφ(c̄) = α. Consequently,

⟨A, Rα⟩ ⊭ ∀z̄(ψ(z̄, ā)→ Rz̄ā) . ◻

Theorem 6.26 (Gurevich, Kreutzer, Shelah). FOκℵ0(LFP) = FOκℵ0(IFP) .

Proof. Let [ifp Rx̄ ∶ φ] be an FOκℵ0(IFP)-formula. By induction we may
assume that φ ∈ FOκℵ0(LFP). By Proposition 6.25, there is an FOκℵ0(LFP)-
formula defining the stage comparison relation ⊲φ . Note that we have

ifp f = f (dom⊲ f ) ∪ dom⊲ f , for every function f .

Hence, it follows that

[ifp Rx̄ ∶ φ](x̄) ≡ φ[Rz̄/∃ ȳ(z̄ ⊲φ ȳ)](x̄) ,

where φ[Rz̄/ϑ(z̄)] denotes the formula obtained from Rx̄ ∨ φ(R, x̄) by
replacing every atom of the form Rt̄ by the formula ϑ(t̄). ◻
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d1. Quantifier elimination

1. Preservation theorems
In Section c2.1 we have seen that several fragments of first-order logic
are preserved under various operations. In this section we will show the
converse. A preservation theorem is a result that characterises a semantic
property of a formula by a syntactic condition. The general form of such
a theorem is the statement :

Let φ ∈ L+. The class ModL+(φ) has the property P if and
only if there exists a formula ψ ∈ L− such that φ ≡ ψ.

Here P is an arbitrary property and L+ and L− are logics where usually
we have L− ⊂ L+.

We will mostly be interested in closure properties. We consider a
relation ⊑ with the property that ModL−(ψ) is closed under ⊑, for every
L−-formula ψ, i.e.,

A ⊧ ψ and A ⊑ B implies B ⊧ ψ .

Further,we assume that φ is an L+-formula such that ModL+(φ) is closed
under ⊑. We want to find a formula ψ ∈ L− with ψ ≡ φ.

One way to prove that such a formula exists is the following. For a
contradiction, we suppose that we can find structures A ≡L− B such that
A ⊧ φ and B ⊭ φ. Given A and B we construct a structure C such that

A ⊑ C and B ≡L+ C .

This leads to a contradiction since, on the one hand, A ⊧ φ and A ⊑ C
implies that C ⊧ φ. But, on the other hand, B ⊭ φ and B ≡L+ C implies
that C ⊭ φ.
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d1. Quantifier elimination

Lemma 1.1. Let T be a first-order theory and A a structure.

A ⊧ T⊧∀ iff there exists an embedding A→ B into some
model B ⊧ T .

Proof. (⇐) Let A→ B be an embedding and B ⊧ T . Replacing A by an
isomorphic copy we may assume that A ⊆ B. Let φ ∈ T⊧∀ . Since T ⊧ T⊧∀
we have B ⊧ φ. By Lemma c2.1.6, it follows that A ⊧ φ.
(⇒)Note that every function preserving ∃-formulae is an embedding.

Therefore, this direction follows from Corollary c2.5.6 if we set ∆ ∶=
∀. ◻

Theorem 1.2 (Łoś, Tarski). For a first-order theory T and a set Φ of
sentences, the following statements are equivalent :

(1) B ⊧ Φ implies A ⊧ Φ, for all models A ⊆ B of T.

(2) Φ is equivalent modulo T to a set of first-order ∀-formulae.

Proof. The implication (2)⇒ (1) was proved in Lemma c2.1.6. For the
other direction, we claim that Ψ ∶= (T ∪ Φ)⊧∀ is equivalent to Φ. Clearly,
if A ⊧ Φ and A ⊧ T then A ⊧ Ψ . On the other hand, by Lemma 1.1, we
have

A ⊧ Ψ iff A ⊆ B for some B ⊧ T ∪ Φ .

By (1), it follows that A ⊧ Ψ implies A ⊧ Φ. Therefore, Φ ≡ Ψ modulo T .
◻

Dualising the statement of the Theorem of Łoś and Tarski we obtain a
characterisation of formulae preserved by embeddings.

Corollary 1.3. Let T be a first-order theory. A formula φ ∈ FO is preserved
by embeddings between models of T if and only if φ is equivalent modulo T
to an ∃-formula.
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Proof. Since ¬φ is preserved in substructures it follows by Theorem 1.2
that we can find a set Φ of∀-formulaewith Φ ≡ ¬φ. By the Compactness
Theorem, there exists a finite subset Φ0 ⊆ Φ such that Φ0 ⊧ ¬φ. Hence,
¬φ ≡ ⋀Φ0 and φ ≡ ¬⋀Φ0. The latter is equivalent to an∃-formula. ◻

We can extend the Theorem of Łoś and Tarski to pseudo-elementary
classes.

Theorem 1.4. If a class K ∈ RPC∞(FO, Σ) is closed under substructures
then K is ∀[Σ]-axiomatisable.

Proof. By Theorem c5.4.14, there exists a set Φ ⊆ FO[Γ] such that

K = prΣ(Mod(Φ)) .

Let T ∶= Φ⊧∀ ∩ FO[Σ]. Clearly, K ⊆ Mod(T). It remains to prove the
converse. Suppose that A ⊧ T . Let ∆ ∶= QF<ω[Σ] and set

Ψ ∶=Th∆(AA) ∪ Φ .

We show that Ψ is satisfiable. Suppose otherwise. Then there is some
quantifier-free formula ψ(ā) with parameters ā ⊆ A such that

A ⊧ ψ(ā) and Φ ⊧ ¬ψ(ā) .

Consequently, Φ ⊧ ∀x̄¬ψ(x̄). Since this sentence is in T it follows that
A ⊧ ∀x̄¬ψ(x̄). Contradiction.

Let B be amodel of Ψ . SinceB ⊧Th∆(AA) there exists an embedding
A→ B. Furthermore,we haveB ∈ K.AsK is closed under substructures
and isomorphisms, it follows that A ∈ K. ◻

Example. As an application we consider representable groups. Let 0 <
n < ω. We say that a group G has a faithful n-linear representation if it
can be embedded into GLn(K), the group of all invertible n × n matrices
over some field K.

Claim. A group G has a faithful n-linear representation if and only if
every finitely generated subgroup of G has such a representation.
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d1. Quantifier elimination

(⇒) Clearly, if G can be embedded into GLn(K) then the same is true
for all subgroups of G.
(⇐) Let Kn be the class of all groups with a faithful n-linear rep-

resentation. Then Kn is closed under substructures. Furthermore, we
have Kn ∈ PC1(FO, {⋅, −1 , e}). By the preceding lemma, it follows that
Kn =Mod(T), for some T ⊆ ∀.

Suppose that G ∉ Kn . Then there is some formula ∀x̄φ(x̄) ∈ T such
that G ⊧ ¬∀x̄φ. Fix some ā ⊆ G with G ⊧ ¬φ(ā). Setting G0 ∶= ⟪ā⟫G

it follows that G0 ⊧ ¬φ(ā). Hence, we have found a finitely generated
subgroup with G0 ∉ Kn .

We conclude this section with a characterisation of classes closed
under unions of chains.

Theorem 1.5 (Chang, Łoś, Suszko). For a first-order theory T and a set Φ
of sentences, the following statements are equivalent :

(1) If (Ai)i<α is a chain such that ⋃i Ai ⊧ T and Ai ⊧ T ∪ Φ, for all
i < α, then ⋃i Ai ⊧ Φ.

(2) Φ is equivalent modulo T to a set of first-order ∀∃-formulae.

Proof. (2) ⇒ (1) was already proved in Lemma c2.1.8. For the other
direction, set Ψ ∶= (T ∪ Φ)⊧∀∃. It is sufficient to show that T ∪ Ψ ⊧ Φ.
We prove that every model D ⊧ T ∪Ψ is elementary equivalent to the

union C ∶= ⋃i<ω Ai of a chain (Ai)i<ω where C ⊧ T and Ai ⊧ T ∪Φ, for
all i < ω. Since Φ is closed under unions of chains it follows that C ⊧ Φ,
which implies that D ⊧ Φ.

Fix an arbitrary model D ⊧ T ∪ Ψ . By induction on i, we construct
an elementary chain (Ai)i<ω , extensions Bi ⊇ Ai , and embeddings
g i ∶ Bi → Ai+1 such that the following diagram commutes :

A0 A1 A2 ⋯

B0 B1 B2

⪯ ⪯ ⪯

⊆ ⊆ ⊆g0 g1 g2
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2. Quantifier elimination

Furthermore, we ensure that

Bi ⊧ T ∪ Φ and ⟨Bi , ā i⟩ ≤∀∃ ⟨Ai , ā i⟩ ,

where ā i is some enumeration of A i .
We start with A0 ∶= D. Suppose that Ai has already been defined.

A0 ⪯ Ai implies that Ai ⊧ Ψ . If we set ∆ ∶= ∀∃ in Corollary c2.5.6 then
we obtain an extension Bi ⊇ Ai such that

Bi ⊧ T ∪ Φ and ⟨Ai , ā i⟩ ≤∃∀ ⟨Bi , ā i⟩ ,

that is, ⟨Bi , ā i⟩ ≤∀∃ ⟨Ai , ā i⟩. Since ∃ ⊆ ∀∃, we can use Corollary c2.5.4
to find an elementary extension Ai+1 ⪰ Ai and an embedding g i ∶ Bi →
Ai+1 with g i ↾ A i = idA i .

Let C ∶= ⋃i<ω Ai = ⋃i<ω g i(Bi). Since (Ai)i is an elementary chain
it follows that A0 ⪯ C. Hence, we have found a model C ⊧ T that is the
union of a chain of models of T ∪ Φ. ◻

2. Quantifier elimination
Some theories, like the theory of dense linear orders or the theory of
algebraically closed fields, have the pleasant property that every formula
is equivalent to a quantifier-free one. We can use this fact to deduce some
useful information about the theory.

First of all, we gain a better understanding of which relations are
definable sincewe only need to consider relations definable by quantifier-
free formulae. For instance, every definable relation of an algebraically
closed field is given by finitely many equations and inequations between
polynomials.

Secondly, we can sometimes use this fact to prove that a theory is
complete. Since every sentence is equivalent to a quantifier-free one we
only have to check that, for every quantifier-free sentence φ, the theory
determineswhether φ does hold or not. In particular, if the signature con-
tains neither constant symbols nor 0-ary relation symbols then the only
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d1. Quantifier elimination

quantifier-free sentences are true and false and this question becomes
trivial.

Definition 2.1. (a) Let L be a logic, ∆, Γ ⊆ L, andK a class of L-interpre-
tations. We say that Γ is a ∆-elimination set over K if, for all sets Φ ⊆ ∆
there exists a set Ψ ⊆ Γ such that

J ⊧ Φ iff J ⊧ Ψ , for all J ∈ K .

(b) We say that a class of Σ-structuresK admits quantifier elimination
for FOκℵ0 if QF<ω

κℵ0
[Σ] is an FO<ω

κℵ0
[Σ]-elimination set overK. In partic-

ular, we say that a first-order theory T admits quantifier elimination if
Mod(T) admits quantifier elimination for FO.

In terms of type spaces we obtain the following characterisation.

Lemma 2.2. Let L be a logic, T ⊆ L a theory, and Γ ⊆ ∆ ⊆ L fragments
of L/T that are both closed under disjunctions. The following statements
are equivalent.

(1) Γ is an ∆-elimination set over T.
(2) The function S(i) ∶ S((L/T)∣∆)→ S((L/T)∣Γ) corresponding to

the inclusion map i ∶ L∣Γ → L∣∆ is a homeomorphism.

Proof. Replacing L by L/T we may w.l.o.g. assume that T = ∅. Further,
note that S(i)(p) = p∩Γ and that, according to Lemma c3.2.2, the closed
sets of S(L∣∆) and S(L∣Γ) are of the form ⟨Φ⟩L∣∆ and ⟨Ψ⟩L∣Γ , for Φ ⊆ ∆
and Ψ ⊆ Γ.

(1)⇒ (2) Suppose that Γ is a ∆-elimination set. We have to prove that
S(i) is continuous and that it has a continuous inverse. It follows from
Proposition c3.2.11 that S(i) is a continuous surjection. To prove that
it is also injective suppose that p, q ∈ S(∆) are two types with S(i)(p) =
S(i)(q). By assumption there exist sets Φ, Ψ ⊆ Γ such that p ≡ Φ and
q ≡ Ψ . Consequently, we have

Φ ⊆ p⊧Γ = p ∩ Γ = S(i)(p) = S(i)(q) = q ∩ Γ ⊆ q .
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Hence, p = Φ⊧∆ ⊆ q⊧∆ = q. By symmetry, we also have q ⊆ p. It follows that
p = q, as desired.
We have shown that S(i) has an inverse. It remains to prove that S(i)−1

is continuous. Let ⟨Φ⟩ be a closed subset of S(∆). We have to show that
(S(i)−1)−1[⟨Φ⟩] = S(i)[⟨Φ⟩] is closed in S(Γ). By assumption there is
a set Ψ ⊆ Γ with Φ ≡ Ψ . We claim that S(i)[⟨Φ⟩] = ⟨Ψ⟩.

First, suppose that p ∈ ⟨Φ⟩. Then Ψ ⊆ p and

S(i)(p) = p ∩ Γ ⊇ Ψ .

Hence, S(i)(p) ∈ ⟨Ψ⟩. Conversely, suppose that p ∈ ⟨Ψ⟩. Then Ψ ⊆
p ⊆ S(i)−1(p) implies that Φ ⊆ S(i)−1(p). Hence, S(i)−1(p) ∈ ⟨Φ⟩, i.e.,
p ∈ S(i)[⟨Φ⟩]

(2)⇒ (1) Suppose that S(i) is a homeomorphism. To show that Γ is
a ∆-elimination set let Φ ⊆ ∆. Since ⟨Φ⟩ is a closed subset of S(∆) it
follows that C ∶= S(i)[⟨Φ⟩] is a closed subset of S(Γ). Hence, there
exists a set Ψ ⊆ Γ such that C = ⟨Ψ⟩. We claim that Φ ≡ Ψ .

First, suppose that J ⊧ Φ and let p ∶=Th∆(J). Then p ∈ ⟨Φ⟩ implies
that

ThΓ(J) = p ∩ Γ = S(i)(p) ∈ ⟨Ψ⟩ .

Hence, J ⊧ Ψ . Conversely, suppose that J ⊧ Ψ and let p ∶= Th∆(J).
Then S(i)(p) = p ∩ Γ ∈ ⟨Ψ⟩. Hence, we have p = S(i)−1(p ∩ Γ) ∈ ⟨Φ⟩
and, therefore, J ⊧ Φ. ◻

For first-order logic we can get a slightly stronger result.

Lemma 2.3. Let T ⊆ FOs̄[Σ] be a first-order theory and ∆ ⊆ Φ ⊆ FOs̄[Σ]
sets of formulae. If

p∣∆ = q∣∆ implies p∣Φ = q∣Φ , for all p, q ∈ S s̄(T) ,

then every formula of Φ is equivalent modulo T to a finite boolean com-
bination of formulae of ∆.

691



d1. Quantifier elimination

Proof. Let ∆+ and Φ+ be the boolean closures of, respectively, ∆ and Φ.
The inclusion i ∶ ∆+ → Φ+ induces an injective homomorphism

f ∶ Lb(∆+/T)→ Lb(Φ+/T) .

By Corollary b5.6.11, we obtain a surjective continuous map

spec( f ) ∶ SΦ+
(T)→ S∆+(T) ∶ p↦ p∣∆+ .

By assumption, this map is injective. Hence, spec( f ) is in fact an iso-
morphism. By Corollary b5.6.11 it follows that so is f . Consequently, for
every formula φ ∈ Φ+, there is some formula δ ∈ ∆+ with

[φ]≡T = f ([δ]≡T ) = [i(δ)]≡T = [δ]≡T .

It follows that φ ≡ δ modulo T , as desired. ◻

If Γ is a ∆-elimination set and the logic in question is compact then
it follows that every ∆-formula is equivalent to a single Γ-formula. In
particular, if a theory T admits quantifier elimination then every first-
order formula is equivalent modulo T to a quantifier-free one.

Lemma 2.4. Let ∆, Γ , T ⊆ FO sets of first-order formulaewhere Γ is closed
under conjunctions. Γ is a ∆-elimination set over T if and only if, for every
formula φ ∈ ∆, there exists a formula ψ ∈ Γ such that φ ≡ ψ modulo T.

Proof. (⇐) is trivial. For (⇒), let φ ∈ ∆. By assumption, there exists a
set Ψ ⊆ Γ such that φ ≡ Ψ modulo T . By compactness, we can find a
finite subset Ψ0 ⊆ Ψ such that T ∪ Ψ0 ⊧ φ. If we set ψ ∶= ⋀Ψ0 ∈ Γ then
we have T ⊧ φ↔ ψ. ◻

Lemma 2.5. Let T be a first-order theory and φ(x̄) a formula. The follow-
ing statements are equivalent :

(1) There exists a quantifier-free formula ψ(x̄) that is equivalent to φ
modulo T.
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(2) For all models A and B of T and all ā ∈ A<ω and b̄ ∈ B<ω with
⟨A, ā⟩ ≡0 ⟨B, b̄⟩, we have

A ⊧ φ(ā) iff B ⊧ φ(b̄) .

Proof. (1) ⇒ (2) Suppose that ⟨A, ā⟩ ≡0 ⟨B, b̄⟩. By (1), there exists a
quantifier-free formula ψ(x̄) ≡ φ modulo T . It follows that

A ⊧ φ(ā) iff A ⊧ ψ(ā)

iff B ⊧ ψ(b̄) iff B ⊧ φ(b̄) .

(2)⇒ (1) Let Φ the closure of QF ∪ {φ} under boolean operations.
Condition (2) can be written as

p∣QF = q∣QF implies p∣Φ = q∣Φ , for all p, q ∈ Sn(T) .

Consequently the claim follows by Lemma 2.3. ◻

Theorem 2.6. Let T be a first-order theory. The following statements are
equivalent :

(1) T admits quantifier elimination.

(2) For all models A and B of T and all ā ∈ A<ω and b̄ ∈ B<ω , we have

⟨A, ā⟩ ≡0 ⟨B, b̄⟩ iff ⟨A, ā⟩ ≡FO ⟨B, b̄⟩ .

(3) For all models A and B of T , each quantifier-free formula φ(x̄ , y),
and all elements ā ∈ A<ω and b̄ ∈ B<ω with ⟨A, ā⟩ ≡0 ⟨B, b̄⟩ we
have

A ⊧ ∃yφ(ā, y) implies B ⊧ ∃yφ(b̄, y) .

Proof. (1)⇔ (2) follows from Lemma 2.5 and (2)⇒ (3) is trivial.
(3)⇒ (1) W.l.o.g. we may assume that φ is written without universal

quantifiers. By induction on φ,we construct a quantifier-free formula φ0

693



d1. Quantifier elimination

with φ0 ≡ φ modulo T . If φ is quantifier-free we are done. For boolean
combinations we can set

(¬φ)0 ∶= ¬φ0 , (φ ∨ ψ)0 ∶= φ0 ∨ ψ0 , (φ ∧ ψ)0 ∶= φ0 ∧ ψ0 .

Finally, suppose that φ = ∃yψ(x̄ , y). By (3) and Lemma 2.5, we can find
a quantifier-free formula φ0 such that φ0 ≡ ∃yψ0(x̄ , y)modulo T . ◻

A useful simple criterion for quantifier elimination is the following
one.

Definition 2.7. (a) Let T be a theory and A a model of T⊧∀ . An algebraic
prime model of T over A is an embedding f ∶ A→ B into a model of T
such that any other embedding g ∶ A→ C into a model of T factorises as
g = h ○ f , for some embedding h ∶ B→ C. We say that T has algebraic
prime models if, for every A ⊧ T⊧∀ , there is an algebraic prime model
of T over A.

(b) Let A ⊆ B. We say that A is simply closed in B if, for every quanti-
fier-free formula φ(x̄ , y) and all elements ā ⊆ A

B ⊧ ∃yφ(ā, y) implies A ⊧ ∃yφ(ā, y) .

Proposition 2.8. Let T be a first-order theory with algebraic prime models
such that, whenever A ⊆ B are both models of T then A is simply closed
in B. Then T admits quantifier elimination.

Proof. Let A and B be models of T and suppose that

⟨A, ā⟩ ≡0 ⟨B, b̄⟩ .

By Theorem 2.6, it is sufficient to show that

A ⊧ ∃yφ(ā, y) implies B ⊧ ∃yφ(b̄, y) ,

for every quantifier-free formula φ. Let f ∶ ⟪ā⟫A → C be the algebraic
prime model of T over ⟪ā⟫A. Since ⟪ā⟫A ≅ ⟪b̄⟫B we obtain an embed-
ding g ∶ ⟪b̄⟫→ C with g(b̄) = f (ā). By definition of an algebraic prime
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model there exist embeddings h ∶ C → A and k ∶ C → B such that
h( f (ā)) = ā and k(g(b̄)) = b̄.

Suppose that A ⊧ φ(ā, b). By assumption C is simply closed in A.
Hence,

C ⊧ φ( f (ā), c) , for some c ∈ C .

It follows that B ⊧ φ(k( f (ā)), k(c)). Since k( f (ā)) = k(g(b̄)) = b̄
this implies that

B ⊧ φ(b̄, k(c)) ,

as desired. ◻

Similar to the characterisation of Theorem 2.6 above we can describe
infinitary first-order theories admitting quantifier elimination.

Theorem 2.9. Let K be a class of structures. The following statements are
equivalent :

(1) K admits quantifier elimination for FO∞ℵ0 .
(2) A ⊑ℵ0

0 B for all structures A,B ∈ K.
(3) A ≅ℵ0

0 B for all structures A,B ∈ K.
(4) For all structures A,B ∈ K and all ā ∈ A<ω and b̄ ∈ B<ω , we have

⟨A, ā⟩ ≡0 ⟨B, b̄⟩ iff ⟨A, ā⟩ ≡∞ ⟨B, b̄⟩ .

Proof. (1) ⇒ (4) Suppose that ⟨A, ā⟩ ≡0 ⟨B, b̄⟩. By (1), there exists a
set Φ(x̄) ⊆ QF<ω

∞ℵ0
such that Φ(ā) is equivalent to tpFO∞ℵ0

(ā/A) on
structures ofK. Hence, A ⊧ Φ(ā) implies that B ⊧ Φ(b̄), and it follows
that tpFO∞ℵ0

(b̄/B) = tpFO∞ℵ0
(ā/A).

(4) ⇒ (1) Let φ(x̄) ∈ FO∞ℵ0 . For each pair of types p ∈ ⟨φ⟩ and
q ∈ ⟨¬φ⟩ there exists a quantifier-free formula ψpq such that ψpq ∈ p and
¬ψpq ∈ q. It follows that the formula

⋁
p∈⟨φ⟩

⋀
q∈⟨¬φ⟩

ψpq
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is equivalent to φ on structures ofK. (Note that the above disjunction and
the conjunctions are over sets of formulae since, up to logical equivalence,
the number of quantifier-free formulae with a given number of free
variables can be bounded in terms of the size of the signature.)

(2)⇒ (3) A ⊑ℵ0
0 B and B ⊑ℵ0

0 A implies that A ≅ℵ0
0 B.

(3) ⇒ (4) Suppose that A ≅ℵ0
0 B. Then pIsoℵ0

(A,B) = Iℵ0
∞ (A,B).

Hence,

⟨A, ā⟩ ≡0 ⟨B, b̄⟩ implies ⟨A, ā⟩ ≡∞ ⟨B, b̄⟩ .

(4)⇒ (2) We have to show that pIsoℵ0
(A,B) has the forth property

with respect to itself. Since pIsoℵ0
(A,B) = Iℵ0

∞ (A,B) and the latter set
has the back-and-forth property with respect to itself the claim follows.

◻

Corollary 2.10. Let T be a first-order theory. If T admits quantifier elim-
ination for FO∞ℵ0 then it also admits quantifier elimination for FO.

Proof. Suppose that A and B are models of T with

⟨A, ā⟩ ≡0 ⟨B, b̄⟩ .

If T admits quantifier elimination for FO∞ℵ0 then it follows that

⟨A, ā⟩ ≡∞ ⟨B, b̄⟩ .

In particular, we have

⟨A, ā⟩ ≡FO ⟨B, b̄⟩ .

By Theorem 2.6 it follows that T admits quantifier elimination. ◻

Example. (a) In Corollary c4.4.7 we have shown that we have A ≅ℵ0
0 B

for all open dense linear orders A and B. By the preceding theorem,
it follows that the class of open dense linear orders admits quantifier
elimination for FO∞ℵ0 .

(b) Further examples like the theory of algebraically closed fields will
be treated in the sections below.
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Exercise 2.1. Let Z ∶= ⟨Z, s⟩ where s ∶ x ↦ x + 1 is the successor function.
Prove that Th(Z) admits quantifier-elimination.

To check whether a theory T admits quantifier elimination for FO∞ℵ0

the most useful characterisation is statement (2) of Theorem 2.9. In fact,
we do not need to consider all models of T , only sufficiently large ones.

Lemma 2.11. Let L be a logic and Γ , ∆ ⊆ L sets such that Γ is a ∆-elimi-
nation set overK0. IfK is a class of L-interpretations such that, for every
J ∈ K, there exists some J0 ∈ K0 with J0 ≡L J then Γ is a ∆-elimination
set over K.

Proof. Given Φ ⊆ ∆ there exists a set Ψ ⊆ Γ such that

J ⊧ Φ iff J ⊧ Ψ , for all J ∈ K0 .

We claim that these sets are also equivalent for all interpretations inK.
Let J ∈ K. By assumption, there exists an interpretation J0 ∈ K0 with
J0 ≡L J. Consequently, we have

J ⊧ Φ iff J0 ⊧ Φ iff J0 ⊧ Ψ iff J ⊧ Ψ . ◻

Corollary 2.12. Let T be a first-order theory and K ⊆ Mod(T) a class
such that, for every model A ⊧ T , there is some structure B ∈ K with
A ⪯ B. If A ⊑ℵ0

0 B, for all A,B ∈ K, then T admits quantifier elimination.

If we replace in the proof of Theorem 2.9 all quantifier-free formulae
by arbitrary first-order formulae we obtain the following result.

Theorem 2.13. LetK be a class of structures. The following statements are
equivalent :

(1) Over the classK every FO<ω
∞ℵ0

-formula is equivalent to an infinite
boolean combination of first-order formulae.

(2) A ⊑ℵ0
FO B for all structures A,B ∈ K.

(3) A ≅ℵ0
FO B for all structures A,B ∈ K.
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(4) For all structures A,B ∈ K and all ā ∈ A<ω and b̄ ∈ B<ω , we have

⟨A, ā⟩ ≡FO ⟨B, b̄⟩ iff ⟨A, ā⟩ ≡∞ ⟨B, b̄⟩ .

We conclude this section with a closer look at quantifier elimination
for the quantifier ∃ℵ0 .

Definition 2.14. A first-order theory T ⊆ FO0[Σ] is graduated if, for
every formula φ(x̄ , y) ∈ FO<ω[Σ], there exists a number k < ω such that,
for every model A of T and all parameters ā ⊆ A,

∣φ(ā, y)A∣ < ℵ0 implies ∣φ(ā, y)A∣ ≤ k .

Theorem 2.15. A theory T ⊆ FO0[Σ] is graduated if and only if FO is an
FO(∃ℵ0)-elimination set over T.

Proof. (⇒) For every formula φ ∈ FO(∃ℵ0), we construct an equivalent
first-order formula by induction on φ. Suppose that φ = ∃ℵ0 yψ(x̄ , y).
By inductive hypothesis, we may assume that ψ is a first-order formula.
Since T is graduated there exists a number k < ω such that

φ(x̄) ≡ ∃y0⋯∃yk[ ⋀
0≤i<l≤k

y i ≠ y l ∧⋀
i≤k

ψ(x̄ , y i)] .

(⇐) For a contradiction, suppose that T is not graduated but FO is
an FO(∃ℵ0)-elimination set over T . Then there exists a formula φ(x̄ , y)
such that, for every n < ω, there is a model An of T and parameters
ān ⊆ An such that

n < ∣φ(ān , y)An ∣ < ℵ0 .

By assumption there exists a set Φ ⊆ FO such that ¬∃ℵ0 yφ ≡ Φ. Then
the set

Ψ ∶= Φ ∪ {∃y0⋯∃yn[⋀i<l y i ≠ y l ∧⋀i φ(x̄ , y i)] ∣ n < ω }
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is inconsistent. On the other hand, for every finite subset Ψ0 ⊆ Ψ , there
is some number m < ω such that

Ψ0 ⊆ Φ ∪ {∃y0⋯∃yn[⋀i<l y i ≠ y l ∧⋀i φ(x̄ , y i)] ∣ n < m } .

Consequently, Am ⊧ Ψ0(ām). By the Compactness Theorem, it follows
that Ψ is satisfiable. Contradiction. ◻

3. Existentially closed structures
In this section we study classes where each structure passes the Tarski-
Vaught Test.

Definition 3.1. (a) A first-order formula is primitive if it is of the form

φ(x̄) = ∃ ȳ⋀
i<n

ψ i(x̄ , ȳ) ,

where each ψ i is a literal.
(b) Let K be a class of structures. A structure A ∈ K is existentially

closed (inK) if, for every extension B ⊇ A with B ∈ K, we have

B ⊧ φ(ā) implies A ⊧ φ(ā) ,

for each primitive formula φ(x̄) and all parameters ā ⊆ A.
(c) We call a theory T existentially closed, or model-complete, if every

model of T is existentially closed in Mod(T). A theory Tec is the exist-
ential closure, or model companion, of the theory T if

Mod(Tec) = {A ∈Mod(T) ∣ A is existentially closed
in Mod(T) } .

Remark. The existential closure of a theory does not necessarily exist
since the class

K ∶= {A ∈Mod(T) ∣ A is existentially closed}

does not need to be axiomatisable. But if it exists then it is unique since
Mod(T0) = K =Mod(T1) implies that T0 ≡ T1.
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Theorem 3.2. Let T be a first-order theory. The following statements are
equivalent :

(1) T is existentially closed.
(2) B ⊧ φ(ā) implies A ⊧ φ(ā), for all models A ⊆ B of T , all para-

meters ā ⊆ A, and every first-order formula φ.
(3) Every embedding between models of T is elementary.
(4) For every formula φ, there exists a universal formula ψ such that

T ⊧ φ↔ ψ .
(5) For every primitive formula φ, there exists a universal formula ψ

such that T ⊧ φ↔ ψ .

Proof. (4)⇒ (3) follows from the fact that universal formulae are pre-
served in substructures.

(3)⇒ (2) If A ⊆ B and B ⊧ φ(ā), for ā ⊆ A, then A ⪯ B implies that
A ⊧ φ(ā).

(2)⇒ (1) is trivial.
(1) ⇒ (5) Let φ be a primitive formula. By (1), the negation ¬φ is

preserved by embeddings between models of T . Hence, we can use
Corollary 1.3 to find an existential formula ψ equivalent to ¬φ modulo T .
The negation ¬ψ is the desired universal formula.

(5)⇒ (4) W.l.o.g. we may assume that φ is in prenex normal form,
say, φ = Q0x0⋯Qn−1xn−1ψ with ψ quantifier-free. We prove the claim
by induction on n. By inductive hypothesis, there exists a universal
formula ∀ ȳϑ equivalent to Q1x1⋯Qn−1xn−1ψ. If Q0 = ∀ then ∀x0∀ ȳϑ
is the desired formula. Suppose that Q0 = ∃. Let⋁i χ i be the disjunctive
normal form of ¬ϑ. By (5), there exists a universal formula ∀z̄ i η i that is
equivalent to ∃ ȳχ i . Consequently, we have

∃ ȳ¬ϑ ≡ ⋁i ∃ ȳχ i ≡ ⋁i ∀z̄ i η i ≡ ∀z̄0⋯∀z̄m ⋁i η i .

Let z̄ = z̄0 . . . z̄m and let ⋁i β i be the disjunctive normal form of ⋀i ¬η i .
It follows that

φ = ∃x0∀ ȳϑ ≡ ∃x0∃z̄⋀i ¬η i ≡ ⋁i ∃x0∃z̄β i .
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Applying (5) again, we obtain universal formula ∀ ȳ iγ i equivalent to
∃x0∃z̄β i . Hence,

φ ≡ ⋁i ∀ ȳ iγ i ≡ ∀ ȳ0⋯∀ ȳk ⋁i γ i ,

as desired. ◻

Corollary 3.3. Let T be a first-order theory.
(a) If T admits quantifier elimination then it is existentially closed.
(b) If T has algebraic prime models then it is existentially closed if and

only if it admits quantifier elimination.
(c) If T is a Skolem theory then it is existentially closed.

Proof. (a) and (c) follow from Theorem 3.2 (4). (b) follows from (a) and
Proposition 2.8. ◻

Example. The theory of open dense linear orders is existentially closed.
Other examples such as the theory of divisible abelian groups and the
theory of algebraically closed fields will be treated below.

Let us give some basic properties of existentially closed theories. We
start with a partial converse of Corollary 3.3 (a).

Lemma 3.4. Let T be a theory such that Mod(T) is closed under sub-
structures. Then T is existentially closed if and only if T admits quantifier
elimination.

Proof. We have already seen that every theory admitting quantifier elim-
ination is existentially closed. For the converse, suppose that T is ex-
istentially closed. We apply Theorem 2.6 (3). Suppose that A and B are
models of T with elements ā ⊆ A and b̄ ⊆ B such that

⟨A, ā⟩ ≡0 ⟨B, b̄⟩ .

Let φ(x̄ , y) be a quantifier-free formula such that

A ⊧ ∃yφ(ā, y) .
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Since Mod(T) is closed under substructures, we have ⟪ā⟫A ⊧ T . By
Theorem 3.2, it follows that ⟪ā⟫A ⪯ A. Hence,

⟪ā⟫A ⊧ ∃yφ(ā, y) .

Fix some element c ∈ ⟪ā⟫A such that ⟪ā⟫A ⊧ φ(ā, c). There exists some
term t such that c = t⟪ā⟫A(ā). Therefore, we have

⟪ā⟫A ⊧ φ(ā, t(ā)) .

It follows that

⟪b̄⟫B ⊧ φ(b̄, t(b̄)) .

Consequently, B ⊧ ∃yφ(b̄, y). ◻

Lemma 3.5. Let T be an existentially closed theory. Then T is the existential
closure of T⊧∀ .

Proof. Consider structures A ⊆ B where A is a model of T and B a
model of T⊧∀ . Suppose that B ⊧ φ(ā) where φ(x̄) is a primitive formula
and ā ⊆ A. We have to show that A ⊧ φ(ā). By Lemma 1.1, we can find
a model C of T with B ⊆ C. Since existential formulae are preserved in
extensions it follows that C ⊧ φ(ā). As T is existentially closed and we
have A ⊆ C, it follows that A ⪯ C. Hence, A ⊧ φ(ā), as desired. ◻

Lemma 3.6. If T is existentially closed then T ≡ T⊧∀∃.

Proof. If T is existentially closed then every chain is elementary. Hence,
Mod(T) is closed under unions of chains and the claim follows by The-
orem 1.5. ◻

For ∀∃-theories, one can embed every model into an existentially
closed one.

Proposition 3.7. Let T ⊆ ∀∃ be a first-order theory and A an infinite
Σ-structure with A ⊧ T⊧∀ . Then there exists an existentially closed model
B of T of size ∣B∣ = ∣A∣⊕ ∣Σ∣ such that A ⊆ B.
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Proof. By Lemma 1.1, there exists a model C of T with A ⊆ C. By the
Theorem of Löwenheim and Skolem we may choose C of size ∣C∣ =
∣A∣ ⊕ ∣Σ∣. To conclude the proof we construct an existentially closed
elementary extension B ⪰ C of size ∣B∣ = ∣C∣. The construction is similar
to the one used in Theorem c2.3.6 to find a Skolem theory.

Claim. For every infinite model A ⊧ T , there exists an extension A+ ⊇ A
of size ∣A+∣ = ∣A∣⊕ ∣Σ∣ such that A+ ⊧ T and, for every ∃-formula φ(x̄)
and all ā ⊆ A,

A+ ⊭ φ(ā) implies B ⊭ φ(ā) , for all B ⊇ A+ .

When we have proved the claim then we can find the desired existen-
tially closed structure B ⪰ C as follows. We define an increasing chain
(Bn)n<ω by

B0 ∶= C and Bn+1 ∶= (Bn)
+ .

Since T ⊆ ∀∃ it follows that B ∶= ⋃n Bn is a model of T . By definition,
we have C ⊆ B and

∣B∣ = supn ∣Bn ∣ ≤ ℵ0 ⊕ ∣C∣ = ∣C∣ .

It remains to show that B is existentially closed. If φ(x̄) is an ∃-formula
and ā ⊆ B then there is some index n < ω such that ā ⊆ Bn .Consequently,
if there exists a model D ⊇ B of T with D ⊧ φ(ā) then, by construction
of Bn+1 = B+

n ,we haveBn+1 ⊧ φ(ā). Since φ is existential andBn+1 ⊆ B
it follows that B ⊧ φ(ā), as desired.

It remains to prove the above claim. Let κ ∶= ∣A∣ ⊕ ∣Σ∣ and fix an
enumeration ⟨φα , āα⟩α<κ of all pairs ⟨φ, ā⟩ where φ ∈ ∃ and ā ∈ A<ω .
We define an increasing sequence (Aα)α<κ of models of T as follows. We
start with A0 ∶= A and, for limit ordinals δ, we set Aδ ∶= ⋃α<δ Aα . For
the successor step, we distinguish two cases. If there is some extension
B ⊇ Aα with B ⊧ φα(āα) then, by the Theorem of Löwenheim and
Skolem, we can choose such an extension of size ∣B∣ ≤ ∣Aα ∣⊕ ∣Σ∣ and we
set Aα+1 ∶= B. Otherwise, we set Aα+1 ∶= Aα .
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We claim that A+ ∶= ⋃α Aα is the desired structure. By induction on α,
it follows that ∣Aα ∣ ≤ κ. Hence, ∣A+∣ ≤ κ. Furthermore, if there exists an
extension B ⊇ A such that B ⊧ φ(ā), for some φ ∈ ∃ and ā ⊆ A, then
there exits an index α with φ = φα and ā = āα . Hence, Aα+1 is some
extension of Aα with Aα+1 ⊧ φ(ā). Since φ is existential and Aα+1 ⊆ A+

it follows that A+ ⊧ φ(ā), as desired. ◻

Example. A field is existentially closed if and only if it is algebraically
closed. Since the theory of fields is ∀∃-axiomatisable it follows that every
field has an algebraically closed extension.

Lemma 3.8. Let T ⊆ ∀∃ be a theory with existential closure Tec.
(a) Every model of Tec is a model of T.
(b) Every model of T has an extension that is a model of Tec.

Proof. (a) holds by definition of an existential closure and (b) follows
from Proposition 3.7. ◻

Corollary 3.9. If Tec is the existential closure of a theory T ⊆ ∀∃ then

T⊧∀ = (Tec)
⊧
∀ and (Tec)

⊧
∀ ⊆ T ⊆ Tec .

Proof. The equation T⊧∀ = (Tec)
⊧
∀ follows by the preceding lemma and

Lemma 1.1. Hence, we have (Tec)
⊧
∀ = T⊧∀ ⊆ T . Finally, Mod(Tec) ⊆

Mod(T) implies T ⊆ Tec. ◻

4. Abelian groups
As a simple example of existentially closed theories we consider theories
of abelian groups.

Definition 4.1. Let G = ⟨G , ⋅, −1 , e⟩ be a group. A torsion element of G
is an element a ≠ e such that an = e, for some 0 < n < ω. The set of all
torsion elements of G (including e) is denoted by

tor(G) ∶= { a ∈ G ∣ an = e for some n > 0} .
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We say that G is torsion-free if tor(G) = {e}.

Example. tor⟨R/Z,+,−, 0⟩ = ⟨Q/Z,+,−, 0⟩.

Lemma 4.2. If G is an abelian group then tor(G) is a normal subgroup
of G.

Proof. In an abelian group every subgroup is normal. Hence, we only
need to show that tor(G) is closed under the group operations. Let
a, b ∈ tor(G). Then there are numbers m, n > 0 such that am = e and
bn = e. Consequently, we have

(ab−1)mn = amn(bmn)−1 = en(em)−1 = e ,

which implies that ab−1 ∈ tor(G). ◻

Corollary 4.3. Every abelian group G can we written as direct sum

G ≅ H⊕ tor(G) where H is torsion-free.

Definition 4.4. An ordered group is a structure G = ⟨G , ○, −1 , e , <⟩ such
that ⟨G , ○, −1 , e⟩ forms a group, < is a linear order on G, and we have

a < b implies ac < bc and ca < cb , for all a, b, c ∈ G .

Exercise 4.1. Prove that there are exactly two orderings ⊑ on Q such that
⟨Q,+, ⊑⟩ is an ordered group.

Lemma 4.5. Every ordered group is torsion-free.

Proof. For a contradiction, suppose that there is some element a ≠ e
such that an = e, for some n > 0. If a > e then we have ak+1 > ak , for
all k. It follows that e < a < ⋅ ⋅ ⋅ < an = e. Contradiction. Similarly, a < e
implies that e > a > ⋅ ⋅ ⋅ > an = e. ◻

Definition 4.6. (a) An abelian group G = ⟨G ,+,−, 0⟩ is divisible if, for
every element a ∈ G and all numbers 0 < n < ω, there exists an element
b ∈ G with nb = a. We denote this element by a/n.
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(b) Let DAG be the theory of all divisible torsion-free abelian groups
with more than one element. Let ODAG be the theory of all ordered
divisible abelian groups with more than one element.

If G is divisible and torsion-free we can define an action Q ×G → G
by setting m

n ⋅ a ∶= m(a/n).

Lemma 4.7. Every divisible torsion-free abelian group G is aQ-module.

Exercise 4.2. Let G be a divisible abelian group that is not torsion-free.
Show that G is no Q-module under the above action.

Theorem 4.8. For every divisible torsion-free abelian group G there is a
cardinal κ such that G ≅ ⟨Q,+⟩(κ).

Proof. G is aQ-module, that is, aQ-vector space. By Theorem b6.4.12,
we have G ≅ Q(κ) where κ is the dimension of G. ◻

Corollary 4.9. For every divisible torsion-free abelian group G there exists
a linear order < such that ⟨G, <⟩ is an ordered group.

Proof. We can take the lexicographic order on Q(κ). ◻

Every abelian group can be embedded into a divisible one.

Definition 4.10. Let G be an abelian group. The divisible closure of G is
the group div(G) with universe

div(G) ∶= { ⟨a, n⟩ ∣ a ∈ G , 0 < n < ω }/∼

where

⟨a,m⟩ ∼ ⟨b, n⟩ : iff na = mb .

We denote the ∼-class of ⟨a, n⟩ by a/n. The group operations of div(G)
are given by

a/m + b/n ∶= (na +mb)/mn and −(a/m) ∶= (−a)/m .
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Theorem 4.11. Let G be an abelian group.

(a) The divisible closure div(G) of G is a divisible abelian group.

(b) If G is torsion-free then so is div(G).

(c) If G is ordered then so is div(G).

(d) The embedding G→ div(G) ∶ a ↦ a/1 is an algebraic prime model
for the theory DAG and ODAG, respectively.

Proof. (a) If a/m = a′/m′ then we have a/m + b/n = a′/m′ + b/n since
m′a = ma′ implies that

m′n(na +mb) = m′n2a +mm′nb
= mn2a′ +mm′nb = mn(na′ +m′b) .

Hence, + is well-defined. In a similar way one shows that − is also well-
defined and that div(G) forms an abelian group with unit 0/1.

Note that div(G) is divisible since n(a/mn) = (na/mn) = a/m.
(b) Suppose that n(a/m) = 0/1. Then we have na = m0 = 0, which

implies that a = 0 since G is torsion-free.
(c) We define the order on div(G) by setting

a/m < b/n : iff na < mb .

To see that this definition turns div(G) into an ordered group note that
na < mb implies

nk(ka +mc) < mk(kb + nc) .

Consequently,

a/m < b/n implies a/m + c/k < b/n + c/k .

(d) Let g ∶ G → H be some embedding of G into a model of DAG or
ODAG. Then we obtain an embedding div(G) → H by mapping a/n ∈
div(G) to the unique element b ∈ H with nb = g(a). ◻
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Corollary 4.12. Every abelian group can be embedded into a divisible
abelian group.

Corollary 4.13. For every torsion-free abelian group G, there exists a
cardinal κ such that G can be embedded into Q(κ).

Corollary 4.14. DAG and ODAG have algebraic prime models.

In order to prove that DAG and ODAG admit quantifier elimination it
remains to check that subgroups are simply closed.

Lemma 4.15. If G ⊆ H are torsion-free divisible abelian groups then G is
simply closed in H. The same holds if G and H are ordered.

Proof. We have to show that

H ⊧ ∃yφ(ā, y) implies G ⊧ ∃yφ(ā, y) ,

for every quantifier-free formula φ and all ā ⊆ G. Suppose that φ =
⋁i ⋀k ψ i k is in disjunctive normal form. If H ⊧ φ(ā, b) then there is
some i such that H ⊧ ⋀k ψ i k(ā, b). Since each atomic formula can be
written as

∑
i

m ix i + ny = 0 or ∑
i

m ix i + ny < 0 , for m i , n ∈ Z ,

we may therefore assume that

φ =⋀
k
∑

i
mkix i + nk y = 0 ∧ ⋀

k
∑

i
m′

kix i + n′k y < 0

∧ ⋀
k
∑

i
m′′

kix i + n′′k y ≠ 0 .

Set ck ∶= ∑i mkia i , c′k ∶= ∑i m′
kia i , and c′′k ∶= ∑i m′′

kia i . These elements
are in G and we have

φ ≡⋀
k
ck + nk y = 0 ∧ ⋀

k
c′k + n′k y < 0 ∧ ⋀

k
c′′k + n′′k y ≠ 0 .
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If there is some k with nk ≠ 0 then

H ⊧ φ(ā,−ck/nk) .

Since −ck/nk ∈ G we are done. Therefore, we may assume that nk = 0,
for all k. Then

φ ≡⋀
k
c′k + n′k y < 0 ∧ ⋀

k
c′′k + n′′k y ≠ 0 .

Suppose that n′0 , . . . , n′s−1 < 0 and n′s , . . . , n′t−1 > 0. Then this formula
simplifies to

φ ≡
s−1
⋀
k=0

y > −c′k/n
′
k ∧

t−1
⋀
k=s

y < −c′k/n
′
k ∧ ⋀

k
y ≠ −c′′k /n

′′
k .

Setting d0 ∶= max {−c′k/n
′
k ∣ k < s } and d1 ∶= min{−c′k/n

′
k ∣ s ≤ k < t }

we obtain

φ ≡ y > d0 ∧ y < d1 ∧ ⋀
k
y ≠ −c′′k /n

′′
k .

Since H ⊧ ∃yφ(ā, y) it follows that d0 < d1. Hence, d0 , d1 ∈ G implies
that G contains infinitely many elements b with d0 < b < d1. Con-
sequently, we can find an element b ∈ G with d0 < b < d1 such that
b ≠ −c′′k /n

′′
k , for all k. It follows that G ⊧ φ(ā, b). ◻

Theorem 4.16. DAG and ODAG admit quantifier elimination.

Proof. This follows from the preceding lemmas by Proposition 2.8. ◻

Corollary 4.17. DAG is the existential closure of the theory of torsion-free
abelian groups. ODAG is the existential closure of the theory of ordered
abelian groups.
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d1. Quantifier elimination

5. Fields
Further classes with a well-behaved model theory are the class of alge-
braically closed fields and the class of real closed fields.

Definition 5.1. (a) The axiom system for the theory of fields is the set F
consisting of all ring axioms together with the formulae

0 ≠ 1 and ∀x∃y[x ≠ 0→ x ⋅ y = 1] .

(b) The theory ACF of algebraically closed fields is obtained from F by
adding, for every 1 < n < ω, the sentence

∀y0⋯∀yn−1∃x[xn + yn−1 ⋅ xn−1 +⋯ + y1 ⋅ x + y0 = 0] .

(c) For a prime number p, we obtain the theory ACFp of algebraically
closed fields of characteristic p by adding to ACF the sentence

1 +⋯ + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

p times

= 0 .

Similarly, the theory ACF0 of algebraically closed fields of characteristic 0
is obtained by adding all the sentences

1 +⋯ + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

≠ 0 , for all 0 < n < ω .

(d) We denote by RCF the axiom system for the theory of real closed
fields. It consists of the axioms for an ordered field and the formulae

∀x∃y[y ⋅ y = x ∨ y ⋅ y = −x] ,
∀x0⋯∀xn−1[x0 ⋅ x0 + ⋅ ⋅ ⋅ + xn−1 ⋅ xn−1 + 1 ≠ 0] ,
∀y0⋯∀y2n∃x[x2n+1 + y2n ⋅ x2n +⋯ + y1 ⋅ x 1 + y0 = 0] ,

for all n < ω.
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5. Fields

Remark. (a) If K ⊧ F is a field then every atomic formula has the form
p(x̄) = q(x̄) or, equivalently, p(x̄) − q(x̄) = 0, for polynomials p, q ∈
Z[x̄].

(b) In Theorem b6.5.5 we have seen that F⊧∀ is the theory of integral
domains.

Since the axiom systems F, ACF, ACFp , and RCF consist solely of ∀∃-
sentences it follows by Lemma c2.1.8 that their model classes are closed
under unions of chains.

Lemma 5.2. If (Kα)α<κ is a chain of fields then their union ⋃α<κ Kα is
also a field. If every Kα is algebraically closed then so is the union. The
same holds for real closed fields.

Proposition 5.3. Let κ be an infinite cardinal and let K and L be algebrai-
cally closed fields of transcendence degree at least κ. If K and L have the
same characteristic then K ≅κ

0 L.

Proof. First, note that pIsoκ(K, L) ≠ ∅ since it contains 1 ↦ 1. By sym-
metry, we therefore only need to prove the forth property.

Let ā ↦ b̄ ∈ pIsoκ(K, L) and c ∈ K. We denote by A the subfield of K
generated by ā and B is the subfield of L generated by b̄. The partial
isomorphism ā ↦ b̄ extends to an isomorphism π ∶ A→ B.

If c ∈ A then d ∶= π(c) ∈ B and āc ↦ b̄d ∈ pIsoκ(K, L).
Next we consider the case that c is algebraic over A. Let p ∈ A[x]

be the minimal polynomial of c. Consider the canonical extension π′ ∶
A[x] → B[x] of π and set q ∶= π′(p). Since L is algebraically closed,
q has some root d ∈ L. It follows that

A(c) ≅ A[x]/(p) ≅ B[x]/(q) ≅ B(d)

and, hence, āc ↦ b̄d ∈ pIsoκ(K, L).
Finally, suppose that c is not algebraic over A. Since L has transcend-

ence degree at least κ, there is some element d ∈ L that is transcendental
over B. It follows that A(c) ≅ FF(A[x]) ≅ FF(B[x]) ≅ B(d). ◻

Theorem 5.4. ACF admits quantifier elimination.
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d1. Quantifier elimination

Proof. By Corollary 2.12 and the preceding proposition it is sufficient to
show that every algebraically closed fieldK has an elementary extension L
with infinite transcendence degree. Let ∆ be the elementary diagram
of K and let C be a countable set of new constant symbols. We set

Φ ∶= { p[c̄] ≠ 0 ∣ p ∈ K[x̄], c̄ ⊆ C } .

If L ⊧ ∆∪Φ then L ⪰ K implies that L is an algebraically closed extension
of K. Furthermore, C is an infinite algebraically independent subset of L.

Hence, it remains to prove that ∆ ∪ Φ is satisfiable. By the Compact-
ness Theorem we only have to check that all finite subsets of ∆ ∪ Φ are
satisfiable. Let Φ0 ⊆ Φ be finite and let p0 , . . . , pn−1 be the polynomi-
als appearing in Φ0. Suppose that p0 , . . . , pn−1 ∈ K[x0 , . . . , xk−1]. By
induction on i, we find elements a i ∈ K such that p l [ā] ≠ 0, for all l .

Suppose that we have already chosen a0 , . . . , a i−1. We partition the
polynomials p0 , . . . , pn−1 into three classes.

(i) those containing only variables from x0 , . . . , x i−1 ;
(ii) those not in class (i) that contain only variables from x0 , . . . , x i ;

(iii) those containing some variable from x i+1 , . . . , xk−1.
We choose an arbitrary element a i ∈ K such that, for every polynomial p l
in class (ii), we have p l [a0 , . . . , a i−1 , a i] ≠ 0. This is possible since K is
infinite and, for every polynomial p l [a0 , . . . , a i−1 , x i], there are only
finitely many values for x i that we cannot choose.

Interpreting the constants c̄ in Φ by the elements ā we obtain a model
⟨K, ā⟩ of ∆ ∪ Φ0. ◻

Theorem 5.5. If p is a prime number or p = 0 then the theory ACFp is
complete.

Proof. Let φ ∈ FO be a sentence. We have to show that either ACFp ⊧ φ
or ACFp ⊧ ¬φ. Since ACF admits quantifier elimination there exists a
quantifier-free sentence ψ such that

ACFp ⊧ φ↔ ψ .
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5. Fields

ψ is a boolean combination of sentences of the form ϑ ∶= 1 +⋯ + 1=0.
But for each such sentence we either have ACFp ⊧ ϑ or ACFp ⊧ ¬ϑ. ◻

After having seen that the theory of algebraically closed fields admits
quantifier elimination we turn to real closed fields.

Proposition 5.6. RCF∀ is the theory of ordered integral domains.

Proof. If R is a substructure of a real closed field then it is a commutative
ring without zero-divisors. Conversely, let R be an ordered integral
domain. We can order FF(R) by

a/b > 0 : iff a, b > 0 or a, b < 0 .

By Theorem b6.6.13, we can embed FF(R) into a real closed field. ◻

Proposition 5.7. RCF has algebraic prime models.

Proof. Let R be an ordered integral domain and let K be the real closure
of FF(R). We claim that K is the algebraic prime model of R.

Fix an arbitrary ordered real closed extension L of R. Then FF(R) ⊆ L.
Let

L0 ∶= { a ∈ L ∣ a is algebraic over FF(R) } .

By Theorem b6.6.14, it follows that L0 ⊆ L is real closed. Since the order
of L0 extends the order of FF(R), we can use Theorem b6.6.22 to find an
isomorphism L0 → K. ◻

Lemma 5.8. If K ⊆ L are real closed fields then K is simply closed in L.

Proof. Let φ(x , ȳ) be quantifier-free and suppose that

L ⊧ φ(a, b̄) , for some a ∈ L, b̄ ⊆ K .

Note that, for a polynomial p ∈ Z[x̄],

p[c̄] ≠ 0 iff p[c̄] > 0 ∨ −p[c̄] > 0 ,
p[c̄] ≤ 0 iff p[c̄] = 0 ∨ −p[c̄] > 0 .
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d1. Quantifier elimination

Therefore, we may assume that φ(x , ȳ) = ⋁k≤n ψk(x , ȳ) where each ψk
is a conjunction of formulae of the form p[x , ȳ] = 0 or p[x , ȳ] > 0, for
some p ∈ Z[x , ȳ]. Fix some k such that L ⊧ ψk(a, b̄) and suppose that

ψk(x , b̄) = ⋀
i<m

p i[x] = 0 ∧⋀
i<n

q i[x] > 0 ,

for p i , q i ∈ K[x]. If any of the p i is nonzero then p i[a] = 0 implies that
a is algebraic over K. Since K is real closed, it has no proper algebraic
extension that is real. Therefore, a ∈ K and we are done.

Hence, we may assume that

ψk(x , b̄) = ⋀
i<n

q i[x] > 0 .

The sign of q i[x] can only change at a root of q i . As we have just seen
each such root is an element of K. Therefore, there are elements c i , d i ∈ K
with c i < a < d i and q i[x] > 0, for all x ∈ (c i , d i). Set

c ∶= max {c0 , . . . , cn−1} and d ∶= min{d0 , . . . , dn−1} .

Then c < a < d. Setting a′ ∶= (c + d)/2 ∈ K it follows that q i[a′] > 0, for
all i < n. Hence, L ⊧ ψk(a′ , b̄). ◻

Theorem 5.9. RCF admits quantifier elimination.

Proof. We have shown that RCF has algebraic prime models and that
real closed subfields are simply closed. Therefore, the claim follows by
Proposition 2.8. ◻

Corollary 5.10. RCF⊧ =Th⟨R,+,−, ⋅, 0, 1, <⟩ is complete and existentially
closed.

Proof. Every theory that admits quantifier elimination is existentially
closed. To show that RCF is complete note that every real closed field R
has characteristic 0. Hence, Q ⊆ R. Let Ralg be the real closure of Q,
that is, the field of algebraic real numbers. It follows that Ralg can be
embedded into every real closed field R. Since RCF is existentially closed
this embedding is elementary. Therefore, R ≡ Ralg. ◻
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1. Ultraproducts
In Section d1.1 we have studied operations that preserve various frag-
ments of first-order logic. But we have found no operation so far that
preserves all first-order formulae. In this section we will show that ul-
traproducts have this property.

We generalise the notation of Section b3.2 as follows. Let (Ai)i∈I be a
sequence of Σ-structures. For every sort s, we set

Is ∶= { i ∈ I ∣ Ai
s ≠ ∅} .

If φ(x̄) is a formula and ak ∈∏i∈Isk
Ai

sk
, for k < n, are parameters then

we define

⟦φ(ā)⟧ ∶= { i ∈ Is0 ∩ ⋅ ⋅ ⋅ ∩ Isn−1 ∣ A
i ⊧ φ(ā i) } .

Recall that, for a filter u on I, we write

ā ∼u b̄ : iff ⟦ā = b̄⟧ ∈ u ,

and [ā] denotes the ∼u-class of ā.

Theorem 1.1 (Łoś). Let (Ai)i∈I be a sequence of Σ-structures and u an
ultrafilter on I. For every first-order formula φ(x̄) and all parameters
ak ∈∏i∈Isk

Ai
sk
we have

∏
i

Ai/u ⊧ φ([ā]) iff ⟦φ(ā)⟧ ∈ u .
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Proof. Let A ∶=∏i Ai and B ∶=∏i Ai/u. We prove the claim by induc-
tion on φ. If φ = s = t then we have

B ⊧ (s = t)([ā]) iff sB([ā]) = tB([b̄])

iff sA(ā) ∼u tA(ā)
iff ⟦s(ā) = t(ā)⟧ ∈ u .

Similarly, if φ = Rt0 . . . tm−1 then

B ⊧ (Rt̄)([ā]) iff ⟨tB
0 ([ā]), . . . , tB

m−1([ā])⟩ ∈ RB

iff ⟦(Rt̄)(ā)⟧ ∈ u .

For the boolean operators, we have, by inductive hypothesis,

B ⊧ ¬φ([ā]) iff B ⊭ φ([ā])
iff ⟦φ(ā)⟧ ∉ u

iff ⟦¬φ(ā)⟧ ∈ u

and B ⊧ (φ ∧ ψ)([ā]) iff B ⊧ φ([ā]) and B ⊧ ψ([ā])
iff ⟦φ(ā)⟧ ∈ u and ⟦ψ(ā)⟧ ∈ u

iff ⟦φ(ā)⟧ ∩ ⟦ψ(ā)⟧ ∈ u

iff ⟦φ(ā) ∧ ψ(ā)⟧ ∈ u .

It remains to consider the case that φ = ∃yψ. Let s be the sort of y. We
have

B ⊧ ∃yψ([ā], y)
iff Is ∈ u and there is some b ∈∏i∈Is

Ai
s such that B ⊧ ψ([ā], [b])

iff there is some b ∈∏i∈Is
Ai

s such that ⟦ψ(ā, b)⟧ ∈ u

iff ⟦∃yψ(ā, y)⟧ ∈ u .

For the last step note that, on the one hand, we have

⟦ψ(ā, b)⟧ ⊆ ⟦∃yψ(ā, y)⟧ .
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Conversely, we can fix, for every i ∈ ⟦∃yψ(ā, y)⟧, some b i ∈ Ai
s such

that Ai ⊧ ψ(ā i , b i). For i ∈ Is ∖ ⟦∃yψ(ā, y)⟧, we choose an arbitrary
element b i ∈ Ai

s . With these choices we have

⟦∃yψ(ā, y)⟧ ⊆ ⟦ψ(ā, b)⟧ . ◻

Corollary 1.2. A ⪯ Au, for all structures A and every ultrafilter u.

For the constructions below we frequently need a special kind of
ultrafilter.

Definition 1.3. A filter u on a set I is regular if there exists a sequence
(s i)i∈I of sets s i ∈ u such that, for every k ∈ I, the set { i ∣ k ∈ s i } is finite.

Lemma 1.4. For every infinite set I, there exists a regular ultrafilter u on I.

Proof. Let J ∶= { s ⊆ I ∣ ∣s∣ < ℵ0 }. As I is infinite we have ∣J∣ = ∣I∣ and
there exists a bijection f ∶ J → I. Therefore, it is sufficient to construct a
regular ultrafilter u on J. Its image under f will be the desired regular
ultrafilter on I.

For i ∈ J, set s i ∶= { k ∈ J ∣ i ⊆ k }. Since

s i ∩ s j = { k ∈ J ∣ i ∪ j ⊆ k } = s i∪ j

it follows that v ∶= { s i ∣ i ∈ J } has the finite intersection property. By
Corollary b2.4.10, we can therefore find an ultrafilter u ⊇ v. Furthermore,
u is regular since, for every k ∈ J, the set

{ i ∈ J ∣ k ∈ s i } = { i ∈ J ∣ i ⊆ k }

is finite. ◻

For ultrafilters over countable sets, regularity and non-principality
coincide.

Lemma 1.5. An ultrafilter u over ω is regular if and only if it is non-
principal.
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Proof. (⇒) Suppose that u is principal, that is, u = ⇑{k}, for some k. If
(sn)n<ω is a sequence of sets sn ∈ u then we have k ∈ sn , for all n. Hence,
u cannot be regular.
(⇐) Suppose that u is non-principal. For n < ω, set sn ∶= ⇑n. Then

we have sn ∈ u since ω ∖ sn = [n] ∉ u. Furthermore, the set

{ n < ω ∣ k ∈ sn } = { n < ω ∣ n ≤ k } = [k + 1]

is finite, for every k < ω. ◻

We use regular ultrafilters for the following alternative proof of the
compactness theorem.

Proposition 1.6. A set Φ ⊆ FO[Σ, X] is satisfiable if and only if every
finite subset Φ0 ⊆ Φ is satisfiable.

Proof. Suppose that every finite subset of Φ is satisfiable. By replacing
each free variable in Φ by a constant symbol we may assume that every
formula in Φ is a sentence. We have to construct a model of Φ.

Let u be a regular ultrafilter on Φ and fix a sequence (sφ)φ∈Φ with
sφ ∈ U such that the sets

Ψψ ∶= {φ ∈ Φ ∣ ψ ∈ sφ } , for ψ ∈ Φ ,

are finite. By assumption we can find models Aψ ⊧ Ψψ , for every ψ ∈ Φ.
We claim that

∏
ψ∈Φ

Aψ/u ⊧ Φ

is the desired model of Φ. Let φ ∈ Φ. Then

⟦φ⟧ ⊇ {ψ ∈ Φ ∣ φ ∈ Ψψ } = {ψ ∈ Φ ∣ ψ ∈ sφ } = sφ ∈ u .

By Łoś’ theorem it follows that∏s As/u ⊧ φ. ◻
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Lemma 1.7. Let A be a structure, κ an infinite cardinal, and u a regular
ultrafilter over a set I of size κ. If φ(x) is a first-order formula such that
φA is infinite then

∣φAu

∣ = ∣φA∣
κ

.

Proof. By the Theorem of Łoś we have

φAu

= { [a] ∈ AI/u ∣ ⟦φ(a)⟧ ∈ u} .

Since φA ≠ ∅, we can fix some element c ∈ φA. For every element
[a] ∈ φAu

with sa ∶= ⟦φ(a)⟧ ∈ u, we define

a′i ∶=
⎧⎪⎪
⎨
⎪⎪⎩

a i if i ∈ sa ,
c otherwise .

Note that we have [a′] = [a] since sa ⊆ ⟦a = a′⟧ ∈ u. Furthermore,
⟦φ(a′)⟧ = I. Consequently, we can define a function f ∶ φAu

→ (φA)I

by mapping an element [a] ∈ φAu

to some representative a′ ∈ [a] with
⟦φ(a′)⟧ = I. Note that f is injective since, for [a] ≠ [b], f (a) ∈ [a] and
f (b) ∈ [b] implies that f (a) ≠ f (b). Therefore, we have ∣φAu

∣ ≤ ∣φA∣κ .
It remains to prove that ∣φAu

∣ ≥ ∣φA∣κ . Since u is regular we can find
sets (s i)i∈I in u such that the sets

wk ∶= { i ∈ I ∣ k ∈ s i }

are finite. Since φA is infinite we can fix bijections µk ∶ (φA)wk → φA, for
k ∈ I. For a ∈ (φA)I , we define a sequence aµ ∈ (φA)I by

aµ
i ∶= µ i(a ↾w i) , for i ∈ I .

Then ⟦φ(aµ)⟧ = I which implies, by the Theorem of Łoś, that [aµ] ∈ φAu

.
To conclude the proof it is therefore sufficient to show that the mapping
a ↦ [aµ] is injective. If a ≠ b then there is some index i ∈ I with a i ≠ b i .
Hence, a ↾wk ≠ b ↾wk , for every k with i ∈ wk , that is, for every k ∈ s i .
Consequently, s i ⊆ ⟦aµ ≠ bµ⟧ ∈ u. ◻
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Corollary 1.8. Let κ be an infinite cardinal. Every structure A has an
elementary extension B such that, for every first-order formula φ(x̄),
either

∣φB∣ < ℵ0 or ∣φB∣ = ∣φA∣
κ

.

Forming an ultraproduct of a sequence of structures corresponds to
taking the limit of their theories in the type space.

Lemma 1.9. Let T ⊆ FO and X ⊆ S s̄(T) a set of s̄-types. For every
accumulation point p of X, there exist an ultrafilter u on I, a sequence of
structures (Ai)i∈I , and parameters ā i ⊆ A i , i ∈ I, with tp(ā i/Ai) ∈ X
such that

p = tp([(ā i)i] /∏i Ai/u) .

Proof. Let I ∶= p and fix a regular ultrafilter u over p. Then there exists
a sequence (sφ)φ∈p of sets sφ ∈ u such that, for every i ∈ p, the set
Φ i ∶= {φ ∈ p ∣ i ∈ sφ } is finite. Since p is an accumulation point
of X we can find elements qi ∈ ⟨Φ i⟩ ∩ X ≠ ∅. Fix Ai and ā i such that
tp(ā i/Ai) = qi , and set B ∶=∏i∈I Ai/u and b̄ ∶= [(ā i)i].

If i ∈ sφ then φ ∈ Φ i which implies Ai ⊧ φ(ā i). Therefore, we have
sφ ⊆ ⟦φ(ā i)⟧ ∈ u, for every φ ∈ p. By the Theorem of Łoś, it follows that
B ⊧ p(b̄), that is, p = tp(b̄/B). ◻

2. The theorem of Keisler and Shelah
According to the Amalgamation Theorem any two elementary equivalent
structures have a common elementary extension. In this sectionwe prove
the Theorem of Keisler and Shelah, which states that this extension can
be taken as an ultrapower with respect to the same ultrafilter.

To construct such an ultrafilter u, we choose a sufficiently large car-
dinal λ. Starting with the trivial filter {λ} on λ, we construct larger and
larger filters until we have found the desired ultrafilter. In each step, we
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2. The theorem of Keisler and Shelah

have to ensure that the filter we construct is general enough in the sense
of being consistent with sufficiently many additional conditions. The
precise definition are as follows.

Definition 2.1. Let λ be an infinite cardinal, P ⊆ ℘(λ), and C ⊆ λ. Recall
that cl↑(P) denotes the filter generated by P.

(a) P forces C if C ∈ cl↑(P).

(b) P is consistent with C if it does not force the complement λ ∖ C.

(c) P decides C if it forces C or λ ∖ C.

Remark. (a) Note that cl↑(P) is an ultrafilter if, and only if, for every set
C ⊆ λ, P forces exactly one of C and λ ∖ C.

(b) P is not consistent with C if, and only if, there is a finite subset
P0 ⊆ P such that⋂ P0 ∩C = ∅. Hence, P is consistent with C if, and only
if, P ∪ {C} does have the finite intersection property.

Definition 2.2. Let λ be an infinite cardinal and let µ be the least cardinal
such that 2µ > λ.

(a) We denote by (<µ)λ the set of all functions λ → κ for a cardinal
κ < µ.

(b) Let m < ω and γ < µ be ordinals, let f̄ = ( f i)i<γ , f̄ ′ = ( f ′i )i<m
and ḡ = (g i)i<m be sequences of functions f i , f ′i , g i ∶ λ → µ, and let
β̄ = (β i)i<γ be a sequence of ordinals β i < µ. A condition is a set of the
form

⟦ f̄ = β̄, f̄ ′ = ḡ⟧ ∶= { α < λ ∣ f i(α) = β i , for all i < γ , and
f ′i (α) = g i(α) , for all i < m } .

For m = 0, we simply write ⟦ f̄ = β̄⟧ instead of ⟦ f̄ = β̄, ⟨⟩ = ⟨⟩⟧.
(c) Let F ⊆ µλ and G ⊆ (<µ)λ . An (F ,G)-condition is a condition

⟦ f̄ = β̄, f̄ ′ = ḡ⟧ with f̄ , f̄ ′ ⊆ F and ḡ ⊆ G. A set P ⊆ ℘(λ) is (F ,G)-
consistent if it is consistent with every (F ,G)-condition. For G = ∅, we
simply speak of F-conditions and F-consistency.
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Exercise 2.1. Let P ⊆ ℘(λ) be F-consistent. Prove that every function
f ∈ F is surjective.

Exercise 2.2. Let P ⊆ ℘(λ) be F-consistent. Show that there is no set
C ⊆ λ such that P forces both C and λ ∖ C.

Example. Let λ = ℵ0 and let P be the set of all cofinite subsets of λ. Then
µ = ℵ0 and a condition C = ⟦ f̄ = β̄, f̄ ′ = ḡ⟧ is consistent with P if, and
only if, C is infinite. It follows that P is F-consistent, where F is the set of
all functions f ∶ ℵ0 → ℵ0 such that f −1(n) is infinite, for every n < ℵ0.

Lemma 2.3. Let F ⊆ µλ and G ⊆ (<µ)λ .
(a) If A and B are (F ,G)-conditions, then A ∩ B is also an (F ,G)-

condition.
(b) If (A i)i<γ is a sequence of F-conditions of length γ < µ, then the

intersection ⋂i<γ A i is also an F-condition.

Proof. (a) Suppose that

A = ⟦ f̄0 = β̄0 , f̄ ′0 = ḡ0⟧ and B = ⟦ f̄1 = β̄1 , f̄ ′1 = ḡ1⟧ .

Then A∩ B = ⟦ f̄0 f̄1 = β̄0 β̄1 , f̄ ′0 f̄ ′1 = ḡ0 ḡ1⟧.
(b) follows as in (a) since F-conditions are closed under concatena-

tions of length γ < µ. ◻

Lemma 2.4. Let I be a directed set and, for i ∈ I, let Pi ⊆ ℘(λ), Fi ⊆
µλ , and G i ⊆ (<µ)λ be sets such that i ≤ k implies Pi ⊆ Pk , Fi ⊇ Fk ,
and G i ⊆ Gk . If Pi is (Fi ,G i)-consistent, for every i ∈ I, then ⋃i∈I Pi is
(⋂i∈I Fi ,⋃i∈I G i)-consistent.

Proof. Let C = ⟦ f̄ = β̄, f̄ ′ = ḡ⟧ be a (⋂i Fi ,⋃i G i)-condition. For a
contradiction, suppose that ⋃i Pi forces λ ∖ C. Then there exists a finite
subset Q ⊆ ⋃i Pi such that ⋂Q ∩ C = ∅. As I is directed, we can fix an
index k ∈ I such that Q ⊆ Pk .

Since ḡ is a finite tuple, there exists an index l ∈ I such that ḡ ⊆ G l .
Consequently, C is an (Fi ,G i)-condition, for all i ≥ l . Fix i ∈ I with
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i ≥ k, l . Since Q ⊆ Pi , it follows that Pi forces λ ∖ C. Hence, Pi is not
(Fi ,G i)-consistent. A contradiction. ◻

In the following sequence of lemmas, we will construct larger and
larger sets P ⊆ ℘(λ) that are (F ,G)-consistent, for sufficiently large sets
F and G, until we obtain a set P that decides every subset of λ.

Lemma 2.5. There exists a set F ⊆ µλ of size ∣F∣ = 2λ such that {λ} is
F-consistent.

Proof. Let H be the set of all pairs ⟨A, h⟩ such that A ⊆ λ is a set of size
∣A∣ < µ and h ∶ S → µ is a function with domain S ⊆ ℘(A) of size ∣S∣ < µ.

Let us first show that ∣H∣ = λ. There are λ<µ = λ sets A ⊆ λ of size
∣A∣ < µ. For each such A, the number of sets S ⊆ ℘(A) of size ∣S∣ < µ is
at most

(2∣A∣)<µ ≤ (λ∣A∣)<µ = λ<µ = λ .

For each set S, there are µ∣S∣ ≤ λ∣S∣ ≤ λ<µ = λ functions S → µ. Therefore,
∣H∣ ≤ λ ⊗ λ ⊗ λ = λ. As it is easy to find λ different elements of H, it
follows that ∣H∣ = λ.

Fix an enumeration ⟨Aα , hα⟩α<λ of H. For C ⊆ λ,we define a function
fC ∶ λ → µ by

fC(α) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

hα(C ∩ Aα) if C ∩ Aα ∈ dom hα ,
0 otherwise .

We claim that F ∶= { fC ∣ C ⊆ λ } has the desired properties.
To show that {λ} is F-consistent, consider an F-condition ⟦ f̄ = β̄⟧

where the sequences f̄ and β̄ have length γ < µ. Since λ is the only set
forced by {λ}, it is sufficient to show that ⟦ f̄ = β̄⟧ ≠ ∅.

Let C i ⊆ λ be the set such that f i = fC i , for i < γ. W.l.o.g. we may
assume that f i ≠ fk , for i ≠ k. Then C i ≠ Ck , for i ≠ k. Hence, there is a
set A ⊆ λ of size ∣A∣ = ∣γ∣ such that i ≠ k implies C i ∩ A ≠ Ck ∩ A.
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Set S ∶= {C i ∩ A ∣ i < γ } and define h ∶ S → µ by

h(C i ∩ A) ∶= β i .

Then ⟨A, h⟩ ∈ H. Hence, there is some α < λ such that ⟨A, h⟩ = ⟨Aα , hα⟩.
For each i < γ, it follows that

f i(α) = fC i (α) = hα(C i ∩ Aα) = h(C i ∩ A) = β i .

Therefore, α ∈ ⟦ f̄ = β̄⟧ ≠ ∅. ◻

Lemma 2.6. Suppose that P ⊆ ℘(λ) is F-consistent. For every set G ⊆
(<µ)λ , there exists a set F0 ⊆ F of size ∣F0∣ ≤ ∣G∣⊗ ∣P∣⊗ µ such that P is
(F ∖ F0 ,G)-consistent.

Proof. We shall prove that, for every finite set G0 ⊆ G, there is some
set F(G0) ⊆ F of size ∣F(G0)∣ ≤ ∣P∣⊕ µ such that P is (F ∖ F(G0),G0)-
consistent. By Lemma 2.4, it then follows that P is (F∖F0 ,G)-consistent,
where

F0 ∶=⋃{ F(G0) ∣ G0 ⊆ G finite}

has size ∣F0∣ ≤ ∣G∣⊗ ℵ0 ⊗ ∣P∣⊗ µ.
Fix a finite tuple ḡ ∈ Gm , m < ω. By induction on α, we define a

sequence of tuples f̄ ′α ∈ Fm as follows. Suppose we have already defined
f̄ ′i , for i < α. Set Fα ∶= ⋃i<α f̄ ′i . If P is (F ∖ Fα , ḡ)-consistent, we stop.
Otherwise, there is some (F ∖ Fα , ḡ)-condition ⟦ f̄ = β̄, f̄ ′ = ḡ⟧ that is
not consistent with P. We set f̄ ′α ∶= f̄ ′.

Let ( f̄ ′α)α<γ be the sequence constructed in this way. Obviously, we
have γ < ∣F∣+. If γ < κ ∶= (∣P∣ ⊕ µ)+, we can obtain the desired set as
F(ḡ) ∶= ⋃α<γ f̄ ′α .

Hence, assume that γ ≥ κ. We will derive a contradiction as follows.
For each α < κ, fix a (F ∖ Fα , ḡ)-condition

Aα ∶= ⟦ f̄α = β̄α , f̄ ′α = ḡ⟧
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such that P forces λ ∖ Aα . Let P+ be the closure of P under finite
intersections. There are sets Sα ∈ P+ such that Sα ∩ Aα = ∅. Since
∣P+∣ ≤ ∣P∣⊕ ℵ0 < κ, we can find a set I ⊆ κ of size ∣I∣ = κ such that

Sα = Sα′ , for all α, α′ ∈ I .

Let S be the set such that S = Sα , for α ∈ I. Since each sequence f̄α has
length less than µ < κ, there is a subset J ⊆ I of size ∣J∣ = κ such that
∣ f̄α ∣ = ∣ f̄α′ ∣, for all α, α′ ∈ J.

Set

χ ∶= sup{ ∣g i(α)∣+ ∣ i < m, α < λ }

and let (γ̄α)α<χ be an enumeration of χm . Note that χ < µ since rng g i ⊆
ν i , for some ν i < µ. Hence,

g i(α) < ν i < µ implies ∣g i(α)∣+ ≤ ν i < µ .

Fix an injective function h ∶ χ → J and set

A ∶= ⋂
i<χ
⟦ f̄h(i) = β̄h(i) , f̄ ′h(i) = γ̄ i⟧ .

Since χ < µ it follows by Lemma 2.3 (b) that A is an F-condition. Hence,
the F-consistency of P implies that P does not force λ ∖ A.
Consequently, S ∩ A ≠ ∅ and we can find some α ∈ S ∩ A. It follows

that

f̄h(i)(α) = β̄h(i)(α) and f̄ ′h(i)(α) = γ̄ i(α) , for all i < χ .

Fix i < χ such that γ̄ i = ḡ(α). Then α ∈ Ah(i). Hence, Sh(i) ∩ Ah(i) = ∅
implies that α ∉ Sh(i) = S. A contradiction. ◻

To extend the set P to an ultrafilter, we can use the following lemma
and its corollary to ensure that P decides every set.
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Lemma 2.7. Let P ⊆ ℘(λ) be (F ,G)-consistent. For every set A ⊆ λ there
is some F0 ⊆ F of size ∣F0∣ < µ such that at least one of P ∪ {A} and
P ∪ {λ ∖ A} is (F ∖ F0 ,G)-consistent.

Proof. Suppose that P ∪ {A} is not (F ,G)-consistent. Then there is an
(F ,G)-condition C0 ∶= ⟦ f̄0 = β̄0 , f̄ ′0 = ḡ0⟧ such that P ∪ {A} forces
λ ∖ C0. Hence, there is some S0 ∈ cl↑(P) such that

S0 ∩ A∩ C0 = ∅ .

Set F0 ∶= f̄0 ∪ f̄ ′0. If P ∪ {λ ∖ A} is (F ∖ F0 ,G)-consistent, we are done.
Hence, we may assume that this set is not (F ∖ F0 ,G)-consistent.

Then there is an (F ∖F0 ,G)-condition C1 ∶= ⟦ f̄1 = β̄1 , f̄ ′1 = ḡ1⟧ such that
P ∪ {λ ∖ A} forces λ ∖C1. Hence, there is some set S1 ∈ cl↑(P) such that

S1 ∩ (λ ∖ A) ∩ C1 = ∅ .

It follows that S1 ∩ C1 ⊆ A, which implies that

S0 ∩ S1 ∩ C0 ∩ C1 ⊆ S0 ∩ C0 ∩ A = ∅ .

As S0 ∩ S1 ∈ cl↑(P), it follows that P forces λ ∖ (C0 ∩C1). Since C0 ∩C1
is an (F ,G)-condition, P is not (F ,G)-consistent. A contradiction. ◻

Repeating this lemma for each set A ∈ H, we obtain the following
statement.

Corollary 2.8. Let P ⊆ ℘(λ) be (F ,G)-consistent. For every set H ⊆ ℘(λ)
there is some F0 ⊆ F of size ∣F0∣ ≤ ∣H∣ ⊗ µ and some Q ⊆ ℘(λ) of size
∣Q∣ = ∣H∣ such that P ∪ Q is (F ∖ F0 ,G)-consistent and it decides every
set A ∈ H.

To prove the Theorem of Keisler and Shelah below, we will have to
show that Au ≅ Bu, for certain structures A and B. This is done via a
back-and-forth argument where we construct an increasing chain of
partial isomorphisms between the structures Au andBu. Matters become
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slightly more complicated since we construct the ultrafilter u at the same
time. Hence, we do not yet know between which structures we should
eventually construct partial isomorphisms. Therefore, we introduce a
notion of a partial isomorphism between partially defined ultrapowers.

Definition 2.9. Let A and B be Σ-structures and let P ⊆ ℘(λ) be a set
with the finite intersection property. A partial function π from Aλ to Bλ

is a partial isomorphism modulo P if, for every formula φ(x̄) ∈ FO<ω[Σ]
and every finite mapping ā ↦ b̄ ⊆ π,

P forces { k < λ ∣ A ⊧ φ(ā(k))⇔ B ⊧ φ(b̄(k)) } ,

and P decides ⟦A ⊧ φ(ā(k))⟧k<λ .

Exercise 2.3. Show that every partial isomorphism π from Aλ to Bλ

modulo an ultrafilter u induces an ordinary partial isomorphism between
Au and Bu.

The back-and-forth step of the construction below is contained in the
following two lemmas. The first one is a technical resultwhich, intuitively,
states that we can realise every partial type.

Lemma 2.10. Let P be F-consistent, let M be a Σ-structure of size κ ∶=
∣M∣ < µ, and let Φ ⊆ FO1[ΣMλ ] be a set of first-order formulae over Mλ

that is closed under conjunctions.
If, for every φ(x; ā) ∈ Φ,

P forces ⟦M ⊧ ∃xφ(x; ā(α))⟧α<λ ,

there exist a sequence b ∈ Mλ and sets F0 ⊆ F and Q ⊆ ℘(λ) of size

∣F0∣ ≤ ∣P∣⊕ ∣Φ∣⊕ µ and ∣Q∣ ≤ ∣Φ∣

such that P ∪ Q is (F ∖ F0)-consistent and, for every φ(x; ā) ∈ Φ,

P ∪ Q forces ⟦M ⊧ φ(b(α); ā(α))⟧α<λ .
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Proof. Fix enumerations (c i)i<κ of M and (φ l(x; ā l))l<χ of Φ. For each
l < χ, we fix a function g l ∶ λ → κ such that

M ⊧ ∃xφ l(x , ā l(α)) implies M ⊧ φ l(cg l (α) , ā l(α)) .

Set G ∶= { g l ∣ l < χ }. By Lemma 2.6, there is a set F1 ⊆ F of size
∣F1∣ ≤ ∣P∣⊕ χ⊕µ such that P is (F∖F1 ,G)-consistent. Fix some f ∈ F∖F1
and set

F0 ∶= F1 ∪ { f } ,

b(α) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

c f (α) if f (α) < κ ,
c0 otherwise ,

Q ∶= { ⟦M ⊧ φ l(b(α), ā l(α))⟧α<λ ∣ l < χ } .

We claim that F0, Q, and b have the desired properties.
Since

⟦M ⊧ φ l(b(α), ā l(α))⟧α<λ ∈ Q ⊆ cl↑(P ∪ Q) , for all l < χ ,

it remains to show that P ∪Q is (F ∖ F0)-consistent. For a contradiction,
suppose otherwise. Thenwe can find an (F∖F0)-conditionC ∶= ⟦ f̄ = β̄⟧
such that P ∪ Q forces λ ∖ C. Since Φ is closed under conjunctions,
the set Q is closed under finite intersections. Therefore, there are sets
S ∈ cl↑(P) and T ∈ Q such that

S ∩ T ∩ C = ∅ .

Let l < χ be the index such that T = ⟦M ⊧ φ l(b(α), ā l(α))⟧α<λ . Then

S ∩ ⟦M ⊧ φ l(b(α), ā l(α))⟧α<λ ∩ ⟦ f̄ = β̄⟧ = ∅ .

By choice of g l , we have

⟦M ⊧ ∃xφ l(x , ā l(α))⟧α<λ ∩ ⟦⟨⟩ = ⟨⟩, f = g l⟧

⊆ ⟦M ⊧ φ l(b(α), ā l(α))⟧α<λ .
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Therefore, it follows that

S ∩ ⟦M ⊧ ∃xφ l(x , ā l(α))⟧α<λ ∩ ⟦ f̄ = β̄, f = g l⟧ = ∅ .

Hence, P forces ⟦ f̄ = β̄, f = g l⟧ in contradiction to the (F ∖ F1 ,G)-
consistency of P. ◻

Lemma 2.11. Let A and B be Σ-structures with ∣Σ∣ ≤ λ, P ⊆ ℘(λ) a set
that is F-consistent, and π a partial isomorphism from Aλ to Bλ modulo P.
For every element c ∈ Aλ , there exist an element d ∈ Bλ and sets Q ⊆ ℘(λ)
and F0 ⊆ F of size

∣Q∣ ≤ ∣π∣⊕ λ and ∣F0∣ ≤ ∣P∣⊕ ∣π∣⊕ λ

such that P ∪ Q is (F ∖ F0)-consistent and π ∪ {⟨c, d⟩} is a partial iso-
morphism modulo P ∪ Q.

Proof. Note that there are ∣π∣<ω = ∣π∣ ⊕ ℵ0 finite tuples ā ⊆ dom(π)
and there are at most λ formulae φ ∈ FO<ω[Σ]. Hence, we can use
Corollary 2.8 to find sets Q1 and F1 ⊆ F of size

∣Q1∣ ≤ λ ⊕ ∣π∣ and ∣F1∣ ≤ λ ⊕ ∣π∣⊕ µ = λ ⊕ ∣π∣

such that P ∪ Q1 is (F ∖ F1)-consistent and

P ∪ Q1 decides ⟦A ⊧ φ(ā(α), c(α))⟧α<λ ,

for all φ(x̄ , y) ∈ FO<ω[Σ] and all finite ā ⊆ dom(π).
Suppose that π = ā ↦ b̄ and set

Φ ∶= {φ(x̄ , y) ∣ P ∪ Q1 forces ⟦A ⊧ φ(ā(α), c(α))⟧α<λ } .
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Note that φ ∉ Φ implies ¬φ ∈ Φ, by construction of Q1. Since π is a
partial isomorphism modulo P, it follows for φ ∈ Φ that

⟦B ⊧ ∃yφ(b̄(α), y)⟧α<λ

⊇ ⟦A ⊧ ∃yφ(ā(α), y)⟧α<λ

∩ { α < λ ∣ A ⊧ ∃yφ(ā(α), y)⇔ B ⊧ ∃yφ(b̄(α), y) }

⊇ ⟦A ⊧ φ(ā(α), c(α))⟧α<λ

∩ { α < λ ∣ A ⊧ ∃yφ(ā(α), y)⇔ B ⊧ ∃yφ(b̄(α), y) }

∈ cl↑(P ∪ Q1) .

Hence, P ∪Q1 forces ⟦B ⊧ ∃yφ(b̄(α), y)⟧α<λ , for all φ ∈ Φ, and we can
use Lemma 2.10 to find an element d ∈ Bλ and sets Q2 and F2 ⊆ F ∖ F1
of size

∣Q2∣ ≤ ∣Φ∣ = ∣Σ∣⊕ ∣π∣⊕ ℵ0 = λ ⊕ ∣π∣

and ∣F2∣ ≤ ∣P ∪ Q1∣⊕ ∣Φ∣⊕ µ = ∣P∣⊕ ∣π∣⊕ λ

such that P ∪ Q1 ∪ Q2 is (F ∖ (F1 ∪ F2))-consistent and

P ∪ Q1 ∪ Q2 forces ⟦B ⊧ φ(b̄(α), d(α))⟧α<λ ,

for all φ ∈ Φ.
We claim that the extension π ∪ {⟨c, d⟩} is a partial isomorphism

modulo P ∪Q1 ∪Q2. We have already seen above that P ∪Q1, and hence
also P ∪Q1 ∪Q2, decides every set of the form ⟦A ⊧ φ(ā(α), c(α))⟧α<λ
with ā ⊆ dom(π). To check the remaining condition,we distinguish two
cases.

If φ ∈ Φ, the fact that

⟦A ⊧ φ(ā(α), c(α))⟧α<λ and ⟦B ⊧ φ(b̄(α), d(α))⟧α<λ
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are in cl↑(P ∪ Q1 ∪ Q2) implies that

{ α < λ ∣ A ⊧ φ(ā(α), c(α))⇔ B ⊧ φ(b̄(α), d(α)) }

⊇ { α < λ ∣ A ⊧ φ(ā(α), c(α)) and B ⊧ φ(b̄(α), d(α)) }

= ⟦A ⊧ φ(ā(α), c(α))⟧α<λ ∩ ⟦B ⊧ φ(b̄(α), d(α))⟧α<λ

∈ cl↑(P ∪ Q1 ∪ Q2) .

If φ ∉ Φ, we have noted above that ¬φ ∈ Φ. Therefore,

{ α < λ ∣ A ⊧ φ(ā(α), c(α))⇔ B ⊧ φ(b̄(α), d(α)) }

= { α < λ ∣ A ⊧ ¬φ(ā(α), c(α))⇔ B ⊧ ¬φ(b̄(α), d(α)) }

∈ cl↑(P ∪ Q1 ∪ Q2) .

Consequently, P ∪ Q1 ∪ Q2 forces

{ α < λ ∣ A ⊧ ¬φ(ā(α), c(α))⇔ B ⊧ ¬φ(b̄(α), d(α)) }

for all formulae φ. ◻

Theorem 2.12 (Keisler, Shelah). Let λ be an infinite cardinal and let µ be
the least cardinal such that 2µ > λ. There exists an ultrafilter u on λ such
that

A ≡ B implies Au ≅ Bu ,

for all structures A and B of size ∣A∣, ∣B∣ < µ.

Proof. Note that every Σ-structure M of size κ ∶= ∣M∣ < µ is interdefin-
able with a reduct M∣Σ0 for some Σ0 ⊆ Σ of size ∣Σ0∣ ≤ 2κ ≤ λ since there
are only 2κ distinct relations and functions on M. We may therefore
w.l.o.g. assume that the signature Σ of every structure is contained in a
fixed signature Σ+ of size λ consisting, for all finite sequences s̄t of sorts,
of λ relation symbols of type s̄ and λ function symbols of type s̄ → t. Fur-
thermore, we may assume that all structures have universe κ, for some

731



d2. Products and varieties

cardinal κ < µ. Note that, by Lemma b1.1.5, there are, up to isomorphism,
at most 2∣Σ∣⊕κ ≤ 2λ such Σ-structures.

Therefore, we can fix an enumeration ⟨Ai ,Bi⟩i<2λ of all pairs of Σ i-
structures with Σ i ⊆ Σ+ where the universe is some cardinal less than µ
and such that Ai ≡ Bi . We also fix a surjective function

R ∶ 2λ → [3] × 2λ × 2λ

and enumerations (uα)α<2λ of µλ and (Sα)α<2λ of ℘(λ).
We will construct an ultrafilter u such that Au

i ≅ Bu
i , for all i. By

induction on γ < 2λ , we construct

◆ an increasing sequence (Pγ)γ<2λ of sets Pγ ⊆ ℘(λ),

◆ a decreasing sequence (Fγ)γ<2α of sets Fγ ⊆ µλ , and

◆ for each i < 2λ , an increasing sequence (π i
γ)γ<2λ of partial func-

tions π i
γ from Aλ

i ⊆ (<µ)λ to Bλ
i ⊆ (<µ)λ

satisfying the following conditions :

(1) Pγ is Fγ-consistent ;

(2) each π i
γ is a partial isomorphism from Aλ

i to Bλ
i modulo Pγ ;

(3) ∣⋃i<2λ dom(π i
γ)∣ ≤ ∣γ∣ ,

∣Pγ ∣ ≤ λ ⊕ ∣γ∣ ,

∣F0∣ = 2λ ,
∣F0 ∖ Fγ ∣ ≤ λ ⊕ ∣γ∣ ;

(4) if R(γ) = ⟨0, i , α⟩ and uα ∈ Aλ
i , then uα ∈ dom(π i

γ+1) ;

(5) if R(γ) = ⟨1, i , β⟩ and uβ ∈ Bλ
i , then uβ ∈ rng(π i

γ+1) ;

(6) if R(γ) = ⟨2, α, β⟩, then Pγ+1 decides Sα .

First, let us show that, after having performed this construction, the
limit u ∶= ⋃γ<2λ Pγ is the desired ultrafilter. By (6) and the surjectivity
of R, u is an ultrafilter. Furthermore, by (2) π i ∶= ⋃γ<2λ π i

γ is a partial
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isomorphism between Au
i and Bu

i . Finally, by (4), (5), and the surjectivity
of R, π i is bijective.

Hence, it remains to do the induction. We start with P0 ∶= {λ} and
π i
0 ∶= ⟨⟩↦ ⟨⟩, for all i < 2λ . According to Lemma 2.5, there exists a set F0

of size ∣F0∣ = 2λ such that P0 is F0-consistent. Note that Condition (2) is
satisfied, since Ai ≡ Bi , while all other conditions are satisfied trivially.

For limit ordinals δ, we set

Pδ ∶= ⋃
γ<δ

Pγ , Fδ ∶= ⋂
γ<δ

Fγ , and π i
δ ∶= ⋃

γ<δ
π i

γ .

Then Condition (1) follows by Lemma 2.4, while Conditions (2)–(6)
follow immediately from the inductive hypothesis.

For the successor step, suppose that we have already defined Pγ , Fγ ,
and π i

γ .Depending on the value of R(γ),we distinguish three cases. First,
suppose that R(γ) = ⟨0, i , α⟩, for some i , α < 2λ . If uα ∉ Aα

i , we simply
set Pγ+1 ∶= Pγ , Fγ+1 ∶= Fγ , and πk

γ+1 ∶= πk
γ , for all k. Hence, suppose that

uα ∈ Aλ
i . By Lemma 2.11, there exist an element v ∈ Bλ

i and sets Q′ and
F′ ⊆ Fγ of size

∣Q′∣, ∣F′∣ ≤ λ ⊕ ∣γ∣

such that P ∪ Q′ is (Fγ ∖ F′)-consistent and π i
γ ∪ {⟨uα , v⟩} is a partial

isomorphism modulo P ∪ Q′.
We set Pγ+1 ∶= Pγ ∪ Q′, Fγ+1 ∶= Fγ ∖ F′, and π i

γ+1 ∶= π i
γ ∪ {⟨uα , v⟩}.

By construction, π i
γ+1 satisfies Conditions (1), (2), and (4). Conditions

(3), (5), and (6) are also satisfied.
If R(γ) = ⟨1, i , β⟩, for some i , β < 2λ , we proceed analogously to the

first case applying Lemma 2.11 to (π i
γ)
−1.

Finally, if R(γ) = ⟨2, α, β⟩, we use Corollary 2.8 to find sets Q′ and
F′ ⊆ Fγ of size ∣Q′∣ = 1 and ∣F′∣ ≤ µ ≤ λ such that Pγ+1 ∶= Pγ ∪ Q′ is
(F∖F′)-consistent and decides Sα . We set Fγ+1 ∶= Fγ∖F′ and π i

γ+1 ∶= π i
γ ,

for all i. ◻
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Corollary 2.13. Let A and B be Σ-structures. We have

A ≡ B iff Au ≅ Bu for some ultrafilter u .

The Theorem of Keisler and Shelah can be used to characterise first-
order axiomatisable classes via their closure properties.

Definition 2.14. We say that a classK is closed under reverse ultrapowers
if Au ∈ K implies A ∈ K, for every structure A and all ultrafilters u.

Theorem 2.15. A class K of Σ-structures is first-order axiomatisable if
and only if K is closed under isomorphisms, ultraproducts, and reverse
ultrapowers.

Proof. One direction follows immediately from Corollary 1.2. For the
other one, let Φ ∶=Th(K). We claim that Mod(Φ) = K. Suppose other-
wise. Then there exists a model B ⊧ Φ such that B ∉ K. If we can show
that T ∶=Th(B) is an accumulation point of the set X ∶= {Th(A) ∣ A ∈
K } then we can apply Lemma 1.9 to find an ultraproduct C ∶=∏i∈I Ai/u
of structures Ai ∈ K such that Th(C) = T = Th(B). Hence, by Corol-
lary 2.13, there exists an ultrafilter v such that Bv ≅ Cv. But C ∈ K implies
Cv ∈ K while B ∉ K implies Bv ∉ K. Contradiction.

It remains to show that T is an accumulation point of X. Let T ∈ ⟨φ⟩.
Then ¬φ ∉ Φ ⊆ T and, by definition of Φ, there exists some structure
A ∈ K such that A ⊭ ¬φ. Hence, Th(A) ∈ ⟨φ⟩ ∩ X ≠ ∅. ◻

3. Reduced products and Horn formulae
In this section we study classes that are closed under arbitrary products
and formulae that are preserved in products.

Definition 3.1. A formula φ is preserved in reduced products if, for every
family (Ai)i∈I of structures and every filter u over I, we have

Ai ⊧ φ for all i implies ∏
i∈I

Ai/u ⊧ φ .
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3. Reduced products and Horn formulae

If this holds only for u = {I} then φ is preserved in products. Finally, we
say that φ is preserved in nonempty products if the above is true only for
u = {I} and I ≠ ∅.

Definition 3.2. (a) A basic Horn formula is a formula of the form

φ ∶=⋀Φ → ψ ,

where ψ is an atomic formula or the formula false and Φ is a set (possibly
empty) of atomic formulae. If ψ ≠ false then we say that φ is strict.

(b) A Horn formula is a formula of the form

φ = Q0 x̄0⋯Qn−1 x̄n−1⋀Φ

where Φ is a set of basic Horn formulae and the Q i ∈ {∃,∀} are quan-
tifiers. We allow both Φ and the sequences x̄ i to be infinite. We call φ
strict if Φ only contains strict basic Horn formulae. A Horn formula is
universal if it is of the form ∀x̄ψ where ψ is a single basic Horn formula.
We denote the set of all Horn formulae by HO∞[Σ, X]. SH∞[Σ, X]

is the subset of all strict Horn formulae. The set of all universal (strict)
Horn formulae is denoted by H∀∞[Σ, X] and SH∀∞[Σ, X], respectively.
We write HO[Σ, X], SH[Σ, X], H∀[Σ, X], and SH∀[Σ, X], for the corres-
ponding fragments of first-order logic.

(c)A formula is positive primitive if it is obtained from atomic formulae
by (possibly infinite) conjunctions and existential quantifications. Again
we allow quantifiers of the form∃x̄ where x̄ is a possibly infinite sequence
of variables.

Lemma 3.3. Suppose that φ(x̄) is a positive primitive formula, (Ai)i∈I a
nonempty sequence of structures, and ā ⊆∏i Ai . Then we have

∏i Ai ⊧ φ(ā) iff Ai ⊧ φ(ā i) , for all i ∈ I .

Proof. W.l.o.g. we may assume that φ is term-reduced. We prove the
claim by induction on φ. For atomic formulae φ, the claim holds by
definition of a direct product. If φ is a conjunction then the claim follows
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immediately from the inductive hypothesis. Hence, we may assume that
φ(x̄) = ∃ ȳψ(x̄ , ȳ).

If ∏i Ai ⊧ φ(ā) then there exists a sequence b̄ ⊆ ∏i Ai such that
∏i Ai ⊧ ψ(ā, b̄). By inductive hypothesis, we therefore have

Ai ⊧ ψ(ā i , b̄ i) , for all i ,

and it follows that Ai ⊧ ∃ ȳψ(ā i , ȳ).
Conversely, suppose that Ai ⊧ φ(ā i), for all i. Choose sequences

b̄ i ⊆ Ai such that Ai ⊧ ψ(ā i , b̄ i). By inductive hypothesis, it follows that
∏i Ai ⊧ ψ(ā, b̄). This implies that∏i Ai ⊧ φ(ā). ◻

Theorem 3.4. Let φ(x̄) be a Horn formula, (Ai)i∈I a nonempty sequence
of structures, and ā ⊆∏i Ai . Then

Ai ⊧ φ(ā i) , for all i , implies ∏i Ai ⊧ φ(ā) .

Proof. We prove the claim by induction on φ. Suppose that Ai ⊧ φ(ā i),
for all i. First, we consider the case that φ = ⋀Φ → ψ is a basic Horn
formula. If∏i Ai ⊭ Φ(ā) then we are done. Hence we may assume that
∏i Ai ⊧ Φ(ā). By Lemma 3.3, it follows that Ai ⊧ Φ(ā i), for all i. Since
Ai ⊧ φ(ā i) this implies that Ai ⊧ ψ(ā i). In this case ψ cannot be false
and we can use Lemma 3.3 to conclude that∏i Ai ⊧ ψ(ā), as desired.

If φ is a conjunction then the claim follows immediately by inductive
hypothesis. For φ = ∃ ȳψ(x̄ , ȳ) we can argue in the same way as in the
proof of Lemma 3.3. Finally, assume that φ = ∀ ȳψ(x̄ , ȳ). Let b̄ ⊆∏i Ai .
Since Ai ⊧ φ(ā i) we have Ai ⊧ ψ(ā i , b̄ i). By inductive hypothesis,
this implies that∏i Ai ⊧ ψ(ā, b̄). Since b̄ was arbitrary it follows that
∏i Ai ⊧ ∀ ȳψ(ā, ȳ). ◻

For first-order formulae we can generalise these results to reduced
products.

Lemma 3.5. Suppose that φ(x̄) is a positive primitive first-order formula,
(Ai)i∈I a nonempty sequence of structures, u a filter over I, and [ā] a tuple
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in∏i Ai/u. Then we have

∏i Ai/u ⊧ φ([ā]) iff ⟦φ(ā)⟧ ∈ u .

Proof. The proof is analogous to those of Lemma 3.3 and Theorem 1.1.
We assume that φ is term-reduced and we prove the claim by induction
on φ.

For atomic formulae φ, the claim holds by the definition of a reduced
product. If φ is a conjunction then the claim follows immediately from
the inductive hypothesis and the fact that filters are closed under finite
intersections. Hence, we may assume that φ(x̄) = ∃ ȳψ(x̄ , ȳ).

If∏i Ai/u ⊧ φ([ā]) then there exists a sequence b̄ ⊆∏i Ai such that
∏i Ai/u ⊧ ψ([ā], [b̄]). By inductive hypothesis, we therefore have

⟦ψ(ā, b̄)⟧ ∈ u .

Since ⟦ψ(ā, b̄)⟧ ⊆ ⟦∃ ȳψ(ā, ȳ)⟧ it follows that

⟦∃ ȳψ(ā, b̄)⟧ ∈ u .

Conversely, suppose that s ∶= ⟦∃ ȳψ(ā, b̄)⟧ ∈ u. For every i ∈ s, we
choose sequences b̄ i ⊆ Ai such that Ai ⊧ ψ(ā i , b̄ i). For i ∈ ⟦∃ ȳ true⟧∖ s,
we take an arbitrary tuple b̄ i ⊆ Ai . Then ⟦ψ(ā, b̄)⟧ = s ∈ u which implies
that∏i Ai/u ⊧ ψ([ā], [b̄]). Consequently, we have∏i Ai/u ⊧ φ([ā]).

◻

For first-order Horn formulae we can extend the Theorem of Łoś to
arbitrary filters.

Theorem 3.6. Suppose that φ(x̄) is a first-order Horn formula, (Ai)i∈I a
nonempty sequence of structures, u a filter on I, and [ā] a tuple in∏i Ai/u.
Then

⟦φ(ā)⟧ ∈ u implies ∏i Ai/u ⊧ φ([ā]) .
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Proof. We prove the claim by induction on φ. Let s ∶= ⟦φ(ā)⟧ ∈ u.
First, we consider the case that φ = ⋀Φ → ψ is a basic Horn formula.
If ∏i Ai/u ⊭ Φ([ā]) then we are done. Hence we may assume that
∏i Ai/u ⊧ Φ([ā]). By Lemma 3.5, it follows that w ∶= ⟦⋀Φ(ā)⟧ ∈ u.
Consequently, we have s ∩w ⊆ ⟦ψ(ā)⟧ ∈ u. In this case ψ cannot be false
andwe can use Lemma 3.3 to conclude that∏i Ai/u ⊧ ψ([ā]), as desired.

If φ is a conjunction then the claim follows immediately by induct-
ive hypothesis. For φ = ∃ ȳψ(x̄ , ȳ) we can argue in the same way as
in the proof of Lemma 3.5. Finally, assume that φ = ∀ ȳψ(x̄ , ȳ). Let
bk ∈ ∏i∈Isk

Ai
sk

. Then s ⊆ ⟦ψ(ā, b̄)⟧ ∈ u. By inductive hypothesis, this
implies that∏i Ai/u ⊧ ψ([ā], [b̄]). Since b̄ was arbitrary it follows that
∏i Ai/u ⊧ ∀ ȳψ([ā], [ ȳ]). ◻

Corollary 3.7. Let Σ be a signature and X a set of variables.
(a) HO∞[Σ, X]-formulae are preserved in nonempty products.
(b) SH∞[Σ, X]-formulae are preserved in products.
(c) HO[Σ, X]-formulae are preserved in nonempty reduced products.
(d) SH[Σ, X]-formulae are preserved in reduced products.

Proof. (a) and (c) follow immediately from Theorem 3.4 and 3.6, respect-
ively. For (b) and (d) it is sufficient to note that in the empty product 1
every n-ary relation contains the tuple ⟨⟨⟩, . . . , ⟨⟩⟩. Hence, we have

1 ⊧ φ(⟨⟩, . . . , ⟨⟩) ,

for every atomic formula φ. ◻

Example. Groups, rings, and modules are SH-axiomatisable. Hence,
theses classes are closed under reduced products.

Lemma 3.8 (McKinsey). LetK be a class of structures that is closed under
nonempty products. If Φ is a set of Horn formulae and Ψ a nonempty set
of atomic formulae (possibly including the formula false) such that

A ⊧ ∀x̄(⋀Φ →⋁Ψ) , for all A ∈ K ,
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then there is some formula ψ ∈ Ψ such that

A ⊧ ∀x̄(⋀Φ → ψ) , for all A ∈ K .

Proof. For a contradiction, suppose that, for every formula ψ ∈ Ψ there
are a structure Aψ ∈ K and parameters āψ ⊆ Aψ such that

Aψ ⊧⋀Φ(āψ) ∧ ¬ψ(āψ) .

Set B ∶= ∏ψ∈Ψ Aψ and b̄ ∶= (āψ)ψ ⊆ B. Since Ψ ≠ ∅ we have B ∈ K.
Furthermore, it follows by Theorem 3.4 that

B ⊧⋀Φ(b̄) .

Hence, there is some ψ ∈ Ψ such that B ⊧ ψ(b̄). By Lemma 3.3, this
implies that Aψ ⊧ ψ(āψ). Contradiction. ◻

The converse of Corollary 3.7 is given by the following preservation
theorem.

Theorem 3.9. A first-order sentence φ is preserved in nonempty reduced
products if and only if it is equivalent to a first-order Horn sentence.

4. Quasivarieties
Classes that are axiomatised by universal Horn formulae admit a nice
algebraic characterisation.

Definition 4.1. LetK be a class of Σ-structures.
(a) AK-presentation is a pair ⟨C; Φ⟩ consisting of a set C of constant

symbols disjoint from Σ and a set Φ of atomic sentences over the sig-
nature ΣC = Σ ∪ C. The constants in C are called the generators of the
presentation.

(b) A model of aK-presentation ⟨C; Φ⟩ is a ΣC-structure A such that

A ⊧ Φ and A∣Σ ∈ K .

(c) A model A of aK-presentation ⟨C; Φ⟩ is free if
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◆ A is generated by the constants in C and

◆ for every model B of ⟨C; Φ⟩ there is a homomorphism A→ B.

(d) We say thatK has free models if everyK-presentation has a free
model.

Remark. Note that the homomorphism h ∶ A→ B in (c) maps cA to cB,
for every c ∈ C. Since A is generated by C it follows that h is unique.

Example. Let K be the class of all groups, C ∶= {a, b}, and let Φ be
the set consisting of the single formula a ⋅ b = b ⋅ a. Then ⟨C; Φ⟩ is a
K-presentation. Its free model consists of the direct product

⟨Z,+,−, 0⟩ × ⟨Z,+,−, 0⟩

with additional constants a = ⟨0, 1⟩ and b = ⟨1, 0⟩.

Example. Suppose that Σ is a signature without relation symbols. The
class Str[Σ] of all Σ-structures has free models. Let ⟨C; Φ⟩ be a Str[Σ]-
presentation. W.l.o.g. we may assume that Φ is closed under entailment.
In particular, it is=-closed and, as in Lemma c2.4.4,we obtain aHerbrand
model H of Φ that is of the form H = T[ΣC ;∅]/∼ where

s ∼ t iff s = t ∈ Φ .

We claim that H is a free model of ⟨C; Φ⟩.
Suppose that B is a model of ⟨C; Φ⟩. We have to find a homomorph-

ism f ∶ H → B. Let π be the canonical projection T[ΣC ;∅] → H. By
Theorem b3.1.9, there exists a unique homomorphism h ∶ T[ΣC ;∅]→ B.

T[ΣC ;∅]

T[ΣC ;∅]/∼

B

π
f

h
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Since B is a model of Φ it follows that ker π = ∼ ⊆ ker h. Hence, we
can use the Factorisation Lemma to find the desired homomorphism
f ∶ H→ B.

We start by giving conditions ensuring thatK has free models.

Lemma 4.2. Let ⟨C; Φ⟩ be a K-presentation and A a ΣC-structure with
A∣Σ ∈ K. Then A is a free model of ⟨C; Φ⟩ if and only if

◆ C generates A and
◆ for every atomic formula φ over ΣC , we have

(∗) A ⊧ φ iff Th(K) ⊧⋀Φ → φ .

Proof. Let φ0(x̄) ∈ FO[Σ, X] and Φ0(x̄) ⊆ FO[Σ, X] be the formulae
obtained from φ and Φ by replacing the constant symbols in C by vari-
ables.
(⇒) If every structure inK satisfies the sentence

∀x̄[⋀Φ0(x̄)→ φ0(x̄)]

then, in particular, so does A∣Σ . Hence, A ⊧ φ.
Conversely, suppose that A ⊧ φ0(c̄) and let B ∈ K be a structure with

B ⊧ Φ0(b̄), for some b̄ ⊆ B. SinceA is free there exists a homomorphism
h ∶ A→ ⟨B, b̄⟩. Since h(c̄) = b̄ and atomic formulae are preserved under
homomorphisms it follows that

A ⊧ φ0(c̄) implies B ⊧ φ0(b̄) ,

as desired.
(⇐) For every φ ∈ Φ we have Φ ⊧ φ. By (∗), this implies that A ⊧ φ.

Consequently, A is a model of ⟨C; Φ⟩. If B is another model of ⟨C; Φ⟩
then we have B∣Σ ∈ K and B∣Σ ⊧ Φ0(c̄B). By (∗) it follows that B ⊧ ψ,
for every atomic formula ψ with A ⊧ ψ. Consequently, B satisfies the
atomic diagram of A and we can use Corollary c2.2.4 to find a homo-
morphism A→ B. ◻
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Theorem 4.3. Let K be a class of Σ-structures that is closed under iso-
morphic copies. The following statements are equivalent :

(1) Every K-presentation with a model has a free model.

(2) K is closed under nonempty products and substructures.

(3) K is H∀∞-axiomatisable.

Proof. (3)⇒ (2) follows from Corollary 3.7 and Lemma c2.1.6.
(2)⇒ (1) Let ⟨C; Φ⟩ be a K-presentation with a model and let Ψ be

the set of all atomic formulae ψ(x̄) (including false) such that

Th(K) ⊭⋀Φ → ψ(c̄) .

If every model of ⟨C; Φ⟩ would satisfy ⋁Ψ then it would follow by
Lemma 3.8 that

Th(K) ⊧⋀Φ → ψ(c̄) ,

for some ψ ∈ Ψ . By choice of Ψ we can therefore find some structure
A ∈ K and elements c̄ ⊆ A such that

⟨A, c̄⟩ ⊧⋀Φ ∧ ¬⋁Ψ .

It follows that

⟨A, c̄⟩ ⊧ φ iff Th(K) ⊧⋀Φ → φ ,

for every atomic formula φ over ΣC . Setting A0 ∶= ⟪c̄⟫A we still have

⟨A0 , c̄⟩ ⊧ φ iff Th(K) ⊧⋀Φ → φ ,

for all such φ. Since K is closed under substructures we have A0 ∈ K.
Hence, Lemma 4.2 implies that A0 is a free model of ⟨C; Φ⟩.

(1)⇒ (3) Set T ∶= ThH∀∞(K) and suppose that B is a model of T .
Let Φ be the atomic diagram of B. Because B is a model of the K-
presentation ⟨B; Φ⟩ there exists, by (1), a free model A of ⟨B; Φ⟩. By
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Corollary c2.2.4 there exists a homomorphism h ∶ B→ A. Since B gen-
erates A this homomorphism is surjective. If we can show that it is an
embedding then it follows that B ≅ A∣Σ and, since K is closed under
isomorphic copies, we have B ∈ K, as desired.

Let Φ0(x̄) be the set of formulae obtained from Φ by replacing the
constants in B by variables. Let ψ(x̄) be an atomic formula over Σ with
A ⊧ ψ(b̄), for some b̄ ⊆ B. By Lemma 4.2, T contains the formula

∀x̄(⋀Φ0(x̄)→ ψ(x̄)) .

Since B ⊧ T we have B ⊧ ⋀Φ0(b̄) → ψ(b̄). By definition of Φ this
implies that B ⊧ ψ(b̄). Consequently, h is an embedding. ◻

Theorem 4.4. Let K be a class of Σ-structures that is closed under iso-
morphic copies. The following statements are equivalent :

(1) K has free models.

(2) K is closed under products and substructures.

(3) K is SH∀∞-axiomatisable.

Proof. (3)⇒ (2) follows from Corollary 3.7 and Lemma c2.1.6.
(2)⇒ (1) Note that the empty product is a model of everyK-presen-

tation. Hence, the claim follows from Theorem 4.3.
(1)⇒ (3) By Theorem 4.3, we know that K has an H∀∞-axiomatisa-

tion T . We claim that T ⊆ SH∀∞. Suppose otherwise. Then T contains a
formula of the form ∀x̄(⋀Φ → false). Let X ∶= x̄ be the set of variables
appearing in Φ. TheK-presentation ⟨X; Φ⟩ has a freemodel ⟨A, c̄⟩, by (1).
But then A ⊧ Φ(c̄) would imply that A ⊧ false. A contradiction. ◻

Definition 4.5. LetK be a class of Σ-structures.

(a) K is a quasivariety if it is SH∀-axiomatisable.

(b) K is a variety if it can be axiomatised by a set of formulae of the
form ∀x̄φ where φ is an atomic formula.
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Example. The classes of all groups, all rings, and all modules are varieties.
The class of lattices (with signature ⊓, ⊔, ⊑) is a quasivariety, but not a
variety. If we omit ⊑ then the class becomes a variety. The class of all
fields is not a quasivariety.

Definition 4.6. LetK be a class of Σ-structures. We define the following
operations.

(a) Prod(K) is the class of all nonempty products of structures inK.

(b) Sub(K) is the class of all substructures of structures inK.

(c) Iso(K) is the class of all structures isomorphic to one inK.

(d) Hom(K) is the class of all weak homomorphic images of struc-
tures inK.

(e) ERP(K) is the class of all structures that can be embedded into a
reduced product of structures inK.

(f) Finally, we define the abbreviations

QV ∶= Iso ○ Sub ○ Prod ,
Var ∶= Hom ○ Sub ○ Prod .

Theorem 4.7. Let K be a class of Σ-structures.

(a) QV(K) is the smallest class of Σ-structures containing K that is
closed under products, substructures, and isomorphic copies.

(b) QV(K) =Mod(ThSH∀∞(K)).

(c) If K or QV(K) is first-order axiomatisable then QV(K) is a quas-
ivariety.

Proof. Let T ∶= SH∀∞(K).
(a) and (b) LetH be the smallest class of Σ-structures containingK

that is closed under products, substructures, and isomorphic copies.
Then we have QV(K) = (Iso ○ Sub ○ Prod)(K) ⊆ H. Furthermore, by
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Lemma c2.1.6 and Corollary 3.7 it follows that every structure inH is a
model of T . Consequently, we have

QV(K) ⊆H ⊆Mod(T) ,

and it remains to prove that Mod(T) ⊆ QV(K).
Suppose that A ⊧ T and fix an enumeration ā of Awithout repetitions.

Let Φ(x̄) be the set of all atomic formulae φ(x̄) with A ⊧ φ(ā) and
let Ψ(x̄) be the set of all atomic formulae φ(x̄) (including false) with
A ⊭ φ(ā). Consider a formula ψ ∈ Ψ . Since A is a model of T we have
∀x̄(⋀Φ → ψ) ∉ T . Therefore, we can find a structure Bψ ∈ K and
parameters b̄ψ ⊆ B such that

Bψ ⊧⋀Φ(b̄ψ) ∧ ¬ψ(b̄ψ) .

Let ⟨C, c̄⟩ ∶= ∏ψ∈Ψ⟨B
ψ , b̄ψ⟩. Since the algebraic diagrams of ⟪c̄⟫⟨C, c̄⟩

and ⟨A, ā⟩ coincide we can use Corollary c2.2.4 to find an embedding
h ∶ A→ C with h(ā) = c̄. Hence, A is isomorphic to a substructure of a
product of structures inK, i.e.,

A ∈ (Iso ○ Sub ○ Prod)(K) = QV(K) .

(c) Let T0 be an axiomatisation of either K or QV(K). Note that in
both cases we have T = (T0)

⊧
SH∀∞ . For every formula φ ∈ T , we will

construct a first-order formula φ′ ∈ T with φ′ ⊧ φ. This implies that
T ∩ FO ⊧ T . It follows that Mod(T ∩ FO) = QV(K), as desired.

It remains to find φ′. Let ∀x̄(⋀Φ → ψ) ∈ T . Then T0 ∪ Φ ⊧ ψ. By
the Compactness Theorem, we can find a finite subset Φ0 ⊆ Φ such
that T0 ∪ Φ0 ⊧ ψ. Setting φ′ ∶= ∀x̄(⋀Φ0 → ψ) it follows that T0 ⊧ φ′.
Furthermore, since φ′ is a universal strict Horn formula we have φ′ ∈ T ,
as desired. ◻

Corollary 4.8. A class K is a quasivariety if and only if it is first-order
axiomatisable and closed under products, substructures, and isomorphic
copies.
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d2. Products and varieties

Lemma 4.9. Let A be a Σ-structure andK a nonempty class of Σ-struc-
tures.

A ∈ ERP(K) iff ThH∀(K) ⊆ThH∀(A) .

Proof. (⇒) follows from the preservation properties of universal Horn
formulae. For (⇐), suppose that ThH∀(K) ⊆ThH∀(A). Let ∆+ be the set
of all atomic first-order formulae and ∆− the set of all negations of atomic
first-order formulae. We set Φ+ ∶=Th∆+(AA) and Φ− ∶=Th∆−(AA).

First, we show that, for every finite subset Ψ ⊆ Φ+, there exists a
structure BΨ ∈ Prod(K) and parameters b̄Ψ ⊆ B such that

⟨BΨ , b̄Ψ⟩ ⊧ Ψ ∪ Φ− .

Suppose that Ψ = {ψ0(ā), . . . ,ψn(ā)}. For every ¬φ(ā) ∈ Φ−, we have

A ⊧ ψ0(ā) ∧ ⋅ ⋅ ⋅ ∧ ψn(ā) ∧ ¬φ(ā) .

It follows that A ⊭ ψ0(ā) ∧ ⋅ ⋅ ⋅ ∧ ψn(ā) → φ(ā). By assumption this
implies that

∀x̄[ψ0(x̄) ∧ ⋅ ⋅ ⋅ ∧ ψn(x̄)→ φ(x̄)] ∉ThH∀(K) .

Consequently, there is a structure Cφ ∈ K and elements c̄φ ⊆ C such that

Cφ ⊧ ψ0(c̄φ) ∧ ⋅ ⋅ ⋅ ∧ ψn(c̄φ) ∧ ¬φ(c̄φ) .

Similarly, we have

∀x̄[ψ0(x̄) ∧ ⋅ ⋅ ⋅ ∧ ψn(x̄)→ false] ∉ThH∀(K) ,

and there is a structure C� ∈ K and elements c̄� ⊆ C such that

C� ⊧ ψ0(c̄�) ∧ ⋅ ⋅ ⋅ ∧ ψn(c̄�) .

We form the product

⟨B, b̄⟩ ∶= ∏
φ∈Φ−∪{�}

⟨Cφ , c̄φ⟩ .
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By Lemma 3.3 it follows that

B ⊧ ψ i(b̄) , for all i ,
and B ⊧ ¬φ(b̄) , for all ¬φ ∈ Φ− .

Furthermore,

B = ∏
φ∈Φ−∪{�}

Cφ ∈ Prod(K) ,

as desired.
It remains to construct a model ⟨D, d̄⟩ of Φ+ ∪ Φ− that is a reduced

product of structures in K. By the Diagram Lemma, this implies that
A can be embedded into the product D.

If Φ+ is finite we can use the structure ⟨BΦ+ , b̄Φ+⟩. Hence, we may
assume that Φ+ is infinite. Let u be a regular ultrafilter over Φ+ and let
(sφ)φ∈Φ+

be the corresponding sequence of sets sφ ∈ u such that, for
every i ∈ Φ+, the set

w i ∶= {φ ∈ Φ+ ∣ i ∈ sφ }

is finite. We claim that the reduced product

⟨D, d̄⟩ ∶= ∏
i∈Φ+

⟨Bw i , b̄w i ⟩/u

is the desired model of Φ+ ∪ Φ−.
First consider φ(ā) ∈ Φ+. For every i ∈ sφ , we have Bw i ⊧ φ(b̄w i ).

Therefore, sφ ⊆ ⟦φ(d̄)⟧ ∈ u and it follows that D ⊧ φ(d̄). Furthermore,
we have ⟨D, d̄⟩ ⊧ Φ−, since ⟨Bw i , b̄w i ⟩ ⊧ Φ−, for all i. Finally, note that
D is a reduced product of structures in Prod(K). Therefore, it can be
written as a reduced product of structures inK. ◻

Theorem 4.10. Let K be a class of Σ-structures. The following statements
are equivalent :

(1) K is closed under substructures, reduced products, and isomorphic
copies.
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d2. Products and varieties

(2) K is H∀-axiomatisable.

Proof. (2)⇒ (1) follows from the preservation properties of universal
Horn formulae. For (1)⇒ (2), let T ∶=ThH∀(K). By Lemma 4.9,we have

Mod(T) ⊆ ERP(K) = K ⊆Mod(T) ,

as desired. ◻

Corollary 4.11. Let T be a H∀[Σ]-theory and φ ∈ FO[Σ] a first-order
formula. The following statements are equivalent :

(1) We have A ⊧ φ, for every structure A ∈ ERP(Mod(T ∪ {φ})).
(2) φ is equivalent modulo T to a finite conjunction of H∀[Σ]-formu-

lae.

Proof. (2)⇒ (1) follows from the preservation properties of universal
Horn formulae. For (1)⇒ (2), let Φ ∶= (T∪{φ})⊧H∀.Clearly, T∪{φ} ⊧ Φ.
If we can show that Φ ⊧ T ∪ {φ} then the claim follows by compactness.

Suppose that A ⊧ Φ. By Lemma 4.9, we have

A ∈ ERP(Mod(T ∪ {φ})) ,

which, by (1), implies that A ⊧ φ. Furthermore, we have A ⊧ T since
T ⊆ Φ. ◻

Theorem 4.12. Let K be a class of Σ-structures containing the empty
product and set T ∶=ThH∀(K). Then

QV(K) = ERP(K) =Mod(T) .

Proof. LetQ be the class of all structures that can be embedded into a
reduced product of structures inK. Any quasivariety containingKmust
containQ. Hence, it is sufficient to show thatQ is a quasivariety.
By Lemma 4.9, we have Q = Mod(T). Every Horn formula in T is

strict sinceK contains the empty product. Consequently, T ⊆ SH∀[Σ]
andQ =Mod(T) is a quasivariety. ◻
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We conclude this section with a analogous characterisations of varie-
ties.

Definition 4.13. LetK be a class of structures. A element A ∈ K is free
(inK) if there exists a subset C ⊆ A such that AC is a freemodel of ⟨C;∅⟩.
In this case we also say that A is freely generated by C.

We can use Lemma 4.2 to obtain a characterisation of free structures.

Lemma 4.14. Let K be a class of structures, A ∈ K, and C ⊆ A. Then A is
freely generated by C if and only if A is generated by C and, for every tuple
ā ⊆ C of distinct elements and each atomic formula φ(x̄) with A ⊧ φ(ā),
we have

B ⊧ ∀x̄φ , for all B ∈ K .

Lemma 4.15. LetK be a class of structures and A and B structures in K
freely generated by, respectively, C and D. If ∣C∣ = ∣D∣ then every bijection
C → D extends to an isomorphism A ≅ B.

Proof. Let f ∶ C → D be a bijection. By definition of a freemodel,we can
extend f to a homomorphism g ∶ A→ B and f −1 to a homomorphism
h ∶ B→ A. Since h ○ g is a homomorphism A→ A with (h ○ g)↾C = idC
it follows by uniqueness that h ○ g = idA. Similarly, we have g ○ h = idB .
Hence, g ∶ A→ B is the desired isomorphism. ◻

Lemma 4.16. LetK be a class of structures that is closed under nonempty
products, substructures, and isomorphic copies.

(a) If a structure A ∈ K is generated by a set X of size ∣X∣ = κ then
K contains a structure Fκ ∈ K that is freely generated by a set of size κ.
Furthermore, there exists a surjective homomorphism Fκ → A.

(b) IfK contains a structure with at least 2 elements thenK contains,
for every cardinal κ, a structure that is freely generated by a set of size κ.

Proof. (a) Let C be a set of κ constant symbols. By Theorem 4.3, the
K-presentation ⟨C;∅⟩ has a free model F. If we can show that cF ≠ dF ,
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d2. Products and varieties

for all distinct constants c, d ∈ C, then it follows that F is freely generated
by C.

For a contradiction, suppose that there are c ≠ d with cF = dF . By
Lemma 4.14 it follows that every structure inK satisfies ∀x∀y(x = y).
Hence, every structure inK has at most 1 element. This contradicts the
fact that A contains a subset X ⊆ A of size κ.

Finally, note that we can extend any bijectionC → X to a homomorph-
ism F → A. Since A is generated by X this homomorphism is surjective
and A is a weak homomorphic image of F.

(b) follows from (a). If K contains a structure with at least 2 ele-
ments thenK contains arbitrarily large structures since it is closed under
products. ◻

Theorem 4.17 (Birkhoff). Let K be a class of Σ-structures. The following
statements are equivalent :

(1) K is closed under nonempty products, substructures, and weak
homomorphic images.

(2) K = Var(K)

(3) K is axiomatised by a set of formulae of the form ∀x̄φ where φ is
an atomic formula.

Proof. It is easy to see that (1) and (2) are equivalent. The implication
(3)⇒ (1) follows from Lemmas c2.1.6 and c2.1.3 (a), and Corollary 3.7.
Hence, it remains to prove that (1) implies (3).

Set H ∶= Mod(T) where T is the set of all sentences ∀x̄φ ∈ Th(K)
where φ is an atomic formula. We have to show thatH ⊆ K.

First, we consider the case thatK contains a structure with at least 2
elements. ThenK has arbitrarily large free structures F, by Lemma 4.16.
Hence, F ∈ K ⊆H. But the classH is closed under nonempty products,
substructures, andweak homomorphic images, by (3)⇒ (1).ByLemma 4.14,
it follows that F is also a free structure of H. Since free structures
are uniquely determined by the cardinality of their set of generators
we can conclude that K contains all free structures of H. Since, by
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5. The Theorem of Feferman and Vaught

Lemma 4.16 (a), every structure of H is a weak homomorphic image
of a free structure andK is closed under weak homomorphic images it
follows thatH ⊆ K.

It remains to consider the case thatK only contains structures with at
most 1 element. Then ∀x∀y(x = y) ∈ T and all structures ofH contain
at most 1 element. Since each such structure can be described up to
isomorphism by formulae of the form ∀x̄φ it follows thatH = K. ◻

5. The Theorem of Feferman and Vaught
In general, first-order formulae are not preserved in products. Neverthe-
less the first-order theories of products are well behaved. We will prove
below that the first-order theory of a product can be computed from
the first-order theories of its factors. In fact, this result holds not only
for ordinary direct products, but it can be extended to a quite general
notion of a product.

Definition 5.1. Let S and T be disjoint sets of sorts, Σ an S-sorted signa-
ture, Γ a T-sorted one, and ι ∈ T a sort of T . Suppose that (Ai)i∈I is a
sequence of Σ-structures and J a Γ-structure whose domain of sort ι is
Jι = ℘(I). For s ∈ S, let Is ∶= { i ∈ I ∣ Ai

s ≠ ∅}.
The generalised product of (Ai)i over J is the structure

∏
i∈J

Ai ∶= ⟨U , ⊆, E= , (ζJ)ζ∈Γ , (ξ′)ξ∈Σ⟩ ,

with domains

Us ∶=

⎧⎪⎪
⎨
⎪⎪⎩

∏i∈Is
Ai

s for s ∈ S ,
Js for s ∈ T .

The relations and functions ζJ, for ζ ∈ Γ, are taken from J, while the
relations R′, for R ∈ Σ, are defined by

R′ ∶= { ⟨w , a0 , . . . , an−1⟩ ∈ ℘(I) ×U n ∣ w = ⟦Rā i⟧i∈I } .
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d2. Products and varieties

As usual the functions f ′, for f ∈ Σ, are defined component wise

f ′(ā) ∶= ( f Ai (ā i))i .

Finally, ⊆ is the subset relation on Jι = ℘(I) and

E= ∶= { ⟨w , a, b⟩ ∈ ℘(I) ×U 2 ∣ w = ⟦a i = b i⟧i∈I } .

Example. (a) Let (Ai)i∈I be a sequence of structures and u a filter on I.
The reduced product ∏i Ai/u can be interpreted in the generalised
product∏i∈J Ai with index structureJ ∶= ⟨℘(I), u⟩.A relation R of∏i Ai/u
can be defined by the formula

φR(x̄) ∶= ∃z(Rzx̄ ∧ uz) .

(b) Suppose that Gi = ⟨Vi , E i⟩, i < 2, are two directed graphs. Their
asynchronous product is the graph H = ⟨V , E⟩with universeV ∶= V0×V1
and edge relation

E ∶= (idV0 × E1) ∪ (E0 × idV1) .

We can interpret H in the generalised product over the index structure
J ∶= ⟨℘[2]⟩ by the formula

φE(x , y) ∶= ∃u∃v[u ⊈ v ∧ v ⊈ u ∧ E=uxy ∧ Evxy] ,

which states that, for x = ⟨x0 , x1⟩ and y = ⟨y0 , y1⟩, there are sets u = {i}
and v = {k} with i ≠ k such that x i = y i and ⟨xk , yk⟩ ∈ Ek .

Theorem 5.2 (Feferman-Vaught). For every first-order formula φ(x̄ , ȳ),
there exist a finite number of first-order formulae χ0(x̄), . . . , χm−1(x̄)
and ψ( ȳ, z̄) such that,

∏
i∈J

Ai ⊧ φ(w̄ , ā)

iff ⟨J, ⊆⟩ ⊧ ψ(w̄ , ⟦χ0(ā i)⟧i , . . . , ⟦χm−1(ā i)⟧i) ,

for all sequences (Ai)i∈I , index structures J, and tuples ā ⊆ ∏i Ai and
w̄ ⊆ J.
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5. The Theorem of Feferman and Vaught

Proof. We construct the formulae χ i and ψ by induction on φ. If φ is an
atomic formula whose free variables all range over J then we have

∏
i∈J

Ai ⊧ φ(w̄) iff ⟨J, ⊆⟩ ⊧ φ(w̄) .

If φ = Rst0 . . . tn−1 where R ∈ Σ then we have

∏
i∈J

Ai ⊧ φ(w̄ , ā) iff ⟦Rt0 . . . tn−1[ā i]⟧i = sJ[w̄] .

Hence, we can set χ0 ∶= Rt0 . . . tn−1 and ψ ∶= z0 = s.
Similarly, if φ = E=st0 t1 thenwe define χ0 ∶= t0 = t1 and ψ ∶= z0 = s. If

φ is a boolean combination then we can take the corresponding boolean
combination of the formulae obtained by inductive hypothesis.

Hence, it remains to consider the case that φ = ∃zφ′(x̄ , ȳ, z). Let
χ′0 , . . . , χ′m−1 and ψ′ be the formulae for φ′ obtained from the inductive
hypothesis. If z ranges over J then we have

∏
i∈J

Ai ⊧ φ(w̄ , ā)

iff there is some w′ ∈ J with

⟨J, ⊆⟩ ⊧ ψ′(w̄ ,w′ , ⟦χ′0(ā
i)⟧i , . . . , ⟦χ′m−1(ā

i)⟧i)

iff ⟨J, ⊆⟩ ⊧ ∃z′ψ′(w̄ , z′ , ⟦χ′0(ā
i)⟧i , . . . , ⟦χ′m−1(ā

i)⟧i) .

If, on the other hand, z ranges over sequences in∏i Ai then we pro-
ceed as follows. As φ only mentions finitely many symbols of the signa-
ture we may assume that the signature is finite. Therefore, every first-
order formula can bewritten as a finite disjunction of Hintikka-formulae.
Let r be the maximal quantifier rank of the formulae χ′l , l < m, and let
χ′′0 , . . . , χ′′p−1 be an enumeration of all Hintikka-formulae of this quanti-
fier rank. We can find a formula ψ′′ such that

⟨J, ⊆⟩ ⊧ ψ′(w̄ , ⟦χ′0(ā
i , b i)⟧i , . . . , ⟦χ′m−1(ā

i , b i)⟧i)

iff ⟨J, ⊆⟩ ⊧ ψ′′(w̄ , ⟦χ′′0(ā
i , b i)⟧i , . . . , ⟦χ′′p−1(ā

i , b i)⟧i) .
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Therefore, we may w.l.o.g. assume that, for all elements ā and b, the sets

⟦χ′0(ā
i , b i)⟧i , . . . , ⟦χ′m−1(ā

i , b i)⟧i

form a partition of I. For s ⊆ [m], let

χs(x̄) ∶=⋀
l∈s
∃zχ′l(x̄ , z) ∧ ∀z⋁

l∈s
χ′l(x̄ , z) ,

and define

ψ( ȳ, z̄) ∶= ∃u0⋯∃um−1(“u0 , . . . , um−1 form a partition of I”

∧ ψ′( ȳ, ū) ∧ ⋀
l<m

u l ⊆⋃
s∋l

zs) .

We claim that the formulae ψ and χs , for s ⊆ [m], have the desired
properties. Note that

k ∈ ⟦χs(ā i)⟧i iff s = { l < m ∣ k ∈ ⟦∃zχ′l(ā
i , z)⟧i } ,

which implies that

k ∈⋃
s∋l
⟦χs(ā i)⟧i iff k ∈ ⟦χs(ā i)⟧i for some s ∋ l

iff l ∈ { l < m ∣ k ∈ ⟦∃zχ′l(ā
i , z)⟧i }

iff k ∈ ⟦∃zχ′l(ā
i , z)⟧i .

First, suppose that there is some b ∈∏i Ai with

∏
i∈J

Ai ⊧ φ′(ā, w̄ , b) .

Setting u l ∶= ⟦χ′l(ā
i , b i)⟧i it follows by inductive hypothesis that

⟨J, ⊆⟩ ⊧ ψ′(w̄ , u0 , . . . , um−1) .
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Furthermore, u l ⊆ ⟦∃zχ′l(ā
i , z)⟧i which, by the above remark, implies

that u l ⊆ ⋃s∋l⟦χs(ā i)⟧i . Since, by assumption, u0 , . . . , um−1 form a
partition of I, it follows that

⟨J, ⊆⟩ ⊧ ψ(w̄ , (⟦χs(ā i)⟧i)s⊆[m]) .

Conversely, suppose that

⟨J, ⊆⟩ ⊧ ψ(w̄ , (⟦χs(ā i)⟧i)s⊆[m]) .

Then there are sets u l ⊆ ⟦∃zχ′l(ā
i , z)⟧i , l < m, forming a partition of I

such that

⟨J, ⊆⟩ ⊧ ψ′(w̄ , u0 , . . . , um−1) .

For each i ∈ u l , fix some element b i ∈ Ai with Ai ⊧ χ′l(ā
i , b i). Since

the u l form a partition of I this defines an element b ∈∏i Ai . By induct-
ive hypothesis, we have

∏
i∈J

Ai ⊧ φ′(ā, w̄ , b) .
◻

Corollary 5.3. Let (Ai)i∈I and (Bi)i∈I be two sequences of structures and
suppose that J is a suitable index structure.

Ai ≡ Bi , for all i ∈ I , implies ∏
i∈J

Ai ≡∏
i∈J

Bi .
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1. Ordered topological structures

In this chapter we study ordered algebraic structures where the definable
relations have similar properties as those in real closed fields. We start
with some general remarks concerning densely ordered structures and
the order topology.

Definition 1.1. Let ⟨A, <⟩ be an open dense linear order.
(a) For convenience, we add to A a least element −∞ and a greatest

one +∞. Let A∞ denote the resulting order.
(b) An interval is a nonempty set of the form

(a, b) ∶= ↑a ∩ ↓b , [a, b) ∶= ⇑a ∩ ↓b ,
or (a, b] ∶= ↑a ∩ ⇓b , [a, b] ∶= ⇑a ∩ ⇓b ,

with a, b ∈ A∞. Intervals of the form (a, b) are called open, those of the
form [a, b] closed.

(c) For functions f , g ∶ D → A∞ with D ⊆ A, we define

f < g : iff f (c) < g(c) for all c ∈ D ,
f ≤ g : iff f (c) ≤ g(c) for all c ∈ D ,

and we set

( f , g) ∶= { ⟨c, a⟩ ∈ D × A ∣ f (c) < a < g(c) } ,
[ f , g] ∶= { ⟨c, a⟩ ∈ D × A∞ ∣ f (c) ≤ a ≤ g(c) } .
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(d) We equip A with the order topology and each product An with
the corresponding product topology. For ā, b̄ ∈ An , we define

B(ā, b̄) ∶= (a0 , b0) × ⋅ ⋅ ⋅ × (an−1 , bn−1) ⊆ An .

Sets of this form are called boxes. Recall that the topological closure of a
set U ⊆ A is denoted by cl(U), its interior by int(U), and the boundary
by ∂U .

Remark. For every n < ω, the set of boxes forms an open base for the
topology on An . This topology is Hausdorff.

Definition 1.2. A function f ∶ A→ B between linear orders is monotone
if it is either increasing or decreasing. It is strictly monotone if it is strictly
increasing or strictly decreasing.

The following lemma gives a criterion for a function defined on a
direct product to be continuous. It will be used in Section 3.

Lemma 1.3. Let X be a topological space, ⟨A, <⟩ and ⟨B, <⟩ open dense
linear orders, and f ∶ X × A→ B a function such that

(1) for each x ∈ X, the function f (x , ⋅ ) ∶ A → B is continuous and
monotone, and

(2) for each a ∈ A, the function f ( ⋅ , a) ∶ X → B is continuous.
Then f is continuous.

Proof. Let J ⊆ B be an open interval. To prove that f −1[J] is open we
show that, for every pair ⟨x , a⟩ ∈ f −1[J], there are open sets O ⊆ X and
I ⊆ Awith ⟨x , a⟩ ∈ O × I and f [O × I] ⊆ J.
By (1) there is an open interval (b0 , b1) ⊆ A with a ∈ (b0 , b1) such

that f [{x} × (b0 , b1)] ⊆ J. We use (2) to obtain open sets O0 ,O1 ⊆ X
such that f [O i × {b i}] ⊆ J, for i < 2. Let O ∶= O0 ∩ O1. We claim that
f [O × (b0 , b1)] ⊆ J.

Let y ∈ O and b0 < c < b1. By symmetry, we assume that the function
f (y, ⋅ ) ∶ A→ B is increasing. Then f (y, b0) ≤ f (y, c) ≤ f (y, b1). Since
f (y, b0), f (y, b1) ∈ J, this implies that f (y, c) ∈ J. ◻
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We investigate the structure of definable relations in ordered struc-
tures. Throughout this chapter we will work with definitions with para-
meters.

Definition 1.4. Let A be a structure.
(a) A relation R ⊆ An is parameter-definable if there exists a first-order

formula φ(x̄; ȳ) and parameters c̄ ⊆ A such that R = φ(x̄; c̄)A.
(b) A topology C on A is definable if there exists a first-order formula

φ(x , ȳ; z̄) and parameters c̄ ⊆ A such that the family (φ(x , ā; c̄)A)ā⊆A is
a base of C.

Lemma 1.5. Let A = ⟨A, <⟩ be an open dense linear order and n < ω.

(a) There exists a formula β(x̄; ȳ, z̄) such that

A ⊧ β(c̄; ā, b̄) iff c̄ ∈ B(ā, b̄) .

(b) If X ⊆ An is parameter-definable then so are cl(X) and int(X).

(c) If X ⊆ Y ⊆ An are parameter-definable sets and X is open in Y then
there exists a parameter-definable open set O such that X = Y ∩ O.

Proof. (a) Set

β(x̄; ȳ, z̄) ∶= ⋀
i<n
(y i < x i ∧ x i < z i) .

(b) Let φ(x̄) be the formula defining X. By (a), there exists a formula
expressing that c̄ ∈ B(ā, b̄). We can define cl(X) by the formula

ψ(x̄) ∶= ∀ ȳz̄[x̄ ∈ B( ȳ, z̄)→ (∃ū ∈ B( ȳ, z̄))φ(ū)] ,

which expresses that every neighbourhood of x̄ contains a point of X.
Similarly, we can define int(X) by

ϑ(x̄) ∶= ∃ ȳz̄[x̄ ∈ B( ȳ, z̄) ∧ (∀ū ∈ B( ȳ, z̄))φ(ū)] .
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(c) Let φ(x̄) and ψ(x̄) be the formulae defining X and Y , respectively
and set

O ∶=⋃{B(ā, b̄) ∣ B(ā, b̄) ∩ Y ⊆ X } .

Then O is an open set with Y ∩ O = X. It can be defined by the formula

ϑ(x̄) ∶= ∃ ȳz̄[x̄ ∈ B( ȳ, z̄) ∧ (∀ū ∈ B( ȳ, z̄))(ψ(ū)→ φ(ū))] . ◻

We have seen that every parameter-definable relation in a real closed
field is given by a boolean combination of polynomial equations and
inequalities. As a consequence these relations are structurally quite tame.
The next definition isolates the combinatorial core responsible for this
simplicity.

Definition 1.6. A structure A is o-minimal if there exists a parameter-
definable open dense linear order < on A such that every parameter-
definable subset X ⊆ A is a finite union of singletons {a} and open
intervals (a, b) with a, b ∈ A∞.

In this chapter < will always denote the order with respect to which
the given structure is o-minimal.

Example. (a) Every open dense linear order ⟨A, <⟩ is o-minimal since
these structures admit quantifier elimination.

(b) As already mentioned above, real closed fields are another promin-
ent example of o-minimal structures. Because of quantifier elimination
each parameter-definable set in such a field is a boolean combination of
sets defined by polynomial inequalities. To see that a real closed field is
o-minimal it is therefore sufficient to note that every inequality p[x] > 0
defines a finite union of open intervals.

Lemma 1.7. Let A be an o-minimal structure and X ⊆ A parameter-
definable.

(a) inf X and sup X exist in A∞.
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(b) ∂X is finite. Let a1 < ⋅ ⋅ ⋅ < an−1 be an increasing enumeration of ∂X
and set a0 ∶= −∞ and an ∶=∞. Each interval (a i , a i+1), 0 ≤ i < n,
is either contained in X or disjoint from X.

Proof. By definition of o-minimality, X is of the form

X = (a0 , b0) ∪ ⋅ ⋅ ⋅ ∪ (an−1 , bn−1) ∪ {c0 , . . . , cm−1} .

Consequently,

sup X = max {b0 , . . . , bn−1 , c0 , . . . , cm−1}

and inf X = min{a0 , . . . , an−1 , c0 , . . . , cm−1}

exist. For the second claim, note that

∂X ⊆ {a0 , . . . , an−1 , b0 , . . . , bn−1 , c0 , . . . , cm−1}

is finite. W.l.o.g. we may assume that the decomposition of X has been
chosen such that

(a i , b i) ∩ (ak , bk) = ∅ , for i ≠ k ,
and c i ∉ (ak , bk) , for all i , k .

If d < e are consecutive elements of an increasing enumeration of X
then we either have

d = a i , e = b i , and (d , e) = (a i , b i) ⊆ X ,
d = b i , e = a i+1 , and (d , e) ∩ X = ∅ ,
d = b i , e = ck , and (d , e) ∩ X = ∅ ,
d = c i , e = ak , and (d , e) ∩ X = ∅ ,

or d = c i , e = ck , and (d , e) ∩ X = ∅ . ◻

Definition 1.8. Let ⟨A, <⟩ be an open dense linear order and n < ω. A
set X ⊆ An is definably connected if it is parameter-definable and there
is no partition X = Y0 ∪ Y1 of X into two disjoint nonempty parameter-
definable subsets Y0 ,Y1 ⊆ X that are open in X.
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Lemma 1.9. Let A be an o-minimal structure.
(a) A subset X ⊆ A is definably connected if and only if it is either empty

or a single interval.
(b) The image of a definably connected set X ⊆ Am under a continuous

parameter-definable function f ∶ X → An is definably connected.
(c) Let X ,Y ⊆ An be parameter-definable. If X ⊆ Y ⊆ cl(X) and X is

definably connected then so is Y .
(d) If X ,Y ⊆ An are definably connected and X ∩ Y ≠ ∅ then X ∪ Y is

definably connected.

Proof. (a) By definition of o-minimality, X is of the form

X = (a0 , b0) ∪ ⋅ ⋅ ⋅ ∪ (an−1 , bn−1) ∪ {c0 , . . . , cm−1} ,

where we assume that n and m are chosen minimal. If n > 1, or n = 1
and m > 0, then we can decompose X into the sets

Y0 ∶= (a0 , b0)
Y1 ∶= (a1 , b1) ∪ ⋅ ⋅ ⋅ ∪ (an−1 , bn−1) ∪ {c0 , . . . , cm−1} .

Similarly, if n = 0 and m > 1 then we can set Y0 ∶= {c0} and Y1 ∶=
{c1 , . . . , cm−1}. Consequently, the pair ⟨n,m⟩ can only take the values
⟨0, 0⟩, ⟨0, 1⟩, or ⟨1, 0⟩. In the first case X = ∅ and, otherwise, X is an
interval.

(b) Suppose that f [X] is not definably connected. Let Y0 ∪ Y1 = f [X]
be the corresponding decomposition. Then we obtain a decomposition
f −1[Y0] ∪ f −1[Y1] = X of X into two disjoint nonempty parameter-
definable open subsets. Hence, X is not definably connected.

(c) Suppose that Y is not definably connected and let Z0 ∪ Z1 = Y
be the corresponding decomposition. The sets Z0 ∩ X and Z1 ∩ X are
disjoint, parameter-definable, and open in X. If we can show that they
are nonempty then the result follows. Fix a ∈ Z i ⊆ cl(X) and an open
set O such that O ∩ Y ⊆ Z i . Since a ∈ cl(X) it follows that O ∩ X ≠ ∅.
Hence, there is some element b ∈ O ∩ X ⊆ (O ∩ Y) ∩ X ⊆ Z i ∩ X.
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(d) Suppose that X ∪ Y is not definably connected and let Z0 ∪ Z1 =
X ∪Y be a corresponding decomposition. If Z0 ∩ X ≠ ∅ and Z1 ∩ X ≠ ∅
then Z0 ∩ X and Z1 ∩ X witness the fact that X is not definably con-
nected. Suppose that Z0 ∩ X = ∅, i.e., X ⊆ Z1. Then we have Y ∩ Z1 ⊇
(X ∩Y)∩ Z1 = X ∩Y ≠ ∅ and Y ∩ Z0 = Z0 ≠ ∅. Consequently, Y is not
definably connected. ◻

Corollary 1.10. Let A be an o-minimal structure and f ∶ [a, b] → A
parameter-definable and continuous. Then rng f contains every element
between f (a) and f (b).

2. O-minimal groups and rings
Before continuing to develop the theory of o-minimal structures let us
give examples of o-minimal structures from algebra. We consider groups
and rings.

Proposition 2.1. Let M be an o-minimal structure and suppose that ⋅ is a
parameter-definable operation such that G ∶= ⟨M , ⋅ , <⟩ forms an ordered
group.

(a) The only parameter-definable subgroups of G are {e} and M.

(b) G is abelian, divisible, and torsion-free.

Proof. (a) Let H ⊂ M be a parameter-definable proper subgroup of G.
First, we show that H is convex. For a contradiction, suppose otherwise.
Then there are elements h ∈ H and a ∈ M ∖ H with e < a < h. This
implies that hn < ahn < hn+1, for all n. Consequently,we obtain a strictly
increasing sequence

e < a < h < ah < h2 < ah2 < h3 < . . .

where every second element belongs to H while the other elements
belong to M∖H. Hence,H cannot bewritten as a finite union of intervals.
A contradiction.
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By Lemma 1.7, the supremum c ∶= sup H exists. Because H is convex
it follows that (e , c) ⊆ H. Suppose that c > e and let h ∈ (e , c). Then
h < c implies e < h−1c and e < h implies h−1 < e and h−1c < c. Hence,
h−1c ∈ (e , c) ⊆ H and it follows that c = hh−1c ∈ H. Thus, we have
c < ch ∈ H, in contradiction to the choice of c. Consequently, we have
c = e and H = {e}.

(b) We have already shown in Lemma d1.4.5 that all ordered groups
are torsion-free.

For every a ∈ M, the centraliser C(a) ∶= { x ∈ M ∣ ax = xa } is a
parameter-definable subgroup of G. Since a ∈ C(a) it follows by (a)
that C(a) = M. Consequently, every element a commutes with all other
elements and G is abelian.
Analogously, for 1 < n < ω, we can consider the non-trivial parameter-

definable subgroup Dn ∶= { an ∣ a ∈ M }. By (a), it follows that Dn = M.
Hence, for every a ∈ M there is some b ∈ M with a = bn . Consequently,
G is divisible. ◻

Theorem 2.2. An ordered group G is o-minimal if and only if it is abelian,
divisible, and torsion-free.

Proof. (⇒)was already shown in Proposition 2.1. For (⇐), suppose that
G = ⟨G ,+,−, 0, <⟩ is a model of ODAG. We have seen in Theorem d1.4.16
that this theory admits quantifier elimination. Hence, every parameter-
definable subset X ⊆ G is given as a boolean combination of inequalities
x < a, for a ∈ G. It follows that X can be written as a finite union of
intervals. ◻

Theorem 2.3. Let A be an o-minimal structure and suppose that + and ⋅
are parameter-definable operations such that ⟨A,+, ⋅, <⟩ forms an ordered
ring. Then ⟨A,+, ⋅, <⟩ is a real closed field.

Proof. For every a ∈ A, there exists the parameter-definable additive
subgroup aA ∶= { ax ∣ x ∈ A}. If a ≠ 0 then a ∈ aA implies, by
Proposition 2.1 (a), that aA = A. In particular, there is some element
b ∈ Awith ab = 1.
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Let P ∶= { a ∈ A ∣ a > 0}. Then P is closed under multiplication and,
hence, forms an ordered group ⟨P, ⋅ , <⟩. By Proposition 2.1 (b), it follows
that this group is abelian. Since, for every element a ∈ A, we have a ∈ P,
or a = 0, or −a ∈ P, it follows that ⋅ is commutative, for all elements of A.
Consequently, ⟨A,+, ⋅, <⟩ is an ordered field.

It remains to prove that it is real closed. We use the characterisation
of Proposition b6.6.17. Let p ∈ A[x] be a polynomial over A. The corres-
ponding polynomial function A→ A ∶ a ↦ p[a] is parameter-definable.
Suppose that a < b are elements with p[a] < 0 < p[b]. By Corollary 1.10,
there exists an element c ∈ (a, b) with p[c] = 0. ◻

Corollary 2.4. An ordered ring is o-minimal if and only if it is a real
closed field.

Besides real closed fields and models of ODAG, let us also mention the
following example of an o-minimal structure.

Theorem 2.5 (Wilkie). The structure ⟨R,+, ⋅ , 0, 1, exp⟩ is o-minimal
where exp(x) ∶= ex is the exponential function.

3. Cell decompositions
In this section we prove an important structure result on parameter-
definable relations in o-minimal structures. We will show that each such
relation can be decomposed into finitely many ‘simple’ parts.

We start by considering binary relations R ⊆ M2. The general theorem
below will then follow by induction on the arity.

Lemma 3.1. Let M be o-minimal and f ∶ (a, b) → M parameter-defin-
able.

(a) There exist elements a ≤ c < d ≤ b such that f ↾ (c, d) is either
constant or injective.

(b) If f is injective then there are elements a ≤ c < d ≤ b such that
f ↾ (c, d) is strictly monotone.
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(c) If f is strictly monotone then there are elements a ≤ c < d ≤ b such
that f ↾ (c, d) is continuous.

Proof. (a) If there is some x ∈ M such that f −1(x) is infinite then, being
parameter-definable, f −1(x) contains an open interval (c, d). Hence,
f ↾ (c, d) is constant.

It remains to consider the case that all sets f −1(x), x ∈ M, are finite.
Then f [(a, b)] is an infinite parameter-definable subset of M. Hence, it
contains some interval I. We define a function g ∶ I → (a, b) by

g(z) ∶= min{ c ∣ f (c) = z } .

The function g is injective since it has a left-inverse f . As above, we can
conclude that g[I] is infinite and it contains an interval (c, d). Setting
J ∶= f [(c, d)] it follows that the restriction g ↾ J ∶ J → (c, d) is surjective.
Consequently, g ↾ J is a bijection between J and (c, d) and f is its inverse.
In particular, f ↾ (c, d) is injective.

(b) Let x ∈ (a, b). Since f is injective, we have a partition

(a, x) = { y ∈ (a, x) ∣ f (y) < f (x) }
∪ { y ∈ (a, x) ∣ f (y) > f (x) } .

One of these two sets must contain an interval (c, x), for some a < c < x.
The same holds for the interval (x , b). For σ , ρ ∈ {+,−}, define

φσ ρ(x) ∶= ∃y∃z[a < y < x < z < b

∧ ∀u[y < u < x → f (x) <σ f (u)]

∧ ∀u[x < u < z → f (x) <ρ f (u)]] ,

where <+ ∶= < and <− ∶= >. It follows that every x ∈ (a, b) satisfies
exactly one of the formulae φ++, φ+−, φ−+, φ−−.

Consequently, (a, b) contains an open interval all elements of which
satisfy the same formula. Replacing (a, b) by this intervalwemay assume
that all elements of (a, b) satisfy the same formula. By symmetry, we
may further assume that this formula is either φ−+ or φ++.
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First, suppose that all elements in (a, b) satisfy φ−+. For x ∈ (a, b),
let

s(x) ∶= sup{ s ∈ (x , b) ∣ f (x) < f (z) for all z ∈ (x , s] } .

Then we have s(x) = b since s(x) < b would contradict φ−+(s(x)).
Consequently, f is strictly increasing.

It remains to consider the case that all elements in (a, b) satisfy φ++.
Set

B ∶= { x ∈ (a, b) ∣ f (x) < f (z) for all z ∈ (x , b) } .

If B is infinite then it contains an open interval I. Hence, f is strictly
increasing on I and we are done. Consequently, let us assume that B is
finite. Replacing a by supB we may assume that,

(∗) for every x ∈ (a, b), there is some x < y < b with f (y) < f (x).

Fix c ∈ (a, b). We claim that, for all sufficiently large elements y ∈ (c, b),
we have f (y) < f (c). Otherwise, we would have f (y) > f (c), for all
sufficiently large y ∈ (c, b). Let d ∈ [c, b) be the minimal element such
that f (y) > f (c) for all y ∈ (d , b). If f (d) > f (c) then d would not be
minimal since φ++(d) holds. Hence, f (d) < f (c) and, by (∗), there is
some d < e < b such that f (e) < f (d) < f (c). Contradiction.
Consequently, we have f (y) < f (c), for all sufficiently large y. Set

y(c) ∶= inf { y ∈ [c, b) ∣ f (z) < f (c) for all z ∈ (y, b) } .

Then φ++(c) implies that c < y(c) and f (y(c)) < f (c). Minimality
of y(c) implies that y(c) satisfies the following formula:

ψ↘(y) ∶= ∃uv[a < u < y < v < b

∧ ∀st[u < s < y < t < v → f (s) > f (t)]] .

Since c was arbitrary it follows that, for every element c ∈ (a, b), there
is some y ∈ (c, b) satisfying ψ↘.
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Therefore, there is an interval (d , b) ⊆ (a, b) such that ψ↘ holds for
all y ∈ (d , b). Replacing a by d wemay assume that all elements of (a, b)
satisfy this formula.

Let ψ↗ be the formula obtained from ψ↘ by replacing the inequality
f (s) > f (t) by f (s) < f (t). An analogous argument shows that we may
assume that every element of (a, b) satisfies ψ↗. But no element can
simultaneously satisfy ψ↘ and ψ↗. Contradiction.

(c) By symmetry, we may assume that f is strictly increasing. Since
rng f is infinite it contains an open interval I ⊆ rng f . Choose elements
x < y in I and set c ∶= f −1(x) and d ∶= f −1(y). Then f induces an
order-preserving bijection (c, d) → (x , y). Every order-isomorphism
is continuous since the topology is defined in terms of the order. Con-
sequently, f ↾ (c, d) is continuous. ◻

Theorem 3.2 (Monotonicity Theorem). Let M be o-minimal and f ∶
(a, b)→ M parameter-definable. There exist elements

a = a0 < a1 < ⋅ ⋅ ⋅ < an = b

such that, for every i < n, the restriction f ↾ (a i , a i+1) is either constant,
or strictly monotone and continuous.

Proof. Let X be the set of all elements x ∈ (a, b) such that, for some
a ≤ c < x < d ≤ b, the restriction f ↾ (c, d) is either constant, or strictly
monotone and continuous. Note that (a, b)∖X is finite since, otherwise,
it would contain some interval I and we could use Lemma 3.1 to find an
interval I0 ⊆ I such that f ↾ I0 is either constant, or strictly monotone
and continuous. This would imply I0 ⊆ X. A contradiction.

Let b1 < ⋅ ⋅ ⋅ < bm−1 be an enumeration of (a, b)∖X and set b0 ∶= a and
bm ∶= b. It is sufficient to prove the theorem for f ↾ (b i , b i+1). Hence, we
may w.l.o.g. assume that X = (a, b). There exist finitely many elements
a = a0 < a1 < ⋅ ⋅ ⋅ < an−1 < an = b such that, for each interval (a i , a i+1),
one of the following cases occurs :

(1) For all x ∈ (a i , a i+1), f is constant on some neighbourhood of x.
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(2) For all x ∈ (a i , a i+1), f is strictly increasing on some neighbour-
hood of x.

(3) For all x ∈ (a i , a i+1), f is strictly decreasing on some neighbour-
hood of x.

We consider each case in turn.
(1) Fix some element x ∈ (a i , a i+1) and set

s ∶= sup{ y ∈ (x , a i+1) ∣ f is constant on [x , y) } .

Then we have s = a i+1 since, if s < a i+1, then s ∈ (a i , a i+1) and f would
be constant on some neighbourhood of s. A contradiction. Therefore,
f is constant on [x , a i+1). In the sameway we can show that f is constant
on (a i , x]. Hence, it is constant on the whole interval (a i , a i+1).

(2) Fix some x ∈ (a i , a i+1) and set

s ∶= sup{ y ∈ (x , a i+1) ∣ f is strictly increasing on [x , y) } .

As above, we have s = a i+1 and f is strictly increasing on [x , a i+1).
Similarly, it is strictly increasing on (a i , x].

(3) This case follows in the same way as (2). ◻

Corollary 3.3. Let M be o-minimal and f ∶ (a, b)→ M parameter-defin-
able.

(a) For every c ∈ [a, b), the right sided limit limx↓c f (x) exist in M∞.

(b) For every c ∈ (a, b], the left sided limit limx↑c f (x) exist in M∞.

Corollary 3.4. Let M be o-minimal and f ∶ [a, b]→ M parameter-defin-
able. Then f takes a maximum and a minimum value on [a, b].

The Cell Decomposition Theorem below is proved by an induction
on the dimension. For the base case of this induction, we will need the
following technical result.
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Theorem 3.5. Let M be o-minimal and suppose that R ⊆ M2 is a parame-
ter-definable relation such that, for every a ∈ M, the fibre

Ra ∶= { b ∈ M ∣ ⟨a, b⟩ ∈ R }

is finite. Then there is a constant n < ω such that ∣Ra ∣ ≤ n, for all a ∈ M.

Proof. We call a pair ⟨a, b⟩ ∈ M2
∞ generic if there exist open intervals

I, J ⊆ M∞ with ⟨a, b⟩ ∈ I × J such that either
◆ R ∩ I × J = ∅, or
◆ ⟨a, b⟩ ∈ R and R ∩ I × J is the graph of a continuous function

I → M.
(In this definition we consider intervals of the form (c,∞] and [−∞, c)
as open.) Note that the sets

G0 ∶= { ⟨a, b⟩ ∈ M2 ∣ ⟨a, b⟩ is generic} ,
G+ ∶= { a ∈ M ∣ ⟨a,∞⟩ is generic} ,
G− ∶= { a ∈ M ∣ ⟨−∞, b⟩ is generic}

are parameter-definable. For n < ω, let sn be the (parameter-definable)
function with

dom sn = { a ∈ M ∣ ∣Ra ∣ ≥ n }

such that sn(a) ∶= bn where b0 < b1 < ⋅ ⋅ ⋅ < bn < ⋯ is an enumeration
of Ra .

For an element a ∈ M, let n be the maximal number such that the
functions s0 , . . . , sn−1 are defined and continuous on some neighbour-
hood of a. We call a normal if a ∉ cl(dom sn). Otherwise, a is special.
Let N be the set of normal points and S the set of special ones. Note that,
if a is normal and n is the number from above then there is some open
neighbourhood U of a such that dom sn is disjoint from U . This implies
that

∣Rx ∣ = n , for all x ∈ U , and ⟨a, b⟩ is generic, for all b ∈ M∞ .
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We claim that N and S are definable. It is sufficient to show that, for
every special element a, there is some b ∈ M∞ such that ⟨a, b⟩ is not
generic. Let a ∈ S and let n be the number from above. We define

λ−(a) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

limx↑a sn(x) if (t, a) ⊆ dom sn , for some t ,
∞ otherwise ,

λ0(a) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

sn(x) if a ∈ dom sn ,
∞ otherwise ,

λ+(a) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

limx↓a sn(x) if (a, t) ⊆ dom sn , for some t ,
∞ otherwise ,

and β(a) ∶= min{λ−(a), λ0(a), λ+(a)} .

It follows that β(a) is the least element b ∈ M∞ such that ⟨a, b⟩ is not
generic.

To conclude the proof of the theorem we distinguish two cases. First,
suppose that S is finite. Let a1 < ⋅ ⋅ ⋅ < ak−1 be an enumeration of S and set
a0 ∶= −∞ and ak ∶=∞. We claim that ∣Rx ∣ is constant on each interval
(a i , a i+1). Let

Fn ∶= { x ∈ (a i , a i+1) ∣ ∣Rx ∣ = n } .

Since ∣Rx ∣ is constant on an open neighbourhood of each element a ∈ N
it follows that the sets Fn are open. As (a i , a i+1) is connected this implies
that there is some n such that Fn = (a i , a i+1).

It remains to consider the case that S is infinite. Let

S− ∶= { a ∈ S ∣ ⟨a, b⟩ ∈ R for some b < β(a) } ,
S+ ∶= { a ∈ S ∣ ⟨a, b⟩ ∈ R for some b > β(a) } ,

β−(a) ∶= max { b ∈ Ra ∣ b < β(a) } ,
β+(a) ∶= max { b ∈ Ra ∣ b > β(a) } .

At least one of the sets S− ∩ S+, S− ∖ S+, S+ ∖ S−, S ∖ (S− ∪ S+) is infinite.
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Let us consider the case that S−∩S+ is infinite. As β− , β, β+ are param-
eter-definable we can use the Monotonicity Theorem to find an open
interval I ⊆ S−∩S+ onwhich each of these functions is continuous. Note
that β− < β < β+. We can partition I as

I = { a ∈ I ∣ ⟨a, β(a)⟩ ∈ R } ∪ { a ∈ I ∣ ⟨a, β(a)⟩ ∉ R } .

One of these two sets contains an open interval I0. Hence,we have either
β ↾ I0 ⊆ R or β ↾ I0 ∩ R = ∅. In both cases it follows that β ↾ I0 ⊆ G0
since β− ↾ I0, β ↾ I0, and β+ ↾ I0 are continuous. But ⟨a, β(a)⟩ is never
generic. Contradiction.

In a similar way one can show that the remaining three cases also lead
to contradictions. ◻

In the preceding proof we have used the observation that the elements
of a fibre Ra depend continuously on a. This is a consequence of the
Monotonicity Theorem. Since this situation will occur several times in
the following, we introduce some terminology.

Definition 3.6. Let M be an ordered structure.
(a) For D ⊆ Mn , we denote by Cn(D) the set of all parameter-defin-

able continuous functions D → M. Furthermore, we set

Cn∞(D) ∶= Cn(D) ∪ {−∞,∞} ,

wherewe regard −∞ and∞ as the constant functions with the respective
value.

(b) Let R ⊆ Mn+1 be a relation and suppose that D ⊆ Mn is a set such
that every fibre R ā with ā ∈ D contains exactly k elements. We say that a
family of parameter-definable functions s0 , . . . , sk−1 ∶ D → M is a local
enumeration of R over D if

s0 < ⋅ ⋅ ⋅ < sk−1 and R ā = {s0(ā), . . . , sk−1(ā)} , for ā ∈ D .

Note that we can write the last condition also as

R ∩ (D × M) = s0 ∪ ⋅ ⋅ ⋅ ∪ sk−1 .

A local enumeration s0 , . . . , sk−1 is continuous if every s i is continuous.
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Corollary 3.7. Let R ⊆ M2 be a parameter-definable relation such that
each fibre Ra , a ∈ M, is finite. There are finitely many elements

−∞ = a0 < a1 < ⋅ ⋅ ⋅ < am−1 < am =∞

such that over every interval (a i , a i+1) there exists a continuous local
enumeration of R.

Proof. This follows immediately from the Monotonicity Theorem and
Theorem 3.5. ◻

After having dealtwith the case of binary relations,we turn to relations
of larger arity. First, we define the ‘simple parts’ we want to decompose
our relation into. These are generalisations of the notion of an interval
to higher dimensions.

Definition 3.8. Let M be an ordered structure.
(a) Let δ̄ ∈ [2]n . A δ̄-cell is a subset C ⊆ Mn defined inductively as

follows.
◆ The set M0 is the unique ⟨⟩-cell.
◆ A δ̄0-cell is the graph of a function f ∈ Cn(D) where D is a δ̄-cell.
◆ A δ̄1-cell is a set of the form ( f , g) where D is a δ̄-cell and f , g ∈

Cn∞(D) are functions with f < g.
A cell is a set that is a δ̄-cell for some δ̄.A cell is open if it is a ⟨1, . . . , 1⟩-cell.
(We also consider the ⟨⟩-cell as open.)

(b) The dimension of a δ̄-cell C is is the number

dimC ∶= δ0 + ⋅ ⋅ ⋅ + δn−1 .

Lemma 3.9. Let C ⊆ Mn be a cell.
(a) If C is not open then it has empty interior.
(b) C is locally closed, i.e., there is an open set O with C = cl(C) ∩ O.
(c) C is homeomorphic to an open cell D ⊆ Mdim C via a parameter-

definable homeomorphism p ∶ C → D.
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(d) C is definably connected.

Proof. (a) If int(C) ≠ ∅ then there is some box B with B ⊆ C. This
implies that C is a ⟨1, . . . , 1⟩-cell.

(b)We prove the claim by induction on n. For n = 0,C = M0 is clopen.
Suppose that n > 0 and let D ∶= π(C) ⊆ Mn−1 be the projection of C
to Mn−1. By inductive hypothesis, D is locally closed. Hence, cl(D) ∖ D
is a closed set. If C is the graph of a function f ∈ Cn(D) then

cl(C) ∖ C ⊆ (cl(D) ∖ D) × M .

Hence, C is open in the closed set C ∪ (cl(D) ∖ D) × M.
If C = ( f , g), for f , g ∈ Cn(D), then

cl(C) ∖ C ⊆ f ∪ g ∪ (cl(D) ∖ D) × M .

As above it follows that C is locally closed.
The cases that f = −∞ or g =∞ follow analogously.
(c) Suppose that C is a δ̄-cell and let i0 < ⋅ ⋅ ⋅ < ik−1 be an enumeration

of all indices i with δ i = 1. We define a map p ∶ Mn → Mdim C by

p(ā) ∶= ⟨a i0 , . . . , a ik−1⟩ .

By induction on n, we prove that that p is a homeomorphism from C to
an open cell p[C] ⊆ Mdim C .

If C is open then p = idC and there is nothing to do. Hence, suppose
that C is not open. Then n > 0 and we can distinguish two cases.

If C is the graph of some function f ∈ Cn(D) then we can use the
inductive hypothesis to obtain a homeomorphism q ∶ D → q[D] from D
to an open cell q[D]. Let π ∶ Mn → Mn−1 be the projection to the first
n − 1 coordinates. Then π ↾ C ∶ C → D is a homeomorphism. Hence, so
is p = q ○ π ↾ C ∶ C → q[D].

It remains to consider the case that C = ( f , g), for f , g ∈ Cn∞(D).
Then p(āb) = ⟨q(ā), b⟩ where q ∶ D → q[D] is the homeomorphism
from the inductive hypothesis. Set f ′ ∶= f ○ q−1 and g′ ∶= g ○ q−1. Then
f ′ , g′ ∈ Cn∞(q[D]) and p ∶ C → ( f ′ , g′) is a homeomorphism.
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3. Cell decompositions

Figure 1.. A cell decomposition of R2 .

(d) We proceed by induction on n. Clearly, M0 is definably connected.
Suppose that n > 0. By inductive hypothesis, the projection D of C
to Mn−1 is definably connected. For a contradiction, suppose that C =
O0 ∪ O1 where O0 and O1 are disjoint parameter-definable open sets.
Since each fibre π−1(a) ∩ C is definably connected we have π−1(a) ⊆
O i , for some i. Hence, there are sets U0 ,U1 ⊆ Mn−1 such that O i =
π−1[U i]∩C. Clearly, U0 and U1 are open and parameter-definable. Since
D is definably connected it follows that one of them is empty. ◻

We will show below that we can partition every definable relation into
disjoint cells. In the sameway we defined the notion of a cell by induction
on the dimension, we also construct these partitions inductively.

Definition 3.10. (a) A cell decomposition of Mn is a partitionD of Mn

into finitely many pairwise disjoint cells where, for n > 1, we further
require that the projection π[D] ofD onto the first n − 1 components is
a cell decomposition of Mn−1.

(b) A cell decomposition D partitions a relation R ⊆ Mn if we have
R = C0 ∪ ⋅ ⋅ ⋅ ∪ Ck−1, for some cells C0 , . . . ,Ck−1 ∈ D.

(c) A relation R ⊆ Mn+1 is finite over Mn if every fibre

R ā ∶= { b ∈ M ∣ āb ∈ R }
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is finite. We call R uniformly finite over Mn if there is a number k < ω
such that ∣R ā ∣ < k, for all ā ∈ Mn .

Exercise 3.1. Find a cell decomposition of R2 partitioning the relation

which consists of all pairs ⟨x , y⟩ ∈ R2 such that

4
9 x

2 + 9
4 y

2 = 1 or 4
3 x

2 − 9
4 y

2 = 1 or 27
4 y2 − 4

9 x
2 = 1 .

Theorem 3.11 (Cell Decomposition Theorem). Let M be an o-minimal
structure.

(a) For every finite family R0 , . . . , Rt−1 ⊆ Mn of parameter-definable
relations there is a cell decomposition of Mn simultaneously partitioning
each R i .

(b) For every parameter-definable function f ∶ S → M with S ⊆ Mn ,
there is a cell decomposition D of Mn partitioning S such that, for each
cell C ∈ D, the restriction f ↾ C ∶ C → M is continuous.

(c) Every parameter-definable relation R ⊆ Mn that is finite over Mn−1

is uniformly finite.

Proof. We prove all statements simultaneously by induction on n. Note
that, for n = 1, (a) holds since M is o-minimal, (b) follows from the
Monotonicity Theorem, and (c) holds trivially.

For the inductive step, suppose that n > 1 and we have proved (a), (b),
and (c) already for subsets of Mn−1.
We start by proving (c). We call a box B ⊆ Mn−1 R-normal if, for

every point āb ∈ R with ā ∈ B, there exists an open interval I with
b ∈ I such that R ∩ (B × I) is the graph of some continuous function
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f ∶ B → M. (Note that this function f is then necessarily parameter-
definable.) A point ā ∈ Mn−1 is called R-normal if it is contained in some
R-normal box. Below we will establish the following claims.

(1) If B is R-normal then there exists a continuous local enumeration
of R over B.

(2) If S ⊆ Mn−1 is definably connected and all elements of S are R-
normal then there exists a continuous local enumeration of R
over S.

(3) Every open cell C ⊆ Mn contains an R-normal point.

First, let us show how (c) follows from (1)–(3). By inductive hypothesis,
there exists a cell decomposition D of Mn−1 partitioning the set of R-
normal points. If a cell C ∈ D is open then, by (3), it contains an R-
normal point. Hence, all points of C are R-normal and, by (2), there is a
number k(C) such that ∣R ā ∣ < k(C), for all ā ∈ C. For cells C ∈ D that
are not open, we can use Lemma 3.9 (c) to obtain similar bounds k(C).
Setting k ∶= max { k(C) ∣ C ∈ D } we obtain the desired bound on the
size of R ā . Hence, it remains to prove the claims.

(1) Fix ā ∈ B and suppose that b0 < ⋅ ⋅ ⋅ < bk−1 is an enumeration of R ā .
Since B is R-normal we can find open intervals I0 , . . . , Ik−1 with b i ∈ I i
and continuous functions s0 , . . . , sk−1 ∈ Cn(B) such that

R ∩ (B × I i) = s i , for all i < k .

We claim that s0 , . . . , sk−1 is a local enumeration of R over B.
First, let us show that s0 < ⋅ ⋅ ⋅ < sk−1. For a contradiction, suppose that

s i ≮ s i+1. Since s i and s i+1 are continuous this implies that there is some
point c̄ ∈ B with s i(c̄) = s i+1(c̄). In particular, s i+1(c̄) ∈ I i . As s i+1 is
continuous, there is a neighbourhood U ⊆ B of c̄ such that s i+1[U] ⊆ I i .
Since R ∩ (B × I i) = s i , it follows that s i+1 ↾ U = s i ↾ U . Thus, the set
{ c̄ ∈ B ∣ s i(c̄) = s i+1(c̄) } is open. Since

{ c̄ ∈ B ∣ s i(c̄) < s i+1(c̄) } and { c̄ ∈ B ∣ s i(c̄) > s i+1(c̄) }
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are also open and B is definably connected it follows that s i = s i+1. But
s i(ā) < s i+1(ā). A contradiction.

It remains to prove that R∩(B×M) = s0∪⋅ ⋅ ⋅∪sk−1. Let b̄c ∈ R∩(B×M).
There exists a continuous function f ∈ Cn(B) with f (b̄) = c and f ⊆ R.
In particular, ⟨ā, f (ā)⟩ ∈ R. Hence, there is some index i < k such that
f (ā) = b i = s i(ā). As above, it follows that f = s i .

(2) If S is empty there is nothing to do. Hence, we may assume that
there is some ā ∈ S. Let k ∶= ∣R ā ∣. By (1), the set { b̄ ∈ S ∣ ∣Rb̄ ∣ = k } is
clopen in S. This implies that ∣Rb̄ ∣ = k, for all b̄ ∈ S. Consequently, we
can find functions s0 < ⋅ ⋅ ⋅ < sk−1 such that

Rb̄ = {s0(b̄), . . . , sk−1(b̄)} , for b̄ ∈ S .

It follows from (1) that each s i is continuous.
(3) Let B ⊆ C be a box. We will show that B contains an R-normal

point. Suppose that B = B0× I, for a box B0 ⊆ Mn−2 and an open interval
I ⊆ M. For ā ∈ B0, we define

R(ā) ∶= { ⟨b, c⟩ ∣ b ∈ I and ābc ∈ R } .

Then R(ā) is finite over M. By Corollary 3.7 it follows that the set

{ c ∈ M ∣ c is not R(ā)-normal}

is finite. Consequently, the set

SB(R) ∶= { ⟨ā, b⟩ ∈ B ∣ b is not R(ā)-normal}

has empty interior. By inductive hypothesis, we can find a cell decom-
position D of Mn−1 partitioning B and SB(R). Let C ∈ D be an open
cell with C ⊆ B. Then C ∩ SB(R) = ∅. Replacing B by a box contained
in C we may assume that SB(R) = ∅. We can apply (2) to R(ā) to find
numbers k(ā) < ω, for ā ∈ B0, such that ∣R āb ∣ = k(ā), for all b ∈ I.

We claim that there exists a bound k with k(ā) ≤ k, for all ā. Fix c ∈ I
and define

Rc ∶= { ⟨ā, b⟩ ∣ ⟨ā, c, b⟩ ∈ R } .
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3. Cell decompositions

This set is finite over Mn−2. By inductive hypothesis, there exists a num-
ber m such that ∣Rc

ā ∣ < m, for all ā ∈ B0. Since Rc
ā = R āc it follows

that ∣R āc ∣ < m. Consequently, we have k(ā) ≤ m, for all ā ∈ B0, which
implies that ∣R āb ∣ < m, for all āb ∈ B, as desired.

We still have to find an R-normal element in B. For k < m, set

Bk ∶= { ā ∈ B ∣ ∣R ā ∣ = k } ,

and let sk
0 , . . . , sk

k−1 ∶ Bk → M be a local enumeration of R ā over Bk . By
inductive hypothesis, we can find a cell decompositionD partitioning
each set Bk such that, for every C ∈ D, all restrictions sk

i ↾ C are con-
tinuous. Since B is open and partitioned byD there exists an open cell
C ∈ D with C ⊆ B. Fix k such that C ⊆ Bk . The functions sk

0 , . . . , sk
k−1 are

continuous on C. Consequently, each point of C is R-normal.
We prove (a) next. Let R0 , . . . , Rt−1 ⊆ Mn be parameter-definable and

set

B ∶= ∂n−1R0 ∪ ⋅ ⋅ ⋅ ∪ ∂n−1Rt−1 ,

where

∂n−1R ∶= { āb ∈ Mn ∣ b ∈ ∂R ā } .

Note that B is finite over Mn−1. By (c), it follows that there is some bound
m < ω such that ∣B ā ∣ < m, for all ā ∈ Mn−1. For k < m, let

Bk ∶= { ā ∣ ∣B ā ∣ = k } ,

and let sk
1 , . . . , sk

k ∶ B
k → M be a local enumeration of B ā over Bk . We

set sk
0 ∶= −∞ and sk

k+1 ∶=∞. Finally, let

C l k i ∶= { ā ∈ Bk ∣ sk
i (ā) ∈ (R l)ā } ,

D l k i ∶= { ā ∈ Bk ∣ (sk
i (ā), s

k
i+1(ā)) ⊆ (R l)ā } ,

for l < t and 0 ≤ i ≤ k ≤ m. By inductive hypothesis, there exists a cell
decomposition C0 of Mn−1 simultaneously partitioning the sets Bk , C l k i ,

779



d3. O-minimal structures

andD l k i .By (b)we can choose a suitable refinement C of C0 such that, for
every C ∈ C with C ⊆ Bk , the functions sk

1 ↾C , . . . , sk
k ↾C are continuous.

For C ∈ C with C ⊆ Bk , we define a partition of C × M by

DC ∶= { (sk
i ↾ C , s

k
i+1 ↾ C) ∣ 0 ≤ i < m } ∪ { sk

i ↾ C ∣ 0 < i < m } .

The unionD ∶= ⋃C∈C DC is the desired cell decomposition of Mn .
It remains to prove (b). Let f ∶ S → M be parameter-definable with

domain S ⊆ Mn . By (a), it is sufficient to show thatwe can find a partition
S = R0 ⊍ ⋅ ⋅ ⋅ ⊍ Rk−1 where each R i is a parameter-definable set such that
f ↾R i is continuous. First,we can use (a) to partition S into finitelymany
cells. To find the desired partition of S it is sufficient to consider each of
these cells separately. Hence, we may assume that S is a single cell.

If S is not open thenwe can use the definable homeomorphism p ∶ S →
p[S] ⊆ Mdim S from Lemma 3.9 (c). By inductive hypothesis, we know
that the image p[S] can be partitioned into parameter-definable subsets
C0 , . . . ,Ck−1 such that all restrictions ( f ○ p−1) ↾ C i are continuous.
Consequently, we can set R i ∶= p−1[C i] to obtain the desired partition
of S.

It remains to consider the case that S is an open cell. We call a point
⟨ā, b⟩ ∈ S regular if there exists a box B ⊆ Mn−1 and an open interval
I ⊆ M such that

(1) ⟨ā, b⟩ ∈ B × I ⊆ S,

(2) for every c̄ ∈ B, the function f (c̄, ⋅ ) is continuous and monotone
on I,

(3) the function f ( ⋅ , b) is continuous at ā.

Let Sreg ⊆ S be the set of all regular points. Note that Sreg is parameter-
definable.

First, we prove that Sreg is dense in S. Let B ⊆ Mn−1 be a box and
I = (c, d) ⊆ M an interval such that B × I ⊆ S. We have to show that
(B × I)∩ Sreg ≠ ∅. By the Monotonicity Theorem, we can find, for every
ā ∈ B, a greatest element λ(ā) ∈ (c, d] such that the function f (ā, ⋅ ) is
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continuous and monotone on (c, λ(ā)). Since λ ∶ B → M is parameter-
definable we can use the inductive hypothesis to find a box C0 ⊆ B such
that λ ↾ C0 is continuous. Fix elements c < e < b < d. We can find a cell
C1 ⊆ C0 such that λ(ā) ≥ b, for all ā ∈ C1. By inductive hypothesis, there
is a cell C2 ⊆ C1 such that f ( ⋅ , e) is continuous on C2. It follows that
every point of C2 × {e} is regular. Hence, C2 × {e} ⊆ (B × I) ∩ Sreg ≠ ∅,
as desired.

By (a), we obtain a cell decompositionD partitioning both S and Sreg.
We claim that f ↾ C is continuous, for every C ∈ D with C ⊆ S. Since
Sreg is dense in S we have Sreg ∩ C ≠ ∅, for such a cell C. This implies
that C ⊆ Sreg. Consequently, for each āb ∈ C, the function f ( ⋅ , b) is
continuous at ā. It follows that C can be written as a union of boxes
B × I that, for every ⟨ā, b⟩ ∈ B × I, satisfy conditions (1)–(3) above.
Consequently, we can use Lemma 1.3 to conclude that f is continuous
on each box B × I. This implies that f is continuous on C. ◻

The Cell Decomposition Theorem has a number of important corol-
laries.

Proposition 3.12. Let R ⊆ Mm be a nonempty parameter-definable re-
lation. Then R has only finitely many definably connected components.
These components form a partition of R and each of them is clopen in R.

Proof. LetD be a cell decomposition partitioning R and set

D0 ∶= {C ∈ D ∣ C ⊆ R } .

Let C be a maximal subset ofD0 such that C ∶= ⋃C is definably connec-
ted.We claim that every definably connected subset S ⊆ R withC∩S ≠ ∅
is contained in C.

Let DS ∶= {D ∈ D0 ∣ D ∩ S ≠ ∅}. Then S ⊆ ⋃DS . Since every
cell is definably connected it follows that ⋃DS is definably connected.
Furthermore, we have C ∩ ⋃DS ⊇ C ∩ S ≠ ∅. Hence, C ∪ ⋃DS is
also definably connected. By choice of C it follows thatDS ⊆ C. Hence,
S ⊆ ⋃DS ⊆ C, as desired.
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We have shown that C is a definably connected component of R. It
follows that we can partition R into definably connected components of
the form ⋃C, for C ⊆ D0. SinceD0 is finite there are only finitely many
such components.

Finally,note that the closure of a definably connected subset of R is also
definably connected. Therefore, each definably connected component
of R is closed in R. Since its complement is a finite union of closed sets
it follows that each component is also open. ◻

Proposition 3.13. Let M be o-minimal and let π ∶ Mm+n → Mm be the
projection to the first m coordinates.

(a) For every cell C ⊆ Mm+n and every point ā ∈ π(C), the fibre C ā is
a cell in Mn .

(b) For every cell decomposition D of Mm+n and every ā ∈ Mm , we
obtain a cell decomposition

Dā ∶= {C ā ∣ C ∈ D, ā ∈ π(C) }

of Mn .

Proof. (a) For n = 1, the fibre C ā is either a single point of an open
interval. Hence, it is a cell. Suppose we have proved the claim already
for n − 1 and let C ⊆ Mm+n . For f ∈ Cn(D), let f ā ∈ Cn(D ā) be the
function defined by f ā(x) ∶= f (ā, x).

If C is the graph of a function f ∈ Cn(D) then C ā is the graph of f ā .
Similarly, if C = ( f , g), for f , g ∈ Cn∞(D), then C ā = ( f ā , g ā). Hence,
C ā is again a cell.

(b) Clearly,Dā is a finite partition of Mn . Therefore, the claim follows
by (a). ◻

Corollary 3.14. Let R ⊆ Mm × Mn be parameter-definable.
(a) There exists a number k < ω such that, for every ā ∈ Mm , the fibre

R ā ⊆ Mn has a partition into at most k cells. In particular, each fibre R ā
has at most k definably connected components.
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(b) There exists a number k < ω such that, for every ā ∈ Mm , the fibre
R ā ⊆ Mn has at most k isolated points. In particular, the size of every
finite fibre R ā is bounded by k.

Proof. (a) Let D be a cell decomposition of Mm+n partitioning R. For
every ā ∈ Mm , the induced cell decomposition Dā of Mn partitions R
and it contains at most ∣D∣ cells. Hence, we can set k ∶= ∣D∣.

(b) follows immediately from (a). ◻

Corollary 3.15. Every o-minimal theory is graduated and, hence, admits
elimination of ∃ℵ0 .

Proof. This follows by Theorem d1.2.15. ◻

An important consequence of the Cell Decomposition Theorem is the
fact that whether a structure is o-minimal only depends on its first-order
theory.

Theorem 3.16. Let M be an o-minimal structure. If N ≡M then N is also
o-minimal.

Proof. Let φ(x; ȳ) be a first-order formula. We have to show that, for
every choice of paramters ā ⊆ N , the set φ(x; ā)N can be written as a
finite union of intervals.

For n < ω, let ψn be the first-order sentence stating that there are
elements ā such that φ(x; ā) is not a union of at most n intervals. By
Theorem 3.11, there exists a number m < ω such that M ⊭ ψm . Hence,
N ⊭ ψm and every set of the form φ(x; ā)N with ā ⊆ N can be written
as a union of at most m intervals. ◻

783





Part E.

Classical Model Theory





e1. Saturation

1. Homogeneous structures
Recall the relations ⊑κ

FO introduced in Section c4.4. We have seen that,
in general, they are not reflexive. In this section wewill take a closer look
at those structures A that satisfy A ≅κ

FO A.

Definition 1.1. Let A be a Σ-structure and κ a cardinal.
(a) A is κ-homogeneous if A ≅κ

FO A, that is, whenever ā, b̄ ∈ A<κ are
sequences of length less than κ with ⟨A, ā⟩ ≡ ⟨A, b̄⟩ and c ∈ A is another
element, then there exists an element d ∈ A such that ⟨A, āc⟩ ≡ ⟨A, b̄d⟩.
We call A homogeneous if it is ∣A∣-homogeneous.

(b) A is strongly κ-homogeneous if, whenever ā, b̄ ∈ A<κ are sequences
of length less than κ with ⟨A, ā⟩ ≡ ⟨A, b̄⟩ then there exists an automorph-
ism π of A such that π(ā) = b̄. We call A strongly homogeneous if it is
strongly ∣A∣-homogeneous.

Example. (a) The structures ⟨Z, <⟩ and ⟨Q, <⟩ are strongly homogen-
eous.

(b) The theory of ⟨ω, ≤⟩ has exactly three countable (strongly) homo-
geneous models whose order types are ω, ω+ ζ , and ω+ ζ ⋅η, respectively,
where ζ is the order type of the integers and η is the order type of the
rationals.

Exercise 1.1. Show that ⟨R,+⟩ is strongly ℵ0-homogeneous.

Lemma 1.2. Every strongly κ-homogeneous structure is κ-homogeneous.

Proof. Let A be strongly κ-homogeneous. Suppose that ā, b̄ ∈ A<κ are
sequences with ⟨A, ā⟩ ≡ ⟨A, b̄⟩ and let c ∈ A. By assumption, there exists
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an isomorphism π ∶ ⟨A, ā⟩→ ⟨A, b̄⟩. If we set d ∶= π(c) then we have

π ∶ ⟨A, āc⟩ ≅ ⟨A, b̄d⟩ .

This implies ⟨A, āc⟩ ≡ ⟨A, b̄d⟩. ◻

Lemma 1.3. Every homogeneous structure is strongly homogeneous.

Proof. Let A be a homogeneous structure of size κ ∶= ∣A∣. If ā, b̄ ∈ A<κ

are sequences with ⟨A, ā⟩ ≡ ⟨A, b̄⟩ then A ≅κ
FO A implies, by definition

of ≅κ
FO, that

⟨A, ā⟩ ≅κ
FO ⟨A, b̄⟩ .

By Lemma c4.4.10, it follows that ⟨A, ā⟩ ≅ ⟨A, b̄⟩. ◻

Lemma 1.4. Let T be a first-order theory that admits quantifier elimina-
tion for FO∞ℵ0 . Every model of T is ℵ0-homogeneous.

Proof. If A is a model of T then we have A ≅ℵ0
0 A, by Theorem d1.2.9.

This implies that A ≅ℵ0
FO A. ◻

We have shown in Section c4.4 that ≅κ
FO is an equivalence relation on

the class of all κ-homogeneous structures. In the following lemmas we
will study the corresponding equivalence classes. We will show that we
have A ≅κ

FO B if and only if both structures realise the same types.

Lemma 1.5. Let B be κ-homogeneous and suppose that A is a structure
such that, for all n < ω, every n-type realised in A is also realised in B.
For each ā ∈ A<κ , there exists a sequence b̄ ∈ B<κ such that

⟨A, ā⟩ ≡ ⟨B, b̄⟩ .

Proof. Let ā ∈ Aα , for α < κ. We prove the statement by induction on α.
If α < ω then, since A and B realise the same α-types, we can find
some tuple b̄ with tp(b̄/B) = tp(ā/A). If λ ∶= ∣α∣ < α then we can fix
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1. Homogeneous structures

a bijection g ∶ λ → α and the claim follows if we apply the inductive
hypothesis to the reordered sequence (ag(i))i<λ .

It therefore remains to consider the case that α is an infinite cardinal.
We construct (b i)i<α by induction on i such that, at every step β ≤ α we
have

⟨A, (a i)i<β⟩ ≡ ⟨B, (b i)i<β⟩ .

For β = 0, we have A ≡ B since the unique complete 0-type Th(A)
realised in A is also realised in B. If β is a limit ordinal then there is
nothing to do. Suppose that β = γ + 1 is a successor and we have already
defined (b i)i<γ . Since α is a limit we have β < α. Therefore,we can apply
the inductive hypothesis for α and it follows that there is some sequence
(c i)i<β such that

⟨A, (a i)i<β⟩ ≡ ⟨B, (c i)i<β⟩ .

In particular, we have

⟨B, (b i)i<γ⟩ ≡ ⟨A, (a i)i<γ⟩ ≡ ⟨B, (c i)i<γ⟩ ,

and, since B is κ-homogeneous, we can find some element bγ ∈ B such
that

⟨B, (b i)i<γ , bγ⟩ ≡ ⟨B, (c i)i<γ , cγ⟩ ≡ ⟨A, (a i)i<γ , aγ⟩ . ◻

Proposition 1.6. Let B be κ-homogeneous and suppose that A is a struc-
ture such that, for all n < ω, every n-type realised in A is also realised
in B. Then A ⊑κ

FO B.

Proof. Since Iκ
FO(A,B) is always κ-complete we only need to prove the

forth property. Let ā ↦ b̄ ∈ Iκ
FO(A,B) and c ∈ A. By the preceding

lemma, we can find a sequence b̄′d′ ⊆ B such that

⟨A, āc⟩ ≡ ⟨B, b̄′d′⟩ .
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e1. Saturation

In particular, we have ⟨B, b̄⟩ ≡ ⟨B, b̄′⟩. Since B is κ-homogeneous we
can therefore find some element d ∈ B such that

⟨B, b̄d⟩ ≡ ⟨B, b̄′d′⟩ ≡ ⟨B, b̄⟩ .

Hence, āc ↦ b̄d ∈ Iκ
FO(A,B). ◻

Corollary 1.7. Let A and B be κ-homogeneous structures. We have

A ≅κ
FO B iff A and B realise the same n-types, for all n < ω.

Corollary 1.8. If A and B are ℵ0-homogeneous structures that realise the
same n-types, for all n < ω, and ā ∈ A<ω , b̄ ∈ B<ω are finite tuples then

⟨A, ā⟩ ≡FO ⟨B, b̄⟩ implies ⟨A, ā⟩ ≡∞ ⟨B, b̄⟩ .

Proof. This follows by Proposition 1.6 and Theorem d1.2.13. ◻

Theorem 1.9. Let A and B be homogeneous structures of the same size
∣A∣ = ∣B∣. If, for every n < ω, A and B realise the same n-types then A ≅ B.

Proof. Let κ ∶= ∣A∣ = ∣B∣. By Proposition 1.6, we have A ⊑κ
FO B and

A ⊒κ
FO B. Hence, the claim follows from Lemma c4.4.10 (a). ◻

Corollary 1.10. A complete first-order theory T has, up to isomorphism,
for every cardinal κ at most 22∣T∣ homogeneous models of size κ.

Proof. For every set X ⊆ S<ω(T), there is, according to the preceding
theorem, at most one homogeneous model of size κ that realises exactly
the types in X. Since ∣S<ω(T)∣ ≤ 2∣T∣ the claim follows. ◻

To build κ-homogeneous structures we can use the following lemma.
We will defer the proof of the fact that every structure has a κ-homo-
geneous elementary extension to Section 3 where it will follow from a
much stronger result.

Lemma 1.11. Let A be a Σ-structure and ā, b̄ ∈ Aα tuples with ⟨A, ā⟩ ≡
⟨A, b̄⟩.
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(a) There exists an elementary extension B ⪰ A such that

⟨B, ā⟩ ≡∞ ⟨B, b̄⟩ and ∣B∣ ≤ ∣A∣⊕ ∣Σ∣⊕ ∣α∣⊕ ℵ0 .

(b) There exists an elementary extension B ⪰ A and an automorphism
π ∈ Aut B with π(ā) = b̄.

Proof. (a) For 0 ≤ k < ω, let Ik be a new 2k-ary relation symbol and set

βk ∶= (∀x̄ ȳ.Ik x̄ ȳ)[∀u∃vIk+1 x̄u ȳv ∧ ∀v∃uIk+1 x̄u ȳv] ,

and ψφ
k ∶= (∀x̄ ȳ.Ik x̄ ȳ)[φ(ā, x̄)↔ φ(b̄, ȳ)] .

The formula βk says that Ik has the back-and-forth property with respect
to Ik+1, and the ψφ

k hold if every tuple ⟨c̄, d̄⟩ ∈ Ik corresponds to a partial
isomorphism c̄ ↦ d̄ from ⟨A, ā⟩ to ⟨A, b̄⟩. Setting

Φ ∶=Th(AA) ∪ {I0} ∪ { βk ∧ ψφ
k ∣ k < ω, φ an atomic formula} ,

we have

B ⊧ Φ iff B ⪰ A and ⟨⟩↦ ⟨⟩ ∈ I∞(⟨B, ā⟩, ⟨B, b̄⟩) .

If Φ is satisfiable then we can, therefore, use the Theorem of Löwenheim
and Skolem to find the desired structure B. To prove that Φ is satisfiable
let Φ0 ⊆ Φ be finite. There is some m < ω and a finite set ∆ of atomic
formulae such that

Φ0 ⊆Th(AA) ∪ {I0} ∪ { βk ∧ ψφ
k ∣ k < m, φ ∈ ∆ } .

Let ā′ and b̄′ be the subsequences of, respectively, ā and b̄ that appear
in ∆. Since tp(ā′) = tp(b̄′) we can obtain a model ⟨AA, (Ik)k<m⟩ ⊧ Φ0
by setting

Ik ∶= { c̄d̄ ∈ A2k ∣ ⟨A, ā′ c̄⟩ ≡m−k ⟨A, b̄′d̄⟩ } .
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(b) Let f be a new unary function symbol and set

Φ ∶=Th(AA) ∪ { f a i = b i ∣ i < α }
∪ {∀x∃y f y = x}
∪ {∀x̄(φ(x̄)↔ φ( f x̄)) ∣ φ an atomic formula} .

If B ⊧ Φ then f B is the desired automorphism. Therefore, it is sufficient
to prove that Φ is satisfiable.

Let Φ0 ⊆ Φ be finite. There are finitely many indices k0 , . . . , kn−1 < α,
a finite set C ⊆ A, a finite signature Σ0 ⊆ Σ, and a finite set ∆ of atomic
formulae over Σ0 such that

Φ0 ⊆Th(AC) ∪ { f ak i = bk i ∣ i < n }
∪ {∀x∃y f y = x}
∪ {∀x̄(φ(x̄)↔ φ( f x̄)) ∣ φ ∈ ∆ } .

To simplify notation, set ā′ = ak0 . . . akn−1 and b̄′ = bk0 . . . bkn−1 . By the
Theorem of Löwenheim and Skolem,we can find a countable elementary
substructure A0 ⪯ A∣Σ0 with C ∪ ā′b̄′ ⊆ A0.
By (a), there exists a countable elementary extension B0 ⪰ A0 such

that

⟨B0 , ā′⟩ ≡∞ ⟨B0 , b̄′⟩ .

Hence, by Lemma c4.4.10, it follows that

⟨B0 , ā′⟩ ≅ ⟨B0 , b̄′⟩ ,

and there is some automorphism π ∈ Aut B0 with π(ā′) = b̄′. Con-
sequently, ⟨B0 , π⟩ is the desired model of Φ0. ◻

Exercise 1.2. Let κ be an infinite cardinal. Prove that every structure has
a κ-homogeneous elementary extension.
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2. Saturated structures

2. Saturated structures
We have shown in the previous section that κ-homogeneous structures
can be orderedwith respect to the set of types they realise. In this section
we consider structures that are maximal in this ordering, i.e., homogen-
eous structures realising every type.

Definition 2.1. Let A be a Σ-structure and κ a cardinal.
(a) A is κ-saturated if, for all sets C ⊆ A of size ∣C∣ < κ, every type

p ∈ S<ω(C) is realised in A. A structure A is called saturated if it is
∣A∣-saturated.

(b) A is κ-universal if there exist elementary embeddings B→ A, for
all Σ-structures B of size ∣B∣ < κ such that B ≡ A.

Similarly to homogeneous structures we can characterise κ-saturated
structures in terms of the relation ⊑κ

FO.

Lemma 2.2. A structure B is κ-saturated if and only if

⟨A, ā⟩ ≡ ⟨B, b̄⟩ implies ⟨A, ā⟩ ⊑κ
FO ⟨B, b̄⟩ ,

for all sequences ā ∈ A<κ and b̄ ∈ B<κ .

Proof. (⇒) Suppose that ⟨A, ā⟩ ≡ ⟨B, b̄⟩. We have ā ↦ b̄ ∈ Iκ
FO(A,B)

and Iκ
FO(A,B) is κ-complete. Therefore, we only need to prove the forth

property. Suppose that c̄ ↦ d̄ ∈ Iκ
FO(A,B) and e ∈ A. Set p ∶= tp(e/Ac̄)

and let q be the type obtained from p by replacing the constants c̄ by d̄.
Note that q really is a type since ⟨A, c̄⟩ ≡ ⟨B, d̄⟩. As ∣d̄∣ < κ and B is
κ-saturated we can find some element f ∈ B realising q. Therefore,

⟨A, c̄e⟩ ≡ ⟨B, d̄ f ⟩ , that is, c̄e ↦ d̄ f ∈ Iκ
FO(A,B) .

(⇐) Let C ⊆ B be a set of size ∣C∣ < κ and p ∈ Sn(C). There exists an
elementary extension A ⪰ B in which p is realised by some tuple ā. Let
c̄ be an enumeration of C. Since ⟨A, c̄⟩ ≡ ⟨B, c̄⟩ we have

⟨A, c̄⟩ ⊑κ
FO ⟨B, c̄⟩ .
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e1. Saturation

Hence, by Lemma c4.4.9 we can find a tuple b̄ ∈ Bn such that

⟨A, c̄ ā⟩ ⊑κ
FO ⟨B, c̄b̄⟩ .

Consequently, b̄ is a realisation of p in B. ◻

Corollary 2.3. For κ-saturated structures A and B, we have

⟨A, ā⟩ ≅κ
FO ⟨B, b̄⟩ iff ⟨A, ā⟩ ≡ ⟨B, b̄⟩ ,

for all ā ∈ A<κ and b̄ ∈ B<κ .

We will prove below that every κ-saturated structure is κ-homoge-
neous. Hence, the next corollary is a special case of Corollary 1.8.

Corollary 2.4. If A and B are ℵ0-saturated then

A ≡ B implies A ≅∞ B .

For an example let us take a look at saturated linear orders.

Lemma 2.5. Every ℵ1-saturated dense linear order is incomplete.

Proof. Let a0 < a1 < . . . be a strictly increasing sequence of length ω
and set A ∶= { an ∣ n < ω }. We claim that supA does not exist. For a
contradiction, suppose that the supremum c exists. Choose a type p over
A∪ {c} containing the formulae

x < c and an < x for n < ω .

Any realisation b of p is an upper bound of A. Hence, b < c = supA
yields the desired contradiction. ◻

Lemma 2.6. A linear order is κ-saturated if, and only if, it is κ-dense.

Proof. We have already shown in Lemma c4.4.6 that every κ-dense
linear order is κ-saturated. For the converse, suppose that A = ⟨A, ≤⟩
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is κ-saturated and let C ,D ⊆ A sets of size ∣C∣, ∣D∣ < κ with C < D. Let
p ∈ S1(C ∪ D) be any type with

p ⊇ { c < x ∣ c ∈ C } ∪ { x < d ∣ d ∈ D } .

Since A is κ-saturated there is some element a ∈ A realising p. Hence,
C < a < D and A is κ-dense. ◻

Lemma 2.7. Let (Ai)i<λ be an elementary chain of κ-saturated structures.
If κ ≤ cf λ then the union ⋃i Ai is also κ-saturated.

Proof. Let C ⊆ ⋃i Ai be a set of size ∣C∣ < κ and suppose that p ∈ S<ω(C)
is a type overC. Since ∣C∣ < κ ≤ cf λ there is some α < λ such thatC ⊆ Aα .
Hence, there is a tuple ā ⊆ Aα ⊆ ⋃i Ai realising p. ◻

By definition a structure is κ-saturated if it realises every n-type, for
n < ω, with less than κ-parameters. In fact, it is sufficient to realise all
1-types.

Lemma 2.8. Let κ ≥ ℵ0. A structure A is κ-saturated if, and only if,
whenever C ⊆ A is of size ∣C∣ < κ then every 1-type in S1(C) is realised
in A.

Exercise 2.1. Prove the preceding lemma.

Theorem 2.9. Let A be a Σ-structure. The following statements are equi-
valent :

(1) A is κ-saturated.

(2) A is κ-homogeneous and it realises every type in Sκ(∅).

(3) A is κ-homogeneous and it realises every type in S<κ(∅).

If κ ≥ ∣Σ∣⊕ ℵ0 then the following statement is also equivalent to the ones
above.

(4) A is κ-homogeneous and κ+-universal.
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e1. Saturation

Proof. (1) ⇒ (2) Let A be κ-saturated. By Lemma 2.2, A ≡ A implies
A ⊑κ

FO A. Therefore, we have A ≅κ
FO A, that is, A is κ-homogeneous.

It remains to prove that A realises every type p ∈ Sκ(∅). For α < κ, let
pα ∶= p ∩ FOα[Σ] be the restriction of p to the first α variables. By induc-
tion on α, we construct a sequence (aα)α<κ such that the subsequence
(a i)i<α realises pα . Suppose we have already defined a i , for i < α. Let

qα ∶= {φ(a i0 , . . . , a ik−1 , xα) ∣ φ(x i0 , . . . , x ik−1 , xα) ∈ p for

i0 , . . . , ik−1 < α } .

Since A is κ-saturated we can find some element aα such that

tp(aα/{ a i ∣ i < α }) = qα .

Hence, (a i)i≤α realises pα+1.
(2)⇒ (3) is trivial.
(3)⇒ (1) Let p ∈ Sn(U) where ∣U ∣ < κ. Let (c i)i<λ be an enumeration

of U and let q ∈ Sλ+n(∅) be the type

q ∶= {φ(x i0 , . . . , x ik−1 , xλ , . . . , xλ+n−1) ∣

φ(c i0 , . . . , c ik−1 , x0 , . . . , xn−1) ∈ p} .

By assumption we can find sequences ā ∈ Aλ and b̄ ∈ An such that
tp(āb̄) = q. Since

⟨A, c̄⟩ ≡ ⟨A, ā⟩

and A is κ-homogeneous it follows that there is some tuple d̄ ∈ An such
that

⟨A, c̄d̄⟩ ≡ ⟨A, āb̄⟩ .

Consequently tp(d̄/c̄) = p.
(2)⇒ (4) Suppose that A realises every type in Sκ(∅). We claim that

A is κ+-universal. Let B be a structure of size ∣B∣ ≤ κ with B ≡ A. Choose
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an enumeration b̄ of B and let p ∶= tp(b̄/B). Then p ∈ S≤κ(∅). Hence,
there exists a sequence ā ⊆ A realising p. The function b̄ ↦ ā is the
desired elementary embedding.

(4) ⇒ (1) Suppose that A is κ+-universal. We show that A realises
every type p ∈ Sκ(∅). For each such p we can find a structure B ≡ A
and a tuple b̄ ⊆ B with tp(b̄/B) = p. By the Theorem of Löwenheim and
Skolem we may assume that ∣B∣ ≤ κ. Hence, there exists an elementary
embedding h ∶ B→ A. The sequence h(b̄) is a realisation of p in A. ◻

Theorem 2.10. If A ≡ B are saturated structures of the same size ∣A∣ = ∣B∣
then A ≅ B.

Proof. Let κ ∶= ∣A∣ = ∣B∣. By Lemma 2.2, we have A ≅κ
FO B. Therefore,

the claim follows from Lemma c4.4.10 (a). ◻

Every structure has a κ-saturated elementary extension. There are two
ways to construct such extensions : (i) we can form an ultrapower, or
(ii) we can take the union of an infinite elementary chain where each
structure realises every type over the universe of the preceding structure.
In the following proofs we will employ the first method. Below, where
we construct saturated structures and projectively κ-saturated ones, we
will choose the second method.

Proposition 2.11. Let u be a regular ultrafilter over an infinite set I and
let (Ai)i∈I be a family of structures. Every countable partial type p over
∏i A i/u is realised in∏i Ai/u.

Proof. Let (φn)n<ω be an enumeration of p. Since u is regular, we can
find sets (sn)n<ω in u such that, for every i ∈ I, the set

{ n < ω ∣ i ∈ sn }

is finite. Setting wn ∶= s0 ∩ ⋅ ⋅ ⋅ ∩ sn ∈ u we obtain a strictly decreasing
sequence w0 ⊃ w1 ⊃ w2 ⊃ ⋯ of sets wn ∈ u. By choice of (sn)n we have

⋂
n<ω

wn = ⋂
n<ω

sn = ∅ .
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Set ψn ∶= φ0 ∧ ⋅ ⋅ ⋅ ∧ φn and let [c̄n]u be the parameters appearing in ψn .
According to the Theorem of Łoś,

∏
i

Ai/u ⊧ ∃x̄ψn(x̄; [c̄n]u) implies ⟦∃x̄ψn(x̄; c̄n)⟧ ∈ u .

Hence, the sets

w0
n ∶= { i ∈ wn ∣ Ai ⊧ ∃x̄ψn(x̄; c̄n

i ) } = wn ∩ ⟦∃x̄ψn⟧

are in u. We define a sequence (ā i)i∈I as follows. If i ∉ w0
0 , we choose an

arbitrary tuple ā i ⊆ A i . Otherwise, let n be the maximal number such
that i ∈ w0

n and let ā i ⊆ A i be a tuple such that Ai ⊧ ψn(ā i ; c̄n
i ).

We claim that [ā]u realises p. Consider φn ∈ p. Then

⟦φn(ā i)⟧ ⊇ ⟦ψn(ā i)⟧ ⊇ w0
n ∈ u implies ⟦φn(ā i)⟧ ∈ u .

By the Theorem of Łoś it follows that∏i Ai/u ⊧ φn([ā]u) . ◻

Corollary 2.12. Let u be a regular ultrafilter of an infinite set I and let
Σ be a countable signature. For every sequence (Ai)i∈I of Σ-structures, the
ultraproduct∏i∈I Ai/u is ℵ1-saturated.

Proposition 2.13. Let u be an ultrafilter over a set I of size κ ∶= ∣I∣. The
following statements are equivalent :

(1) u is regular.

(2) For each theory T and every family (Ai)i∈I of models of T , the ultra-
product∏i Ai/u realises every partial type p over ∅ with ∣p∣ ≤ κ.

(3) For every structure M, the ultrapower Mu realises every partial
type p over M with ∣p∣ ≤ κ.

Proof. (1)⇒ (2) Since ∣p∣ ≤ ∣I∣ and u is regular we can find sets (sφ)φ∈p
in u such that the sets

Φ i ∶= {φ ∈ p ∣ i ∈ sφ }
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are finite. For every i ∈ I, there exists a tuple ā i ⊆ A i realising the finite
type Φ i . We claim that ā ∶= (ā i)i realises p. Let φ ∈ p. For every k ∈ sφ ,
we have k ∈ ⟦φ(ā i)⟧i . Hence, sφ ⊆ ⟦φ(ā i)⟧i ∈ u which implies, by the
Theorem of Łoś, that∏i Ai/u ⊧ φ([ā]u).

(2)⇒ (3) follows by setting Ai ∶=MM , for each i ∈ I.
(3)⇒ (1) We consider the structure M ∶= ⟨M , ⊆⟩ where

M ∶= {X ⊆ I ∣ ∣X∣ < ℵ0 } ,

and the type

p ∶= {{k} ⊆ x ∣ k ∈ I } ,

which is finitely satisfiable in M. By (3), there is an element [a]u of Mu

realising p. For k ∈ I, we set

sk ∶= { i ∈ I ∣ {k} ⊆ a i } = ⟦{k} ⊆ a i⟧ .

Since Mu ⊧ {k} ⊆ [a]u it follows by the Theorem of Łoś that sk ∈ u.
Furthermore, each a i being finite there are only finitely many sk with
i ∈ sk . Hence, the family (sk)k∈I witnesses that u is regular. ◻

Proposition 2.14. Let I be an infinite set, u a regular ultrafilter on I,
κ ∶= ∣I∣, and Σ a signature of size ∣Σ∣ ≤ κ. If Ai and Bi , for i ∈ I, are
Σ-structures such that Ai ≡ Bi , for all i ∈ I, then

∏
i∈I

Ai/u ≅
κ
iso ∏

i∈I
Bi/u .

Proof. Below we need our structures to be relational. Therefore, we
replace Ai and Bi by their relational variants A∗

i and B∗
i as follows. Let

Σrel ⊆ Σ be the set of relation symbols and Σfun ⊆ Σ the set of function
symbols. We replace every function symbol f ∈ Σfun of type s̄ → t by a
new relation symbol R f of type s̄t. The resulting signature is

Σ∗ ∶= Σrel ⊍ {R f ∣ f ∈ Σfun } .
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To every Σ-structure M, we associate a Σ∗-structure M∗ by expanding
M∣Σrel by the graphs

RM∗

f ∶= { āb ∣ f M(ā) = b }

of the functions f ∈ Σfun.
Since u is regular there exists a sequence (sα)α<κ of sets sα ∈ u such

that, for every i ∈ I, the set { α < κ ∣ i ∈ sα } is finite. Fix an enumeration
⟨Σ∗α , kα⟩α<κ of all pairs ⟨Σ∗α , kα⟩ consisting of finite subsets Σ∗α ⊆ Σ∗ and
kα ⊆ κ. For i ∈ I and γ < κ, set

Γi ∶=⋃{Σ∗α ∣ i ∈ sα } ,
K i ∶=⋃{ kα ∣ i ∈ sα } ,

mγ
i ∶= ∣{ α ∈ K i ∣ α ≥ γ }∣ .

We claim that

J ∶∏
i∈I

Ai/u ≅
κ
iso ∏

i∈I
Bi/u ,

where J ⊆ pIsoκ(∏i Ai/u,∏i Bi/u) is the following set of partial iso-
morphisms ā ↦ b̄. Let ā = (av)v<γ and b̄ = (bv)v<γ where γ < κ and
av = [(a i

v)i∈I]u and bv = [(b i
v)i∈I]u. Then ā ↦ b̄ ∈ J if, and only if,

⟨A∗
i ∣Γi , (a

i
v)v∈K i ⟩ ≅mγ

i
⟨B∗

i ∣Γi , (b
i
v)v∈K i ⟩ , for all i ∈ I .

It is straightforward to check that J is κ-complete and κ-bounded. To
show that ⟨⟩ ↦ ⟨⟩ ∈ J, note that each Γi is finite and relational. Hence,
we can use Corollary c4.3.6 to show that

A∗
i ∣Γi ≡ B∗

i ∣Γi implies A∗
i ∣Γi ≅ω B∗

i ∣Γi .

It remains to prove that J has the back-and-forth property with respect
to itself. By symmetry, it is sufficient to prove the forth property. Let
ā ↦ b̄ ∈ J and c = [(c i)i∈I]u ∈ ∏i A i/u. To find a matching element
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d = [(d i)i∈I]u ∈∏i B i/u we consider each component d i separately. Let
ā = (av)v<γ and b̄ = (bv)v<γ as above. By definition, ā ↦ b̄ ∈ J implies
that

⟨A∗
i ∣Γi , (a

i
v)v∈K i ⟩ ≅mγ

i
⟨B∗

i ∣Γi , (b
i
v)v∈K i ⟩ .

If γ ∉ K i , we take an arbitrary element d i ∈ B i . Otherwise, there exists
some d i ∈ B i such that

⟨A∗
i ∣Γi , (a

i
v)v∈K i , c

i⟩ ≅mγ
i −1 ⟨B

∗
i ∣Γi , (b

i
v)v∈K i , d

i⟩ .

Since γ ∈ K i implies mγ+1
i = mγ

i − 1, it follows in both cases that

⟨A∗
i ∣Γi , (a

i
v)v∈K i , c

i⟩ ≅mγ+1
i
⟨B∗

i ∣Γi , (b
i
v)v∈K i , d

i⟩ . ◻

We have seen that we can find κ-saturated elementary extensions,
for all cardinals κ. For saturated elementary extensions the situation is
different. The next results give conditions on when such extensions exist.

Proposition 2.15. Let T be a countable complete first-order theory with
infinite models. The following statements are equivalent :

(1) T has a countable saturated model.
(2) T has a countable ℵ1-universal model.
(3) ∣S s̄(T)∣ ≤ ℵ0, for all finite tuples s̄.

Proof. (1)⇒ (2) follows from Theorem 2.9.
(2)⇒ (3) Let M be a countable ℵ1-universal model of T . Each type

p ∈ S s̄(T) is realised in some countable model. Hence, it is also realised
in M. Since M is countable it follows that ∣S s̄(T)∣ ≤ ℵ0.

(3)⇒ (1) First, let us show that ∣S<ω(A)∣ ≤ ℵ0, for every finite set A.
Let ā be an enumeration of A and t̄ the sorts of ā. For every finite tuple
of sorts s̄ there exists an injective function f ∶ S s̄(A)→ S s̄ t̄(T) sending
a type p ∈ S s̄(A) to the type

f (p) ∶= {φ(x̄ , ȳ) ∣ φ(x̄ , ā) ∈ p} .
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e1. Saturation

Consequently, ∣S s̄(A)∣ ≤ ∣S s̄ t̄(T)∣ ≤ ℵ0. Since T is countable there are
only countably many sorts. Therefore it follows that S<ω(A) is countable
as well.

To find the desired saturated model of T we construct an elementary
chain (Mn)n<ω of countable models of T such that each Mn+1 realises
every type over a finite subset A ⊆Mn . Then the union Mω ∶= ⋃n<ω Mn
will be the desired countable ℵ0-saturated model of T .
We start with an arbitrary countable model M0 of T . Given Mn we

construct Mn+1 as follows. Let F be the class of all finite subsets of Mn
and set P ∶= ⋃A∈F S<ω(A). By the above remarks it follows that P is
countable. Fix an enumeration (pk)k<ω of P. Using Lemma c3.5.2 we
construct an elementary chain (Ak

n)k<ω of countable structures with
A0

n ∶= Mn such that pk is realised in Ak+1
n . Their union ⋃k Ak

n is the
desired structure Mn+1. ◻

For the existence of uncountable saturated structures we can only give
a sufficient condition at the moment. A more precise characterisation
will be presented in Theorem ?? below.

Theorem 2.16. Let T be a complete theory with infinite models. If T is
κ-stable, for a regular cardinal κ ≥ ∣T ∣, then T has a saturated model of
size κ.

Proof. We construct an elementary chain (Ai)i≤κ of models Ai ⊧ T
with ∣A i ∣ = κ. We start with an arbitrary model A0 of size κ. For limit
ordinals δ, we set Aδ ∶= ⋃i<δ Ai . For the successor step, suppose that we
have already defined Ai . Since T is κ-stable we have ∣Ss(A i)∣ ≤ κ, for all
sorts s. Furthermore, there are at most ∣T ∣ ≤ κ sorts. Hence, we can use
Corollary c3.5.3 to find an elementary extension Ai+1 ⪰ Ai of size κ that
realises every type in ⋃s Ss(A i).
We claim that the limit Aκ is saturated. It is sufficient to prove that

every 1-type over a set U ⊆ Aκ of size ∣U ∣ < κ is realised in Aκ . Since κ is
regular there exists an index α < κ with U ⊆ Aα . Consequently, every
1-type over U is realised in Aα+1 ⪯ Aκ . ◻
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We conclude this section with a closer look at definable relations in
κ-saturated structures. We have already proved in Lemma c5.6.17 that
the closure ordinal of a least fixed point on an ℵ0-saturated structure is
at most ω.

Lemma 2.17. Suppose that A is κ-saturated and let φ(x̄) be a first-order
formula with ∣x̄∣ < ω. Either ∣φA∣ < ℵ0 or ∣φA∣ ≥ κ.

Proof. Suppose that φA is infinite. We construct a sequence (ā i)i<κ of
distinct tuples satisfying φ. Suppose that we have already defined ā i , for
i < α. The set

Γα(x̄) ∶= {φ(x̄)} ∪ { x̄ ≠ ā i ∣ i < α }

is a partial type since φA is infinite. SinceA is κ-saturatedwe can therefore
find a tuple āα realising Γα(x̄). ◻

Proposition 2.18. A first-order theory T admits quantifier elimination if
and only if we have

A ≡0 B implies A ≅ℵ0
0 B ,

for all ℵ0-saturated models A,B of T.

Proof. (⇐) follows from Corollary d1.2.12. For (⇒), note that, accord-
ing to Theorem d1.2.6, if A and B are models of T then we have

Iℵ0
0 (A,B) = Iℵ0

FO(A,B) .

Furthermore, if A and B are ℵ0-saturated then we have

Iℵ0
FO(A,B) = Iℵ0

∞ (A,B) ,

by Corollary 2.3. Since A ≡0 B implies ⟨⟩ ↦ ⟨⟩ ∈ Iℵ0
∞ (A,B), it follows

that A ≅ℵ0
0 B. ◻

Proposition 2.19. If A is κ-saturated then so is I(A), for every first-order
interpretation I .
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e1. Saturation

Proof. Recall that interpretations are comorphisms, that is, for every
formula φ(x̄), there is a formula φI(x̄) such that

I(A) ⊧ φ(I(ā)) iff A ⊧ φI(ā) .

Suppose that p ∈ Sn(U) where U ⊆ I[A] is of size ∣U ∣ < κ. Then there is
some set V ⊆ A of size ∣V ∣ = ∣U ∣ with U = I[V]. Since A is κ-saturated
we can find a tuple ā ∈ An realising the partial type

pI ∶= {φI(x̄ , c̄) ∣ φ(x̄ , I(c̄)) ∈ p, c̄ ⊆ V }

over V . It follows that I(ā) realises p. ◻

3. Projectively saturated structures
In a saturated structure every type over sets of a certain size is realised.
We can extend this requirement by also including types with second-
order variables. Structures that realise also all types of this form are
called projectively saturated.

Definition 3.1. Let Σ and Ξ be disjoint signatures and T ⊆ FO0[Σ] a
first-order theory.

(a) A Ξ-type is a subset p ⊆ FO0[Σ ∪ Ξ] such that T ∪ p is consistent.
p is complete if p =Th(A) for some (Σ∪Ξ)-structure A satisfying T . The
set of all complete Ξ-types is denoted by SΞ(T).

(b) A Σ-structure A realises a Ξ-type p if it has a (Σ∪Ξ)-expansion A+
with A+ ⊧ p.

(c) We call a structure A projectively κ-saturated if it realises every
{ξ}-type over a set of less than κ parameters, for all relation symbols
and function symbols ξ.

Lemma 3.2. Every projectively κ-saturated structure is κ-saturated and
strongly κ-homogeneous.

Proof. Let M be a projectively κ-saturated Σ-structure.
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3. Projectively saturated structures

First, we show that M is κ-saturated. Let A ⊆ M be a subset of size
∣A∣ < κ and let p ∈ Sn(A). We have to find some c̄ ∈ Mn with tp(c̄/A) = p.
Let N be some elementary extension of M that realises p and fix a tuple
d̄ ∈ Nn of type p. Let R ∉ Σ be a new n-ary relation symbol and set
RN = {d̄}. Since M is projectively κ-saturated there exists a relation RM

such that

⟨M, RM , ā⟩ ≡ ⟨N, RN , ā⟩ ,

where ā is some enumeration of A. It follows that RM contains exactly
one tuple c̄ and we have tp(c̄/A) = tp(d̄/A) = p.

It remains to show that M is strongly κ-homogeneous. Let ā, b̄ ∈ Mα ,
for α < κ, be sequences such that ⟨M, ā⟩ ≡ ⟨M, b̄⟩. Set

Φ( f ) ∶=Th(M, ā, b̄)
∪ { f a i = b i ∣ i < α }
∪ {∀x∃y f y = x}
∪ {∀x̄(φ(x̄)↔ φ( f x̄)) ∣ φ ∈ FO} ,

where f ∉ Σ is a new unary function symbol. By Lemma 1.11, we know
that Φ( f ) is satisfiable. Hence, Φ( f ) is an { f }-type over āb̄ and there
exist a function π ∶ M → M such that ⟨M, āb̄⟩ ⊧ Φ(π). In particular,
π is an automorphism of M with π(ā) = b̄. ◻

Theorem 3.3. Let A be a Σ-structure and κ > ∣Σ∣⊕ ℵ0 a regular cardinal.
There exists a projectively κ-saturated elementary extension B ⪰ A of size
∣B∣ ≤ ∣A∣<κ .

Proof. If A is finite then it is already projectively κ-saturated, for all κ.
Therefore, we may assume that A is infinite. Let us write C ⊑ D if D is an
expansion of some elementary extension of C. If (Ci)i<α is a ⊑-chain then
we can form its union ⋃i<α Ci and, by the same proof as for elementary
chains, it follows that Ck ⊑ ⋃i<α Ci .

Set µ ∶= ∣Σ∣ ⊕ ℵ0 and λ ∶= (∣A∣ ⊕ µ+)<κ . Then λ<κ = λ ≥ κ. We will
construct a ⊑-chain (Cα)α<λκ of length λκ where the structure Cα is of
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e1. Saturation

size ∣Cα ∣ = λ ⊗ (α ⊕ 1). For simplicity, we assume that Cα is the set of
ordinals less than λ(α + 1). The Σ-reduct of the union ⋃α<λκ Cα will be
the desired structure B ⪰ A. Note that B = λκ has size ∣B∣ = λ ⊗ κ = λ.

For every finite tuple s̄ of sorts and each sort t fix a new relation
symbol R s̄ of type s̄ and a new function symbol f s̄ t of type s̄ → t. Let Ξ be
the set of these symbols. For U ⊆ B we can consider T ∶=Th(A) as an
incomplete theory over the signature ΣU . Hence, we have the type space
SΞ(U) ∶= S(FO[ΣU ∪ Ξ]/T). Fix an enumeration (pi)i<λκ of all {ξ}-
types pi ∈ S{ξ}(U i), for all possible ξ ∈ Ξ and all subsets U i ⊆ B of size
∣U i ∣ < κ. For every ν < κ, there are ∣B∣ν = λν ≤ λ<κ = λ subsets of size ν
and 2µ⊕ν ≤ λ<κ = λ different {ξ}-types with ν parameters. Therefore,
the above enumeration contains λ⊗ λ = λ different types. Consequently,
we can choose the sequence ⟨pi⟩i<λκ such that, for every α < κ, each
{ξ}-type p appears at least once with some index λα ≤ i < λ(α + 1).
In particular, we assume that every type appears cofinally often in our
enumeration.
We start the construction of (Ci)i with an arbitrary elementary exten-

sion C0 ⪰ A of size ∣C0∣ = λ. For limit ordinals δ, we set Cδ ∶= ⋃α<δ Cα .
For the successor step, suppose that Cα has already been defined.

If Uα ⊈ Cα = λ(α + 1) or if pα is inconsistent with Th((Cα)Cα) then
we choose an arbitrary elementary extension Cα+1 ⪰ Cα with universe
λ(α+2). Otherwise, let D be amodel of pα∪Th((Cα)Cα).By theTheorem
of Löwenheim and Skolem we can choose D of size ∣D∣ = λ. Hence, we
may assume that D = λ(α + 2). By construction, we have Cα ⊑ D and
we can set Cα+1 ∶= D.

This concludes the construction of (Cα)α . Let D ∶= ⋃α<λκ Cα . We
claim that B ∶= D∣Σ is a projectively κ-saturated elementary extension
of A. Since A ⪯ C0 ⊑ D we have A ⪯ B. Let V ⊆ B be a set of size ∣V ∣ < κ
and let p be a {ξ}-type over V . We have to find a relation or function ξB

such that ⟨BV , ξB⟩ ⊧ p. Since V ⊆ λκ, ∣V ∣ < κ, and κ is regular there is
some ordinal α such that V ⊆ λα. By construction, there is some index i
in the range λα ≤ i < λ(α+1) such that p = pi andV = U i . Consequently,
(Ci+1)U i ⊧ pi implies ⟨BV , ξCi+1⟩ ⊧ p. ◻
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Corollary 3.4. Let κ ≥ ∣Σ∣⊕ ℵ0. Every Σ-structure A has a projectively
κ+-saturated elementary extension of size at most ∣A∣κ .

In the definition of a projectively saturated structure we only require
that every type with one free second-order variable is realised. In fact,
we can add several relations at the same time.

Proposition 3.5. Let A be a projectively κ-saturated Σ-structure. Then
A realises every Ξ-type over less than κ parameters with ∣Ξ∣ < κ.

Proof. Let p be a Ξ-type andB ⊧ p a structure of size κ realising p. Fix an
arbitrary bijection f ∶ B×B → B and let (ξ i)i<α be an enumeration of Ξ.
We choose α different elements c i ∈ B, i < α. Using the pairing function f
we can replace each relation or function ξ i by a unary relation Pi . Finally,
we define a 4-ary relation R by

R ∶= { ⟨a, a, b, f (a, b)⟩ ∣ a, b ∈ B }
∪ { ⟨c i , a, a, b⟩ ∣ b ∈ Pi , a ∈ B, a ≠ c i } .

Note that B is definable in the structure B′ ∶= ⟨B∣Σ , R, (Pi)i , (c i)i⟩.
Since A is projectively κ-saturated it has an expansion A′ ≡ B′. We can
apply the definition of B in B′ to the structure A′ to obtain the desired
(Σ ∪ Ξ)-expansion A+ of A with A+ ≡ B. ◻

4. Pseudo-saturated structures
Depending on the model of set theory there can be first-order theories
without saturated models. But if we slightly weaken the definition of
saturation then we can prove that such models always exist.

Definition 4.1. A structure A is pseudo-saturated, or special, if there
exists an elementary chain (Aκ)κ<∣A∣, indexed by cardinals κ, such that
A = ⋃κ Aκ and every Aκ is κ+-saturated.

Lemma 4.2. Every saturated structure is pseudo-saturated.
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e1. Saturation

Proof. If A is saturated then it is κ+-saturated, for all κ < ∣A∣. Therefore,
we can obtain the desired chain (Aκ)κ be setting Aκ ∶= A for all κ. ◻

By a strong limit cardinal we mean a cardinal of the form ℶδ where
δ is either 0 or a limit ordinal.

Theorem 4.3. Let A be an infinite Σ-structure and κ a strong limit cardinal
with κ > ∣A∣⊕ ∣Σ∣. Then A has a pseudo-saturated elementary extensions
of size κ.

Proof. Suppose that κ = ℶδ . Fix a strictly increasing sequence (λ i)i<cf δ
of cardinals λ i < ℶδ such that

ℶδ = sup{ λ i ∣ i < cf δ } = sup{ 2λ i ∣ i < cf δ } .

By removing some elements of this sequence, we may assume that λ0 >
∣A∣⊕ ∣Σ∣. We construct an elementary chain (Bi)i<cf δ such that

◆ B0 = A,
◆ each Bi+1 is a λ+i -saturated structure of size ∣B i+1∣ = 2λ i , and
◆ ∣Bγ ∣ ≤ 2λγ , for limit ordinals γ.

The first structure B0 is already defined. If i = j + 1 is a successor then
∣B j ∣ ≤ 2λ j implies that we can apply Corollary 3.4 to find a λ+i -saturated
elementary extension B j+1 ⪰ B j of size ∣B i ∣ = ∣B j ∣

λ i = 2λ i . Finally, for
limit ordinals γ, we can set Bγ ∶= ⋃i<γ Bi since

∣Bγ ∣ = sup{ 2λ i ∣ i < γ } ≤ 2λγ .

The structure B ∶= ⋃i Bi is an elementary extension of B0 = A of
size ∣B∣ = sup{ 2λ i ∣ i < cf δ } = κ. We claim that B ∶= ⋃i Bi is pseudo-
saturated. Let g be an increasing function from the set of all cardinals
less than κ to the ordinal cf δ such that λg(µ) ≥ µ, for all µ < κ. Then
Bg(µ)+1 is λ+g(µ)-saturated and the chain (Bg(µ)+1)µ<κ witnesses that
B is pseudo-saturated. ◻

Corollary 4.4. Let T ⊆ FO[Σ] be a consistent first-order theory.
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4. Pseudo-saturated structures

(a) T has a pseudo-saturated model.
(b) If T has infinite models and κ > ∣FO[Σ]∣ is a strong limit cardinal

then T has a pseudo-saturated model of size κ.

Proof. (b) By the Theorem of Löwenheim and Skolem T has a model A
of size ∣A∣ = ∣FO[Σ]∣. Therefore, we can apply the preceding theorem to
obtain a pseudo-saturated elementary extension B ⪰ A of size κ.

(a) If T has infinitemodels then the claim follows from (b). Otherwise,
T has a finite model and every finite structure is saturated. ◻

Theorem 4.5. If A ≡ B are pseudo-saturated structures of the same size
∣A∣ = ∣B∣ then A ≅ B.

Proof. Suppose that A = ⋃κ Aκ and B = ⋃κ Bκ . Choose subsets Cκ ⊆
Aκ and Dκ ⊆ Bκ of size ∣Cκ ∣ = ∣Dκ ∣ = κ such that

⋃κ Cκ = A and ⋃κ Dκ = B .

By induction on κ, we construct an increasing chain of partial isomorph-
isms (pκ)κ with pκ ∈ Iκ

FO(A,B) such that

Cκ ⊆ dom pκ ⊆ Aκ and Dκ ⊆ rng pκ ⊆ Bκ .

The union p ∶= ⋃κ pκ is the desired isomorphism.
Let p0 ∶= ⟨⟩ ↦ ⟨⟩. If κ is a limit cardinal then we set pκ ∶= ⋃λ<κ pλ .

Since Iκ
FO(A,B) is κ-complete, we have pκ ∈ Iκ

FO(A,B). Finally, suppose
that κ = λ+ and pλ = ā ↦ b̄ ∈ Iλ

FO(A,B) has already been defined.
Let c̄ be an enumeration of Cκ and d̄ one of Dκ . Since Aκ and Bκ are
κ+-saturated, we have

⟨A, ā⟩ ≅κ+
FO ⟨B, b̄⟩ .

As ∣c̄∣ = ∣d̄∣ = κ < κ+ we can apply Lemma c4.4.9 to find sequences
ē ∈ (Aκ)

κ and f̄ ∈ (Bκ)
κ such that

⟨A, āc̄ ē⟩ ≅κ+
FO ⟨B, b̄ f̄ d̄⟩ .

In particular, pκ ∶= āc̄ ē ↦ b̄ f̄ d̄ ∈ Iκ
FO(A,B). ◻
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Lemma 4.6. Let A be a pseudo-saturated Σ-structure of size ∣A∣ = κ.
(a) The expansion ⟨A, ā⟩ is pseudo-saturated, for every sequence ā ∈ Aα

of length α < cf κ.
(b) The reduct A∣Γ is pseudo-saturated, for every Γ ⊆ Σ.

Proof. (b) follows immediately from the definition.
(a) Let A = ⋃λ<κ Aλ where Aλ is λ+-saturated. Since α < cf κ there is

some index µ < κ with ā ⊆ Aµ . It follows that ⟨Aλ , ā⟩ is λ+-saturated, for
every λ ≥ µ. Consequently, ⟨A, ā⟩ = ⋃λ<κ⟨Aλ⊕µ , ā⟩ is pseudo-saturated.

◻

As an easy corollary of Theorem 4.5 we see that every pseudo-satu-
rated structure A is cf(∣A∣)-homogeneous. In fact, we will show below
that it is even projectively cf(∣A∣)-saturated.

Proposition 4.7. Every pseudo-saturated structure A of size ∣A∣ = κ is
strongly cf(κ)-homogeneous.

Proof. Suppose that ⟨A, ā⟩ ≡ ⟨A, b̄⟩, for ā, b̄ ∈ Aα with α < cf κ. The
expansions ⟨A, ā⟩ and ⟨A, b̄⟩ are pseudo-saturated, by Lemma 4.6 (a).
Consequently, it follows by Theorem 4.5 that they are isomorphic. ◻

Every pseudo-saturated structure of size κ is projectively cf(κ)-sat-
urated and κ+-universal. To prove this fact we need some technical
lemmas.

Lemma 4.8. Let A be a Σ-structure and B a Σ+-structure with Σ ⊆ Σ+.
If A and B are pseudo-saturated, A ≡ B∣Σ , and ∣Σ+∣ ≤ ∣A∣ ≤ ∣B∣ then
there exists an elementary embedding h ∶ A→ B∣Σ such that the set rng h
induces a substructure of B.

Proof. Suppose that A = ⋃λ Aλ and B = ⋃λ Bλ . Let (aα)α<κ be an
enumeration of A such that aα ∈ A∣α∣, for all α. We choose a bijection
τ ∶ κ → T[Σ+ ,A] such that

τ(α) = t(a i0 , . . . , a in−1) implies i0 , . . . , in−1 < α .
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To define h we construct an increasing sequence (pα)α<κ of partial
elementary maps pα ∈ IFO(A,B) such that, for all α < κ,

◆ dom pα ⊆ A∣α∣ and rng pα ⊆ B∣α∣ ,
◆ ∣pα ∣ ≤ ∣2α∣ ,
◆ aα ∈ dom pα+1 ,
◆ if τ(α) = t(ā) then tB[pα(ā)] ∈ rng pα+1 .

The limit h ∶= ⋃α pα will be the desired elementary embedding.
We start the construction with p0 ∶= ∅. For limit ordinals δ, we set

pδ ∶= ⋃α<δ pα . For the successor step, suppose that pα = c̄ ↦ d̄ has
already been defined. Suppose that τ(α) = t(ā) and let y ∶= tB[pα(ā)].
As A∣α∣ is ∣α∣+-saturated there is some element x ∈ A∣α∣ such that

⟨A, c̄x⟩ ≡ ⟨B, d̄y⟩ .

Similarly, since B∣α∣ is ∣α∣+-saturated we can find an element z ∈ B∣α∣
with

⟨A, c̄xaα⟩ ≡ ⟨B, d̄yz⟩ .

We set pα+1 ∶= c̄xaα ↦ d̄yz. ◻

Theorem 4.9. Let A be a pseudo-saturated Σ-structure and Ξ a signature
disjoint from Σ. If ∣A∣ ≥ ∣Σ∣⊕ ∣Ξ∣ then A realises every Ξ-type p ∈ SΞ(∅).

Proof. Let p∗ ⊆ FO0[Γ] be a Skolemisation of p and fix a pseudo-sat-
urated model B realising p∗ such that B∣Σ ≡ A and ∣B∣ ≥ ∣A∣. We can
use Lemma 4.8 to find exists an elementary embedding h ∶ A → B∣Σ
whose range B0 ∶= rng h induces a substructure B0 of B. We define a
Γ-expansion A∗ of A by setting

ξA∗ ∶= h−1[ξB0] , for ξ ∈ Γ ∖ Σ .

It follows that h ∶ A∗ ≅ B0. Since p∗ is a Skolem theory we have B0 ⪯ B.
This implies that A∗ ≅ B0 ⊧ p∗. Consequently, A+ ∶= A∗∣Σ∪Ξ is the
desired model of p. ◻
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Corollary 4.10. Let A be a pseudo-saturated structure of size ∣A∣ = κ
and let ∆ be a set of first-order formulae that is closed under conjunctions.
If B is any structure of size ∣B∣ ≤ κ with B ≤∃∆ A then there exists a
∆-embedding B→ A.

Proof. Let Φ ∶=Th∆(BB). If we can show that Φ ∪Th(A) is consistent
then we can use Theorem 4.9 to find an expansion AC of A satisfying Φ.
Hence, the Diagram Lemma implies that there exists a ∆-embedding
B→ A.

It remains to prove that Φ ∪Th(A) is consistent. Suppose otherwise.
Then there are finitely many formulae φ0(b̄0), . . . , φn−1(b̄n−1) ∈ Φ with
parameters b̄ i ⊆ B such that

Th(A) ⊧ ¬φ0(b̄0) ∨ ⋅ ⋅ ⋅ ∨ ¬φn−1(b̄n−1) .

Since Φ is closed under conjunction we may assume w.l.o.g. that n = 1.
Consequently,

A ⊧ ¬∃x̄φ0(x̄) .

But B ⊧ ∃x̄φ0(x̄) and B ≤∃∆ A implies that A ⊧ ∃x̄φ0(x̄). Contradic-
tion. ◻

Theorem 4.11. A pseudo-saturated structure of size κ is κ+-universal and
projectively cf(κ)-saturated.

Proof. Let A be pseudo-saturated. If B ≡ A is a structure of size ∣B∣ ≤ κ
then we can use Corollary 4.10 to find an elementary embedding B→ A.
Consequently, A is κ+-universal.

For the second claim suppose that ā ∈ Aα is a sequence of α < cf κ
elements. Then ⟨A, ā⟩ is pseudo-saturated by Lemma 4.6 (a). It follows
by Theorem 4.9 that ⟨A, ā⟩ is projectively 1-saturated. Consequently, A is
projectively cf(κ)-saturated. ◻

Corollary 4.12. If A is pseudo-saturated and ∣A∣ is regular then A is
saturated.
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Corollary 4.13. Every saturated structure of size κ is projectively κ-satu-
rated.

Proof. Suppose that A is saturated. Then so is ⟨A, ā⟩, for every ā ∈ A<κ .
Since saturated structures are pseudo-saturated it follows that every
expansion ⟨A, ā⟩ by less than κ constants is projectively 1-saturated.
Consequently, A is projectively κ-saturated. ◻

We conclude this section with a few results about definable relations
in pseudo-saturated and projectively saturated structures. We start with
an analogue of Lemma 2.17.

Lemma 4.14. Suppose that A is pseudo-saturated and let φ(x̄ , c̄) be a
first-order formula with parameters c̄ ⊆ Awhere ∣x̄∣ < ω. Then φ(x̄ , c̄)A
is either finite or ∣φ(x̄ , c̄)A∣ = ∣A∣.

Proof. Suppose that A = ⋃λ Aλ . If φA is infinite then, by Lemma 2.17, we
have ∣φAλ ∣ ≥ λ+. Consequently,

∣φA∣ ≥ ∣φAλ ∣ ≥ λ+ , for all λ < ∣A∣ ,

implies that ∣φA∣ = ∣A∣. ◻

Lemma 4.15. If A is pseudo-saturated then so is I(A), for every first-order
interpretation I .

Proof. Suppose that A = ⋃κ Aκ where each Aκ is κ+-saturated. Note that

Aκ ⪯ Aλ implies I(Aκ) ⪯ I(Aλ) , for κ ≤ λ .

Hence, the structures I(Aκ) form an elementary chain with limit

⋃
κ<∣A∣
I(Aκ) = I(A) .

Furthermore, according to Proposition 2.19, each structure I(Aκ) is
κ+-saturated. Hence, I(A) is pseudo-saturated. ◻
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e1. Saturation

Lemma 4.16. Let I be a first-order interpretation from Σ to Γ and let
κ > ∣Σ∣⊕ ∣Γ∣ be a cardinal. If A is projectively κ-saturated then so is I(A).

Proof. Let ā ⊆ I(A) be a sequence of less than κ-parameters and sup-
pose that p is a {ξ}-type over ā. We can find parameters c̄ ⊆ A and an
interpretation J with J (A, c̄) = ⟨I(A), ā⟩. Replacing A by ⟨A, c̄⟩ and
I by J we can therefore simplify notation by omitting the parameters.

To show that p is realised in I(A) fix a (Γ ∪ {ξ})-structure B ⊧ p
realising p. Let λ be a strong limit cardinal with λ > ∣Σ∣⊕ ∣Γ∣ and choose
pseudo-saturated structures A+ and B+ of size λ such that A+ ≡ A and
B+ ≡ B. Then I(A+) ≡ B+∣Γ implies, by Theorem 4.5, that I(A+) ≅
B+∣Γ . Let ξI(A+) be the relation on I(A+) induced by this isomorphism
and let ξA+ be its preimage under I . Similarly, for every ζ ∈ Γ, let ζA+ be
the preimage of ζI(A+) under I . W.l.o.g. assume that Σ and Γ are disjoint.
Let A∗ be the (Σ∪ Γ ∪{ξ})-expansion of ⟨A+ , ξA+⟩ by all these relations
and functions ζA+ . We can extend I to an interpretation J with

J (A∗) = ⟨I(A+), ξI(A+)⟩ .

Since κ > ∣Σ∣ ⊕ ∣Γ∣ we can use Proposition 3.5 to find a (Σ ∪ Γ ∪ {ξ})-
expansion A′ of A with A′ ≡ A∗. It follows that J (A′) is an (Γ ∪ {ξ})-
expansion of I(A) with J (A′) ≡ J (A∗) ≡ B+ ≡ B. ◻
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e2. Definability and automorphisms

1. Definability in projectively saturated models
As an application of the notions introduced in the previous chapter we
study the relationship between definable relations and automorphisms.

Definition 1.1. Let L be an algebraic logic, M a structure, and U ⊆ M a
set of parameters.

(a)A tuple ā ⊆ M is L-definable over U if there is an L-formula φ(x̄; c̄)
with parameters c̄ ⊆ U such that φ(x̄; c̄)M = {ā}.

(b) The L-definitional closure of U is the set

dclL(U) ∶= { a ∈ M ∣ a is L-definable over U } .

The set U is L-definitional closed if it is a fixed point of dclL .
(c) We say that an L-formula φ(x̄; c̄) with parameters c̄ ⊆ M is algeb-

raic if φ(x̄; c̄)M is finite. An L-type p is algebraic if it implies an algebraic
formula.
We call a tuple ā ⊆ M L-algebraic over U if there is an algebraic

L-formula φ(x̄; c̄) with parameters c̄ ⊆ U such that M ⊧ φ(ā; c̄).
(d) The L-algebraic closure of U is the set

aclL(U) ∶= { a ∈ M ∣ a is L-algebraic over U } .

The set U is L-algebraically closed if it is a fixed point of aclL .
(e) For L = FO we simply say that ā is definable or algebraic over U

and we write dcl(U) and acl(U) without the index L.

Lemma 1.2. Let M be a structure. The operators dclFO and aclFO are closure
operators on M with finite character.
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e2. Definability and automorphisms

Proof. Every element a ∈ U is definable over U by the formula x = a.
Consequently, U ⊆ dclFO(U) ⊆ aclFO(U).

If a is definable or algebraic over U by the formula φ(x; c̄), the same
formula can be used to show that a is definable or algebraic over any
set V ⊇ c̄. Consequently, U ⊆ V implies dcl(U) ⊆ dcl(V) and acl(U) ⊆
acl(V). Furthermore, it follows that a ∈ dcl(c̄) or a ∈ acl(c̄), respectively.
Hence, these operators have finite character.

Finally, suppose that a is definable over dcl(U). Let φ(x; c̄, d̄) be the
corresponding formula where d̄ ⊆ U and c̄ ⊆ dcl(U) ∖ U . For every
element c i , there is a formula ψ i over U with ψM

i = {c i}. We can define a
over U by the formula

φ′(x; d̄) ∶= ∃ ȳ[⋀
i

ψ i(y i) ∧ φ(x; ȳ, d̄)] .

The proof for acl is analogous. Suppose that a is algebraic over acl(U)
and let φ(x; c̄, d̄) be the formula witnessing this fact where d̄ ⊆ U and
c̄ ⊆ acl(U) ∖U . For every element c i , fix a formula ψ i over U such that
ψM

i is a finite set containing c i . Set m ∶= ∣φ(x , c̄, d̄)M∣. The following
formula shows that a is algebraic over U .

φ′(x; d̄) ∶= ∃ ȳ[⋀
i

ψ i(y i) ∧ ϑ( ȳ) ∧ φ(x; ȳ, d̄)] ,

where

ϑ( ȳ) ∶= ∀z0⋯∀zm[⋀
i

φ(z i ; ȳ, d̄)→ ⋁
i<k

z i = zk]

states that there are at most m elements z satisfying φ(z; ȳ, d̄). ◻

For strongly κ-homogeneous structures there is a tight relationship
between types and automorphisms.

Lemma 1.3. Let M be strongly κ-homogeneous and U ⊆ M a set of size
∣U ∣ < κ. For ā, b̄ ∈ M<κ , the following statements are equivalent :
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1. Definability in projectively saturated models

(1) tp(ā/U) = tp(b̄/U)

(2) There is some automorphism π ∈ Aut M with

π ↾U = idU and π(ā) = b̄ .

Proof. (1) ⇒ (2) follows from the definition of a strongly κ-homoge-
neous structure, while (2)⇒ (1) follows from the fact that isomorphisms
preserve first-order formulae. ◻

As a consequence we can express the definitional closure and the
algebraic closure in terms of automorphisms.

Definition 1.4. Let M be a structure and U ⊆ M.
(a) Let ξ and ζ be two tuples or two relations in M. We say that ζ is a

conjugate of ξ over U if ξ is mapped to ζ by an automorphism of M that
fixes U pointwise.

For a sets of formulae Φ and Ψ we similarly say that Ψ is a conjugate
of Φ over U if there exists an automorphism π fixing U pointwise such
that

Ψ = {φ(x̄; π(c̄)) ∣ φ(x̄; c̄) ∈ Φ } .

(b) We define the following two closure operators on M :

dclAut(U) ∶= { a ∈ M ∣ a has exactly one conjugate over U } ,
aclAut(U) ∶= { a ∈ M ∣ a has only finitely many conjugates

over U } .

Exercise 1.1. Let M be a structure. Prove that dclAut and aclAut are closure
operators on M.

Example. Let V be a vector space and let U ⊆ V . Then

dclAut(U) = ⟪U⟫V .
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e2. Definability and automorphisms

Remark. Let M be a structure and U ⊆ M. We can write the pointwise
stabiliser of U in Aut M and its setwise stabiliser as

(Aut M)(U) = Aut MU and (Aut M){U} = Aut ⟨M,U⟩ .

In arbitrary structures the relationship between dclL and dclAut and
between aclL and aclAut is as follows.

Lemma 1.5. Let L be an algebraic logic, M a structure, and U ⊆ M.
(a) dclL(U) ⊆ dclAut(U)
(b) aclL(U) ⊆ aclAut(U)

Proof. (a) If there is an automorphism π with π ↾U = idU and π(a) = b,
for a ≠ b, then

M ⊧ φ(a; c̄)↔ φ(b; c̄) ,

for all L-formulae φ and all parameters c̄ ⊆ U . Consequently, a is not
L-definable over U .

(b) Similarly, if the orbit of a under Aut MU is infinite then every
formula satisfied by a is also satisfied by infinitely many other elements.
Hence, a is not L-algebraic over U . ◻

For sufficiently saturated structures the two closure operators coincide.

Theorem 1.6. Let M be κ-saturated and strongly κ-homogeneous, a ∈ M
an element, and let U ⊆ M be a set of size ∣U ∣ < κ.

(a) The following statements are equivalent :
(1) a ∈ dclFO(U)
(2) a ∈ dclAut(U)
(3) tp(a/U) has exactly one realisation in M.

(b) The following statements are equivalent :
(1) a ∈ aclFO(U)
(2) a ∈ aclAut(U)

818



1. Definability in projectively saturated models

(3) tp(a/U) has only finitely many realisations in M.

Proof. (a) (2)⇔ (3) follows by Lemma 1.3.
(1)⇒ (3) Fix a formula φ(x) over U that defines a. Since φ ∈ tp(a/U),

it follows that a is the only realisation of tp(a/U).
(3)⇒ (1) Suppose that a ∉ dclFO(U). It follows that, for every finite

set Φ of first-order formulae over U , there is some element b ≠ a such
that

M ⊧⋀Φ(a)↔⋀Φ(b) .

By the Compactness Theorem and the fact that M is κ-saturated, it
follows that we can find some element b ≠ a with

tp(a/U) = tp(b/U) .

(b) (2)⇔ (3) follows by Lemma 1.3.
(1)⇒ (3) Fix a formula φ(x) over U such that φM is a finite set contain-

ing a. Since φ ∈ tp(a/U) it follows that there are at most ∣φM∣ realisations
of tp(a/U).

(3)⇒ (1) We can use an analogous argument as in (a) to show that a ∉
aclFO(U) implies that there are infinitely many realisations of tp(a/U).

◻

Corollary 1.7. Let M be a structure and U ⊆ M. Then

π[acl(U)] = acl(U) , for all π ∈ Aut MU .

Proof. Let a ∈ acl(U). To show that π(a) ∈ acl(U) we consider the set
A ⊆ M of all realisations of tp(a/U). By Theorem 1.6, A is a finite set
with A ⊆ acl(U). Consequently, π(a) ∈ A ⊆ acl(U). ◻

Corollary 1.8. Let M be κ-saturated and strongly κ-homogeneous, and
let A, B ⊆ M be sets of size ∣A∣, ∣B∣ < κ.

(a) The following statements are equivalent :
(1) A ⊆ dcl(B)
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(2) dcl(A) ⊆ dcl(B)
(3) Aut MA ⊇ Aut MB .

(b) The following statements are equivalent :
(1) A ⊆ dcl(B) and B ⊆ dcl(A)
(2) dcl(A) = dcl(B)
(3) Aut MA = Aut MB .

Proof. (b) follows from (a).
(a) (1)⇔ (2) Clearly, dcl(A) ⊆ dcl(B) implies A ⊆ dcl(A) ⊆ dcl(B).

Conversely, A ⊆ dcl(B) implies dcl(A) ⊆ dcl(dcl(B)) = dcl(B).
(1)⇒ (3) Suppose that A ⊆ dcl(B) and let π ∈ Aut MB . Then it follows

by Theorem 1.6 and definition of dclAut(B) that

π(a) = a , for all a ∈ dclAut(B) = dcl(B) ⊇ A .

Hence, π ∈ Aut MA.
(3)⇒ (1) Suppose that Aut MA ⊇ Aut MB and let a ∈ A. Then a ∈

dclAut(A) implies that

π(a) = a , for all π ∈ Aut MA .

In particular, we have

π(a) = a , for all π ∈ Aut MB .

By Theorem 1.6 and definition of dclAut(B), it follows that

a ∈ dclAut(B) = dcl(B) . ◻

As an application of Theorem 1.6, we present the following character-
isation of the algebraic closure.

Lemma 1.9. Let M be a Σ-structure that is κ-saturated and strongly κ-
homogeneous, for some cardinal κ > ∣Σ∣, and let U ⊆ M be a set of size
∣U ∣ < κ. Then

acl(U) =⋂{A ∣ A ⪯M with U ⊆ A} .
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1. Definability in projectively saturated models

Proof. (⊆) Let A ⪯M be an elementary substructure containing U . To
show that acl(U) ⊆ A, consider an element a ∈ acl(U). There exists an
algebraic formula φ(x) over U with a ∈ φM. Let m ∶= ∣φM∣. Then

M ⊧ ∃mxφ(x) implies A ⊧ ∃mxφ(x) .

Since φA ⊆ φM it follows that φA = φM. Hence, a ∈ φA ⊆ A.
(⊇) Suppose that a ∉ acl(U). We have to find an elementary sub-

structure A ⪯M containing U such that a ∉ A. By Theorem 1.6 and the
fact that M is κ-saturated, there exists a sequence (bα)α<κ of distinct
elements such that

tp(bα/U) = tp(a/U) , for all α < κ .

Using theTheorem of Löwenheim and Skolem,we can find an elementary
substructure A0 ⪯M containing U with

∣A0∣ ≤ ∣U ∣⊕ ∣Σ∣ < κ .

There exists an index α < κ with bα ∉ A0. Since M is strongly κ-homoge-
neous, we can find an automorphism π with π ↾U = idU and π(bα) = a.
Set A ∶= π[A0]. Then A ⪯M contains U but not a. ◻

After considering the definability of single elements we now study the
relationship between automorphisms and definable relations. Our first
result gives a characterisation of those relations that are definable over a
set U of parameters.

Lemma 1.10. Suppose that M is κ-saturated and strongly κ-homogeneous
and let U ⊆ M be a set of size ∣U ∣ < κ. An M-definable relation R ⊆ Mn

is U-definable if, and only if, π[R] = R, for all π ∈ Aut MU .

Proof. Clearly, a U-definable relation is invariant under all automorph-
isms of M that fix U pointwise. For the converse, suppose that R is
defined by the formula φ(x̄; c̄) with c̄ ⊆ M. Consider the set

Φ ∶= {φ(x̄; c̄) ∧ ¬φ(x̄′; c̄)}
∪ {ψ(x̄)↔ ψ(x̄′) ∣ ψ a formula over U } .
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If Φ(x̄ , x̄′)∪Th(MM) is satisfiable then Φ is a partial type and, sinceM is
κ-saturated, there are elements ā, b̄ ∈ Mn satisfying Φ. Let π0 ∶ U ∪ ā →
U ∪ b̄ be the function with π0 ↾ U = idU and π0(ā) = b̄. By choice
of ā and b̄ this is an elementary partial function. Since M is strongly
κ-homogeneous, we can extend it to an automorphism π ∶ M → M. But
we have ā ∈ φM = R and π(ā) = b̄ ∉ φM = R. Hence, R is not invariant
under automorphisms of Aut MU . A contradiction.

Consequently, Φ∪Th(MM) is not satisfiable. Hence, there are finitely
many formulae ψ0 , . . . ,ψm−1 over U such that

M ⊧ ∀x̄∀x̄′[⋀
i
[ψ i(x̄)↔ ψ i(x̄′)]→ [φ(x̄; c̄)↔ φ(x̄′; c̄)]] .

For I ⊆ [m], define

χI(x̄) ∶=⋀
i∈I

ψ i(x̄) ∧⋀
i∉I
¬ψ i(x̄) ,

and let

S ∶= { I ⊆ [m] ∣M ⊧ χI(ā) for some ā ∈ R } .

It follows that

ā ∈ R iff M ⊧⋁
I∈S

χI(ā) .

Consequently, the formula ⋁I∈S χI(x̄) defines R over U . ◻

An analogous result for relations with finitely many conjugates will
be given in Lemma 3.11 below.

If the structure M is even projectively saturated, we can drop the
assumption that the relation R is M-definable. In particular, the following
result implies that FO has the Beth property.

Theorem 1.11. Let Σ, Ξ be disjoint signatures, κ > ∣Ξ∣, and T ⊆ FO0[Σ]
a first-order theory. For a complete Ξ-type p ∈ SΞ(T) and a relation
symbol R ∈ Ξ, the following statements are equivalent :
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1. Definability in projectively saturated models

(1) There is an FO<ω[Σ]-formula φ(x̄) such that

p ⊧ ∀x̄[Rx̄ ↔ φ(x̄)] .

(2) If M is a model of T and N0 ,N1 are realisations of p in M then
RN0 = RN1 .

(3) There is a model M of T which is either projectively κ-saturated, or
saturated and of cardinality at least ∣Σ ∪ Ξ∣, such that

RN0 = RN1 , for every pair N0 ,N1 of realisations of p in M.

(4) There is a model M of T which is either projectively κ-saturated, or
saturated and of cardinality at least ∣Σ ∪ Ξ∣, such that

π[RM+] = RM+ , for every realisation M+ of p in M and
each automorphism π ∈ Aut M.

Proof. The implications (1)⇒ (2) and (3)⇒ (4) are trivial. (2)⇒ (3)
is also trivial, except for the existence of M which follows by Corol-
lary e1.3.4.

(4)⇒ (1) The proof is similar to that of the preceding lemma. Let s̄ be
the type of R. We choose new constant symbols c̄ and d̄ and we set

Φ ∶= p ∪ {Rc̄,¬Rd̄} ∪ {ψ(c̄)↔ ψ(d̄) ∣ ψ ∈ FOs̄[Σ] } .

If Φ is inconsistent, there are finitely many formulae ψ0 , . . . ,ψm−1 ∈
FOs̄[Σ] such that

p ⊧ ∀x̄ ȳ[⋀
i<m
[ψ i(x̄)↔ ψ i( ȳ)]→ (Rx̄ ↔ R ȳ)] .

As above we define

χI(x̄) ∶=⋀
i∈I

ψ i(x̄) ∧⋀
i∉I
¬ψ i(x̄) , for I ⊆ [m] .
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For every I ⊆ [m], it follows that we either have

p ⊧ χI(x̄)→ Rx̄ or p ⊧ χI(x̄)→ ¬Rx̄ .

Consequently, we can define R by the formula

φ(x̄) ∶=⋁
I∈S

χI(x̄) where S ∶= { I ⊆ [m] ∣ p ⊧ χI(x̄)→ Rx̄ } .

It remains to consider the case where Φ has a model A. We claim that
this is impossible. Since p is complete it follows that A∣Σ ≡ M∣Σ . Con-
sequently, we can use Proposition e1.3.5 to expand M∣Σ to a model M+

of Φ. Let ā and b̄ be the values of the constants c̄ and d̄ in M+, respectively.
Then

⟨M∣Σ , ā⟩ ≡ ⟨M∣Σ , b̄⟩ .

Since M∣Σ is strongly ℵ0-homogeneous it follows that there is some
automorphism π ∈ Aut M∣Σ with π(ā) = b̄. But ā ∈ RM+

and π(ā) = b̄ ∉
RM+

contradicts our choice of M. ◻

Corollary 1.12. Let Σ, Ξ be disjoint signatures, R ∈ Ξ a relation symbol,
and T ⊆ FO0[Σ] a complete first-order theory. If p ∈ SΞ(T) is a complete
Ξ-type such that, for every realisation M of p and all automorphisms
π ∈ Aut M∣Σ , we have

π[RM] = RM ,

then there is an FO<ω[Σ]-formula φ(x̄) such that

p ⊧ ∀x̄[Rx̄ ↔ φ(x̄)] .

Proof. Since T has a projectively ∣Ξ∣+-saturated model, the claim follows
from Theorem 1.11. ◻
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Corollary 1.13. Let Σ, Ξ be disjoint signatures, R ∈ Ξ a relation symbol,
and T ⊆ FO0[Σ] a first-order theory. If p is a Ξ-type such that, for every
realisation M of p and all automorphisms π ∈ Aut M∣Σ , we have

π[RM] = RM ,

then there are finitely many formulae φ0(x̄), . . . , φn−1(x̄) ∈ FO<ω[Σ]
such that

p ⊧ ⋁
i<n

∀x̄[Rx̄ ↔ φ i(x̄)] .

Proof. If q ⊇ p is a complete Ξ-type, we can use the preceding corollary
to find a formula φq(x̄) defining R modulo q. Consequently,

p ⊧⋁{Rx̄ ↔ φq(x̄) ∣ q ⊇ p complete} .

By compactness, it follows that there are finitely many complete types
q0 , . . . , qn−1 ⊇ p with

p ⊧ ⋁
i<n
[Rx̄ ↔ φqi (x̄)] .

◻

Below we will frequently work in projectively saturated elementary
extensions of a given model. In order to simplify the presentation and to
avoid having to include phrases like ‘there exists an elementary extension
such that’, it turned out to be a good idea to fix such an extension once
and for all. If this structure is sufficiently saturated, we can use the
Amalgamation Theorem and Theorem e1.2.9 to embed all other models
we consider into it.

Thus, let us fix aprojectively κ-saturatedmodelM of T where κ is some
very large cardinal. We call M the monster model of T . All models M
of T we will consider are tacitly assumed to be elementary substructures
of M of size ∣M∣ < κ.

We call a relation R ⊆Mn small if ∣R∣ < κ. Otherwise, it is large. To dis-
tinguish small and large relations we denote the latter by blackboard bold
symbols A,B,C, . . . . Note that, by Lemma e1.2.17, definable relations are
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either finite or large. Mostly, we will only consider types p ∈ S s̄(U) over
small sets U of parameters. Note that every such type is realised in M.
Similarly, we will tacitly assume that all parameter-definable relations
are defined over a small set of parameters.

To simplify notation, we will drop the model M and write just ā ≡U b̄
instead of ⟨MU , ā⟩ ≡ ⟨MU , b̄⟩. By Lemma 1.3, it follows that ā ≡U b̄ if,
and only if, there exists a U-automorphism π of M mapping ā to b̄. We
extend this notation to sequences of sets A0 , . . . ,An , B0 , . . . , Bn ⊆M by
defining

A0 . . . An ≡U B0 . . . Bn

if there are enumerations ā i of A i and b̄ i of B i such that

tp(ā0 . . . ān/U) = tp(b̄0 . . . b̄n/U) .

2. Imaginary elements and canonical parameters
In this section we present a construction adding to a given structure
new elements representing all definable relations. More generally, we
add elements for every class of a definable equivalence relation.

Definition 2.1. Let M be an S-sorted structure. An equivalence formula
is a formula χ(x̄ , ȳ)without parameters defining an equivalence relation
on M s̄ , for some s̄ ∈ S<ω . The tuple s̄ is called the type of χ. We denote the
equivalence class of a tuple ā ∈ M s̄ by [ā]χ . The elements of the quotient
M s̄/χM are called imaginary elements.

Given M we construct a new structure Meq by adding all imaginary
elements.

Definition 2.2. Let M be an S-sorted Σ-structure.
(a) Set

Seq ∶= { χ ∣ χ an equivalence formula} ,
Σeq ∶= Σ ⊍ { pχ ∣ χ ∈ Seq } .

826
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We regard S as a subset of Seq via the identification of s ∈ S with the
formula (x = y) ∈ Seq, where x and y are variables of sort s.
We construct an Seq-sorted Σeq-structure Meq as follows. For every

equivalence formula χ of type s̄, the domain of sort χ is

Meq
χ ∶= M s̄/χM .

By the identification of s ∈ S with (x = y) ∈ Seq,we obtain an embedding
of M into Meq. We interpret the symbols of Σ ⊆ Σeq in Meq according
to this embedding. The new function symbols pχ are interpreted as the
canonical projections M s̄ → M s̄/χM.

(b) To avoid ambiguities we denote the definable closure and the
algebraic closure of a subset U ⊆ Meq by dcleq(U) and acleq(U), re-
spectively, while dcl(U) and acl(U) are the closures of U in the original
structure M.

Remark. (a) Every finite tuple ā ∈ M s̄ is encoded in Meq as a single
element [ā]χ ∈ Meq of sort

χ(x̄ , ȳ) ∶= x0 = y0 ∧ ⋅ ⋅ ⋅ ∧ xn−1 = yn−1 ,

where the variables x i and y i have sort s i .
(b) For each formula φ(x̄), we can define the equivalence formula

χ(x̄ , ȳ) ∶= φ(x̄)↔ φ( ȳ) .

There are two imaginary elements of sort χ : one representing φM, the
other one representing ¬φM. Consequently, Meq contains imaginary
elements for all relations definable without parameters.

The next proposition shows that, when considering the logical proper-
ties of a structure, the transition from M to Meq does not change much.
But we will see below that, when studying automorphisms, this construc-
tion allows us in certain cases to replace setwise stabilisers by pointwise
ones.

Proposition 2.3. Let M be a structure.
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(a) M is a relativised reduct of Meq.
(b) There exists a first-order interpretation mapping M to Meq.
(c) For every formula φ(x̄) ∈ FOs̄[Σeq], we can construct a formula

φ′(x̄) ∈ FOs̄[Σ] such that

Meq ⊧ φ(ā) iff M ⊧ φ′(ā) , for all ā ∈ M s̄ .

(d) A ≡ B implies Aeq ≡ Beq.
(e) Meq = ⟪M⟫Meq .
(f) Every element of Meq is definable over M.
(g) Every elementary embedding g ∶ A → B can be extended to an

elementary embedding Aeq → Beq in a unique way.
(h) The restriction map

ρ ∶ Aut Meq → Aut M ∶ π ↦ π ↾M

is a group isomorphism.
(i) For every U ⊆ M, we have

dcl(U) = dcleq(U) ∩ M and acl(U) = acleq(U) ∩ M .

Proof. (a) and (b) follow immediately from the definition of Meq.
(c) and (d) follow from (b) via Lemma c1.5.9 and Corollary c1.5.13,

respectively.
(e) Every imaginary element [ā]χ ∈ Meq is denoted by a term pχ ā

with parameters ā ⊆ M.
(f) follows immediately from (e).
(g) Let g ∶ A → B be an elementary embedding. It follows by (b)

and Lemma c2.2.10 that the map [ā]χ ↦ [g(ā)]χ is an elementary
embedding Aeq → Beq extending g. For uniqueness, suppose that there
are elementary embeddings h0 , h1 ∶ Aeq → Beq with h0 ↾ A = h1 ↾ A.
By Theorem b3.1.9, it follows that h0 ↾ ⟪A⟫Aeq = h1 ↾ ⟪A⟫Aeq . Hence,
(e) implies that h0 = h1.
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2. Imaginary elements and canonical parameters

(h) First, note that ρ is well-defined since it follows by Lemma c2.2.10
and (a) that, for all π ∈ Aut Meq, the restriction π ↾M is indeed an auto-
morphism of M. Furthermore, ρ is obviously a group homomorphism.
Hence, it remains to show that it is bijective. For surjectivity, note that,
by (b), every automorphism of M can be extended to one of Meq. For
injectivity, note that, by (g), every automorphism of M can be extended
to at most one of Meq.

(i) To see that acl(U) ⊆ acleq(U) note that, if there is a formula φ
over U defining a finite set X in M then the same formula can be used
to define X in Meq. For the converse, suppose that φ is a formula over U
defining a finite set X ⊆ M in Meq. By (c), we can find a formula φ′
over U defining the same set in M. The claim for the definable closure is
proved analogously. ◻

According to the preceding proposition, the first-order theory of Meq

only depends on the theory of M. Consequently, we can extend the
operation eq to theories.

Definition 2.4. For a complete first-order theory T ,we denote the theory
Th(Meq) by Teq.

It also follows that adding imaginary elements does not change the
structure of the type spaces.

Corollary 2.5. Let U ⊆Meq and U0 ⊆M be sets.

dcleq(U) = dcleq(U0) implies Ss̄(Teq(U)) ≅ Ss̄(T(U0)) .

Proof. Since dcleq(U) = dcleq(U0), it follows by Proposition 2.3 and
Lemma c3.3.4 that FOs̄[ΣU0]/T(U0) is a retract of FOs̄[Σeq

U ]/T
eq(U).

Consequently, the claim follows by Corollary c3.3.3. ◻

As a consequence, many logical properties of M and T transfer to
Meq and Teq. We give two examples.

Lemma 2.6. Let T be a complete first-order theory, M a structure, and
κ an infinite cardinal.
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e2. Definability and automorphisms

(a) M is κ-saturated if, and only if, Meq is κ-saturated.
(b) T is κ-stable if, and only if, Teq is κ-stable.

Proof. (a) We have seen in Proposition e1.2.19 that κ-saturation is pre-
served under interpretations.

(b) (⇐) Suppose that Teq is κ-stable. To show that T is κ-stable,
consider a set U ⊆M of size ∣U ∣ ≤ κ. By Corollary 2.5, we have

Ss̄(T(U)) ≅ Ss̄(Teq(U)) .

Consequently, ∣S s̄(T(U))∣ = ∣S s̄(Teq(U))∣ ≤ κ.
(⇒) Suppose that T is κ-stable and let U ⊆Meq be a set of size ∣U ∣ ≤ κ.

There exists a set C ⊆ M of size ∣C∣ ≤ ∣U ∣ ⊕ ℵ0 ≤ κ with U ⊆ dcleq(C).
By Corollary 2.5, we have

Ss̄(T(C)) ≅ Ss̄(Teq(U ∪ C)) .

Consequently, ∣S s̄(Teq(U))∣ ≤ ∣S s̄(Teq(U∪C))∣ = ∣S s̄(T(C))∣ ≤ κ. ◻

We have seen that the operation of adding imaginary elements is
well-behaved. But what do we gain by it? As an example, consider the
following problem. Suppose that a relation R is defined by a formula
φ(x̄; c̄) with parameters c̄. There might be many other parameters d̄
such that φ(x̄; d̄) defines the same relation R. Sometimes, we would like
the parameter c̄ to be unique. Using imaginary elements, this can be
done. We start by defining the equivalence formula

χ( ȳ, ȳ′) ∶= ∀x̄[φ(x̄; ȳ)↔ φ(x̄; ȳ′)] .

Then two tuples ā and b̄ are equivalent if φ(x̄; ā) and φ(x̄; b̄) define
the same relation. Consequently, the tuples in [c̄]χ are precisely those
defining R. The imaginary element e ∶= [c̄]χ is a unique representative
of this set. We obtain a formula

ψ(x̄; z) ∶= ∃y[φ(x̄; ȳ) ∧ pχ ȳ = z]

such that e is the unique element such that ψ(x̄; e) defines R. Let us
formalise this construction.
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Definition 2.7. Let φ(x̄; ȳ) be a formula.
(a) The parameter equivalence for φ is the formula

χ( ȳ, ȳ′) ∶= ∀x̄[φ(x̄; ȳ)↔ φ(x̄; ȳ′)] .

(b) A tuple c̄ is a canonical parameter of a relation R if there exists a
formula ψ(x̄; ȳ) such that c̄ is the unique tuple satisfying

ψ(x̄; c̄)M = R .

In this case, we call the formula ψ(x̄; c̄) a canonical definition of R.

In this terminology we can state the above remark as follows.

Lemma 2.8. Let χ be the parameter equivalence of a formula φ(x̄; ȳ). For
every tuple c̄, the imaginary element [c̄]χ ∈Meq

χ is a canonical parameter
of φ(x̄; c̄)M.

Proof. The formula

ψ(x̄; [c̄]χ) ∶= ∃ ȳ[φ(x̄; ȳ) ∧ pχ ȳ = [c̄]χ]

is a canonical definition of φ(x̄; c̄)M. ◻

Corollary 2.9. Every relation R ⊆Ms̄ that is definable over a set U ⊆M
has a canonical parameter e ∈ dcleq(U).

Thus, all parameter-definable relations R ⊆Ms̄ have canonical para-
meters in Meq. We will see in Corollary 2.12 below that the same is
true for parameter-definable relations in Meq. The reason for this is
that performing the operation eq twice does not offer any additional
benefit : according to the following proposition there exist, for every sort
χ ∈ (Seq)eq, a sort η ∈ Seq and a definable bijection (Meq)

eq
χ → Meq

η .
Hence, every doubly imaginary element is already present as a singly
imaginary one.
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Proposition 2.10. For every equivalence formula χ(x̄ , ȳ) with type ζ̄ ∈
(Seq)n , there exist a sort η ∈ Seq and a definable, surjective function

f ∶ (Meq)ζ̄ → (Meq)η

such that ker f = χMeq
.

Proof. Each sort ζ i ∈ Seq is itself an equivalence formula of some type
s̄ i ∈ S<ω . We set

η(x̄0 . . . x̄n−1 , ȳ0 . . . ȳn−1) ∶=

χ(pζ0 x̄0 , . . . , pζn−1 x̄n−1 , pζ0 ȳ0 , . . . , pζn−1 ȳn−1) .

Then η ∈ Seq is an equivalence formula of type s̄0 . . . s̄n−1. We claim that
the desired function f ∶ (Meq)ζ̄ → (Meq)η is defined by the formula

φ(x̄ , y) ∶= ∃z̄0⋯∃z̄n−1[⋀
i<n

x i = pζ i z̄ i ∧ pη z̄0 . . . z̄n−1 = y] .

Note that

Meq ⊧ φ(ᾱ, b)

if, and only if, there are tuples ā0 , . . . , ān−1 such that

ᾱ = ⟨[ā0]ζ0 , . . . , [ān−1]ζn−1⟩ and b = [ā0 . . . ān−1]η .

Since the equivalence class [ā0 . . . ān−1]η does not depend on the par-
ticular choice of representatives ā i ∈ [ā i]ζ i , the element b is uniquely
determined by ᾱ. Thus, φ defines a function f ∶ (Meq)ζ̄ → (Meq)η .

To see that f is surjective, note that, for every element [ā0 . . . ān−1]η ∈
(Meq)η , we have

[ā0 . . . ān−1]η = f ([ā0]ζ0 , . . . , [ān−1]ζn−1) ∈ rng f .
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Hence, it remains to compute the kernel. Let ᾱ, ᾱ′ ∈ (Meq)ζ̄ and sup-
pose that ᾱ = ⟨[ā0]ζ0 , . . . , [ān−1]ζn−1⟩ and ᾱ′ = ⟨[ā′0]ζ0 , . . . , [ā′n−1]ζn−1⟩.
Then

f (ᾱ) = f (ᾱ′) iff Meq ⊧ ∃y[φ(ᾱ, y) ∧ φ(ᾱ′ , y)]
iff [ā0 . . . ān−1]η = [ā′0 . . . ā′n−1]η

iff Meq ⊧ η(ā0 . . . ān−1 , ā′0 . . . ā′n−1)

iff Meq ⊧ χ(ᾱ, ᾱ′) . ◻

We obtain the following generalisation of Lemma 2.8.

Corollary 2.11. Let M be a structure. For every formula φ(x̄; ȳ), there
exists a formula ψ(x̄; z̄) such that, for every tuple b̄ ⊆ Meq, there is a
unique tuple c̄ ⊆ Meq with

φ(x̄; b̄)M
eq
= ψ(x̄; c̄)M

eq
.

Proof. Let φ(x̄; ȳ) be a formula with parameter equivalence χ( ȳ, ȳ′).
According to Proposition 2.10 there exists a definable and surjective
function f ∶ (Meq)ζ̄ → (Meq)η such that ker f = χM. We claim that the
formula

ψ(x̄; z̄) ∶= ∃ ȳ[φ(x̄; ȳ) ∧ f ( ȳ) = z̄]

has the desired properties.
We start by proving that φ(x̄; b̄)M

eq
= ψ(x̄; c̄)M

eq
where c̄ ∶= f (b̄).

Clearly, every tuple satisfying φ(x̄; b̄) also satisfies ψ(x̄; c̄). Conversely,
suppose that ā satisfies ψ(x̄; c̄). Then there is some tuple b̄′ ∈ f −1(c̄)
such that ā ∈ φ(x̄; b̄′)M

eq
. By definition of f , it follows that b̄′ ∈ [b̄]χ .

Hence, φ(x̄; b̄′)M
eq
= φ(x̄; b̄)M

eq
. Consequently, ā satisfies φ(x̄; b̄).

It remains to show that c̄ is unique. Hence, suppose that c̄′ is some
tuple with φ(x̄; b̄)M

eq
= ψ(x̄; c̄′)M

eq
. As f is surjective, there exists an

element b̄′ ∈ f −1(c̄′). Since

φ(x̄; b̄′)M
eq
= ψ(x̄; c̄′)M

eq
= φ(x̄; b̄)M

eq
,

it follows that M ⊧ χ(b̄, b̄′). Consequently, c̄′ = f (b̄′) = f (b̄) = c̄. ◻
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Corollary 2.12. Every parameter-definable relation inMeq has a canonical
parameter.

3. Galois bases
We can characterise canonical parameters also in a more algebraic way
via automorphisms.

Definition 3.1. A Galois base, or canonical base, of a relation R ⊆Ms̄ is
a set B ⊆M such that

π[R] = R iff π ↾ B = idB , for all π ∈ AutM .

Remark. According to the definition, B is a Galois base or R if, and
only if, in AutM the setwise stabiliser of R coincides with the pointwise
stabiliser of B, i.e., if Aut⟨M,R⟩ = AutMB .

From the results of Section 1 it follows that, for parameter-definable
relations, Galois bases are the same as canonical parameters. But note
that the notion of a Galois base also applies to relations that are not
definable. Before giving the proof, let us present some technical lemmas.
The first one is an immediate consequence of Lemma 1.10.

Lemma 3.2. If B is a Galois base of a parameter-definable relation R, then
R is definable over B.

Lemma 3.3. Let R ⊆ Ms̄ be a relation and B ⊆ M a set. The following
statements are equivalent :

(1) B is a Galois base of R in the structureM.
(2) B is a Galois base of R in the structureMeq.

Proof. As the restriction map π ↦ π ↾M is an isomorphism between
AutMeq and AutM, the following two statements are equivalent :

◆ π[R] = R ⇔ π ↾ B = idB , for all π ∈ AutM .
◆ π[R] = R ⇔ π ↾ B = idB , for all π ∈ AutMeq .
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3. Galois bases

◻

Lemma 3.4. Let R be a relation and A, B sets.

(a) If dcl(A) = dcl(B), then A is a Galois base of R if, and only if, B is
a Galois base of R.

(b) If A and B are both Galois bases of R, then dcl(A) = dcl(B).

Proof. (a) Suppose that A is aGalois base ofR.ByCorollary 1.8, it follows
that

AutMB = AutMA = Aut⟨M,R⟩ .

Hence, B is a Galois base of R.
(b) Since both A and B are Galois bases, we have

AutMB = Aut⟨M,R⟩ = AutMA .

Therefore it follows by Corollary 1.8 that dcl(A) = dcl(B). ◻

With these preparations we can prove that, for parameter-definable
relations, Galois bases and canonical parameters are the same.

Proposition 3.5. Let R be a parameter-definable relation and b̄ a tuple.
The following statements are equivalent :

(1) b̄ is a Galois base of R.

(2) b̄ is a canonical parameter of R.

(3) dcleq(b̄) is the least dcleq-closed set over which R is definable.

Proof. (2)⇒ (1) Suppose that ψ(x̄; b̄) is a canonical definition of R. To
show that b̄ is a Galois base of R, consider an automorphism π of M.
Then

π(b̄) = b̄ implies π[R] = ψ(x̄; π(b̄))M = ψ(x̄; b̄)M = R .
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Conversely,

π[R] = R implies ψ(x̄; π(b̄))M = ψ(x̄; b̄)M .

By uniqueness of b̄, it follows that π(b̄) = b̄.
(1)⇒ (2) Suppose that b̄ is a Galois base of R. By Lemma 3.2, there

exists a formula φ(x̄; z̄) such that

R = φ(x̄; b̄)M .

First, let us show that there is no tuple b̄′ ≠ b̄ with

b̄′ ≡∅ b̄ and φ(x̄; b̄′)M = φ(x̄; b̄)M .

For a contradiction, suppose otherwise. Since b̄ and b̄′ have the same
type, there exists an automorphism π with π(b̄) = b̄′. It follows that

π[R] = π[φ(x̄; b̄)M] = φ(x̄; π(b̄))M = φ(x̄; b̄′)M = R .

Since b̄ is a Galois base of R, this implies that π(b̄) = b̄. Hence, b̄′ = b̄.
Contradiction.

Set Φ(x̄) ∶= tp(b̄). We have shown that

Φ( ȳ) ∪ Φ( ȳ′) ∪ {∀x̄[φ(x̄; ȳ)↔ φ(x̄; ȳ′)]} ⊧ ȳ = ȳ′ .

By compactness, there exists a finite subset Φ0 ⊆ Φ such that

Φ0( ȳ) ∪ Φ0( ȳ′) ∪ {∀x̄[φ(x̄; ȳ)↔ φ(x̄; ȳ′)]} ⊧ ȳ = ȳ′ .

Consequently, we obtain a canonical definition of R by setting

ψ(x̄; b̄) ∶= φ(x̄; b̄) ∧⋀Φ0(b̄) .

(2)⇒ (3) Let b̄ be a Galois base of R. We have seen in Lemma 3.2 that
R is definable over b̄. Suppose that R is definable over a dcleq-closed set
A ⊆Meq. For π ∈ AutMeq, it follows that

π ↾ A = idA implies π[R] = R implies π(b̄) = b̄ .
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Consequently, AutMeq
A ⊆ AutMeq

b̄ and it follows by Corollary 1.8 that
b̄ ⊆ dcleq(A).

(3)⇒ (1) We have seen in Corollary 2.9 that R has a canonical para-
meter e ∈Meq. By (3), this implies that dcleq(b̄) ⊆ dcleq(e). Conversely,
since R is definable over b̄, it follows by the already proved implication
(2)⇒ (3) that dcleq(e) ⊆ dcleq(b̄). Consequently, dcleq(e) = dcleq(b̄).
Note that, by the already established implication (1)⇒ (2), e is a Galois
base of R. Therefore, we can use Lemma 3.4 (a) to show that b̄ is also a
Galois base of R. ◻

Relations that are not definable still might have a Galois base. Of
particular interest are relations that are definable by types.

Definition 3.6. A Galois base of a type p ∈ S s̄(M) is a Galois base of the
relation pM defined by it.

For types, Galois bases do not necessarily exists. But if they do, they
are unique up to definable equivalence.

Definition 3.7. For a type p with Galois base B, we set

Gb(p) ∶= dcleq(B) .

Remark. By the Lemma 3.4, it follows that Gb(p) is the maximal Galois
base of p and that it does not depend on the choice of B.

Lemma 3.8. Let T be a complete first-order theory and p ∈ S s̄(M) a type.
If p is definable over U ⊆ M, it has a Galois base B ⊆ dcleq(U) of size
∣B∣ ≤ ∣T ∣.

Proof. Let φ(x̄; ȳ) be a formula without parameters and let δφ( ȳ) be
a φ-definition of p over U . By Corollary 2.9, the relation Rφ ∶= (δφ)

M

has a Galois base bφ ∈ dcleq(U). Set B ∶= { bφ ∣ φ a formula}. Then
∣B∣ ≤ ∣T ∣ and B ⊆ dcleq(U). To show that B is a Galois base of p, consider
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an automorphism π ∈ AutMeq. Then

π(p) = p iff π[Rφ] = Rφ , for all φ
iff π(bφ) = bφ , for all φ
iff π ↾ B = idB ,

as desired. ◻

Corollary 3.9. In a stable first-order theory T , every complete type over a
set U has a Galois base in dcleq(U).

Proof. Let p be a complete type over U . According to Theorem c3.5.17,
p is definable over U . Hence, the claim follows by Lemma 3.8. ◻

Lemma 3.10. Let p ∈ S s̄(M) be a definable type and U ⊆ M a set of
parameters. Then p is definable over U if, and only if, Gb(p) ⊆ dcleq(U).

Proof. (⇒) follows by Lemma 3.8.
(⇐)According to Lemma 3.8, p has aGalois baseB. Since p isdefinable

we can find, for every formula φ(x̄; ȳ), a definable relation Rφ such that

φ(x̄; c̄) ∈ p iff c̄ ∈ Rφ .

Since B ⊆ Gb(p) ⊆ dcleq(U), it is sufficient to show that Rφ is defin-
able over B. For each automorphism π ∈ AutMeq

B , we have π[p] = p.
Consequently, π[Rφ] = Rφ . Therefore, Lemma 3.2 implies that Rφ is
definable over B. ◻

We conclude this section with a characterisation of the algebraic clos-
ure in Meq. We start with an analogue of Lemma 1.10 for the algebraic
closure.

Lemma 3.11. A parameter-definable relation R has finitely many conjug-
ates over a set U ⊆M if, and only if, R is definable over acleq(U).
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Proof. (⇐) Suppose that R is definable over c̄ ⊆ acleq(U). Then

∣{ π[R] ∣ π ∈ AutMeq
U }∣ ≤ ∣{ π(c̄) ∣ π ∈ AutMeq

U }∣ < ℵ0 .

Hence, R has only finitely many conjugates over U .
(⇒) Suppose that R has only finitely many conjugates over U and let

b̄ be a Galois base of R. Then

∣{ π(b̄) ∣ π ∈ AutMeq
U }∣ ≤ ∣{ π[R] ∣ π ∈ AutMeq

U }∣ < ℵ0 .

By Theorem 1.6, it follows that b̄ ⊆ acleq(U). Furthermore, we have seen
in Lemma 3.2 that R is definable over b̄. ◻

The algebraic closure of a set U inMeq can be characterised as follows.

Definition 3.12. Let U ⊆M be a set of parameters and s̄ a finite tuple of
sorts. We denote by FEs̄(U) the set of all formulae χ(x̄ , ȳ) over U where
x̄ and ȳ have sort s̄ such that χM is an equivalence relation on Ms̄ with
finitely many classes.

Lemma 3.13. Let ā, b̄ ∈Ms̄ be finite tuples and U ⊆M a set of parameters.
Then

ā ≡acleq(U) b̄ iff M ⊧ χ(ā, b̄) for all χ ∈ FEs̄(U) .

Proof. (⇒) Let χ ∈ FEs̄(U) and let B ∶= [b̄]χM ⊆ Ms̄ be the χM-class
of b̄. The conjugates of B over U are χM-classes. Since there are only
finitelymany such classes, it follows by Lemma 3.11 (b) that B is definable
over acleq(U). Therefore, we can use Proposition 3.5 and Corollary 2.9
to find a canonical definition ψ(x̄; e) of B where e ∈ dcleq(acleq(U)) =
acleq(U). Since

ā ≡acleq(U) b̄ ,

it follows that

M ⊧ ψ(b̄; e) implies M ⊧ ψ(ā; e) .
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Hence, ā ∈ B implies M ⊧ χ(ā, b̄).
(⇐) Suppose that M ⊧ φ(ā; c̄), for c̄ ⊆ acleq(U). We have to show

that M ⊧ φ(b̄; c̄). There exists a formula ψ(x̄) over U such that ψM is a
finite set containing c̄. The formula

χ(x̄ , ȳ) ∶= (∀z̄.ψ(z̄))[φ(x̄; z̄)↔ φ( ȳ; z̄)]

defines an equivalence relation with finitely many classes. Therefore,
χ ∈ FEs̄(U) andM ⊧ χ(ā, b̄). Since c̄ ∈ ψM, it follows that

M ⊧ φ(ā; c̄) implies M ⊧ φ(b̄; c̄) . ◻

4. Elimination of imaginaries

In the abstract we can capture the property of Meq exhibited in Proposi-
tion 2.10 by the following definition.

Definition 4.1. A structure M has uniform elimination of imaginaries if,
for every equivalence formula χ(x̄ , ȳ) of type s̄, there exist sorts t̄ and a
definable function f ∶ M s̄ → M t̄ such that ker f = χM.

We say that a theory T has uniform elimination of imaginaries if every
model of T does.

We have shown in Proposition 2.10 that structures of the form Meq

have uniform elimination of imaginaries.

Proposition 4.2. Every structure of the form Meq has uniform elimination
of imaginaries.

Exercise 4.1. Show that the structure ⟨N,+, ⋅ ⟩ has uniform elimination
of imaginaries.

Frequently, the following weaker condition is equivalent to having
uniform elimination of imaginaries.
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Definition 4.3. A structure M has elimination of imaginaries if, for each
equivalence formula χ(x̄ , ȳ) of type s̄ and all tuples ā ∈ M s̄ , the equival-
ence class [ā]χ has a canonical parameter.
We say that a theory T has elimination of imaginaries if every model

of T does.

For structures where dcl(∅) is non-trivial, elimination of imaginaries
already implies uniform elimination of imaginaries.

Lemma 4.4. Let M be a structure. The following statements are equivalent :
(1) M has uniform elimination of imaginaries.
(2) M has elimination of imaginaries and at least one of the following

conditions holds :
◆ There is some sort u with ∣dcl(∅) ∩ Mu ∣ > 1.
◆ ∣M s ∣ ≤ 1, for all sorts s.

Proof. (1)⇒ (2) To show that M has elimination of imaginaries, consider
an equivalence formula χ(x̄ , ȳ) and a tuple ā in M. By (1), there exists
a definable function f with ker f = χM. Then [ā]χ has the canonical
definition

ψ(x̄; b̄) ∶= ( f (x̄) = b̄) where b̄ ∶= f (ā) .

To conclude the proof, suppose that there is some sort s with ∣M s ∣ > 1.
We have to find a sort u with ∣dcl(∅)∩Mu ∣ > 1.Consider the equivalence
formula

χ(xx′ , yy′) ∶= (x = x′)↔ (y = y′)

of type ss. By (1), there exists a definable function f with ker f = χM. Fix
distinct elements c, d ∈ M s . It follows that the tuples ā ∶= f (c, c) and
b̄ ∶= f (c, d) are definable and distinct. Fixing an index i with a i ≠ b i ,
we obtain distinct elements a i and b i in dcl(∅) of the same sort.

(2)⇒ (1) If ∣M s ∣ ≤ 1, for all sorts s, every equivalence formula χ defines
the equality relation. Hence, the identity function has kernel χM and we
are done.
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e2. Definability and automorphisms

It therefore remains to consider the case where ∣dcl(∅) ∩ Mu ∣ > 1, for
some sort u. Let χ(x̄ , ȳ) be an equivalence formula of type s̄. For every
tuple ā ∈ M s̄ , fix a canonical definition δ ā(x̄; b̄ ā) of [ā]χ . Let t̄ ā be the
sorts of b̄ ā . We obtain a formula

ψ ā(x̄; ȳ) ∶= δ ā(x̄ , ȳ) ∧ ∀z̄[δ ā(z̄; ȳ)↔ χ(x̄ , z̄)]

that defines a partial function f ā ∶ U ā → M t̄ ā with kernel χM∣U ā . Note
that the domain U ā of f ā is a union of χ-classes and that it is definable
by the formula

ϑ ā(x̄) ∶= ∃ ȳψ ā(x̄ , ȳ) .

Hence,

M s̄ = ⋃
ā∈M s̄

U ā implies Th(M) ⊧ ⋁
ā∈M s̄

ϑ ā .

By compactness, there are finitely many tuples ā0 , . . . , ān ∈ M s̄ such
that M s̄ = U ā0 ∪ ⋅ ⋅ ⋅ ∪U ān . Fix distinct elements c, d ∈ dcl(∅)∩Mu . The
formula

φ(x̄; ȳ0 , . . . , ȳn , z̄) ∶=

⋁
i≤n
[ψ ā i (x̄; ȳ i) ∧ x̄ ∈ U ā i ∖ (U ā0 ∪ ⋅ ⋅ ⋅ ∪U ā i−1)

∧⋀
j≠i

ȳ j = ⟨c, . . . , c⟩

∧ z̄ = ⟨c, . . . , c
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

i times

, d . . . , d⟩]

defines a function f ∶ M s̄ → M t̄ ā0 . . . t̄ ān u . . .u with ker f = χM. ◻

As an example, we consider o-minimal structures and, in particular,
real closed fields. We say that a theory T has definable Skolem functions
if, for every formula φ(x̄ , y), there exists a definable function f such
that

T ⊧ ∀x̄[∃yφ(x̄ , y)→ φ(x̄ , f (x̄))] .
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4. Elimination of imaginaries

Proposition 4.5. Every o-minimal structure M with definable Skolem
functions has elimination of imaginaries.

Proof. We start by proving that every parameter-definable set P ⊆ M
has a canonical definition. Suppose that P ⊆ M is parameter-definable.
By o-minimality, P is of the form

P = (a0 , b0) ∪ ⋅ ⋅ ⋅ ∪ (am−1 , bm−1) ∪ {c0 , . . . , cn−1} ,

for elements a i , b i , c i ∈ M satisfying

a0 < b0 < a1 < b1 < ⋅ ⋅ ⋅ < am−1 < bm−1 and c0 < ⋅ ⋅ ⋅ < cn−1 .

Fix such a decomposition of P where m and n are minimal. Then

ψ(x; ā, b̄, c̄) ∶= [⋁
i<m
(a i < x ∧ x < b i) ∨⋁

i<n
x = c i]

∧ [⋀
i<m

a i < b i ∧ ⋀
i<m−1

b i < a i+1 ∧ ⋀
i<n−1

c i < c i+1]

is a canonical definition of P.
To show that M has elimination of imaginaries, let χ(x̄ , ȳ) be an equi-

valence formula of type s̄ and let ā ∈ M s̄ . To find a canonical definition
of [ā]χ , we define, by induction on i < n ∶= ∣s̄∣, a formula ψ i(y i ; z̄ i),
parameters b̄ i , and a definable function s i such that

◆ ψ i(y i ; b̄ i) is a canonical definition of the relation defined by

ϑ i(y i ; ā, b̄0 , . . . , b̄ i−1) ∶=

∃y i+1⋯∃yn−1 χ(ā, s0(b̄0), . . . , s i−1(b̄ i−1),
y i , y i+1 , . . . , yn−1) ,

◆ M ⊧ ψ i(s i(b̄ i); b̄ i).

Suppose that we have already defined the formulae ψ0(y0; b̄0), . . . ,
ψ i−1(y i−1; b̄ i−1) and the functions s0 , . . . , s i−1. Since ϑ i defines a set, we
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e2. Definability and automorphisms

can use the statement we have proved above to find a canonical defin-
ition ψ i(y i ; b̄ i) of ϑM

i (y i ; ā, b̄0 , . . . , b̄ i−1). Let s i be a definable Skolem
function for the formula ψ i(y i ; z̄ i). This concludes the inductive step.
We claim that the formula

ψ(x̄; b̄0 , . . . , b̄n−1) ∶=

χ(x̄ , s0(b̄0), . . . , sn−1(b̄n−1))

∧ ⋀
i<n

∀y i[ψ i(y i ; b̄ i)↔ ϑ i(y i ; x̄ , b̄0 , . . . , b̄ i−1)]

is a canonical definition of [ā]χ . By construction, we have

ψ(x̄; b̄0 , . . . , b̄n−1)
M = [ā]χ .

Suppose that b̄′0 , . . . , b̄′n−1 are tuples such that

ψ(x̄; b̄′0 , . . . , b̄′n−1)
M = [ā]χ .

Then

ψ i(y i ; b̄′i)
M = ϑ i( ȳ i ; ā, b̄′0 , . . . , b′i−1)

M .

By choice of ψ i we can use induction on i to show that b̄′i = b̄ i . ◻

Corollary 4.6. The theory RCF of real closed fields has uniform elimination
of imaginaries.

Proof. After we have shown that RCF has definable Skolem functions,we
can use Proposition 4.5 to show that RCF has elimination of imaginaries.
Since 0, 1 ∈ dcl(∅), it therefore follows by Lemma 4.4 that it even has
uniform elimination of imaginaries.

Hence, it remains to show that RCF has definable Skolem functions.
Let φ(x̄ , y) be a formula. By o-minimality, for every choice of values c̄
for the variables x̄, the relation φ(ā, y)M is of the form

φ(c̄, y)M = (a0 , b0) ∪ ⋅ ⋅ ⋅ ∪ (am−1 , bm−1) ∪ {d0 , . . . , dn−1} ,
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4. Elimination of imaginaries

for elements a i , b i , c i ∈ M satisfying

a0 < b0 < a1 < b1 < ⋅ ⋅ ⋅ < am−1 < bm−1 and d0 < ⋅ ⋅ ⋅ < dn−1 .

Furthermore, it follows by Theorem d3.3.11 that there exists a bound
k < ω such that, for every tuple c̄, we can choose a decomposition as
above where the numbers m and n are less than k.

Let ψ(x̄; y) be a formula stating that, for the given value of x̄, there
are numbers m, n < k and tuples ā, b̄, d̄ such that

◆ φ(x̄ , y′)M = (a0 , b0) ∪ ⋅ ⋅ ⋅ ∪ (am , bm) ∪ {d0 , . . . , dn},

◆ m and n are the minimal numbers such that φ(x̄ , y′)M can be
written in this form,

◆ a0 < b0 < a1 < b1 < ⋅ ⋅ ⋅ < am−1 < bm−1 and d0 < ⋅ ⋅ ⋅ < dn−1,

◆ y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d0 if n > 0 ,
(a0 + b0)/2 if n = 0 , m > 0 , and −∞ < a0 < b0 <∞ ,
b0 − 1 if n = 0 , m > 0 , and −∞ = a0 < b0 <∞ ,
a0 + 1 if n = 0 , m > 0 , and −∞ < a0 < b0 =∞ ,
0 otherwise .

Then ψ(x̄ , y) defines a Skolem function for φ(x̄ , y). ◻

We can use Galois bases to characterise theories with elimination of
imaginaries.

Proposition 4.7. Let T be a complete first-order theory. The following
statements are equivalent :

(1) T has elimination of imaginaries.

(2) Every parameter-definable relation has a canonical parameter.

(3) Every parameter-definable relation has a finite Galois base.

(4) For every parameter-definable relation R, there exists a least dcleq-
closed set B ⊆M over which R is definable.
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e2. Definability and automorphisms

(5) For every imaginary element e ∈ Meq, there is a finite set B ⊆ M
with dcleq(e) = dcleq(B).

Proof. (3)⇒ (4)⇔ (2) follows by Proposition 3.5.
(2)⇒ (1) Let χ(x̄ , ȳ) be an equivalence formula. If every parameter-

definable relation has a canonical parameter then, in particular, this is
true for every relation of the form [ā]χ .

(1)⇒ (5) Let e ∈Meq
χ be an imaginary element and E ∶= p−1

χ (e) the
corresponding equivalence class. Since T has elimination of imaginar-
ies, there exists a canonical definition ψ(x̄; b̄) of E. Obviously, we can
choose the tuple b̄ to be finite. According to Proposition 3.5, b̄ is a Galois
base of E. Note that, in the structure Meq, {e} is a Galois base of E.
Consequently, it follows by Lemmas 3.3 and 3.4 that

dcleq(e) = dcleq(b̄) .

(5)⇒ (3) Let R be a parameter-definable relation. We fix a formula
φ(x̄; c̄) with parameters c̄ defining R. Let χ( ȳ, ȳ′) be the parameter
equivalence for φ(x̄; ȳ) and set e ∶= [c̄]χ . By assumption, there exists
a finite set B ⊆ M such that dcleq(e) = dcleq(B). We claim that B is a
Galois base of R. Note that, by Lemma 3.3, it is sufficient to prove that
B is a Galois base of R in the structureMeq. Furthermore, it follows by
Lemma 2.8 and Proposition 3.5 that e is a Galois base of R. Therefore,
Lemma 3.4 (a) implies that B is also a Galois base of R. ◻

5. Weak elimination of imaginaries
In this section we take a look at a weaker condition than elimination of
imaginaries.

Definition 5.1. (a) A tuple c̄ is aweak canonical parameter of a relationR
if there exist a formula ψ(x̄; ȳ) such that c̄ is one of only finitely many
tuples satisfying

ψ(x̄; c̄)M = R .
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5. Weak elimination of imaginaries

In this case, we call the formula ψ(x̄; c̄) a weak canonical definition of R.
(b) A complete first-order theory T has weak elimination of imagin-

aries if, for each equivalence formula χ(x̄ , ȳ) of type s̄ and all tuples
ā ∈Ms̄ , the equivalence class [ā]χ has a weak canonical parameter.

We start with an analogue of Proposition 3.5.

Lemma 5.2. Let R be a parameter-definable relation and U a set. The
following statements are equivalent :

(1) R has a weak canonical parameter c̄ with acl(c̄) = acl(U).
(2) acl(U) is the least algebraically closed set over which R is definable.

Proof. (1)⇒ (2) Let ψ(x̄; c̄) be a weak canonical definition of R. We
claim that acl(c̄) is the least algebraically closed set over which R is
definable. Obviously, R is definable over acl(c̄). To show that acl(c̄) is
the least such set, let φ(x̄; b̄) be an arbitrary formula defining R. We
have to prove that acl(c̄) ⊆ acl(b̄). The formula

ϑ( ȳ; b̄) ∶= ∀x̄[ψ(x̄; ȳ)↔ φ(x̄; b̄)]

defines the finite set { c̄′ ∣ ψ(x̄; c̄′)M = R}. This implies that c̄ ⊆ acl(b̄),
as desired.

(2)⇒ (1) Suppose that acl(U) is the least algebraically closed set over
which R is definable. Fix a formula ψ(x̄; c̄) with parameters c̄ ⊆ acl(U)
defining R. Note that, by assumption on U , it follows that acl(c̄) =
acl(U).
We start by proving that there are only finitely many tuples c̄′ such

that

c̄′ ≡∅ c̄ and ψ(x̄; c̄′)M = R .

For a contradiction, suppose otherwise. By compactness, we can then
find a tuple c̄′ such that

c̄′ ⊈ acl(c̄) , c̄′ ≡∅ c̄ , and ψ(x̄; c̄′)M = R .
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e2. Definability and automorphisms

Since R is definable over c̄′ it follows by assumption on U that

c̄ ⊆ acl(U) ⊆ acl(c̄′) .

As c̄′ ≡∅ c̄, there exists an automorphism π with π(c̄′) = c̄. Setting
c̄′′ ∶= π(c̄) it follows that

c̄ ⊈ acl(c̄′′) and c̄′′ ⊆ acl(c̄) ,

Since, for every tuple ā,

M ⊧ φ(ā; c̄′′) iff M ⊧ φ(ā; π(c̄))
iff M ⊧ φ(π−1(ā); c̄)
iff M ⊧ φ(π−1(ā); c̄′)
iff M ⊧ φ(ā; π(c̄′)) iff M ⊧ φ(ā; c̄′) ,

it furthermore follows that ψ(x̄; c̄′′)M = R. But, by assumption on U ,
this implies that c̄ ⊆ acl(U) ⊆ acl(c̄′′). A contradiction.

Set Φ( ȳ) ∶= tp(c̄). We have shown that there exists a number n < ω
such that

Φ( ȳ0) ∪ ⋅ ⋅ ⋅ ∪ Φ( ȳn) ∪ {∀x̄[ψ(x̄; ȳ i)↔ ψ(x̄; ȳk)] ∣ i , k ≤ n }

is inconsistent. By compactness, we can find a finite subset Φ0 ⊆ Φ such
that

Φ0( ȳ0) ∪ ⋅ ⋅ ⋅ ∪ Φ0( ȳn) ∪ {∀x̄[ψ(x̄; ȳ i)↔ ψ(x̄; ȳk)] ∣ i , k ≤ n }

is already inconsistent. Consequently, the formula

ψ(x̄; c̄) ∧⋀Φ0(c̄)

is a weak canonical definition of R with acl(c̄) = acl(U). ◻

Corollary 5.3. If ā and b̄ are weak canonical parameters of a relation R,
then acl(ā) = acl(b̄).
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5. Weak elimination of imaginaries

For relations that do have a Galois base, we can be more precise.

Lemma 5.4. Let R be a parameter-definable relation with Galois base b̄.
A tuple c̄ is a weak canonical parameter of R if, and only if,

b̄ ⊆ dcl(c̄) and c̄ ⊆ acl(b̄) .

Proof. By Proposition 3.5, we can fix a canonical definition ψ̂(x̄; b̄) of R.
(⇒) Suppose that ψ(x̄; c̄) is a weak canonical definition of R. Then

b̄ ⊆ dcl(c̄) since b̄ is the unique tuple satisfying

ϑ(z̄; c̄) ∶= ∀x̄[ψ(x̄; c̄)↔ ψ̂(x̄; z̄)] .

Furthermore, c̄ ⊆ acl(b̄) since the formula

φ( ȳ; b̄) ∶= ∀x̄[ψ(x̄; ȳ)↔ ψ̂(x̄; b̄)]

defines a finite set containing c̄.
(⇐) Let us first consider the special case where R = ∅. Then ∅ is a

Galois base of R and it follows by Lemma 3.4 that b̄ ⊆ dcl(∅). Hence,
c̄ ⊆ acl(∅) and there exists a formula ϑ( ȳ) that defines a finite relation
containing the tuple c̄. It follows that the formula

ψ(x̄; c̄) ∶= ¬ϑ(c̄)

is a weak canonical definition of R = ∅.
It remains to consider the casewhereR ≠ ∅. Fix formulae ϑ(z̄; ȳ) and

φ( ȳ; z̄) such that ϑ(z̄; c̄)M = {b̄} and φ( ȳ; b̄)M is a finite set containing c̄.
We claim that the formula

ψ(x̄; c̄) ∶= ∃z̄[ϑ(z̄; c̄) ∧ ψ̂(x̄; z̄) ∧ φ(c̄; z̄)]

is a weak canonical definition of R. Clearly, ψ(x̄; c̄)M = R. Furthermore,
suppose that c̄′ is a tuple such that ψ(x̄; c̄′)M = R. Fix a tuple ā ∈ R and
let b̄′ be a tuple such that

M ⊧ ϑ(b̄′; c̄′) ∧ ψ̂(ā; b̄′) ∧ φ(c̄′; b̄′) .
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e2. Definability and automorphisms

Then R = ψ(x̄; c̄′)M = ψ̂(x̄; b̄′)M implies that b̄′ = b̄. Hence, we have
M ⊧ φ(c̄′; b̄). Since there are only finitely many such tuples c̄′, it follows
that ψ(x̄; c̄)M is a weak canonical definition of R. ◻

We obtain a characterisation of theories with weak elimination of
imaginaries along the same lines as Proposition 4.7.

Proposition 5.5. Let T be a complete first-order theory. The following
statements are equivalent :

(1) T has weak elimination of imaginaries.

(2) All parameter-definable relations have weak canonical parameters.

(3) For every parameter-definable relation R, there is a least algebrai-
cally closed set over which R is definable.

(4) For every element e ∈Meq, there is a finite set B ⊆M such that

e ∈ dcleq(B) and B ⊆ acleq(e) .

(5) For every imaginary element e ∈Meq, there exists a finite tuple s̄ of
sorts and a finite relation C ⊆Ms̄ such that

dcleq(e) = dcleq(B) , for every Galois base B of C .

Proof. (4)⇒ (1) Let e ∈Meq
χ be an imaginary element and E ∶= p−1

χ (e)
its equivalence class. By assumption, there exists a finite tuple c̄ ⊆ M
such that e ∈ dcleq(c̄) and c̄ ⊆ acleq(e). Since e is a Galois base of E it
follows by Lemma 5.4 that c̄ is a weak canonical parameter of E.

(1)⇒ (3) Let R be a relation defined by the formula φ(x̄; b̄) and let
χ be the parameter equivalence of φ. By assumption, there exists a finite
relation C and a formula ψ(z̄; ȳ) such that

ψ(z̄; c̄)M = [b̄]χ iff c̄ ∈ C .

We claim that acl(⋃C) is the desired algebraically closed set.
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5. Weak elimination of imaginaries

First, note that R is defined over c̄ ⊆ acl(⋃C) by the formula

ϑ(x̄; c̄) ∶= ∃z̄[ψ(z̄; c̄) ∧ φ(x̄; z̄)] .

Next, suppose that A is an algebraically closed set such that R is
definable over A. For every π ∈ AutM, it follows that

π ↾ A = idA ⇒ π[R] = R
⇒ φ(x̄; π(b̄′))M = φ(x̄; b̄′)M , for all b̄′ ∈ [b̄]χ
⇒ π[b̄]χ = [b̄]χ
⇒ π[ψ(x̄; c̄)M] = ψ(x̄; c̄)M , for all c̄ ∈ C
⇒ π[C] = C .

Since C is finite, it follows that every tuple c̄ ∈ C has finitely many
conjugates over A. Consequently, Theorem 1.6 implies that⋃C ⊆ acl(A).

(3) ⇒ (2) Let R be a parameter-definable relation. By assumption,
there exists a least algebraically closed set U over which R is definable.
Hence, we can apply Lemma 5.2 to obtain a weak canonical parameter
c̄ ⊆ U of R.

(2)⇒ (5) Let e ∈ Meq
χ be an imaginary element and E ∶= p−1

χ (e) its
equivalence class. By assumption, E has a weak canonical definition
ψ(x̄; c̄). Obviously, we may assume that c̄ is a finite tuple. Set

C ∶= { c̄′ ∣ ψ(x̄; c̄′)M = E} .

For an automorphism π ∈ AutMeq, it follows that

π(e) = e iff π[E] = E
iff ψ(x̄; π(c̄))M = ψ(x̄; c̄)M , for all c̄ ∈ C
iff π[C] = C .

Hence, e is a Galois base of C. Therefore, it follows by Lemma 3.4 (b)
that

dcleq(e) = dcleq(B) , for every Galois base B of C .
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(5)⇒ (4) Suppose that C = {c̄0 , . . . , c̄n} is a finite relation such that
dcleq(e) = dcleq(B), for every Galois base B of C. SinceMeq has elim-
ination of imaginaries, there exists a Galois base B ⊆ Meq of C. Con-
sequently, Lemma 3.4 (a) implies that e is also a Galois base of C.

Let π be an automorphisms of Meq. Then

π(c̄0 . . . c̄n) = c̄0 . . . c̄n implies π[C] = C
implies π(e) = e .

By Corollary 1.8, it follows that e ∈ dcleq(c̄0 . . . c̄n). Similarly,

π(e) = e implies π[C] = C
implies π(c̄0 . . . c̄n) = c̄σ(0) . . . c̄σ(n) ,

for some permutation σ .

Therefore, there are only finitely many conjugates of c̄0 . . . c̄n over e.
According to Theorem 1.6 this implies that c̄0 . . . c̄n ⊆ acleq(e). ◻

In later chapters we will present several conditions implying that a
theory has weak elimination of imaginaries. Here, we give only one
example.

Lemma 5.6. A theory T satisfying the following two conditions has weak
elimination of imaginaries :

◆ There is no strictly decreasing sequence A0 ⊃ A1 ⊃ . . . of sets of the
form A i = acl(B i) where each B i is finite.

◆ If A and B are algebraic closures of finite sets, then AutMA∩B is
generated by AutMA ∪AutMB .

Proof. By Proposition 5.5 it is sufficient to show that, for every para-
meter-definable relation R, there is a least algebraically closed set over
which R is definable.

Hence, letR beparameter-definable. First, let us show that, ifR isdefin-
able over two algebraically closed sets A and B of the form A = acl(A0)
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5. Weak elimination of imaginaries

and B = acl(B0), for finite A0 and B0, then it is also definable over their
intersection A ∩ B. If R is definable over both A and B, Lemma 1.10
implies that

AutMA ∪AutMB ⊆ Aut⟨M,R⟩ .

Consequently, the second condition implies that

AutMA∩B = ⟪AutMA ∪AutMB⟫ ⊆ Aut⟨M,R⟩ .

Hence, it follows by Lemma 1.10 that R is definable over A∩ B.
By the first condition, it therefore follows that there is a least algebrai-

cally closed set over which R is definable. ◻

The following property is what is missing from weak elimination of
imaginaries in order to obtain full elimination of imaginaries.

Definition 5.7. A complete first-order theory T has elimination of finite
imaginaries if every finite relation has a finite Galois base in M.

As an example, we consider the theory of algebraically closed fields.
We will show later in Corollary ?? that this theory actually has uniform
elimination of imaginaries.

Lemma 5.8. The theory of algebraically closed fields of characteristic p
has elimination of finite imaginaries.

Proof. Let R = {c̄0 , . . . , c̄n−1} be a finite relation consisting of m-tuples
c̄ i = ⟨c i

0 , . . . , c i
m−1⟩. We define the polynomial

p(x , y0 , . . . , ym−1) ∶=∏
i<n
(x − c i

0 y0 − ⋅ ⋅ ⋅ − c i
m−1 ym−1) .

Let Z be the set of roots of p. Then

π[Z] = Z iff π[R] = R , for every automorphism π .

Since p is the only polynomial with set of roots Z, it follows that an
automorphism fixes p if, and only if, it permutes R. Consequently, the
coefficients of p form a Galois base of R. ◻
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Proposition 5.9. A theory T has elimination of imaginaries if, and only
if, it has both, elimination of finite imaginaries and weak elimination of
imaginaries.

Proof. (⇒) Since every canonical parameter is a weak canonical para-
meter, elimination of imaginaries implies weak elimination of implies.
Moreover, it follows by Proposition 4.7 (3) that every theory with elimin-
ation of imaginaries has elimination of finite imaginaries.
(⇐) Let e ∈Meq. By Proposition 5.5, there exists a finite set C ⊆Ms̄

such that

dcleq(e) = dcleq(B) , for every Galois base B of C .

As T has elimination of finite imaginaries, the set C has a finite Galois
base B0 ⊆M. Hence,

dcleq(e) = dcleq(B0) .

By Proposition 4.7, it follows that T has elimination of imaginaries. ◻
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1. Isolated types
The usualway to construct structures in model theory consists inwriting
down an appropriate theory and proving that it is consistent. In particular,
we can reconstruct from the elementary diagram of a structure the
structure itself, or we can use it to obtain an elementary extension. If
we want to construct rich models realising many types then, as we have
seen in Chapter e1, this approach works well.

In the present chapter, on the other hand, we are interested in models
realising few types. We start by studying those types that are unavoidable
in the sense that they are realised in every model.

Definition 1.1. Let T be a theory.
(a) A formula φ isolates a type p (w.r.t. T) if φ ⊧ p modulo T . We

call a type p over U isolated if it is isolated by a formula φ(x̄ , c̄) with
parameters c̄ ⊆ U . In particular, a complete type p ∈ S s̄(U) is isolated if
and only if ⟨φ⟩ = {p}, i.e., p is an isolated point in the topology of S s̄(U).

(b) A structureA is atomic if every realised type p ∈ S<ω(∅) is isolated.
More generally, if B,U ⊆ A then we call B atomic over U if only isolated
types p ∈ S<ω(U) are realised in B.

Lemma 1.2. If p is isolated by φ(x̄) then p is realised in every model of
T ∪ {∃x̄φ}.

Lemma 1.3. If ā ⊆ acl(U) then tp(ā/U) is isolated.

Proof. Let M be amodel containing U . Since ā is algebraic over U we can
choose a formula φ(x̄ , c̄) with parameters c̄ ⊆ U such that M ⊧ φ(ā, c̄)

logic, algebra & geometry 2024-04-09 — ©achim blumensath 855



e3. Prime models

and the set φ(x̄ , c̄)M is finite and of minimal size. We claim that this
formula isolates tp(ā/U).

For a contradiction suppose that there is some formula ψ(x̄ , d̄) ∈
tp(ā/U) such that φ ⊭ ψ. Then we can find a tuple b̄ ⊆ M with

M ⊧ φ(b̄, c̄) ∧ ¬ψ(b̄, d̄) .

It follows that

[φ(x̄ , c̄) ∧ ψ(x̄ , d̄)]M ⊆ φ(x̄ , c̄)M ∖ {b̄} ⊂ φ(x̄ , c̄)M ,

in contradiction to our choice of φ. ◻

Lemma 1.4. Every isolated type p ∈ S s̄(U) is definable over a finite subset
U0 ⊆ U.

Proof. Let φ(x̄ , c̄) be a formula over U isolating p. We claim that p is
definable over U0 ∶= c̄. Let ψ(x̄ , ȳ) be a formula and b̄ ⊆ U . Then we
have

ψ(x̄ , b̄) ∈ p iff T(U) ∪ {φ(x̄ , c̄)} ⊧ ψ(x̄ , b̄)

iff T(U) ⊧ ∀x̄[φ(x̄ , c̄)→ ψ(x̄ , b̄)] .

Consequently, δψ( ȳ) ∶= ∀x̄[φ(x̄ , c̄) → ψ(x̄ , ȳ)] is a ψ-definition of p
over U0. ◻

Lemma 1.5. tp(āb̄/U) is isolated if and only if the types tp(ā/U) and
tp(b̄/U ∪ ā) are isolated.

Proof. (⇐) If φ(x̄) isolates tp(ā/U) and ψ( ȳ, ā) isolates tp(b̄/U ∪ ā)
then the formula φ(x̄) ∧ ψ( ȳ, x̄) isolates tp(āb̄/U).
(⇒) Let φ(x̄ , ȳ) be a formula isolating tp(āb̄/U). Then the formula

φ(ā, ȳ) isolates tp(b̄/U ∪ ā). Furthermore, we claim that ∃ ȳ′φ(x̄ , ȳ)
isolates tp(ā/U) where ȳ′ ⊆ ȳ is the finite tuple of those variables that
actually appear in φ. Suppose that ∃ ȳ′φ ∈ tp(c̄/U). Then there is some
tuple d̄ with φ ∈ tp(c̄d̄/U). Consequently, tp(c̄d̄/U) = tp(āb̄/U) and
tp(c̄/U) = tp(ā/U). ◻
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We conclude this section with a collection of basic facts about atomic
models.

Lemma 1.6. If A is atomic over U and ā ∈ A<ω then A is atomic over
U ∪ ā.

Proof. For every finite tuple b̄ ∈ A<ω we know that tp(āb̄/U) is isolated.
By Lemma 1.5 it follows that tp(b̄/U ∪ ā) is also isolated. ◻

Lemma 1.7. Let A ⊆ B ⊆ C. If C is atomic over B and B is atomic over A
then C is atomic over A.

Proof. Let c̄ ⊆ C and suppose that tp(c̄/B) is isolated by φ(x̄ , b̄). Fix
some formula ψ( ȳ, ā) isolating tp(b̄/A). We claim that tp(c̄/A) is isol-
ated by the formula χ ∶= ∃ ȳ[φ(x̄ , ȳ) ∧ ψ( ȳ, ā)].

Suppose that χ ∈ tp(d̄/A). Then there is some tuple ē with

φ(d̄ , ē),ψ(ē , ā) ∈ tp(d̄ ē/A) .

Consequently, we have tp(ē/A) = tp(b̄/A) and there exists an A-auto-
morphism π with π(ē) = b̄. Let d̄′ ∶= π(d̄). Then tp(d̄′/b̄) = tp(d̄/ē)
and φ(x̄ , b̄) ∈ tp(d̄′/b̄) implies that tp(d̄′/B) = tp(c̄/B). It follows that

tp(d̄/A) = tp(d̄′/A) = tp(c̄/A) . ◻

The following two remarks follow immediately from the definition of
an atomic model.

Lemma 1.8. (a) Every elementary substructure of an atomic model is
atomic.

(b) The union of an elementary chain of atomic models is atomic.

2. The Omitting Types Theorem
We have seen in Section c2.4 how to build structures from a given set of
formulae. In order to find structures realising only certain types we take
a closer look at this construction. First, let us determine a minimal set
of sorts a model has to realise.
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e3. Prime models

Lemma 2.1. Let Σ be an S-sorted signature and T ⊆ FO0[Σ] a first-order
theory. There exists a minimal set S0 ⊆ S such that T has a model A with

As ≠ ∅ iff s ∈ S0 .

Proof. Let S be the class of all sets S0 ⊆ S such that T has a model A
with A = ⋃s∈S0 As . It is sufficient to show that the partial order ⟨S , ⊇⟩ is
inductively ordered. Let (S i)i∈I be a decreasing sequence of sets S i ∈ S
and set S∞ ∶= ⋂i S i . We claim that S∞ ∈ S . Let

Φ ∶= T ∪ { ηs ∣ s ∈ S ∖ S∞ } ,

where ηs ∶= ¬∃xs(xs = xs) states that there are no elements of sort s.
Every model of Φ witnesses that S∞ ∈ S .

To prove that Φ is satisfiable let Φ0 ⊆ Φ be finite. Then there are sorts
s0 , . . . , sn ∈ S∞ such that

Φ0 ⊂ T ∪ {ηs0 , . . . , ηsn} .

Hence, we can find some index i ∈ I with s0 , . . . , sn ∈ S ∖ S i . By assump-
tion there is some S i-sorted model A of T . It follows that A ⊧ Φ0. ◻

We have seen in Section c2.4 how to construct Herbrandmodels from
Hintikka sets. To refine this construction we introduce a special kind of
Hintikka set called a Henkin set.

Definition 2.2. Let Φ ⊆ FO0[Σ] be a set of sentences and C ⊆ Σ a set of
constant symbols.

(a) Φ has the Henkin property with respect to C if, for every formula
φ(x) ∈ FO1[Σ], there is some constant c ∈ C such that

∃xφ(x)→ φ(c) ∈ Φ .

(b) We say that Φ is a Henkin set for a set Φ0 ⊆ FO0[Σ] with respect
to C if Φ0 ⊆ Φ, Φ is complete, and Φ has the Henkin property with
respect to C.
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Lemma 2.3. Every Henkin set is a Hintikka set.

Corollary 2.4. Every Henkin set Φ with respect to C has a Herbrand
model H where every element is denoted by some constant from C.

Proof. We have seen in Lemma c2.4.6 that Φ has a Herbrand model H
where every element is denoted by some term. Since Φ is a Hintikka set,
we can find, for every term t a constant c ∈ C with

∃x(x = t)→ c = t ∈ Φ .

Therefore, every element is denoted by some constant in C. ◻

The class of all Henkin sets is in one-to-one correspondence with the
class of all Herbrand models. In the next lemma we prove that this class
forms a co-meagre set in the type topology.

Lemma 2.5. Suppose that Σ is a countable signature, T ⊆ FO0[Σ] a theory,
and, for every sort s, let Cs be a countably infinite set of constant symbols
of sort s with Cs ∩ Σ = ∅. Set C ∶= ⋃s Cs and

S0
C(T) ∶= S(FO0[ΣC]/T) .

(a) The complement of the set

H(T) ∶= { p ∈ S0
C(T) ∣ p is a Henkin set for T w.r.t. C }

is meagre in S0
C(T).

(b) If s̄ is a finite tuple of sorts and Φ ⊆ FOs̄[Σ] is a set such that ⟨Φ⟩S s̄(T)
is nowhere dense then the complement of

O(Φ) ∶= { p ∈ S0
C(T) ∣ for every c̄ ∈ C<ω , there is some φ ∈ Φ

with ¬φ(c̄) ∈ p}

is meagre in S0
C(T).
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Proof. (a) We have

H(T) = ⋂
φ∈FO1[ΣC]

Hφ where Hφ = ⋃
c∈C
⟨∃xφ(x)→ φ(c)⟩S0

C(T) .

Since FO1[ΣC] is countable, we can show that the complement of H(T)
is meagre by proving that the complement of each Hφ is nowhere dense.
Because Hφ is open, it is sufficient to show that its complement has
empty interior, that is, that Hφ is dense.

Let ⟨ψ⟩S0
C(T) be a nonempty basic open set and fix some model

M ⊧ T ∪ {ψ} .

Choose some element a ∈ M with

M ⊧ ∃xφ(x)→ φ(a) .

Let D ⊆ C be the set of constant symbols appearing in ψ or φ. This set is
finite and we have

M∣ΣD ⊧ T ∪ {ψ, ∃xφ(x)→ φ(a)} .

Fix some constant symbol c ∈ C ∖ D of the same sort as a and let N be a
ΣC-expansion of M∣ΣD with cN = a. Then

N ⊧ T ∪ {ψ, ∃xφ(x)→ φ(c)} .

Hence, Th(N) ∈ ⟨ψ⟩S0
C(T) ∩Hφ ≠ ∅.

(b) We have

O(Φ) = ⋂
c̄∈C<ω

O c̄ where O c̄ = ⋃
φ∈Φ
⟨¬φ(c̄)⟩S0

C(T) .

As above it is sufficient to prove that each set O c̄ is dense. Consider a
nonempty basic open set ⟨ψ(c̄, d̄)⟩S0

C(T) where ψ ∈ FO[Σ] and d̄ ⊆ C ∖ c̄.
Fix some model M ⊧ T ∪ {ψ(c̄, d̄)}. Then

⟨M∣Σ , c̄⟩ ⊧ T ∪ {∃ ȳψ(x̄ , ȳ)} .
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2. The Omitting Types Theorem

Hence, ⟨∃ ȳψ(x̄ , ȳ)⟩S s̄(T) ≠ ∅. Since ⟨Φ⟩S s̄(T) is nowhere dense it follows
that

⟨∃ ȳψ(x̄ , ȳ)⟩S s̄(T) ∖ ⟨Φ⟩S s̄(T) ≠ ∅ .

Fix some model ⟨N0 , ā⟩ with

Th(N0 , ā) ∈ ⟨∃ ȳψ(x̄ , ȳ)⟩S s̄(T) ∖ ⟨Φ⟩S s̄(T) .

There is some formula φ ∈ Φ such that

N0 ⊭ φ(ā) .

Furthermore, we can find a tuple b̄ ⊆ N0 with

N0 ⊧ ψ(ā, b̄) .

Let N be a ΣC-expansion of N0 with c̄N = ā and d̄N = b̄. Then we have

Th(N) ∈ ⟨ψ⟩S0
C(T) ∩ O c̄ ≠ ∅ . ◻

After these preparations we can prove that every meagre set of types
is omitted in some model.

Theorem 2.6 (Omitting Types Theorem). Let Σ be a countable S-sorted
signature and T ⊆ FO[Σ] a countable first-order theory. For every s̄ ∈ S<ω ,
let X s̄ ⊆ S s̄(T) be a meagre set of types. There exists a model of T that
omits every type in ⋃s̄ X s̄ .

Proof. For every sort s, fix a countably infinite set Cs of constant symbols
disjoint from Σ. Each set X s̄ can bewritten as X s̄ = ⋃n<ω Xn

s̄ ,where Xn
s̄ is

nowhere dense. Let Φn
s̄ be a set of formulae such that ⟨Φn

s̄ ⟩ = cl(Xn
s̄ ). By

the preceding lemma, we know that

Y ∶= H(T) ∩ ⋂
s̄∈S<ω

⋂
n<ω

O(Φn
s̄ )

861



e3. Prime models

is a countable intersection of sets whose complement is meagre. Hence,
the complement of Y is meagre. By Theorem b5.5.8 it follows that Y itself
is also dense. Fix some type p ∈ Y .
By Corollary 2.4, there exists a Herbrand model H of p where every

element is denoted by some constant in C. If ā ∈ H s̄ is a finite tuple
denoted by the constants c̄ ⊆ C then we have

tp(ā) = {φ(x̄) ∣ φ(c̄) ∈ p} ∉ X s̄ .

Hence, no tuple in H realises a type in X s̄ . ◻

Corollary 2.7. Let Σ be a countable signature and T ⊆ FO[Σ] a first-order
theory. Let pn , n < ω, be a sequence of non-isolated partial types over T.
There exists a model of T that omits every pn , n < ω.

Let us give a simple example showing that the Omitting Types The-
orem fails for uncountable theories.

Example. Let Σ ∶= { c i ∣ i < ω1 } ∪ { dn ∣ n < ω } be a signature of
constant symbols and let

T ∶= { c i ≠ ck ∣ i ≠ k } ∪ { d i ≠ dk ∣ i ≠ k }

be the theory stating that the values of the c i are distinct and that the
values of the dn are distinct. Consider the partial 1-type

Φ ∶= { x ≠ dn ∣ n < ω } .

This type is not isolated since there is no formula φ(x) implying that
x is different from all constants dn . On the other hand, every model of T
has uncountably many elements and, therefore, realises Φ.

Theorem 2.8. Let T be a countable complete theory with infinite models.
There exists a family (Mξ)ξ<2ℵ0 of models of T such that every complete
type that is realised in at least two of the models is isolated.
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Proof. For every sort s, fix a countably infinite set Cs of constant sym-
bols disjoint from Σ. Set C ∶= ⊍s Cs and let (φn)n be an enumera-
tion of FO1[ΣC]. We fix an enumeration ⟨un , c̄n , d̄n⟩n<ω of all triples
in 2<ω × C<ω × C<ω such that c̄n and d̄n have the same length and the
same sorts. We assume that the enumeration has been chosen such that
every triple appears infinitely often in the sequence.
We construct an increasing chain T0 ⊆ T1 ⊆ . . . of finite trees Tn ⊆ 2<ω

and, for each w ∈ 2<ω , we define a finite set Φw ⊆ FO0[ΣC] of formulae
such that Φu ⊆ Φw , for u ⪯ w.
We start with T0 ∶= {⟨⟩} and Φ⟨⟩ ∶= ∅. For the inductive step, suppose

that we have already defined Tn and Φw , for w ∈ Tn . To define Tn+1 we
distinguish two cases. If un ∉ Tn then we simply set

Tn+1 ∶= {w0 ∣ w a leaf of Tn } ,

and, for every leaf w of Tn ,

Φw0 ∶= Φw ∪ {∃xφn → φn(c)} ,

where c ∈ C is some new constant symbol not appearing in any formula
of Φw .

It remains to consider the case that un ∈ Tn . Let v0 , . . . , v l−1 be an
enumeration of all leaves v of Tn with un ⪯ v, and let w0 , . . . ,wm−1 be
an enumeration of all leaves w with un ⪯̸ w. We define sets

Φw i = Ψ i
−1 ⊆ Ψ i

0 ⊆ ⋅ ⋅ ⋅ ⊆ Ψ i
l−1 , for i < m ,

Φv j = Θ j
−1 ⊆ Θ j

0 ⊆ ⋅ ⋅ ⋅ ⊆ Θ j
m−1 , for j < l ,

as follows. We start with Ψ i
−1 ∶= Φw i and Θ j

−1 ∶= Φv j . Suppose that we
have already defined Ψ i

j and Θ j
i , for all pairs ⟨i , j⟩ lexicographically less

than ⟨i0 , j0⟩. To define Ψ i0
j0 and Θ j0

i0 we set

ψ(c̄n , ē) ∶=⋀Ψ i0
j0−1 and ϑ(d̄n , f̄ ) ∶=⋀Θ j0

i0−1 ,
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where ē ⊆ C contains all constants in Ψ i0
j0−1 different from c̄n , and f̄ ⊆ C

contains all constants in Θ j0
i0−1 different from d̄n . If ⟨∃ ȳψ(x̄ , ȳ)⟩S(T) is a

singleton then we set

Ψ i0
j0 ∶= Ψ i0

j0−1 and Θ j0
i0 ∶= Θ j0

i0−1 .

Otherwise, we choose some type q ∈ ⟨∃ ȳϑ(x̄ , ȳ)⟩S(T). By assumption,
we can find a type p ∈ ⟨∃ ȳψ(x̄ , ȳ)⟩S(T) different from q. We fix some
formula η(x̄) ∈ p ∖ q and set

Ψ i0
j0 ∶= Ψ i0

j0−1 ∪ {η(c̄
n)} and Θ j0

i0 ∶= Θ j0
i0−1 ∪ {¬η(d̄n)} .

Having defined all Ψ i
j and Θ j

i we set

Φ′
w i
∶= Ψ i

l−1 ∪ {∃xφn → φn(c)} ,

Φ′
v j
∶= Θ j

m−1 ∪ {∃xφn → φn(c)} ,

where c ∈ C is some constant not appearing in any set Ψ i
j or Θ j

i . Let
z0 , . . . , zk−1 be an enumeration of all leaves z of Tn such that the set
⟨Φ′

z⟩S(T(C)) contains at least two types, and let u0 , . . . , ur−1 be an enu-
meration of all other leaves of Tn . We define

Tn+1 ∶= Tn ∪ { z ib ∣ i < k, b ∈ [2] } ∪ {u i0 ∣ i < r } ,

and Φu i0 ∶= Φ′
u i
, for i < r. For each i < k, we chose distinct types

pi , qi ∈ ⟨Φ′
z i
⟩S(T(C)) and some formula η i ∈ pi ∖ qi . Then we set

Φz i0 ∶= Φ′
z i
∪ {¬η i} and Φz i 1 ∶= Φ′

z i
∪ {η i} .

This completes the construction of Tn+1. To define the models Mξ
let Tω ∶= ⋃n Tn . A sequence β ∈ 2ω is a branch of Tω if β ↾ n ∈ Tω , for
all n < ω. For each branch β of Tω , we define a sequence β∗ ∈ 2<ω as
follows. Let

I ∶= { n < ω ∣ (β ↾ n)0 ∈ Tω and (β ↾ n)1 ∈ Tω } ,
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3. Prime and atomic models

and let n0 < n1 < . . . be an enumeration of I. We define β∗ ∈ 2∣I∣ by

β∗(i) ∶= β(n i) , for i < ∣I∣ .

For each ξ ∈ 2ω , there is a unique branch βξ with β∗ξ ⪯ ξ. We define

Ψξ ∶= ⋃
n<ω

Φβξ↾n .

It follows by compactness that each set Ψξ is satisfiable. Furthermore,
the above construction ensures that each of these sets has the Henkin
property with respect to C. Hence, we can use Corollary 2.4 to find a
Herbrand model Mξ of Ψξ .

It remains to prove that every type realised in two different models is
isolated. Suppose that

tp(c̄/Mξ) = tp(d̄/Mζ) where ξ ≠ ζ .

If β∗ξ is finite then ⟨Φβ∗ξ
⟩S(T(C)) = {p} is a singleton and every type

realised in Mξ ⊧ Φβ∗ξ
is isolated. Similarly, if β∗ζ is finite then tp(d̄/Mζ)

is isolated.
Hence, suppose that β∗ξ and β∗ζ are both infinite. Then there is some

n < ω such that

c̄n = c̄ , d̄n = d̄ , un ∈ Tn , and βξ ⊓ βζ ≺ un ≺ βζ .

Let w be the leaf of Tn with w ≺ βξ and let v be the leaf with v ≺ βζ . By
construction of Tn+1 it follows that either there is a formula isolating
tp(c̄/Mξ), or there is some formula η(c̄) ∈ Φ′

w ⊆ Ψξ with ¬η(d̄) ∈ Φ′
v ⊆

Ψζ . In the first case we are done, whereas in the second case we obtain
tp(c̄/Mξ) ≠ tp(d̄/Mζ), a contradiction. ◻

3. Prime and atomic models
Not every theory has atomic models, but for countable signatures we
can use the Omitting Types Theorem to construct such models.
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Theorem 3.1. Let T be a countable complete theory. If S s̄(T) is countable,
for all finite tuples s̄, then there exists a countable atomic model of T.

Proof. For every s̄, there are at most countably many non-isolated s̄-
types.Consequently, they form ameagre set andwe can use theOmitting
Types Theorem to find a model of T that realises none of them. ◻

Lemma 3.2. Let T be a countable complete theory. If ∣S s̄(T)∣ < 2ℵ0 , for
all finite s̄, then T has an atomic model over A, for every finite set A of
parameters.

Proof. By Corollary b5.7.5, it follows that each type space S s̄(T) is count-
able. Let ā be an enumeration of A. Since tp(b̄/ā) is determined by
tp(b̄ā) it follows that S s̄(A) is also countable. Hence, according to the
preceding theorem T(A) has an atomic model. ◻

If the type space is too large, atomic models might not exist.

Example. Consider the theory T ∶= Th(C) where C ∶= ⟨2ω , (Pn)n<ω⟩
and

Pn ∶= { α ∈ 2ω ∣ α(n) = 1} .

As we have seen in the example on page 534, the type space S1(T) is
homeomorphic to the Cantor discontinuum 2ω , which does not contain
isolated points. Consequently, no type is isolated and T does not have
atomic models.

Theorem 3.3. Let T be a countable complete first-order theory. There exists
an atomic model of T if, and only if, the set of isolated s̄-types is dense
in S s̄(T), for every finite s̄.

Proof. Let X ⊆ S s̄(T) be the set of all isolated s̄-types. If T has an atomic
model M then X is the set of types realised in M. By Lemma c3.2.6 it
follows that X is dense. Conversely, if X is dense then its complement
Ys̄ ∶= S s̄(T)∖ X is closed and has empty interior. By the Omitting Types
Theorem, there exists a model M of T omitting all types in ⋃s̄ Ys̄ . This
model is atomic. ◻

866
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Corollary 3.4. Let T be a countable complete theory. If

rkCB(Sn(T)) <∞ , for all n < ω ,

then T has an atomic model.

Proof. Immediately by Theorem 3.3 and Proposition b5.5.12. ◻

Intuitively, an atomic model is the opposite of a saturated one. The
next lemma shows that these models also behave in the opposite way
with respect to the relation ⊑ℵ0

FO.

Lemma 3.5. (a) If A is atomic then we have A ⊑ℵ0
FO B, for all B ≡ A.

(b) If A is a structure with countable signature such that A ⊑ℵ0
FO B, for

all B ≡ A, then A is atomic.

Proof. (a) Suppose that

⟨A, ā⟩ ≡FO ⟨B, b̄⟩ .

We have to prove the forth property. Let c ∈ A and choose some formula
φ(x̄ , y) isolating p ∶= tp(āc/A). Then

A ⊧ ∃yφ(ā, y) implies B ⊧ ∃yφ(b̄, y) .

Consequently, there exists some d ∈ B such that B ⊧ φ(b̄, d). It follows
that tp(b̄d/B) = p and, hence,

⟨A, āc⟩ ≡FO ⟨B, b̄d⟩ .

(b) Suppose that A contains a finite tuple ā ⊆ Awhose type tp(ā) is
not isolated. By the Omitting Types Theorem there is a structure B ≡ A
omitting tp(ā). If A ⊑ℵ0

FO B then there would be some tuple b̄ ⊆ B
such that ⟨A, ā⟩ ≡ ⟨B, b̄⟩. Consequently, tp(b̄/B) = tp(ā/A) would be
realised in B. Contradiction. ◻

Corollary 3.6. If A ≡ B are atomic then A ≡ℵ0
FO B.

867



e3. Prime models

Corollary 3.7. Every atomic model is ℵ0-homogeneous.

Proof. By the preceding corollary we have A ≡ℵ0
FO A, for every atomic

structure A. ◻

If a countable theory T has atomic models then it has a unique count-
able one. Furthermore, this countable atomic model can be embedded
into every other model of T .

Definition 3.8. A structure A is a prime model of a theory T if, for ever
model B ⊧ T , there exists an elementary embedding A→ B. Similarly,
we say that A is prime over a set U ⊆ A if it is a prime model of T(U).

Example. N = ⟨N,+, ⋅ , 0, 1⟩ is a prime model of arithmetic.

Remark. Only complete theories can have prime models.

Lemma 3.9. If M is a structure with M = acl(∅) then M is prime.

Exercise 3.1. Prove the preceding lemma.

Lemma 3.10. Every prime model with a countable signature is atomic.

Proof. Let M be a model of a theory T that realises a non-isolated type p.
By the Omitting Types Theorem, there exists some model N ⊧ T in
which p is not realised. Therefore, there exists no embedding M → N
and M cannot be prime. ◻

Lemma 3.11. Every countable atomic model is prime.

Proof. Let A be a countable atomic model and suppose that B ≡ A.
Let (a i)i<ω be an enumeration of A. Since A ⊑ℵ0

FO B we can find, by
Lemma c4.4.9, an enumeration (b i)i<ω such that

⟨A, (a i)i<n⟩ ≡FO ⟨B, (b i)i<n⟩ , for all n < ω .

Let pn ∶ (a i)i<n ↦ (b i)i<n ∈ IFO(A,B) be the corresponding partial
isomorphisms. Since IFO(A,B) is ℵ1-complete we have p ∶= ⋃n pn ∈
IFO(A,B). As dom p = A it follows that p is the desired elementary
embedding of A into B. ◻
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4. Constructible models

The next theorem summarises the relation between prime and atomic
models.

Theorem 3.12. Let T be a countable complete theory.

(a) Every prime model of T is countable and atomic.

(b) Every countable atomic model of T is prime.

(c) T has a prime model if and only if it has an atomic model.

(d) All prime models of T are isomorphic.

Proof. (a) and (b) were proved in Lemmas 3.10 and 3.11, respectively.
(c) By (a), every primemodel is atomic. Conversely, if T has an atomic

model then it also has a countable one, by the theorem of Löwenheim
and Skolem. Hence, the claim follows by (b).

(d) If A andB are primemodels of T thenwe haveA ≅ℵ0
FO B, by (a) and

Corollary 3.6. Since A and B are countable, Lemma c4.4.10 implies that
A ≅ B. ◻

4. Constructible models

For uncountable signatures we cannot use the Omitting Types Theorem
to construct prime models. In this section we present an alternative way
to obtain such models.

Definition 4.1. Let M be a structure and A,U ⊆ M.
(a) A construction of A over U is an enumeration (a i)i<γ of A such

that

tp(aα/U ∪ a[<α]) is isolated , for all α < γ ,

where a[<α] ∶= { a i ∣ i < α }.
(b) If there exists a construction of A over U we say that A is construct-

ible over U .
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e3. Prime models

Example. Let Teq be the theory of all infinite structures with empty
signature. This theory has exactly one model of every infinite cardinality.

The countable model Mℵ0 of Teq is constructible. If (an)n<ω is an
enumeration of Mℵ0 then tp(an/a0 . . . an−1) is isolated by the formula

x ≠ a0 ∧ ⋅ ⋅ ⋅ ∧ x ≠ an−1 .

Every uncountablemodel M of Teq is not constructible since, for every
enumeration (aα)α<γ of M, the type tp(aω/a[<ω]) is not isolated.

We start by showing that constructible models are prime and atomic.

Lemma 4.2. If A ⊆ M is constructible over U then A is atomic over U.

Proof. Let (aα)α<γ be a construction ofAover U .We prove by induction
on α that a[<α] is atomic over U . For α = 0 there is nothing to do. If
α is a limit ordinal then any finite tuple in a[<α] = ⋃β<α a[<β] belongs
to some a[<β] with β < α. Hence, the claim follows immediately by
inductive hypothesis.

For the inductive step, note that a[<α + 1] = a[<α] ∪ {aα} is atomic
over U∪a[<α] and U∪a[<α] is atomic over U . By Lemma 1.7, it follows
that a[<α + 1] is atomic over U . ◻

Proposition 4.3. Let M be a model of a complete theory T and let U ⊆ M
be a set such that M is constructible over U.

(a) M is a prime model over U.
(b) ∣M∣ ≤ ∣U ∣⊕ ∣T ∣.

Proof. (a) Let (aα)α<γ be a construction of M over U . Suppose that
N is a model of T(U). We construct a sequence (bα)α<γ as follows.
Suppose that b i has already been defined for all i < α. Since the type
tp(aα/U ∪ a[<α]) is isolated, there exists some element bα ∈ N with

bαb[<α] ≡U aαa[<α] .

The mapping aα ↦ bα is the desired elementary embedding M→ N.

870



4. Constructible models

(b) By the Theorem of Löwenheim and Skolem, T(U) has a model N
of size ∣N ∣ ≤ ∣U ∣⊕ ∣T ∣. By (a), there exists an embedding M → N. Con-
sequently, ∣M∣ ≤ ∣N ∣ ≤ ∣U ∣⊕ ∣T ∣. ◻

Our next aim is to prove that constructible models are unique, up to
isomorphism.

Definition 4.4. Let (aα)α<γ be a construction of A over U . A set C ⊆ A
is closed (w.r.t. this construction) if, for every α < γ with aα ∈ C, the type
tp(aα/U ∪ a[<α]) is isolated by some formula φ(x; c̄) with parameters
c̄ ⊆ U ∪ (C ∩ a[<α]).

Lemma 4.5. Let (aα)α<γ be a construction of A over U.

(a) If C ,D ⊆ A are closed, then so is C ∪ D.

(b) Every element a ∈ A is contained in a finite closed set C ⊆ A.

(c) Every closed subset of A is constructible.

Proof. (a) is immediate.
(b) By induction on α < γ, we construct a finite closed set Cα con-

taining aα . For α = 0, we can set C0 ∶= {a0} since tp(a0/U) is isol-
ated by some formula with parameters in U . For the inductive step,
suppose that we have already defined C i , for all i < α. Fix a formula
φ(x; c̄) with parameters c̄ ⊆ U ∪ a[<α] isolating tp(aα/U ∪ a[<α]). Let
I ∶= { i < α ∣ a i ∈ c̄ }. The set

Cα ∶= {aα} ∪⋃
i∈I

C i

is finite and closed.
(c) Let (aα)α<γ be a construction of A over U , C ⊆ A a closed set,

and set C<α ∶= C ∩ a[<α]. For aα ∈ C, the type tp(aα/U ∪ a[<α]) is
isolated by some formula φα(x , c̄) with c̄ ⊆ U ∪ (C ∩ a[<α]) = U ∪C<α .
Consequently, this formula also isolates the type tp(aα/U∪C<α). Hence,
tp(aα/U ∪ C<α) is isolated, for all aα ∈ C, and we obtain a construction
of C by omitting form (aα)α<γ all elements that are not in C. ◻
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e3. Prime models

Lemma 4.6. Let (aα)α<γ be a construction of A over U , C a closed subset
of A, c̄ an enumeration of C, and, for every aα ∈ C, let φα(xα ; b̄α) be a
formula isolating tp(aα/U ∪ a[<α]). Then

T(U) ∪ {φα(xα ; b̄α) ∣ aα ∈ C } ⊧ tp(c̄/U) .

Proof. Note that C<α ∶= C ∩ a[<α] is closed. Hence, we can prove the
claim by induction on α. For α = 0 we have tp(⟨⟩/U) = T(U). If α is
a limit ordinal then the claim follows by inductive hypothesis since
every formula refers only to finitely many elements of C<α . For the
successor step, suppose that c̄ = c̄′aα where c̄′ is an enumeration of C<α .
By inductive hypothesis, we know that

T(U) ∪ {φ i(x i ; b̄ i) ∣ i < α, a i ∈ C } ⊧ tp(c̄′/U) .

Furthermore,

T(U) ∪ {φα(xα ; b̄α)} ⊧ tp(aα/U ∪ a[<α]) ⊧ tp(aα/U ∪ c̄′) .

Combining these two implications, the claim follows. ◻

Proposition 4.7. Let C be a closed subset of a constructible set A. Then
A is constructible over C.

Proof. We start by showing that A is atomic over C. Let A0 ⊆ A be finite.
By Lemma 4.5 (b), we can find a finite closed set D containing A0. For
X ⊆ A, set

Φ(X) ∶= {φβ(xβ ; b̄β) ∣ aβ ∈ X } ,

where φβ(xβ ; b̄β) is some formula isolating tp(aβ/a[<β]). According
to Lemma 4.6 we have

T ∪ Φ(b̄) ⊧ tp(b̄) , for every closed set b̄ ⊆ A .

In particular, we have

T ∪ Φ(C ∪ D) ⊧ tp(c̄d̄) ,
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4. Constructible models

where c̄ is an enumeration of C and d̄ one of D. As Φ(C) ⊆ T(C), it
follows that

T(C) ∪ Φ(D) ⊧ tp(d̄/C) .

Hence, tp(d̄/C) is isolated by the formula ⋀Φ(D). In particular, the
type of A0 over C is isolated.

To conclude the proof, let (aα)α<γ be a construction of A. We prove
that it is also a construction over C. Let α < γ. Since a[<α] is closed, so
is C ∪ a[<α]. By the first part of the proof, it follows that aα is atomic
over C ∪ a[<α]. ◻

Lemma 4.8. If (aα)α<γ is a construction of A over U then it is also a
construction of A over U ∪ C, for every finite subset C ⊆ A.

Proof. By Lemma 4.2, A is atomic over U ∪ a[<α], for every α < γ. In
particular, C ∪ {aα} is atomic over U ∪ a[<α]. By Lemma 1.5, it follows
that aα is atomic over U ∪ a[<α] ∪ C. ◻

To prove the uniqueness of constructible models, we employ back-
and-forth arguments.

Definition 4.9. Let A and B be structures such that A and B are con-
structible over ∅. We define

Icl(A,B) ∶= { p ∈ IFO(A,B) ∣ dom p and rng p are closed} .

Lemma 4.10. Suppose that A and B are structures where A and B are
constructible over ∅. Then Icl(A,B) is ℵ1-bounded and it has the back-
and-forth property with respect to itself.

Proof. By symmetry, we only consider the forth property. Let ā ↦ b̄ ∈
Icl(A,B) and x ∈ A. By induction on n,we construct finite tuples c̄n ⊆ A
and d̄n ⊆ B such that āc̄0 c̄1 ⋅ ⋅ ⋅↦ b̄d̄0d̄1 ⋅ ⋅ ⋅ ∈ Icl(A,B), x ∈ c̄0, and

⟨A, āc̄0 . . . c̄n−1⟩ ≡ ⟨B, b̄d̄0 . . . d̄n−1⟩ , for all n < ω .
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e3. Prime models

We start with some finite closed set c̄0 containing x. For the inductive
step, suppose that we have already defined c̄0 , . . . , c̄n and d̄0 , . . . , d̄n−1
such that

⟨A, āc̄0 . . . c̄n−1⟩ ≡ ⟨B, b̄d̄0 . . . d̄n−1⟩ .

Since A is atomic over ā, we know that the type tp(c̄0 . . . c̄n−1 c̄/ā) is
isolated. By Lemma 1.5, it follows that the type tp(c̄n/āc̄0 . . . c̄n−1) is also
isolated. As

⟨A, āc̄0 . . . c̄n−1⟩ ≡ ⟨B, b̄d̄0 . . . d̄n−1⟩ ,

we can therefore find some tuple d̄n ⊆ B with

⟨A, āc̄0 . . . c̄n−1 c̄n⟩ ≡ ⟨B, b̄d̄0 . . . d̄n−1d̄n⟩ .

If b̄d̄0 . . . d̄n is closed then we can stop. Otherwise, let d̄n+1 be a finite
closed set containing d̄n . Again, since b̄d̄0 . . . d̄n−1 is closed and the type
tp(d̄n+1/b̄d̄0 . . . d̄n) is isolated, we can find a tuple c̄n+1 ⊆ A such that

⟨A, āc̄0 . . . c̄n c̄n+1⟩ ≡ ⟨B, b̄d̄0 . . . d̄n d̄n+1⟩ .

If āc̄0 . . . c̄n+1 is closedwe stop. Otherwise, choose a finite closed set c̄n+2
containing c̄n+1 and repeat the construction. ◻

Theorem 4.11 (Ressayre). All constructible models of a complete theory T
are isomorphic and strongly ℵ0-homogeneous.

Proof. Let A and B be constructible models of T . First, we show that
A and B are isomorphic. Since constructiblemodels are prime, it follows
that we can embed A into B and vice versa. Hence, A and B have the
same cardinality κ. It follows by Lemma 4.10 that Icl(A,B) ∶ A ≅κ⊕ℵ1

iso B.
Consequently, Lemma c4.4.10 implies that A ≅ B.

It remains to show that A is strongly ℵ0-homogeneous. Suppose that

⟨A, ā⟩ ≡ ⟨A, b̄⟩ ,
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4. Constructible models

for finite tuples ā, b̄ ⊆ A. By Lemma 4.8, these two expansions of A
are constructible models of the complete theory T(ā). As we have just
shown, this implies that they are isomorphic. Hence, there is an auto-
morphism of A mapping ā to b̄. ◻

We apply these tools to show that ℵ0-stable theories have prime mod-
els over all sets of parameters.

Lemma 4.12. Let T be a totally transcendental theory and U a set of
parameters. Then the isolated types are dense in S s̄(U).

Proof. Since rkCB(S s̄(U)) < ∞ the statement follows from Proposi-
tion b5.5.12 (d). ◻

Proposition 4.13. Let T be a totally transcendental theory. For every
model M of T and all parameters U ⊆ M, there exists an elementary
substructure A ⪯M such that A is constructible over U. In particular, A is
a prime model over U and atomic over U.

Proof. By induction on α, we construct a sequence (aα)α<γ of elements
of M as follows. Suppose that we have already defined (a i)i<α . If there
is some b ∈ M such that tp(b/U ∪ a[<α]) is isolated then we select one
such element and set aα ∶= b. Otherwise, we stop the construction.

Let A ∶= a[<γ] be the set of all elements chosen. Clearly, U ⊆ A and
(aα)α<γ is a construction of A over U . Hence, it remains to show that
A ⪯M where A is the substructure induced by A.

We apply the Tarski-Vaught Test. Suppose that

M ⊧ φ(b̄, c) , for b̄ ⊆ A and c ∈ M .

By Lemma 4.12, there exists an isolated type p ∈ ⟨φ(b̄, y)⟩ ⊆ S1(A). Let
d ∈ M be an element realising p. Since p = tp(d/A) is isolated, it follows
by choice of a[<γ] that d ∈ a[<γ] ⊆ A. Thus, we have found an element
d ∈ Awith M ⊧ φ(b̄, d). ◻

Combining the preceding proposition with Theorem 4.11, we obtain
the following result.
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e3. Prime models

Theorem 4.14. Let T be a totally transcendental theory and let U be a
set of parameters. There exists a prime model over U that is also atomic
over U. Furthermore, all prime models over U are isomorphic over U.

Corollary 4.15. Let T be a totally transcendental theory and let U be a
set of parameters. Every model that is prime over U is also atomic over U.
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e4. ℵ0-categorical theories

1. ℵ0-categorical theories and automorphisms
Model theory investigates axiomatisable classes of structures. One of
the most basic question one can ask is how many structures of a given
cardinality such a class contains.

Definition 1.1. A classK is κ-categorical if, up to isomorphism, it con-
tains exactly one structure of size κ. Similarly, we call a theory T κ-
categorical if Mod(T) is κ-categorical.

Example. (a) According to Theorem c4.1.5, the theory of open dense
linear orders is ℵ0-categorical.

(b) We have seen in Corollary b6.5.30 that the theory ACFp of algebra-
ically closed fields of characteristic p is κ-categorical for all uncountable
cardinals κ. It has ℵ0 different models of size ℵ0. Hence, it is not ℵ0-cate-
gorical.

(c) By Theorem d1.4.8, the same holds for the theory of divisible
torsion-free abelian groups.

In this chapter we study ℵ0-categorical theories. We start by showing
that, for models of such theories, there is a tight relationship between
definable relations and automorphisms. Recall that the automorphism
group Aut M of a structure M is oligomorphic if, for every finite tuple s̄
of sorts, there are only finitely many orbits of Aut M on the set M s̄ .

Theorem 1.2 (Engeler, Ryll-Nardzewski, Svenonius). Let T be a count-
able complete theory with infinite models. The following statements are
equivalent :
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e4. ℵ0-categorical theories

(1) T is ℵ0-categorical.

(2) Aut M is oligomorphic, for every countable model M of T.

(3) T has a countable model M such that Aut M is oligomorphic.

(4) There exists a countable model M ⊧ T in which, for every finite
tuple of sorts s̄, only finitely many s̄-types (over ∅) are realised.

(5) ∣S s̄(T)∣ < ℵ0, for all finite s̄.

(6) For all finite sets x̄ of variables, there are only finitely many for-
mulae φ(x̄) with free variables x̄ that are pairwise non-equivalent
modulo T.

(7) Every type p ∈ S<ω(T) is isolated.

(8) T has a model that is atomic and ℵ0-saturated.

(9) Every model of T is atomic.

(10) Every model of T is ℵ0-saturated.

(11) A ≅ℵ0
FO B, for all models A and B of T.

(12) A ≅∞ B, for all models A and B of T.

Proof. (5)⇒ (6) If ⟨φ⟩ = ⟨ψ⟩ then φ ≡ ψ modulo T . If ∣S s̄(T)∣ = k < ℵ0
then there are at most 2k sets of the form ⟨φ⟩ and, hence, at most that
many non-equivalent formulae.

(6)⇒ (7) For all finite tuples of sorts s̄, fix a tuple of variables x̄ of
sort s̄ and a maximal family Φ s̄ of pairwise non-equivalent formulae
with free variables x̄. For p ∈ S s̄(T), let

ψp ∶=⋀{φ ∈ Φ s̄ ∣ p ∈ ⟨φ⟩ } .

Then T ∪ {ψp} ⊧ p and p is isolated.
(7)⇒ (5) If every type in S s̄(T) is isolated then S s̄(T) is finite, by

Lemma b5.5.10.
(7)⇒ (9) Each model can only realise isolated types since there are

no non-isolated ones.
(9)⇒ (8) Every consistent theory has ℵ0-saturated models.
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1. ℵ0-categorical theories and automorphisms

(8)⇒ (7) If there is a non-isolated type p ∈ S<ω(T) then it is realised
in all ℵ0-saturated models. Consequently, none of them can be atomic.

(7)⇒ (10) Suppose that M ⊧ T is a model, ā ∈ Mm a finite tuple, and
p ∈ Sn(ā). There is an elementary extension N ⪰M in which p is realised
by some tuple c̄ ∈ Nn . Set q ∶= tp(āc̄/N). Then q ∈ Sm+n(T) and, by
hypothesis, there is some formula φ(x̄ , ȳ) isolating q. Let ψ(x̄) be the
formula isolating r ∶= tp(ā/M). We claim that

T ⊧ ψ(x̄)→ ∃ ȳφ(x̄ , ȳ) .

Then it follows that M ⊧ ∃ ȳφ(ā, ȳ) and we can find some tuple b̄ ∈ Mn

realising p.
It remains to prove the claim. For a contradiction, suppose it does not

hold. Since r is complete it follows that ¬∃ ȳφ ∈ r and, therefore,

T ⊧ ψ(x̄)→ ∀ ȳ¬φ(x̄ , ȳ) .

On the other hand, r ⊆ q implies that

T ⊧ φ(x̄ , ȳ)→ ψ(x̄) .

Consequently, T ∪{φ(x̄ , ȳ)} is inconsistent. But this contradicts the fact
that q ∈ Sm+n(T).

(10)⇒ (11) follows from Corollary e1.2.3.
(11)⇒ (12) immediately, since A ≅ℵ0

FO B implies A ≅∞ B.
(12)⇒ (1) Since T is a countable theory with infinite models it fol-

lows that T has a model of cardinality ℵ0. Furthermore, by (12) and
Lemma c4.4.10, all such models are isomorphic.

(1) ⇒ (7) Suppose that there exists a type p ∈ S<ω(T) that is not
isolated. T has a model A in which p is not realised, and it has a model B
in which p is realised. By the Theorem of Löwenheim and Skolem, we
can assume that ∣A∣ = ∣B∣ = ℵ0. Since A ≇ B T cannot be ℵ0-categorical.

(5) ⇒ (2) Let A be a countable model of T and let p ∈ Sn(T). We
claim that all tuples realising p are in the same orbit of Aut A. Hence, the
number of orbits is bounded by the number of types which, by (5), is
finite.
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Suppose that ā, b̄ ∈ An realise p. We have already seen that (5) im-
plies (11). Hence, we have A ≅ℵ0

FO A, and ā ↦ b̄ ∈ Iℵ0
FO(A,A) implies

that ⟨A, ā⟩ ≅ℵ0
FO ⟨A, b̄⟩. By Corollary e1.2.3, it follows that there exists an

automorphism π with π(ā) = b̄.
(2)⇒ (3) is trivial since T is satisfiable.
(3) ⇒ (4) We have tp(πā) = tp(ā), for all π ∈ Aut M. Hence, the

number of realised types is bounded by the number of orbits.
(4)⇒ (5) Fix a countable model M ⊧ T in which only finitely many

s̄-types are realised, for all finite s̄. For a given s̄, let p0 , . . . , pk−1 be an
enumeration of these s̄-types. By Lemma c3.2.6, the set {p0 , . . . , pk−1} is
dense in S s̄(T). Consequently, it follows by Lemma b5.5.10 that S s̄(T)
is finite. ◻

Let us also mention a necessary condition for ℵ0-categoricity that
deals with the size of the algebraic closure of finite sets.

Lemma 1.3. Let T be a countable ℵ0-categorical theory with finitely many
sorts. There exists a function s ∶ ω → ω such that, for every model M of T
and every finite set U ⊆ M of parameters, we have

∣acl(U)∣ ≤ s(∣U ∣) .

In particular, acl(U) is finite for finite sets U.

Proof. Let n ∶= ∣U ∣. By Theorem 1.2, Sn+1(T) is finite. Let p0 , . . . , pk−1
be an enumeration of Sn+1(T) and set

I ∶= { i < k ∣ there are φ(x , ȳ) ∈ pi and m < ω such that

T ⊧ ¬∃mxφ(x , ȳ) } .

For i ∈ I, let m i < ω be the least number such that

¬∃m i xφ(x , ȳ) ∈ pi , for some formula φ(x , ȳ) .

We set s(n) ∶= ∑i∈I m i . Let a ∈ acl(U) and let b̄ ∈ Mn be an enumeration
of U . The tuple ab̄ realises some type pi with i ∈ I. Since there are at
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most m i elements c such that cb̄ realises pi , it follows that

∣acl(U)∣ ≤∑
i∈I

m i = s(n) .
◻

As an application, we consider fields and groups.

Lemma 1.4. No infinite field has an ℵ0-categorical theory.

Proof. Let K be an infinite field. By compactness, there exists an ele-
mentary extension K+ ⪰ K that contains a transcendental element c.
The algebraic closure acl(c) is infinite since it contains the elements
c, c2 , c3 , . . . , which are all distinct. By Lemma 1.3, it follows that Th(K)
is not ℵ0-categorical. ◻

Lemma 1.5. Let G be an infinite group.
(a) If Th(G) is ℵ0-categorical then G is locally finite and there exists a

number n < ω such that gn = 1, for all g ∈ G.
(b) Conversely, if G is abelian and there exists a number n as in (a),

then Th(G) is ℵ0-categorical.

Proof. (a) Fix an element g ∈ G and let s ∶ ω → ω be the function from
Lemma 1.3. Since gn ∈ acl(g), for all n < ω, and ∣acl(g)∣ ≤ s(1), there is
some n < s(1) such that g s(1) = gn . Consequently, g s(1)−n = 1. Setting
m ∶= s(1)! it follows that gm = 1 for all g ∈ G.

(b) Let G be a countable abelian group such that gn = 1, for all g ∈ G.
There are prime numbers p0 , . . . , pm−1, numbers k0 , . . . , km−1 < ω, and
cardinals λ0 , . . . , λm−1 ≤ ℵ0 such that

G ≅⊕
i<m
(Z/pk i

i Z)
(λ i) .

Set q i ∶= pk i
i . Note that, for λ i < ℵ0, the group (Z/q iZ)(λ i) has

r i ∶= pλ i k i
i − pλ i(k i−1)

i

elements of order exactly q i , and, for each element g ∈ (Z/q iZ)(λ i) of
order less than q i , there exists some element h such that g = hp i .

It follows that G satisfies the following formula:

881



e4. ℵ0-categorical theories

◆ the axioms of an abelian group;
◆ ∀x(xq0⋯qm−1 = 1)
◆ for each i < m such that λ i < ℵ0, the statement that there are

exactly r i elements of order exactly q i that cannot be written in
the form hp i , for some h ∈ G ;

◆ for each i < m such that λ i = ℵ0, the statement that there are
infinitelymany elements of order exactly q i that cannot bewritten
in the form hp i , for some h ∈ G.

Furthermore, every countable structure H satisfying these formulae is
isomorphic to G. Consequently, Th(G) is ℵ0-categorical. ◻

Having characterised the countable theories with exactly one count-
able model we turn to countable theories with several countable models.

Lemma 1.6. If T is a countable complete theory with less than 2ℵ0 count-
able models, up to isomorphism, then ∣S s̄(T)∣ ≤ ℵ0, for all finite s̄.

Proof. Assume that S s̄(T) is uncountable. Then we have ∣S s̄(T)∣ = 2ℵ0 ,
by Corollary b5.7.5. Each type p ∈ S s̄(T) is realised in some countable
model of T . Since each countable model of T realises only countably
many types it follows that T has 2ℵ0 models. ◻

Surprisingly there are no theories with exactly two countable models.

Theorem 1.7. Let T be a countable complete theory. If T is not ℵ0-cate-
gorical then it has at least 3 countable models.

Proof. If there is a finite tuple s̄ of sorts such that S s̄(T) is uncountable
then it follows by Lemma 1.6 that T has uncountably many countable
models. Hence, we may assume that S s̄(T) is countable, for all s̄. By
Theorem e3.3.1 and Proposition e1.2.15, it follows that T has a prime
model A and a countable saturated model B. If T is not ℵ0-categorical
then there is some s̄ such that S s̄(T) is infinite and there exists a non-
isolated type p ∈ S s̄(T). This type is realised in B but not in A which
implies that A ≇ B.
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1. ℵ0-categorical theories and automorphisms

Let ā ∈ B s̄ be a tuple of type p. We know that, for some k < ω, there
are infinitely many pairwise non-equivalent formulae with free variables
x0 , . . . , xk−1. These formulae are still non-equivalent modulo the theory
Th(Bā). Hence, Th(Bā) is not ℵ0-categorical and there exists a prime
model C of this theory. We have C ≇ A since p is realised in C. As C is not
ℵ0-saturated there is a non-isolated type q ∈ S<ω(ā). Since B realises q
and C does not, it follows that C ≇ B. Thus, we have found three non-
isomorphic models A, B, C. ◻

Lemma 1.8. There is a countable complete theory T which has exactly
three countable models.

Proof. Let T be the theory of open dense linear orders augmented by
the sentences c i < ck , for all i < k < ω. This theory is complete, it
admits quantifier elimination, and the only non-isolated type p is the
one containing all formulae x > c i , i < ω. There are three models.

(i) The prime model is M0 ≅ ⟨Q, <, (n)n<ω⟩ where the type p is not
realised since the sequence (c i)i is unbounded.

(ii) In M1 ≅ ⟨Q, <, ((1 + 1
n )

n)n<ω⟩ the sequence (c i)i is bounded but
it has no least upper bound.

(iii) In M2 ≅ ⟨Q, <, (− 1
n )n<ω⟩ the sequence (c i)i has a least upper

bound. ◻

Exercise 1.1. For every 3 < n < ω, find a countable complete first-order
theory with exactly n models.

All possibilities for the number of countable models of a countable
theory are listed in the following theorem. Each of them is realised by
some theory. The question of whether there are really countable theories
with exactlyℵ1 countablemodelswas open for a long time.An affirmative
answer was recently given by Knight.

Theorem 1.9 (Morley). The number of nonisomorphic countably infinite
models of a countable complete theory is either a finite number n ≠ 2, or it
is one of ℵ0, ℵ1, or 2ℵ0 .
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e4. ℵ0-categorical theories

We will not give the complete proof of this result. The next lemma
characterises those theories with at most ℵ1 countable models. Morley
has shown that all theories that do not satisfy the conditions of the lemma
have 2ℵ0 countable models.

Lemma 1.10. Let T be a countable complete theory and letK be the class
of all countable models of T. If we have

∣K/≡α ∣ ≤ ℵ0 , for every α < ω1 ,

then, up to isomorphism, T has at most ℵ1 countable models.

Proof. For A ∈ K, let χ(A) ∶= ⟨α, [A]α⟩ where α is the Scott height of A
and [A]α ∈ K/≡α+ω is the ≡α+ω-class of A. ByCorollary c4.4.11, it follows
that we have

χ(A) = χ(B) iff A ≅ B , for all A,B ∈ K .

Consequently, the number of countable models of T is at most

∣rng χ∣ ≤ ℵ1 ⊗ sup{ ∣K/≡α ∣ ∣ α < ω1 } ≤ ℵ1 ⊗ ℵ1 = ℵ1 . ◻

We conclude this section by an investigation of definable relations in
countable models of ℵ0-categorical theories.

Lemma 1.11. Let M be a countable model of a countable ℵ0-categorical
theory T.

(a) Let s̄ be a finite tuple of sorts. A relation R ⊆ M s̄ is definable in M if
and only if

π[R] = R , for all π ∈ Aut M .

(b) A partial function f ∶ Ms → Mt is definable in M if and only if

π ○ f = f ○ π , for all π ∈ Aut M .
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1. ℵ0-categorical theories and automorphisms

Proof. (a) For the nontrivial direction suppose that π[R] = R for all
automorphisms π. Since T is ℵ0-categorical there are only finitely many
orbits of Aut M on M s̄ . Hence, R is a finite union of such orbits and it is
sufficient to prove that every orbit S is definable.

Fix some tuple ā ∈ S. We have seen in Theorem 1.2 that M is saturated.
Hence, it follows by Lemma e1.4.2 and Proposition e1.4.7 that M is
strongly homogeneous. Consequently, tp(ā) = tp(b̄) implies that there
is some automorphism π mapping ā to b̄. It follows that

S = { b̄ ∈ M s̄ ∣ tp(b̄) = tp(ā) } .

Since every type is isolated there is some formula φ(x̄) with

M ⊧ φ(b̄) iff tp(b̄) = tp(ā) .

It follows that S = φM.
(b) By (a), a function f is definable if and only if it is invariant under

automorphisms, i.e., if and only if

b = f (a) iff π(b) = f (π(a)) , for all π ∈ Aut M .

We can rewrite this condition as π( f (a)) = f (π(a)). ◻

We can use these results to relate interpretations and automorphism
groups.

Definition 1.12. (a) Let A and B be structures. B is definable in A if it
is isomorphic to a structure C each domain Cs of which is a definable
subset of A such that all relations RC and functions f C are definable in A.
We call A and B bidefinable if each of them is definable in the other one
and the corresponding isomorphisms are inverses of each other.

Definition 1.13. Suppose that G and H are permutation groups with
actions α ∶ G→ Sym Ω and β ∶ H→ Sym∆, respectively.

(a) A morphism G → H (or, more precisely, α → β) is a pair ⟨h, i⟩
where h ∶ G→ H is a group homomorphism and i ∶ ∆ → Ω is a function
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such that

α(g) ○ i = i ○ β(h(g)) , for all g ∈ G .

(b)An embedding of permutation groups is amorphism ⟨h, i⟩ ∶ G→ H
where h and i are both injective.

Theorem 1.14. Let A be a countable model of a countable ℵ0-categorical
theory. A structure B is definable in A if and only if there exists an embed-
ding Aut A→ Aut B.

Proof. The claim follows from Lemma 1.11. If B is definable in A then
every relation RB of B is closed under Aut A. This implies that every
automorphism of A is also an automorphism of B. Conversely, each re-
lation RB of B is closed under all automorphisms of B. If Aut A ≤ Aut B
then it also closed under all automorphisms of A and, hence, it is defin-
able in A. ◻

Corollary 1.15. Let A and B be countable models of countable ℵ0-cate-
gorical theories. Then A and B are bidefinable if and only if Aut A and
Aut B are isomorphic as permutation groups.

Corollary 1.16. Let A be a countable model of a countable ℵ0-categorical
theory. If B is a structure with countable signature that is definable in A
then Th(B) is also ℵ0-categorical.

Proof. If Aut A is oligomorphic and Aut B ≥ Aut A then Aut B is also
oligomorphic. ◻

A similar characterisation holds for interpretations. Recall that every
structure interpretable in M can be seen as a definable substructure
of Meq.

Definition 1.17. Let I = ⟨α, (δs)s∈S , (εs)s∈S , (φξ)ξ∈Γ⟩ be a first-order
interpretation and π ∶ A→ B an isomorphism.

(a) We denote by πeq ∶ Aeq → Beq the unique isomorphism with
πeq ↾ A = π.
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1. ℵ0-categorical theories and automorphisms

(b) Set C ∶= I(A). For every sort s, the coordinate map of I induces a
bijection Is ∶ Ds → Cs where

Ds ∶= { [ā]εs ∣ ā ∈ δ
A
s } ⊆ A

eq
εs .

(c) We define

πI ∶=⋃
s
Is ○ πeq ○ I−1

s ,

where s ranges over all sorts of I(A). We denote the induced map on
automorphism groups by AutI ∶ Aut A→ AutI(A) ∶ π ↦ πI .

Lemma 1.18. Let I be a first-order interpretation. πI ∶ I(A)→ I(B) is
an isomorphism, for every isomorphism π ∶ A→ B.

Lemma 1.19. Every isomorphism h ∶ A → B induces an isomorphism
Aut h ∶ Aut A→ Aut B where

(Aut h)(π) ∶= h ○ π ○ h−1 .

Lemma 1.20. For every first-order interpretation I , the map AutI is a
continuous homomorphism

AutI ∶ Aut M→ AutI(M) .

Proof. It is straightforward to verify that AutI ∶ Aut M→ AutI(M) is a
homomorphism. To see that it is continuous let S ⊆ AutI(M) be a basic
open neighbourhood of 1. Then there is some finite tuple ā in I(M)
such that

S = (AutI(M))(ā) .

Suppose that the sorts of ā are s̄.We fix elements c i ∈ Ds i with I(c i) = a i .
There are finite tuples c̄∗i ⊆ M such that

dcleq(c i) = dcleq(c̄∗i ) .
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Setting S′ ∶= (AutI)−1[S] we have

π ∈ S′ iff AutI(π)(ā) = ā
iff (Is i ○ πeq ○ I−1

s i
)(a i) = a i , for all i

iff πeq(c i) = c i , for all i
iff π(c̄∗i ) = c̄

∗
i , for all i .

Consequently, S′ = (Aut M)(c̄∗0 . . . c̄∗m−1) is open. ◻

Let us call a function f ∶ M → M definable in the structure M if each
restriction f ↾Ms is definable, where s ranges over all sorts of M.

Lemma 1.21. Let φ ∶ Aut A → Aut B be a continuous homomorphism
and suppose that A is a countable model of an ℵ0-categorical theory. The
following statements are equivalent :

(1) φ = Aut π○AutI , for some interpretation I and some isomorphism
π ∶ I(A)→ B.

(2) The subgroup rng φ ≤ Aut B is oligomorphic.

Proof. (1)⇒ (2) For every finite tuple s̄ of sorts and every orbit S of rng φ
on B s̄ , we introduce a new relation RS of type s̄ containing all tuples in
the orbit S. Let B+ be the expansion of B by all these relations RS . Every
automorphism σ ∈ rng φ is still an automorphism of the expansion B+.
Hence, rng φ ≤ Aut B+. We claim that rng φ and Aut B+ have the same
orbits.

Since rng φ ≤ Aut B+ it is sufficient to check that tuples ā, b̄ ∈ B s̄ in
different orbits of rng φ belong to different orbits of Aut B+. Let S and S′
be the orbits under rng φ of ā and b̄, respectively. Then ā ∈ RS and b̄ ∈ RS′ .
If S ≠ S′ then RS and RS′ are disjoint and there is no automorphism
of B+ mapping ā to b̄.

Consequently, rng φ and Aut B+ have the same orbits. To prove (2) it
is therefore sufficient to show that Aut B+ is oligomorphic. For a con-
tradiction, suppose that some set B s̄ contains tuples b̄n , n < ω, from
pairwise distinct orbits. Fix tuples ān ⊆ A such that (π ○ I)(ān) = b̄n .
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Since A is ℵ0-categorical there are indices k < n such that āk and ān

belong to the same orbit under Aut A. Fix an automorphism σ ∈ Aut A
with σ(āk) = ān . Then

φ(σ)(b̄k) = (Aut π ○AutI)(σ)(b̄k)

= (π ○ Is̄ ○ σ eq ○ I−1
s̄ ○ π−1)(b̄k)

= (π ○ Is̄ ○ σ eq)(āk)

= (π ○ Is̄)(ān) = b̄n .

Hence, the automorphism φ(σ)maps b̄k to b̄n . Contradiction.
(2)⇒ (1) Let G ∶= Aut A and H ∶= Aut B. For each sort s, fix repres-

entatives bs
0 , bs

1 , . . . of the orbits of Bs under rng φ. The stabiliser H(bs
i)

of bs
i is a basic open neighbourhood of 1 in H. Since φ is continuous we

can find, for each bs
i , a basic open neighbourhood U s

i of 1 in G with

U s
i ⊆ φ−1[H(bs

i)] .

Every such neighbourhood is of the form U s
i = G(ās

i), for some ās
i ⊆ A.

Let Os
i be the orbit of ās

i . We define a map πs
i ∶ O

s
i → Bs by

πs
i(σ(ā

s
i)) ∶= φ(σ)(bs

i) , for σ ∈ G .

It follows that rng πs
i is the orbit of bs

i under rng φ. Note that ker πs
i is

invariant under automorphisms since

πs
i(σ0(ā

s
i)) = πs

i(σ1(ās
i))

implies

πs
i((ρ ○ σ0)(ās

i)) = φ(ρ ○ σ0)(bs
i)

= φ(ρ ○ σ1)(bs
i) = πs

i((ρ ○ σ1)(ās
i)) .

By Lemma 1.11 it follows that ker πs
i is definable. We obtain a definable

subset U s
i ∶= Os

i /ker πs
i ⊆ A

eq and an injective function

πs ∶ ⋃i U s
i → Bs .
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This map is also surjective since its range contains every orbit of Bs under
rng φ. Setting π ∶= ⋃s πs we obtain a bijection π ∶ ⋃s Us → B. We claim
that this bijection is an isomorphism between B and a structure of the
form I(A), for a suitable interpretation I .

If R is a definable relation in B then its preimage π−1[R] is invariant
under automorphisms. Hence, π−1[R] is definable in Aeq. It follows that
there exists an interpretation I such that π ∶ I(A) ≅ B.

It remains to check that φ = Aut π ○AutI . For every σ ∈ G we have

(Aut π ○AutI)(σ)(bs
i) = (π ○ Is ○ σ eq ○ I−1

s ○ π−1)(bs
i)

= (π ○ Is ○ σ eq)(ās
i)

= (π ○ Is)(σ(ās
i)) = φ(σ)(bs

i) ◻

Corollary 1.22. Let Σ and Γ be countable signatures and I a first-order
interpretation from Σ to Γ. If A is a countable Σ-structure with ℵ0-cate-
gorical theory then the theory of I(A) is also ℵ0-categorical.

Proof. AutI ∶ Aut A → AutI(A) is a continuous homomorphism. By
the preceding lemma it follows that rng(AutI) is oligomorphic. Since
rng(AutI) ≤ AutI(A) it follows that AutI(A) is also oligomorphic.

◻

Definition 1.23. Let M be a structure and suppose that I and J are
interpretations such that there exists an isomorphism π ∶ I(M) ≅ J (M).
We call I and J homotopic (via π) if there exists a definable function
ρ ∶ M → M such that π ○ I = J ○ ρ.

M I(M)

M J (M)

I

ρ π

J

Lemma 1.24. Let M be a countable structure with ℵ0-categorical theory
and suppose that I and J are interpretations with I(M) ≅ J (M). Let

890



1. ℵ0-categorical theories and automorphisms

π ∶ I(M) → J (M) be an isomorphism. Then I and J are homotopic
via π if and only if AutJ = Aut π ○AutI .

Proof. (⇒) Let ρ ∶ M → M be a definable function such that π ○ I =
J ○ρ. For every element b ofJ (M) and every automorphism σ ∈ Aut M,
we have

(Aut π ○AutI)(σ)(b) = (π ○ Is ○ σ eq ○ I−1
s ○ π−1)(b)

= (Js ○ ρ ○ σ eq ○ ρ−1 ○J −1
s )(b)

= (Js ○ σ eq ○ ρ ○ ρ−1 ○J −1
s )(b)

= (AutJ )(σ)(b)

Hence, Aut π ○AutI = AutJ .
(⇐) For a ∈ M, we define

ρ(a) ∶= (J −1
s ○ π ○ Is)(a) .

We claim that ρ is definable. For σ ∈ Aut M and a ∈ M, we have

ρ(σ(a)) = (J −1
s ○ π ○ Is ○ σ)(a)

= (J −1
s ○ π ○ Is ○ σ ○ I−1

s ○ π−1 ○ π ○ Is)(a)
= (J −1

s ○ (Aut π ○AutI)(σ) ○ π ○ Is)(a)
= (J −1

s ○ (AutJ )(σ) ○ π ○ Is)(a)
= (σ ○J −1

s ○ π ○ Is)(a)
= σ(ρ(a)) .

Hence, ρ is invariant under automorphisms and, thus, definable. ◻

Definition 1.25. Two structures A and B are biinterpretable if there exist
first-order interpretations I ,J and isomorphisms π ∶ I(A) → B and
ρ ∶ J (B)→ A such that J ○I is homotopic to idA via ρ ○ πJ and I ○J
is homotopic to idB via π ○ ρI .
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A I(A) JI(A)

B J (B) IJ (B)

A A I(A)

B B

I J

π πJ

J I
ρ ρI

id I

π

id

σ

τ

Theorem 1.26. Let A and B be countable models of countable ℵ0-categor-
ical theories. Then A and B are biinterpretable if and only if Aut A and
Aut B are isomorphic as topological groups.

Proof. (⇒) Let I ,J and π, ρ witness that A and B are biinterpretable.
There exist definable maps σ ∶ A→ A and τ ∶ B → B such that

ρ ○ πJ ○J ○ I = σ and π ○ ρI ○ I ○J = τ .

Set φ ∶= Aut π○AutI andψ ∶= Aut ρ○AutJ . Since σ and τ are definable
we have

Aut σ = id and Aut τ = id .

It follows that

φ ○ ψ = Aut ρ ○AutJ ○Aut π ○AutI
= Aut(ρ ○J ○ π ○ I)

= Aut(ρ ○ πJ ○J ○ I)

= Aut σ
= id ,
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and, analogously,

ψ ○ φ = id .

Hence, ψ = φ−1 and φ ∶ Aut A→ Aut B is the desired isomorphism.
(⇐) Let φ ∶ Aut A→ Aut B be an isomorphism. Since rng φ = Aut B

is oligomorphic it follows by Lemma 1.21 that φ = Aut π ○ AutI , for
some interpretation I and some isomorphism π ∶ I(A)→ B. Similarly,
rng φ−1 is oligomorphic and we have φ−1 = Aut ρ ○ AutJ , for some
J and ρ. It follows that

Aut(ρ ○J ○ π ○ I) = Aut ρ ○AutJ ○Aut π ○AutI
= φ−1 ○ φ = id .

By Lemma 1.24, there exists a definable map σ ∶ A→ A such that

π ○ I ○ ρ ○J = σ .

Analogously, we obtain a definable map τ ∶ B → B such that

ρ ○J ○ π ○ I = τ .

Hence, J ○ I and id are homotopic via ρ ○ πJ and I ○ J and id are
homotopic via π ○ ρI . ◻

2. Back-and-forth arguments in accessible categories
In the next section, we will prove a result about accessible categories
using back-and-forth arguments. The necessary machinery for such
arguments is developed in the present section. We start by generalising
the notion of a partial isomorphism and the forth-property.

Definition 2.1. Let C be a category, K ⊆ Cobj a class of objects, and
a, b ∈ C.
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(a) A partial morphism from a to b is a pair p = ⟨ f , f ′⟩ of morphisms
f ∶ $→ a and f ′ ∶ $→ b, for some object $ ∈ C. We call a the domain of p,
b its codomain, and $ is its base.

(b) Let p = ⟨ f , f ′⟩ and q = ⟨g , g′⟩ be partial morphisms with bases
$ and d, respectively. A morphism p → q is a morphism h ∶ $ → d such
that

f = g ○ h and f ′ = g′ ○ h .
a

$

d

b

f

g

f ′

g′

h

(c) We denote by pMorK(a, b) the category of all partial morphisms p
from a to b whose base belongs toK. IfK is the class of all κ-presentable
objects, we will write pMorκ(a, b) instead.

(d) The domain projection is the functor

P ∶ pMorK(a, b)→ SubK(a)

that maps a partial morphism p = ⟨ f , f ′⟩ to its first component f and
a morphism h ∶ ⟨ f , f ′⟩ → ⟨g , g′⟩ of pMorK(a, b) to the underlying
morphism h ∶ f → g of SubK(a).

Analogously, the codomain projection is the functor

Q ∶ pMorK(a, b)→ SubK(b)

mapping ⟨ f , f ′⟩ to f ′ and h ∶ ⟨ f , f ′⟩→ ⟨g , g′⟩ to h ∶ f ′ → g′.
Finally, the base projection is the functor

B ∶ pMorK(a, b)→ C

mapping a partial morphism p to its base and a morphism h ∶ p → q to
the corresponding morphism h ∶ B(p)→ B(q) between the bases.

Definition 2.2. Let C be a category, K ⊆ Cobj a class of objects, and
a, b ∈ C.

894



2. Back-and-forth arguments in accessible categories

(a) A set I of partial morphisms from a to b has the forth property with
respect to K if, for every p = ⟨ f , f ′⟩ ∈ I with base $, every d ∈ K, and
every pair of morphisms g ∶ d → a and h ∶ $ → d with f = g ○ h, there
exists a morphism g′ ∶ d→ b such that ⟨g , g′⟩ ∈ I and

h ∶ ⟨ f , f ′⟩→ ⟨g , g′⟩ .
a

$

d

b

f

g

f ′

g′

h

(b) We write

a ⊑K b : iff pMorK(a, b) is nonempty and it has the forth
property with respect toK.

Furthermore, we write

a ⊑κ
pres b : iff a ⊑Kκ b ,

whereKκ ⊆ C is the class of all κ-presentable objects. The corresponding
equivalence relations are

a ≡K b : iff a ⊑K b and b ⊑K a ,
a ≡κ

pres b : iff a ⊑κ
pres b and b ⊑κ

pres a .

Remark. In the category Emb(Σ) we have

A ⊑κ
pres B iff A ⊑κ

0 B .

Note that, for an arbitrary category, the relation ⊑K is not very well-
behaved. For instance, in general it is neither reflexive nor transitive. The
next lemma collects some basic properties that hold in every category.

Lemma 2.3. Let C be a category and K ⊆ Cobj.
(a) If there exists a morphism φ ∶ a0 → a, then

a ⊑K b implies a0 ⊑K b .
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e4. ℵ0-categorical theories

(b) If a ∈ K and a ⊑K b, then there exists a morphism a→ b.

(c) If a, b ∈ K and a ≡K b, then a ≅ b.

Proof. (a) Let ⟨ f , f ′⟩ ∈ pMorK(a0 , b) be a partial morphism with base $
and let h ∶ $ → d and g ∶ d → a0 be morphisms with f = g ○ h and
d ∈ K. Then ⟨φ ○ f , f ′⟩ ∈ pMorK(a, b) and h ∶ $→ d and φ ○ g ∶ d→ a are
morphisms such that φ ○ f = φ ○ g ○ h and d ∈ K. Consequently, a ⊑K b
implies that there exists a morphism g′ ∶ d→ b such that

⟨φ ○ g , g′⟩ ∈ pMorK(a, b) and h ∶ ⟨φ ○ f , f ′⟩→ ⟨φ ○ g , g′⟩ .

It follows that ⟨g , g′⟩ ∈ pMorK(a0 , b) and h ∶ ⟨ f , f ′⟩→ ⟨g , g′⟩.

(b) As a ⊑K b, there exists a partial morphism ⟨ f , f ′⟩ ∈ pMorK(a, b).
Since a ∈ K, we can use the forth-property to find a morphism g ∶ a→ b
such that

⟨ida , g⟩ ∈ pMorK(a, b)
and f ∶ ⟨ f , f ′⟩→ ⟨ida , g⟩ . a

$

a

b

f

ida

f

f ′

g

(c) As a ≡K b, there exists a partial morphism ⟨ f , f ′⟩ ∈ pMorK(a, b).
As in (b), we can use the forth-property to find a morphism g ∶ a → b
such that

⟨ida , g⟩ ∈ pMorK(a, b) and f ∶ ⟨ f , f ′⟩→ ⟨ida , g⟩ .

Similarly, we can use the back-property to find a morphism h ∶ b → a
such that
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2. Back-and-forth arguments in accessible categories

⟨h, idb⟩ ∈ pMorK(a, b)
and g ∶ ⟨ida , g⟩→ ⟨h, idb⟩ .

Using the forth-property again, we
obtain a morphism g′ ∶ a → b such
that

⟨ida , g′⟩ ∈ pMorK(a, b)
and h ∶ ⟨h, idb⟩→ ⟨ida , g′⟩ .

a

$

a

b

b

a

f

ida

h

f

h

f ′

g′

idb

ida g

g

In particular, h ○ g = ida and g′ ○ h = idb. By Lemma b1.3.4, it follows
that g = g′ and h ∶ b ≅ a is an isomorphism. ◻

Our goal is to generalise Lemma c4.4.10 to relations of the form ⊑K.
We start with the forth-property.

Proposition 2.4. Let κ be an infinite cardinal or κ =∞, C a category with
colimits of nonempty chains of length less than κ, and let K ⊆ Cobj be a
class of objects that is closed under colimits of nonempty chains of length
less than κ. Let D ∶ γ → K be a chain of length 0 < γ ≤ κ with limiting
cocone µ ∈ Cone(D, a). Suppose that every morphism from some object
in K to a factorises essentially uniquely through µ.

If a ⊑K b, then there exists a chain E ∶ γ → pMorK(a, b) such that
D = B ○ E, where B is the base projection functor.

Proof. By induction on α < γ,we define morphisms να ∶ D(α)→ b such
that

⟨µα , να⟩ ∈ pMorK(a, b)
and D(α, β) ∶ ⟨µα , να⟩→ ⟨µβ , νβ⟩ ,

for α ≤ β < γ.
Then we can set

a

D(α)

D(β)

b

µα

µβ

D(α, β)

να

νβ
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e4. ℵ0-categorical theories

E(α) ∶= ⟨µα , να⟩ and E(α, β) ∶= D(α, β) , for α ≤ β < γ .

For α = 0, we define να as follows. Since a ⊑K b, there exists a partial
morphism ⟨ f , f ′⟩ ∈ pMorK(a, b). Let $ be its base. By assumption on D,
f factorises as f = µα ○ f0, for some index α < γ and some morphism
f0 ∶ $ → D(α). As a ⊑K b, there exists a morphism να ∶ D(α) → b such
that ⟨µα , να⟩ ∈ pMorK(a, b) and

f0 ∶ ⟨ f , f ′⟩→ ⟨µα , να⟩ .

a

$

D(α)

b

f

µα

f0

f ′

να

Setting ν0 ∶= να ○ D(0, α) we obtain the desired morphism D(0)→ b.
For the inductive step, suppose that we have already defined να for

all α < β. Let λβ be a limiting cocone from D ↾ β to some object dβ . As
K is closed under colimits of chains of length β, we have dβ ∈ K. Since
(µα)α<β and (να)α<β are cocones of D↾β, there exist uniquemorphisms
φ ∶ dβ → a and φ′ ∶ dβ → b such that

(µα)α<β = φ ∗ λβ and (να)α<β = φ′ ∗ λβ .

Similarly, (D(α, β))α<β is a cocone from D ↾ β to D(β) and there exists
a unique morphism ψ ∶ dβ → D(β) such that

(D(α, β))α<β = ψ ∗ λβ .

Since

µβ ○ ψ ○ λβ
α = µβ ○ D(α, β) = µα = φ ○ λβ

α , for all α < β ,

it follows by Lemma b3.4.2 that
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2. Back-and-forth arguments in accessible categories

µβ ○ ψ = φ .

a

dβ

D(β)

b

φ

µβ

ψ

φ′

νβ

Therefore, a ⊑K b implies that there exists a morphism νβ ∶ D(β) → b
such that

⟨µβ , νβ⟩ ∈ pMorK(a, b) and ψ ∶ ⟨φ, φ′⟩→ ⟨µβ , νβ⟩ .

For α < β it follows that D(α, β) = ψ ○ λβ
α is a morphism

D(α, β) ∶ ⟨µα , να⟩→ ⟨µβ , νβ⟩ . ◻

Proposition 2.5. Let κ be an infinite cardinal or κ =∞, C a category with
colimits of nonempty chains of length at most κ, and letK ⊆ Cobj be a class
of objects that is closed under colimits of nonempty chains of length less
than κ. Let D ∶ γD → K and E ∶ γE → K be chains of length 0 < γD , γE ≤ κ
with limiting cocones λD ∈ Cone(D, a) and λE ∈ Cone(E , b). Suppose
that every morphism from some object inK to a or b factorises essentially
uniquely through, respectively, λD and λE .

If a ≡K b and p ∈ pMorK(a, b), there exists a morphism φ ∶ p → q of
pMorK(a, b) such that q = ⟨g , g′⟩ consists of two epimorphisms.

Proof. By induction on the ordinals γD and γE , we construct a chain
F ∶ δ → pMorK(a, b), two links s and t from B○F toD and E, respectively,
and two increasing functions ρ0 ∶ γD → δ and θ0 ∶ γE → δ such that

B(F(α)) = D(ρ(α)) , sα = idD(ρ(α)) , for α ∈ rng ρ0 ,

B(F(α)) = E(θ(α)) , tα = idE(θ(α)) , for α ∈ rng θ0 ,

where B is the base projection functor and ρ and θ are the index maps
of s and t, respectively.

899



e4. ℵ0-categorical theories

For γD , γE = 0, we start with δ ∶= 1 and F(0) ∶= p. To define s and t,
suppose that p = ⟨ f , f ′⟩. By assumption, f and f ′ factorise essentially
uniquely through λD and λE , respectively. Let f = λD

α ○ f0 and f ′ = λE
β ○ f ′0

be the corresponding factorisations. We set s0 ∶= f0 and t0 ∶= f ′0.
For the inductive step, suppose that, for the restrictions D ↾ βD and

E ↾ βE , we have already defined a chain F ∶ δ → pMorK(a, b) with
0 < δ < κ, links s and t from B ○ F to D ↾ βD and E ↾ βE , respectively,
and increasing functions ρ0 ∶ βD → δ and θ0 ∶ βE → δ.
We will show how to extend these definitions to D ↾ βD + 1. (The

extension to E ↾βE + 1works in the sameway.) Let µ be a limiting cocone
from B○F to some object $.AsK is closed under limits of chains of length
0 < δ < κ, it follows that $ ∈ K. Since λD ∗ s is a cocone of B ○ F, there
exists a unique morphism φD ∶ $→ a such that λD ∗ s = φD ∗ µ. In the
same way, we obtain a unique morphism φE ∶ $→ b with λE ∗ t = φE ∗ µ.
As $ ∈ K, there exists an essentially unique factorisation φD = λD

α ○ φ0,
for some morphism φ0 ∶ $ → D(α) with α ≥ βD . Since a ⊑K b, we can
find a morphism ψ ∶ $→ b such that

ψ ○ φ0 = φE .

a

$

D(α)

b

φD

λD
α

φE

ψ

φ0

As D(α) ∈ K, there exists an essentially unique factorisation ψ =
λE
β ○ ψ0, for some morphism ψ0 ∶ D(α)→ E(β) with β ≥ βD . We set

F(δ) ∶= ⟨λD
α ,ψ⟩ , F(i , δ) ∶= φ0 ○ µ i , for i < δ ,

sδ ∶= idD(α) , ρ0(βD) ∶= α ,
tδ ∶= ψ0 .

Let us show that these morphisms have the desired properties. First,
we check that the extension of s is a link from the extension of B ○F to D.
For every i < δ, it follows by choice of φD that

λD
α ○ D(ρ(i), α) ○ s i = λD

ρ(i) ○ s i = φD ○ µ i = λD
α ○ φ0 ○ µ i .
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2. Back-and-forth arguments in accessible categories

Since B(F(i)) ∈ K, this morphism has an essentially unique factorisa-
tion through λD . Hence, the above two factorisations are a.p.-equivalent.

D(φ(i), α) ○ s i ⩕D φ0 ○ µ i .

By Lemma b3.5.3 (d), this implies that

s i ⩕D φ0 ○ µ i = sδ ○ F(i , δ) ,

as desired.

We also have to check that the extension of t is a link. Let i < δ. Then

λE
β ○ tδ ○ F(i , δ) = λE

β ○ ψ0 ○ φ0 ○ µ i

= ψ ○ φ0 ○ µ i = φE ○ µ i = λE
θ(i) ○ t i .

Since B(F(i)) ∈ K, this morphism has an essentially unique factorisa-
tion through λE . Hence, the above two factorisations are a.p.-equivalent.

tδ ○ F(i , δ) ⩕E t i ,

as desired.

Having defined F ∶ δ → pMorK(a, b), we construct the desired partial
morphism q = ⟨g , g′⟩ ∈ pMor(a, b) as follows. Let λF be a limiting
cocone from B ○ F to some object $ ∈ C. Since λD ∗ s and λE ∗ t are
cocones of F, there exist unique morphisms g ∶ $→ a and g′ ∶ $→ b such
that λD ∗ s = g ∗ λF and λE ∗ t = g′ ∗ λF . We claim that g and g′ are
epimorphisms. By symmetry, it is sufficient to give a proof for g. Hence,
let h, h′ ∶ a→ d be morphisms such that h ○ g = h′ ○ g. For every i < γD ,
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e4. ℵ0-categorical theories

it follows that

h ○ λD
i = h ○ λD

ρ(ρ0(i)) ○ D(i , ρ(ρ0(i)))

= h ○ λD
ρ(ρ0(i)) ○ sρ0(i) ○ D(i , ρ(ρ0(i)))

= h ○ g ○ λF
ρ0(i) ○ D(i , ρ(ρ0(i)))

= h′ ○ g ○ λF
ρ0(i) ○ D(i , ρ(ρ0(i)))

= h′ ○ λD
ρ(ρ0(i)) ○ sρ0(i) ○ D(i , ρ(ρ0(i)))

= h′ ○ λD
ρ(ρ0(i)) ○ D(i , ρ(ρ0(i)))

= h′ ○ λD
i .

Consequently, Lemma b3.4.2 implies that h = h′.
Finally, note that λF

0 ∶ B(F(0)) → $ is the desired morphism p → q
since, by choice of g , g′ , s0 , t0, we have

g ○ λF
0 = λD

ρ(0) ○ s0 = f and g′ ○ λF
0 = λE

θ(0) ○ t0 = f ′ . ◻

The preceding two results are phrased in a quite general form. Their
statements can be simplified significantly if we assume that the category
is ℵ0-accessible, all morphisms are monomorphisms, and all epimorph-
isms are isomorphisms. Since in the applications below we will mainly
be working in Emb(Σ) and similar categories where these assumptions
are met, we record here the corresponding simplified versions. We start
by proving that, under these assumptions, every object can be written as
the colimit of a chain.

Lemma 2.6. Let C be a category where every morphism is a monomor-
phism. For every κ-filtered diagram D ∶ I → C of size λ that has a colimit,
there exists a κ-directed diagram E ∶ K → C of size at most λ with

lim
Ð→

E = lim
Ð→

D and rng Eobj = rngDobj .

Proof. Fix a limiting cocone µ ∈ Cone(D, a). For the index order K of
the diagram E, we choose the set K ∶= Iobj where we define the order by

i ≤ j : iff I(i, j) ≠ ∅ .
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2. Back-and-forth arguments in accessible categories

Since I is κ-filtered, this preorder is clearly κ-directed. We define the
diagram E by setting

Eobj(i) ∶= D(i)

and Emor(i, j) ∶= D( f ) , for an arbitrary f ∈ I(i, j) .

First, note that E is well-defined in the sense that the value of E(i, j)
does not depend on the choice of f : if f , f ′ ∈ I(i, j), then

µj ○ D( f ) = µi = µj ○ D( f ′) implies D( f ) = D( f ′) ,

as µj is a monomorphism. Furthermore, it follows immediately from the
definition that rng Eobj = rngDobj.

Hence, it remains to show that D and E have the same colimit. We
will prove below that Cone(E , b) = Cone(D, b), for every b ∈ C. Hence,
the identity maps provide a natural isomorphism

id ∶ Cone(D,−)→ Cone(E ,−)

and it follows by Lemma b3.4.3 that D and E have the same colimits.
To prove the claim, let ν ∈ Cone(D, b). For all i ≤ j and f ∈ I(i, j), it

follows that

νi = νj ○ D( f ) = νj ○ E(i, j) .

Hence, ν ∈ Cone(E , b). Conversely, let ν ∈ Cone(E , b). For all f ∶ i → j
in I , it follows that

νi = νj ○ E(i, j) = νj ○ D( f ) .

Hence, ν ∈ Cone(D, b). ◻

Corollary 2.7. Let C be an ℵ0-accessible category where every morphism
is a monomorphism. For every κ+-presentable object a ∈ C, there exists a
chain D ∶ κ → C such that
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e4. ℵ0-categorical theories

◆ lim
Ð→

D = a,

◆ every object D(α) is κ-presentable and,

◆ for each κ-presentable object b, every morphism f ∶ b→ a factorises
essentially uniquely through every limiting cocone from D to a.

Proof. If a is κ-presentable, we can take the constant diagram D ∶ κ → C
where D(α) = a and D(α, β) = ida, for all α ≤ β < κ. Hence, it remains
to consider the case where a is κ+-presentable, but not κ-presentable.
Thenwe can useTheorem b4.4.3 to find anℵ0-filtered diagram E ∶ I → C
of size at most κ with colimit a such that every object E(i) is ℵ0-present-
able. We use Lemma 2.6 to construct a ℵ0-directed diagram F ∶ K → C of
size at most κ with lim

Ð→
F = a such that every F(i) is ℵ0-presentable. By

Proposition b3.4.16, there exists a chain D ∶ γ → C of length γ ≤ ∣K∣ ≤ κ
with colimit a such that each object D(α) is a colimit of a directed
diagram of size less than ∣K∣. In particular, every D(α) is κ-presentable.
As a is not κ-presentable, it follows by Theorem b4.4.3 that γ = κ.

Finally, let µ ∈ Cone(D, a) be limiting. If κ is regular, the index order
⟨κ, ≤⟩ of D is κ-directed and every morphism f ∶ b→ a from a κ-present-
able object b to a factorises essentially uniquely through µ. Hence, sup-
pose that κ is singular. Then it follows by Lemma b4.1.4 that an object
is κ-presentable if, and only if, it is κ+-presentable. This contradicts our
assumption that a is κ+-presentable but not κ-presentable. ◻

In the following theorem let us state the special cases of Propositions
2.4 and 2.5 that we will need below.

Theorem 2.8. Let C be an ℵ0-accessible category where every morphism
is a monomorphism and every epimorphism is an isomorphism.

(a) If a ∈ C is κ+-presentable and a ⊑κ
pres b, then there exists amorphism

f ∶ a→ b.

(b) Let a, b ∈ C be κ+-presentable objectswith a ≡κ
pres b. For every partial

morphism p = ⟨ f , f ′⟩ ∈ pMorκ(a, b), there exists an isomorphism
π ∶ a→ b with f ′ = π ○ f .
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Proof. We start by proving that C and the class K of all κ-presentable
objects satisfy the conditions of Propositions 2.4 and 2.5. Clearly, being
ℵ0-accessible C has colimits of chains.

To show thatK is closed under colimits of nonempty chains of length
less than κ, let F ∶ γ → K be such a chain. As every object F(i), for i < γ,
is κ-presentable, it follows by Proposition b4.3.7 that the colimit of F is
(κ ⊕ ∣γ∣+)-presentable, i.e., κ-presentable.

(a) We can use Corollary 2.7 to express a as the colimit of a chain
D ∶ κ → K of the form required by Proposition 2.4. Consequently, we
obtain a diagram F ∶ κ → pMorK(a, b) such that D = B ○ F. Let λ be a
limiting cocone from D to a and set µα ∶= Q(F(α)), for α < κ, where
Q is the codomain projection functor. Then µ ∶= (µα)α<κ is a cocone
from D to b. As λ is limiting, there exists a morphism f ∶ a→ b such that
µ = f ∗ λ.

(b) We can use Corollary 2.7 to express a and b as colimits of chains
D ∶ κ → K and E ∶ κ → K of the form required by Proposition 2.5.
Therefore, we obtain a morphism h ∶ p → q of pMorK(a, b) where
q = ⟨g , g′⟩ consists of two isomorphisms. It follows that π ∶= g′ ○ g−1 is
the desired isomorphism between a and b. ◻

3. Fraïssé limits
In this section we will present a method to construct structures with an
ℵ0-categorical theory. These structures will be approximated by a direc-
ted diagram of finitely generated substructures. Since this construction
has further applications, we will present it in the general setting of an
accessible category.

Ultrahomogeneous objects

As in the case of κ-saturated structures and atomic ones, we can charac-
terise the maximal objects of the order ⊑κ

pres. For the category Emb(Σ),
these structures will have an ℵ0-categorical theory.
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e4. ℵ0-categorical theories

Definition 3.1. Let C be a category. An object u ∈ C is κ-ultrahomo-
geneous if, for every κ-presentable object a and all pairs of morphisms
f , f ′ ∶ a→ u, there exists an automorphism π ∶ u→ u with f ′ = π ○ f .
We call an object u ultrahomogeneous if it is ∥u∥-ultrahomogeneous.

Example. (a) The order ⟨Q, ≤⟩ of the rationals is ultrahomogeneous in
Emb(≤).

(b) Let ⟨ω, p⟩ be the structure where p(0) ∶= 0 and p(n + 1) ∶= n.
This structure is ultrahomogeneous in Emb(p) since no two distinct
substructures are isomorphic.

(c) We have shown in Corollary b6.5.31 that algebraically closed fields
are ℵ0-ultrahomogeneous.

Exercise 3.1. Find a dense linear order that is not ℵ0-ultrahomogeneous
in Emb(≤). Can you find an open one?

One important parameter of an ultrahomogeneous structure is the
class of its substructures.

Definition 3.2. Let C be a category, κ an infinite cardinal, and a ∈ C. We
denote by Subκ(a) the class of all κ-presentable objects $ ∈ C such that
there exists a morphism $→ a.

For accessible categories this class is well-behaved.

Lemma 3.3. Let C be a κ-accessible category.

a ⊑κ
pres b implies Subκ(a) ⊆ Subκ(b) .

Proof. Let $ ∈ Subκ(a) and let g ∶ $ → a be a corresponding morphism.
Since a ⊑κ

pres b, there exists a partial morphism ⟨ f , f ′⟩ ∈ pMorκ(a, b).
According to Proposition b4.4.12, the category Subκ(a) is κ-filtered.
Therefore, there exist an object h ∶ e → a of Subκ(a) and morphisms
φ ∶ f → h and ψ ∶ g → h. Since a ⊑κ

pres b, we can find a morphism
h′ ∶ e→ b such that ⟨h, h′⟩ ∈ pMorκ(a, b) and
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φ ∶ ⟨ f , f ′⟩→ ⟨h, h′⟩ .

a

d

$

be

f

g

h

f ′

h′

φ

ψ

We obtain a morphism h′ ○ψ ∶ $→ b witnessing the fact that $ ∈ Subκ(b).
◻

Corollary 3.4. Let C be an ℵ0-accessible category where every morphism
is a monomorphism, and let u be κ-ultrahomogeneous. Then

a ⊑κ
pres u iff Subκ(a) ⊆ Subκ(u) , for all objects a .

Proof. (⇒) Sinceℵ0-accessible categories are κ-accessible, for all infinite
cardinals κ, this direction follows from Lemma 3.3.
(⇐) Let p = ⟨ f , f ′⟩ ∈ pMorκ(a, u) be a partial morphism with base $

and let h ∶ $→ d and g ∶ d→ a be morphisms with g ○ h = f where d is κ-
presentable. Since d ∈ Subκ(a) ⊆ Subκ(u), there exists some morphism
g′ ∶ d→ u. As u is κ-ultrahomogeneous, we can find an automorphism
π ∶ u→ u such that

f ′ = π ○ g′ ○ h .

a

$

d

u

u

f

g

h

f ′

g′

π

We obtain a partial morphism q ∶= ⟨g , π ○ g′⟩ ∈ pMorκ(a, u) such that
h ∶ p → q. ◻

The statement of the previous corollary can be used to characterise
ultrahomogeneous objects.
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Proposition 3.5. Let C be anℵ0-accessible category where everymorphism
is a monomorphism and every epimorphism an isomorphism. For a κ+-
presentable object u ∈ C, the following statements are equivalent :

(1) u is κ-ultrahomogeneous.
(2) a ⊑κ

pres u , for all a ∈ C with Subκ(a) ⊆ Subκ(u) .
(3) u ≡κ

pres u

Proof. (1)⇒ (2) was already proved in Corollary 3.4 and (2)⇒ (3) is
trivial. Hence, it remains to prove (3)⇒ (1). To show that u is κ-ultra-
homogeneous, consider morphisms f , f ′ ∶ $ → u with κ-presentable
domain $. By assumption, we have u ≡κ

pres u. Consequently, we can
use Theorem 2.8 (b) to find an isomorphism π ∶ u → u such that f ′ =
π ○ f . ◻

Corollary 3.6. Let C be an ℵ0-accessible category where every morphism
is a monomorphism and every epimorphism an isomorphism.

(a) Let u, v be κ+-presentable κ-ultrahomogeneous objects. Then

Subκ(u) = Subκ(v) implies u ≅ v .

(b) Let u be κ-ultrahomogeneous and a κ+-presentable. Then

Subκ(a) ⊆ Subκ(u) implies a ∈ Subκ+(u) .

Proof. (a) This follows by Theorem 2.8 (b) and Proposition 3.5.
(b) By Corollary 3.4, Subκ(a) ⊆ Subκ(b) implies a ⊑κ

pres u. Hence, the
claim follows by Theorem 2.8 (a) . ◻

We have claimed above that ultrahomogeneous structures in Emb(Σ)
have an ℵ0-categorical theory. We start by showing that they are existen-
tially closed.

Proposition 3.7. Let U be an ℵ0-ultrahomogeneous structure in Emb(Σ).
Then U is existentially closed in the class

C ∶= {M ∈ Str[Σ] ∣ Subℵ0(M) ⊆ Subℵ0(U) } .
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3. Fraïssé limits

Proof. Suppose that U ⊆M for some structure M ∈ C. Let φ(x̄ , ȳ) be a
quantifier-free formula and ā ⊆ U parameters such that

M ⊧ ∃ ȳφ(ā, ȳ) .

We have to show that U ⊧ ∃ ȳφ(ā, ȳ). Fix a tuple b̄ ⊆ M with M ⊧
φ(ā, b̄). By Corollary 3.6 (b), there exists an embedding h ∶ ⟪āb̄⟫M → U.
Since U is ℵ0-ultrahomogeneous and

⟪ā⟫U ≅ ⟪h(ā)⟫U

we can find an automorphism π of U with π(h(ā)) = ā. Consequently,

M ⊧ φ(ā, b̄) iff ⟪āb̄⟫M ⊧ φ(ā, b̄)

iff U ⊧ φ(h(ā), h(b̄))

iff U ⊧ φ(ā, π(h(b̄))) .

Hence, U ⊧ ∃ ȳφ(ā, ȳ). ◻

With slightly stronger assumptions we obtain ℵ0-categoricity.

Proposition 3.8. Let Σ be a finite relational signature and let U be a
countable ultrahomogeneous structure in Emb(Σ). Then Th(U) is ℵ0-cate-
gorical.

Proof. Note that, for every finite tuple s̄ of sorts, there are only finitely
many substructures ⟪ā⟫U of U that are generated by a tuple ā ∈ U s̄ of
sort s̄. As U is ℵ0-ultrahomogeneous, it follows that any isomorphism
between two such substructures extends to an isomorphism of U. Con-
sequently, the automorphism group of U is oligomorphic and it follows
by Theorem 1.2 that Th(U) is ℵ0-categorical. ◻

Example. (a) We have seen above that ⟨Q, ≤⟩ is ℵ0-ultrahomogeneous.
Consequently, it follows by the proposition that Th(Q, ≤) is ℵ0-categori-
cal.

(b) That the restriction on the signature Σ is necessary, is shown by
the example ⟨ω, p⟩. We have seen above that this structures is ℵ0-ultra-
homogeneous, but its theory is not ℵ0-categorical.
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e4. ℵ0-categorical theories

The theorems of Fraïssé
We have seen in Corollary 3.6 (a) that an ultrahomogeneous object u is
uniquely determined by the class Subκ(u). Therefore it is worthwhile
to characterise such classes. In the present section we will provide a
characterisation in terms of the following properties.

Definition 3.9. Let C be a category, κ a cardinal, andK ⊆ C.
(a) The classK is κ-hereditary if

a ∈ K implies Subκ(a) ⊆ K .

We callK hereditary if it is κ-hereditary, for all cardinals κ.
(b)K has the κ-joint embedding property if, for every set X ⊆ K of size

∣X∣ < κ, there exist an object $ ∈ K and morphisms a→ $, for each a ∈ X.
(c)K has the κ-amalgamation property if, for every family of morph-

isms f i ∶ a → bi , i < γ, with a, bi ∈ K and γ < κ, there exist an object
$ ∈ K and morphisms g i ∶ bi → $, i < γ, such that

g i ○ f i = gk ○ fk , for all i , k < γ .

Remark. If the subcategory of C induced by a classK ⊆ Cobj is κ-filtered,
then Condition (f1) states that K has the κ-joint embedding property,
and Lemma b4.1.2 implies thatK has the κ-amalgamation property.

The converse fails in general. For instance, consider the class K ⊆
Emb(Σ) of all finitely generated structures. This class has the ℵ0-joint
embedding property and the ℵ0-amalgamation property, but it is not
ℵ0-filtered: take finitely generated structures A,B ∈ K such that there
are two different embeddings f , g ∶ A→ B. Then h ○ f ≠ h ○ g, for every
embedding h.

Exercise 3.2. For a suitable signature Σ, find a classK ⊆ Emb(Σ)with the
ℵ0-amalgamation property that does not have the ℵ0-joint embedding
property.

Exercise 3.3. Suppose that the classK is closed under unions of chains of
length less than κ. Prove that, ifK has the ℵ0-joint embedding property,
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3. Fraïssé limits

it also has the κ-joint embedding property and that, if it has the ℵ0-
amalgamation property, it has the κ-amalgamation property.

Before giving a characterisation of classes of the form Subκ(a), we
start with a technical remark on such classes for κ-filtered colimits.

Lemma 3.10. Let a be the colimit of a κ-filtered diagram D ∶ I → C. Then

Subκ(a) =⋃
i∈I

Subκ(D(i)) .

Proof. Let λ ∈ Cone(D, a) be a limiting cocone.
(⊇) For every b ∈ Subκ(D(i)), there is some morphism f ∶ b→ D(i).

Hence, λi ○ f is a morphism b→ a.
(⊆) Let b ∈ Subκ(a) and let f ∶ b→ a be the corresponding morphism.

Since b is κ-presentable,we can find a morphism f0 ∶ b→ D(i), for some
i ∈ I , such that f = λi ○ f0. Hence, b ∈ Subκ(D(i)). ◻

Let us characterisewhen a class is of the form Subκ(a), for an arbitrary
object a. We start with an obvious necessary condition.

Proposition 3.11. Let C be a κ-accessible category. For every object a ∈ C,
the class Subκ(a) is κ-hereditary and it has the κ-joint embedding property.

Proof. Clearly, if there are morphisms b → a and $ → b, there is also a
morphism $→ a. Hence, Subκ(b) ⊆ Subκ(a), for every b ∈ Subκ(a).

Furthermore, we have shown in Proposition b4.4.12 that Subκ(a) is
κ-filtered. This implies that Subκ(a) has the κ-joint embedding property.

◻

The converse only holds for κ = ℵ0 and ifK is small enough.

Theorem 3.12 (Fraïssé). Let C be an ℵ0-accessible category and let K ⊆
Cobj be a class of ℵ0-presentable objects that, up to isomorphism, contains
only countably many objects. If K is ℵ0-hereditary and if it has the ℵ0-
joint embedding property, then K = Subℵ0(a), for some ℵ1-presentable
object a ∈ C.
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e4. ℵ0-categorical theories

Proof. Fix an enumeration ($n)n<ω of all objects inK up to isomorphism.
We define a diagram D ∶ ω → K by induction on n. Set D(0) ∶= $0. If
D(n) is already defined then, by the ℵ0-joint embedding property, we
can find an object D(n + 1) ∈ K with morphisms $n+1 → D(n + 1) and
fn ∶ D(n)→ D(n + 1). Setting

D(i , k) ∶= fk−1 ○ ⋅ ⋅ ⋅ ○ f i , for i < k < ω ,

we obtain a ℵ0-directed diagram D ∶ ω → K. Let a be its colimit. Accord-
ing to Proposition b4.3.7, a is ℵ1-presentable. SinceK is ℵ0-hereditary,

D(n) ∈ K implies Subℵ0(D(n)) ⊆ K , for every n < ω .

By Lemma 3.10, it follows that Subℵ0(a) ⊆ K. Conversely, we have

$n ∈ Subℵ0(D(n)) ⊆ Subℵ0(a) , for every n < ω .

Since Subℵ0(a) is closed under isomorphisms, this implies that K ⊆
Subℵ0(a). ◻

For a given classK theremay be several non-isomorphic objects a such
that K = Subℵ0(a). For instance, if K ⊆ Emb(≤) is the class of all finite
linear orders thenK = Subℵ0(L), for every infinite linear order L. We are
looking for an object a with Subℵ0(a) = K that is in a certain sense the
most general one. As we have seen in Corollary 3.6, ultrahomogeneous
objects u are uniquely determined by Subκ(u). Therefore, we can take
ultrahomogeneity as the required additional property.

Definition 3.13. Let C be a category and K ⊆ Cobj. An object f ∈ C is a
Fraïssé limit ofK if there is some cardinal κ such that f is κ+-presentable,
κ-ultrahomogeneous, and Subκ(f) = K.

Example. ⟨Q, ≤⟩ is the Fraïssé limit of the class of all finite linear orders
in Emb(≤).

Before considering their existence, let us prove that Fraïssé limits are
unique.
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3. Fraïssé limits

Proposition 3.14. Let C be an ℵ0-accessible category where every morph-
ism is a monomorphism and every epimorphism an isomorphism. Up to
isomorphism, a class K ⊆ Cobj has at most one Fraïssé limit.

Proof. Suppose that f and g are Fraïssé limits ofK. By definition, there
are infinite cardinals κ and λ such that f is κ+-presentable and κ-ultra-
homogeneous, g is λ+-presentable and λ-ultrahomogeneous, and

Subκ(f) = K = Subλ(g) .

By symmetry, we may assume that κ ≤ λ. As every object in Subλ(g) =
Subκ(f) is κ-presentable, we have

Subκ(g) = Subλ(g) = K = Subκ(f)

and it follows by Corollary 3.6 (b) that there exists a morphism f → g.
Consequently,

Subλ(f) ⊆ Subλ(g) = K = Subκ(f) ⊆ Subλ(f) .

Hence, Subλ(f) = Subλ(g) and, if we can show that f is λ-ultrahomogen-
eous, it will follow by by Corollary 3.6 (a) that f ≅ g.

For λ-ultrahomogeneity of f, consider two morphisms f , f ′ ∶ a → f
with λ-presentable domain a. Then a ∈ Subλ(f) = Subλ(g) = Subκ(g)
implies that a is even κ-presentable. Hence, we can use κ-ultrahomogen-
eity of f to find the desired automorphism π ∶ f → f with f ′ = π ○ f . ◻

Next, let us describe Subκ(u) for a κ-ultrahomogeneous object u.

Lemma 3.15. Let C be an ℵ0-accessible category where every morphism
is a monomorphism. If u ∈ C is κ-ultrahomogeneous then Subκ(u) is κ-
hereditary, closed under colimits of nonempty chains of length less than κ,
and it has the κ-joint embedding property and the κ-amalgamation prop-
erty.

Proof. Note that every ℵ0-accessible category is also κ-accessible. There-
fore, it follows by Proposition 3.11 that the class Subκ(u) is κ-hereditary
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e4. ℵ0-categorical theories

and that it has the κ-joint embedding property. To check the κ-amal-
gamation property, let f i ∶ a→ bi , i < γ, be a family of γ < κ morphisms
with a, bi ∈ Subκ(u). Fix morphisms h i ∶ bi → u, for i < γ. Since u is
κ-ultrahomogeneous, there exist automorphisms π i ∈ Aut(u) such that

π i ○ h i ○ f i = h0 ○ f0 , for all i < γ .

Consequently, f i ∶ h0 ○ f0 → π i ○ h i is a morphism of Subκ(u). We have
seen in Proposition b4.4.12 that Subκ(u) is κ-filtered. Therefore, we can
use Lemma b4.1.2 to find an object g ∈ Subκ(u) and morphisms

φ i ∶ π i ○ h i → g , for i < γ ,

such that

φ i ○ f i = φk ○ fk , for all i , k < γ .

This family witnesses the κ-amalgamation property.
It remains to check that Subκ(u) is closed under colimits of nonempty

chains of length less than κ. Let D ∶ γ → Subκ(u) be a chain of length
0 < γ < κ. As C is ℵ0-accessible, D has a colimit a which, according to
Theorem b4.4.3, is κ-presentable. Furthermore, Lemma 3.10 implies that

Subκ(a) = ⋃
α<κ

Subκ(D(α)) ⊆ Subκ(u) .

Hence, it follows by Corollary 3.4 that a ⊑κ
pres u. Consequently, we can

use Lemma 2.3 (b) to find a morphism a→ u. Thus, a ∈ Subκ(u). ◻

The converse is given by the following theorem, which can be used
to construct ultrahomogeneous structures by describing their class of
substructures. Again we have to requireK to be small enough.

Theorem 3.16 (Fraïssé). Let κ be a regular cardinal, let C be an ℵ0-access-
ible category where all morphisms are monomorphisms and all epimorph-
isms are isomorphisms, and let K ⊆ Cobj be a κ-hereditary class of κ-
presentable objects that is closed under nonempty chains of length less
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3. Fraïssé limits

than κ and that has the ℵ0-joint embedding property and the ℵ0-amal-
gamation property, and such that the full subcategory of C induced byK
has a skeletonK0 with at most κ morphisms. ThenK has a Fraïssé limit f.

Proof. We will construct a diagram D ∶ κ → K0 satisfying the following
condition :

(∗) If f ∶ a→ b and g ∶ a→ D(α) are morphisms with a, b ∈ K0, there
is some index β > α and a morphism g′ ∶ b→ D(β) such that

g′ ○ f = D(α, β) ○ g .

a D(α)

b D(β)

g

f D(α, β)

g′

Let f be the colimit of this diagram. By Theorem b4.4.3, f is κ+-present-
able, and Lemma 3.10 implies that Subκ(f) ⊆ K. Conversely, if a ∈ K
then, by the ℵ0-joint embedding property, there are an object b ∈ K
and morphisms h ∶ a → b and f ∶ D(0) → b. By (∗), we can extend
the identity morphism id ∶ D(0) → D(0) to a morphism g′ ∶ b →
D(α), for some α > 0. Consequently, b ∈ Subκ(D(α)) ⊆ Subκ(f) and
a ∈ Subκ(b) ⊆ Subκ(f). It follows thatK = Subκ(f).

To show that f is ultrahomogeneous it is sufficient, by Proposition 3.5,
to prove that f ⊑κ

pres f. Consider morphisms f ∶ a→ f, f ′ ∶ a→ f, g ∶ b→ f,
h ∶ a→ b such that f = g ○h and a and b are κ-presentable. As κ is regular,
the order ⟨κ, ≤⟩ is κ-directed. Since a is κ-presentable, there therefore
exists an essentially unique factorisation f ′ = λα ○ f ′0, for some index
α < κ, some morphism f ′0 ∶ a→ D(α), and a limiting cocone λ from D
to f. Hence, we can use (∗) to find an index β > α and a morphism
g′ ∶ b→ D(β) such that

915



e4. ℵ0-categorical theories

g′ ○ h = D(α, β) ○ f ′0 .

Since

λβ ○ g′ ○ h = λβ ○ D(α, β) ○ f ′0 = λα ○ f ′0 = f ′ ,

f a f

b

D(β)

D(α)

f f ′
h

f ′0

g

λβ

λα D(α, β)

g′

it follows that ⟨g , λβ ○ g′⟩ is a partial morphism with

h ∶ ⟨ f , f ′⟩→ ⟨g , λβ ○ g′⟩ .

Consequently, f is a Fraïssé limit ofK.
It remains to construct a chain D ∶ κ → K0 satisfying (∗). Choose

a bijection π ∶ κ × κ → κ such that π(α, β) ≥ α, for all α, β < κ. (For
instance, the bijection constructed in the proof of Theorem a4.3.8 has
this property.)We construct D(α) by induction on α.We startwith an ar-
bitrary object D(0) ∈ K0. For the successor step, suppose that D(α) has
already been defined. Fix a list of all pairs ⟨ fαβ , gαβ⟩, for β < κ, where
fαβ ∶ aαβ → bαβ is a morphism inK0 and gαβ ∶ aαβ → D(α) is an arbit-
rary morphism. Let ⟨γ, β⟩ ∶= π−1(α). Note that we have chosen π such
that γ ≤ α. By the ℵ0-amalgamation property, we can find a structure
$ ∈ K and morphisms hγβ ∶ bγβ → $ and h′γβ ∶ D(α)→ $ such that

hγβ ○ fγβ = h′γβ ○ D(γ, α) ○ gγβ .

We set

D(α + 1) ∶= $ and D(i , α + 1) ∶= h′γβ ○ D(i , α) , for i ≤ α .

For the limit step, suppose that D(α) is already defined for all α < δ.
Let D(δ) ∶= lim

Ð→
(D ↾ δ) and let λ be a corresponding limiting cocone.

By assumption D(δ) ∈ K0 and we can set D(α, δ) ∶= λα , for α < δ.
We claim that the diagram D defined this way satisfies Condition (∗).

Let f ∶ a → b and g ∶ a → D(α) be morphisms with a, b ∈ K0. Then
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⟨ f , g⟩ = ⟨ fαβ , gαβ⟩, for some ordinal β < κ.Consequently, themorphism
hαβ ∶ bαβ → D(π(α, β) + 1) chosen in the inductive step above satisfies

hαβ ○ fαβ = h′αβ ○ D(α, π(α, β)) ○ gαβ
= D(α, π(α, β) + 1) ○ gαβ . ◻

Example. (a) Let P ⊆ Emb(E) be the class of all finite planar graphs.
Clearly, P is hereditary. The class P does not have a Fraïssé limit since it
does not have the ℵ0-amalgamation property. Consider the following
graphs :

a

b

a

b

a

b

A :
B : C :

Let f ∶ A→ B and g ∶ A→ C be the embeddings with a ↦ a and b ↦ b.
There is no planar graph D such that we can find embeddings h ∶ B→ D
and k ∶ C → D with h ○ f = k ○ g.

(b) Similarly we can show that the class F ⊆ Emb(E) of all finite acyc-
lic graphs does not have the ℵ0-amalgamation property. The counter-
example is given by the graphs :

a

b

a

b

a

b

A :
B : C :

4. Zero-one laws
In this section we study Fraïssé limits by axiomatising their theories.

Definition 4.1. (a) Let M be a structure. The atomic type of ā ⊆ M is the
set

atp(ā) ∶= {φ ∣ φ a literal such that M ⊧ φ(ā) } .
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e4. ℵ0-categorical theories

An atomic n-type p is a set of the form p = atp(ā), for ā ∈ Mn .
(b) Let p be an atomic n-type and q an atomic (n + 1)-type such that

p ⊆ q. The extension axiom associated with p and q is the sentence

ηpq ∶= ∀x̄[p(x̄)→ ∃yq(x̄ , y)] .

(We write p(x̄) for the formula ⋀ p.)
(c) Let K be a hereditary class of finitely generated structures. We

define

ΓK ∶= { atp(ā/M) ∣ ā is a finite tuple generating M ∈ K } ,

and T[K] ∶= { ηpq ∣ q ∈ ΓK } ∪ {∀x̄¬p(x̄) ∣ p ∉ ΓK }

The set of all extension axioms over a signature Σ is Tran[Σ] ∶= T[C],
where C is the class of all finitely generated Σ-structures.

Remark. Note that, in general, T[K] is an infinitary theory. It is a first-
order theory if the signature in question is finite and relational.

Example. An important example of a Fraïssé limit is the random graph,
also called the Rado graph. It can be defined as follows. R ∶= ⟨V , E⟩
where V ∶= HF is the set of all hereditary finite sets and the edge relation
is

E ∶= { ⟨a, b⟩ ∣ a ∈ b or b ∈ a } .

This graph satisfies the following extension axiom : for every pair X ,Y
of finite disjoint sets of vertices, there exists some vertex c ∈ V that is
adjacent to every vertex in X, but not adjacent to any in Y . For a proof,
note that, if X = {a0 , . . . , am−1} and Y = {b0 , . . . , bn−1} then we can
take c ∶= {a0 , . . . , am−1 , x} where the set x ∶= {b0 , . . . , bn−1} is needed
to ensure that c ∉ b i .

Let us investigate the relationship between the theories T[K] and
ultrahomogeneous structures.
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Lemma 4.2. If U is ultrahomogeneous then U ⊧ T[Subℵ0(U)].

Lemma 4.3. If A,B ⊧ T[K] then

A ≡0 B implies A ≅ℵ0
0 B .

Proof. Since A ≡0 B we have pIsoℵ0
(A,B) ≠ ∅. To check the forth

condition, let ā ↦ b̄ ∈ pIsoℵ0
(A,B) and c ∈ A. Set p ∶= atp(ā) and

q ∶= atp(āc). Then p ⊆ q and q ∈ ΓK. Hence, ηpq ∈ T[K] and B ⊧ ηpq.
Since atp(b̄) = p we can, therefore, find some d ∈ B with atp(b̄d) = q.
Consequently, āc ↦ b̄d ∈ pIsoℵ0

(A,B). ◻

Corollary 4.4. Every model of T[K] is ultrahomogeneous.

It follows that the theories T[K] axiomatise Fraïssé limits.

Theorem 4.5. Let K be a hereditary class of finitely generated structures
containing a unique 0-generated structure A0. A structure F is the Fraïssé
limit of K if and only if it is countable, ⟪∅⟫F ≅ A0, and F ⊧ T[K].

Proof. (⇒) A Fraïssé limit F is countable by definition. Furthermore,
Subℵ0(F) ⊆ K implies that F ⊧ ∀x̄¬p(x̄), for all p ∉ ΓK.

Finally, let ηpq ∈ T[K]. Then q ∈ ΓK and K ⊆ Subℵ0(F) implies that
there is some tuple c̄ ⊆ F with atp(c̄) = q. Since F is ultrahomogeneous it
follows that, for every tuple ā with atp(ā) = p, there is some element b ∈
F such that atp(āb) = atp(c̄) = q. Hence, F ⊧ ηpq.
(⇐) By assumption, F is countable, and we have shown in Corol-

lary 4.4 that it is ultrahomogeneous. Furthermore, F ⊧ ∀x̄¬p(x̄), for
p ∉ ΓK implies that Subℵ0(F) ⊆ K. Hence, it remains to show that
K ⊆ Subℵ0(F). Let B ∈ K be generated by a finite tuple b̄ = b0 . . . bn−1.
Note that ⟪∅⟫B ≅ A0 ≅ ⟪∅⟫F ⊆ F. Since F satisfies the needed extension
axiomswe can, therefore, use induction to find elements a0 , . . . , an−1 ∈ F
such that

⟪b0 . . . bk−1⟫B ≅ ⟪a0 , . . . , ak−1⟫F , for all k ≤ n .

Consequently, we have B = ⟪b̄⟫B ≅ ⟪ā⟫F ⊆ F. ◻
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Proposition 4.6. T[K] admits quantifier elimination for FO∞ℵ0 .

Proof. This follows immediately from Theorem d1.2.9 and Lemma 4.3.
◻

Corollary 4.7. Let K be a class of Σ-structures where the signature Σ is
finite and relational. Then T[K] admits quantifier elimination for FO.

Proof. Since T[K] is a first-order theory, the claim follows by Corol-
lary d1.2.10. ◻

Corollary 4.8. LetK be a class of Σ-structureswhere Σ is a finite, relational
signature without 0-ary relations. Then T[K] is complete.

Proof. Let φ ∈ FO0[Σ]. There exists a sentence ψ ∈ QF0[Σ] such that
T[K] ⊧ φ↔ ψ. Since Σ is relational and it contains no 0-ary relations,
the only quantifier-free sentences are true and false. If ψ ≡ true then
T[K] ⊧ φ and if ψ ≡ false then T[K] ⊧ ¬φ. ◻

The extension axioms have the surprising property that, asymptotically,
they hold with probability 1 in every finite structure. Let us make this
claim more precise.

Consider a finite signature Σ. For each finite number n < ω, we count
how many Σ-structures with universe [n] satisfy a given sentence. Note
that, for every n, there are only finitely many such structures.

Definition 4.9. For φ,ψ ∈ FO[Σ] we define

κn(φ) ∶= ∣{M ∣M ⊧ φ, M = [n] }∣ ,

Prn
M[M ⊧ φ ∣M ⊧ ψ ] ∶=

κn(φ ∧ ψ)
κn(ψ)

.

We use the shorthand Prn
M[M ⊧ φ ] ∶= Prn

M[M ⊧ φ ∣M ⊧ true ].

Lemma 4.10. Let Σ be a finite, relational signaturewithout 0-ary relations.
Then

lim
n→∞

Prn
M[M ⊧ ηpq ] = 1 , for every ηpq ∈ Tran[Σ] .
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Proof. Suppose that p is an m-type and n > m. Since Σ is finite there
exists some constant p ∈ (0, 1) such that

Prn
M[M ⊭ q(0, . . . ,m − 1,m) ∣M ⊧ p(0, . . . ,m − 1) ] = p .

Hence,

Prn
M[M ⊭ ∃xmq(0, . . . ,m − 1, xm) ∣M ⊧ p(0, . . . ,m − 1) ]

= pn−m ,

which implies that Prn
M[M ⊭ ηpq ] ≤ nmkn−m . Since p < 1 we have

lim
n→∞

nmkn−m = 0 ,

and it follows that

lim
n→∞

Prn
M[M ⊧ ηpq ] ≥ lim

n→∞
(1 − nmkn−m) = 1 . ◻

Lemma 4.11. Tran[Σ] is satisfiable, for every finite relational signature Σ
without 0-ary relations.

Proof. For a contradiction suppose that Tran[Σ] is inconsistent. Then
there exists a finite inconsistent set Φ ⊆ Tran[Σ]. Suppose that Φ =
{φ0 , . . . , φm−1}. By the preceding lemma, we have

lim
n→∞

Prn
M[M ⊧ φ i ] = 1 , for all i < m .

Therefore, there exists some number n such that

Prn
M[M ⊧ ¬φ i ] <

1
m

.

It follows that

Prn
M[M ⊧ ⋀Φ ] = 1 − Prn

M[M ⊧ ⋁i ¬φ i ]

≥ 1 −∑
i

Prn
M[M ⊧ ¬φ i ] > 1 −m ⋅

1
m
= 0 .

Consequently, Φ has a model of size n. Contradiction. ◻
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Theorem 4.12 (Zero-One Law). Let Σ be a finite, relational signature
without 0-ary relations. For every sentence φ ∈ FO[Σ], we have

lim
n→∞

Prn
M[M ⊧ φ ] ∈ {0, 1} .

Proof. If Tran[Σ] ⊧ φ then there are axioms ηp0q0 , . . . , ηpkqk ∈ Tran[Σ]
such that ηp0q0 ∧⋯ ∧ ηpkqk ⊧ φ. Hence, we have

lim
n→∞

Prn
M[M ⊧ φ ] ≥ lim

n→∞
Prn

M[M ⊧ ηp0q0 ∧⋯ ∧ ηpkqk ] = 1 .

Now suppose that Tran[Σ] ⊭ φ. Since Tran[Σ] is complete, we have
Tran[Σ] ⊧ ¬φ. By the first case, it follows that

lim
n→∞

Prn
M[M ⊧ φ ] = lim

n→∞
(1 − Prn

M[M ⊧ ¬φ ]) = 1 − 1 = 0 . ◻

Exercise 4.1. Prove that the theorem fails for signatures with 0-ary
relations.

Lemma 4.13. The Zero-One Law fails for signatures with functions.

Proof. Let Σ = { f } be a signature consisting just of a unary function
symbol f , and define

φ ∶= ∀x( f x ≠ x) .

We have

Prn
M[M ⊧ φ ] =

(n − 1)n

nn = (1 − 1
n )

n

which implies that

lim
n→∞

Prn
M[M ⊧ φ ] = lim

n→∞
(1 − 1

n )
n
=

1
e

. ◻

Lemma 4.14. Let Σ be a finite relational signature. There exists no sentence
φ ∈ FO[Σ] such that

M ⊧ φ iff ∣M∣ is even , for all finite Σ-structures M .
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Proof. limn→∞ Prn
M[M ⊧ φ ] does not exist in contradiction to the Zero-

One Law. ◻

Remark. For every n < ω, we can extend the Zero-One Law to the logic
FO(n)∞ℵ0

consisting of all FO∞ℵ0 -formulae using at most n variables (both
free and bound). Note that every FO(PFP)-formula can be translated to
such a formula, for some suitable n. Hence, the Zero-One Law also holds
for FO(LFP) and FO(PFP).
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1. Ramsey Theory
In this chapter we introduce some technical tools to study properties of
sequences. This machinery is based on combinatorial results concerning
colourings of linear orders.

Definition 1.1. (a) For a linear order I and a cardinal ν, we define

[I]ν ∶= { ı̄ ∈ Iν ∣ ı̄ is increasing} .

For an unordered set X we abuse notation by defining

[X]ν ∶= { s ⊆ X ∣ ∣s∣ = ν } .

(This is consistent with our convention of identifying sequences with
their ranges.)

(b) Let c ∶ [A]ν → λ be a function. A subset C ⊆ A is homogeneous
with respect to c if we have c(ā) = c(ā′), for all ā, ā′ ∈ [C]ν .

(c) Let κ, λ, µ, ν be cardinals. We write κ → (µ)νλ if, for every set A of
size ∣A∣ ≥ κ and each function c ∶ [A]ν → λ, there exists a homogeneous
subset C ⊆ A of size ∣C∣ ≥ µ.

Example. 6→ (3)22 is equivalent to the statement that every undirected
graph G = ⟨V , E⟩ with at least 6 elements contains a triangle or an
independent set of size 3.

Exercise 1.1. Prove that 6→ (3)22.

Let us start with the simplest case, that of unary colourings.
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e5. Indiscernible sequences

Theorem 1.2 (Pigeon Hole Principle). κ → (κ)1λ , for all infinite cardin-
als κ and every λ < cf κ.

Proof. Let A be a set of size ∣A∣ = κ and suppose that c ∶ A → λ is a
function. We have to show that there is some α < λ with ∣c−1(α)∣ = κ.
Suppose otherwise. Then λ < cf κ implies

∣A∣ = ∑
α<λ
∣c−1(α)∣ < κ .

A contradiction. ◻

The Theorem of Ramsey generalises the Pigeon Hole Principle to
colourings of higher arities. We present two versions : one for infinite
sets and one for finite sets.

Theorem 1.3 (Ramsey). ℵ0 → (ℵ0)
n
l , for all 0 < n, l < ℵ0.

Proof. Let A be a set of size ∣A∣ = ℵ0 and c ∶ [A]n → l a function. W.l.o.g.
we may assume that A = ω. By induction on n, we construct an infinite
subset C ⊆ ω that is homogeneous with respect to c.

For n = 1 the claim follows from the Pigeon Hole Principle. Hence, we
may assume that n > 1. In a first step, we define an infinite subset B ⊆ ω
such that the value of c(b̄), for b̄ ∈ [B]n , only depends on the minimal
element b0. For every a ∈ ω,we define a function c′a ∶ [ω∖{a}]n−1 → l by
c′a(b̄) ∶= c(b̄ ∪ {a}). We construct an increasing sequence a0 < a1 < . . .
of elements and a decreasing sequence A0 ⊇ A1 ⊇ . . . of subsets of ω
as follows. We start with a0 ∶= 0 and A0 ∶= ω. If a i and A i are already
defined then we can use the inductive hypothesis to find an infinite
subset A i+1 ⊆ A i ∖{a0 , . . . , a i}. that is homogeneous with respect to c′a i

.
Let a i+1 be the minimal element of A i+1.

Let B ∶= { a i ∣ i < ω } and set k i ∶= c(a ia i+1 . . . a i+n−1). Note that,
for i0 < ⋅ ⋅ ⋅ < in−1, we have a i1 , . . . , a in−1 ∈ A i0+1. Hence, the above
construction ensures that

c(a i0 . . . a in−1) = c
′
a i0
(a i1 . . . a in−1)

= c′a i0
(a i0+1 . . . a i0+n−1) = c(a i0 . . . a i0+n−1) = k i0 .
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By the Pigeon Hole Principle, there exists an infinite subset C ⊆ B such
that k i = k j , for all a i , a j ∈ C. This set C is the desired homogeneous
subset of ω. ◻

Example. Let ⟨P, ≤⟩ be an infinite partial order. We can use the Ramsey
Theorem to prove that there exists an infinite set C ⊆ P such that C is
either linearly ordered or all elements of C are pairwise incomparable.

Let c ∶ [P]2 → 2 be the function such that

c({a, b}) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

1 if a ≤ b or b ≤ a ,
0 otherwise .

By the theorem there exists an infinite homogeneous set C ⊆ P. If we
have c({a, b}) = 1, for all a, b ∈ C, then C is a chain. Otherwise, all
elements of C are pairwise incomparable.

The finite version of the Ramsey Theorem is as follows.

Theorem 1.4 (Ramsey). For all l ,m, n < ℵ0, there exists a finite cardinal
k < ℵ0 such that k → (m)nl .

Proof. For a contradiction, suppose that there exists no finite k with
k → (m)nl . Let Fk be the set of all functions c ∶ [k]n → l such that there
is no subset C ⊆ [k] of size ∣C∣ ≥ m that is homogeneous with respect
to c. It follows that each set Fk is finite and nonempty. Furthermore,
c ∈ Fk+1 implies that c ↾ [k]n ∈ Fk . Hence, if we order the set T ∶= ⋃k Fk
by inclusion then we obtain a tree ⟨T , ⊆⟩. This tree is infinite and finitely
branching. By the Lemma of Kőnig it therefore contains an infinite
branch (ck)k<ω with ck ∈ Fk . Set c ∶= ⋃k ck . Then c is a function c ∶
[ℵ0]

n → l . By the infinite version of theRamseyTheorem, there exists an
infinite subset C ⊆ ℵ0 that is homogeneous with respect to c. Fix a subset
Z ⊆ C of size ∣Z∣ = m and let k be the maximal element of Z. It follows
that Z is homogeneous with respect to ck+1. A contradiction. ◻

Next,we consider the case of infinitely many colours and uncountable
homogeneous sets. We start with a counterexample.
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Lemma 1.5. 2ℵ0 ↛ (3)2ℵ0

Proof. Let c ∶ [2ℵ0]2 → ℵ0 be the function mapping a pair { f , g} of
distinct functions f , g ∶ ℵ0 → 2 to the least number n with f (n) ≠
g(n). If { f , g , h} were homogeneous with respect to c, we would have
f (n) ≠ g(n), f (n) ≠ h(n), and g(n) ≠ h(h), for some n. Since
f (n), g(n), h(n) ∈ {0, 1} this is impossible. ◻

Theorem 1.6 (Erdős-Rado). For all cardinals κ ≥ ℵ0 and n < ℵ0,

ℶn(κ)+ → (κ+)n+1
κ .

Proof. We prove the claim by induction on n. By the Pigeon Hole Prin-
ciple, we have κ+ → (κ+)1κ . Hence, the claim holds for n = 1. For the
inductive step, suppose we have already proved the theorem for n. Set
λ ∶= ℶn+1(κ) and µ ∶= ℶn(κ), and let c ∶ [λ+]n+1 → κ be a colouring.
As a first step we define an increasing sequence of ordinals β i < λ+,

for i < κ+, with the following property :
(∗) For every set S ⊆ β i of size ∣S∣ ≤ µ and all ordinals γ < λ+, there

exists some ordinal η < β i+1 such that

η ∈ S iff γ ∈ S ,

and c(ᾱη) = c(ᾱγ) , for all ᾱ ∈ Sn .

The ordinals β i will be used as a measuring stick in the construction
below.We define β i by induction on i. Let β0 ∶= 0 and set βδ ∶= supi<δ β i ,
for limit ordinals δ. For the inductive step, we set

β i+1 ∶= sup{ η(S , γ) ∣ γ < λ+ , S ⊆ β i with ∣S∣ ≤ µ } ,

where η(S , γ) denotes the minimal ordinal η such that

η ∈ S iff γ ∈ S ,

and c(ᾱη) = c(ᾱγ) , for all ᾱ ∈ Sn .
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2. Ramsey Theory for trees

Note that there are at most ∣β i ∣
µ = λµ = (2µ)µ = λ subsets of β i of size

∣S∣ ≤ µ and there are at most κµ = 2µ = λ functions S → κ. Consequently,
the supremum above is taken over a set of at most λ ⊗ λ = λ ordinals
each of which is less than λ+. Since λ+ is regular it follows that the
supremum β i+1 is less than λ+.

Having defined the β i we set β∗ ∶= supi<µ+ β i and we define ordinals
α i < β i+1, for i < µ+, such that α i ≠ αk , for i ≠ k, and

c(αk0 , . . . , αkn−1 , α i) = c(αk0 , . . . , αkn−1 , β
∗) ,

for all k0 , . . . , kn−1 < i. We can find α i by induction on i using prop-
erty (∗) with S = { αk ∣ k < i } and γ ∶= β∗.
Define a colouring c′ ∶ [µ+]n → κ by

c′(ı̄) ∶= c(α i0 . . . α in−1β
∗) .

By inductive hypothesis, there exists a set I ⊆ µ+ of size ∣I∣ ≥ κ+ such
that

c′(ı̄) = c′(k̄) , for all ı̄ , k̄ ∈ [I]n .

Let J ∶= { α i ∣ i ∈ I }. For γ̄, η̄ ∈ [J]n+1 it follows that

c(γ0 . . . γn−1γn) = c(γ0 . . . γn−1β∗)
= c(η0 . . . ηn−1β∗) = c(η0 . . . ηn−1ηn) .

Hence, J is the desired homogeneous subset of λ+. ◻

2. Ramsey Theory for trees
So far, we have considered homogeneous subsets of linear orders. A
special property of linear orders is that every subset again induces a
linear order. When considering colourings of other structures this is
no longer the case. In this section we prove variants of the Pigeon Hole
Principle and the Theorem of Ramsey for trees where the homogeneous
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sets we obtain again induce trees. There are two kinds of tree structures
we will be working with : trees of the form T∗(κ<α) are equipped with
the tree-order ⪯ and relations ≺p for the direction of the immediate
successors, while trees Tn(κ<α) also have functions pf to compare the
levels of elements.

Definition 2.1. Let κ be a cardinal and α an ordinal.
(a) We denote the tree order on κ<α by ⪯ and ⊓ is the infimum opera-

tion with respect to ⪯. For η, ζ ∈ κ<α and p ∈ κ, we further set

η ≺p ζ : iff ηp ⪯ ζ .

For ∣η∣ ≤ ∣ζ ∣, we denote by pf(η, ζ) the prefix of ζ of length ∣η∣. If ∣η∣ > ∣ζ ∣,
we set pf(η, ζ) ∶= ζ.

(b) We define

T∗(κ<α) ∶= ⟨κ<α ,⊓, ⪯, (≺p)p∈κ⟩ ,

and Tn(κ<α) ∶= ⟨κ<α ,⊓, ⪯, (≺p)p∈κ , pf , (η)η∈κ<n ⟩ , for n ≤ α .

We denote the substructure of Tn(κ<α) generated by a set X ⊆ κ<α by
⟪X⟫n .

Remark. (a) Note that the substructure ⟪X⟫n generated by a set X ⊆ κ<α
has universe

⟪X⟫n = κ<n ∪ {pf(ξ ⊓ η, ζ) ∣ ξ, η, ζ ∈ X } .

Thus, it consists of (i) all elements of X ∪ κ<n , (ii) all elements of the
form η ⊓ ζ , with η, ζ ∈ X, and (iii) all prefixes of some element of X that
have the same length as an element of the form (i) or (ii).

(b) Note that we have

∣η∣ = ∣ζ ∣ iff pf(η, ζ) = ζ and pf(ζ , η) = η .

Hence, every embedding h ∶ Tn(κ<α)→ Tn(κ<α) has the property that

∣η∣ = ∣ζ ∣ implies h(∣η∣) = h(∣ζ ∣) , for all η, ζ ∈ κ<α .
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Definition 2.2. (a) The set of levels of a tuple η̄ ∈ (κ<α)d is

Lvl(η̄) ∶= { ∣η i ⊓ η j ∣ ∣ i , j < d } = { ∣ζ ∣ ∣ ζ ∈ ⟪η̄⟫0 } .

(b) Let h ∶ Tn(κ<α)→ Tn(κ<α) be an embedding. The level embedding
function associated with h is the function f ∶ α → α such that

∣h(η)∣ = f (∣η∣) , for all η ∈ κ<α .

Our first result is a generalisation of a strong version of the Pigeon
Hole Principle. We omit the proof, which is quite involved.

Theorem 2.3 (Halpern, Läuchli). Let m, d < ω and let C be a finite set.
For every function c ∶ (m<ω)d → C there exist embeddings

g i ∶ T0(m<ω)→ T0(m<ω) , for i < d ,

such that all g i have the same level embedding function and

c(g0(η0), . . . , gd−1(ηd−1)) = c(g0(ζ0), . . . , gd−1(ζd−1)) ,

for all tuples η̄, ζ̄ ∈ (m<ω)d with ∣η0∣ = ⋅ ⋅ ⋅ = ∣ηd−1∣ and ∣ζ0∣ = ⋅ ⋅ ⋅ = ∣ζd−1∣.

In the remainder of this section we generalise the Theorem of Ramsey
to trees. In the version for linear orders we required tuples to have the
same colour if they have the same order type. When dealing with other
kinds of structures we replace the order type of a tuple by its atomic type.

Definition 2.4. (a) Let c ∶ Ad → C a function, for d < ω, and let ≈ be
an equivalence relation on Ad . A subset X ⊆ A is ≈-homogeneous with
respect to c if

η̄ ≈ ζ̄ implies c(η̄) = c(ζ̄) , for all η̄, ζ̄ ∈ Xd .

(b) For tuples η̄, ζ̄ ⊆ κ<α , we define

η̄ ≈∗ ζ̄ : iff atp(η̄/T∗(κ<α)) = atp(ζ̄/T∗(κ<α)) ,

η̄ ≈n ζ̄ : iff atp(η̄/Tn(κ<α)) = atp(ζ̄/Tn(κ<α)) .
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Our goal is to prove the following variant of the Theorem of Ramsey
for trees.

Theorem 2.5 (Milliken). Let m, d < ω and let C be a finite set. For every
function c ∶ (m<ω)d → C there exists an embedding g ∶ T0(m<ω) →
T0(m<ω) such that rng g is ≈0-homogeneous with respect to c.

The proof of the Theorem of Ramsey was by induction on the length of
tuples. We prove the Theorem of Milliken by a similar argument where
the induction is on the number of levels of a tuple. The next lemma
contains the inductive step of this argument. It is based on the following
variant of the relation ≈n .

Definition 2.6. Let k, n < ω. For η̄, ζ̄ ⊆ m<ω , we set

η̄ ≈n ,k ζ̄ : iff η̄ = ζ̄ , or

η̄ ≈n ζ̄ and ∣Lvl(η̄) ∖ [n]∣ , ∣Lvl(ζ̄) ∖ [n]∣ ≤ k ,

and we denote by ≈ω ,k the transitive closure of the union ⋃n<ω ≈n ,k .

Remark. (a) Note that

η̄ ≈n ,0 ζ̄ iff η̄ = ζ̄ ,

and the fact that ∣Lvl(η̄)∣ ≤ 2∣η̄∣ implies that

η̄ ≈n ,2∣η̄∣ ζ̄ iff η̄ ≈n ζ̄ .

(b) A set X is ≈ω ,k-homogeneous if, and only if, it is ≈n ,k-homoge-
neous, for every n < ω.

Lemma 2.7. Let m, d < ω, let C be a finite set, and let c ∶ (m<ω)d → C
be a function such that m<ω is ≈ω ,k-homogeneous with respect to c. For
every n < ω, there exists an embedding

g ∶ Tn+1(m<ω)→ Tn+1(m<ω)

such that rng g is ≈n ,k+1-homogeneous with respect to c.
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η0

η1

η2

σ0 σ1

γ(η̄)(σ0) γ(η̄)(σ1)

n

λ(η̄)

µ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

τλ(η̄)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Figure 1.. The definition of µ, λ, τ l , and γ.

Proof. Given n < ω, set

Γ ∶= { η̄ ∈ (m<ω)d ∖ (m<n)d ∣ ∣Lvl(η̄) ∖ [n]∣ ≤ k + 1} .

For η̄ ∈ Γ, let

λ(η̄) ∶= min(Lvl(η̄) ∖ [n]) .

Set L ∶= mn and let

µ ∶ m<ω ∖m<n → L ∶ η ↦ η ↾ n

be the function mapping each element to its prefix of length n. For l ≥ n,
let τ l ∶ m<ω ∖m<l → m l−n be the function mapping an element η ∈ m<ω

of length ∣η∣ ≥ l to the unique sequence σ ∈ m<ω such that

∣σ ∣ = l − n and µ(η)σ ⪯ η .

Let H be the set of all functions h ∶ L → m<ω such that

∣h(ρ)∣ = ∣h(σ)∣ , for all ρ, σ ∈ L .
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For h, h′ ∈ H and η̄ ∈ Γ, we set

h ∼η̄ h′ : iff h(µ(η i)) = h′(µ(η i)) ,
for all i < d with ∣η i ∣ ≥ n .

We define a function γ ∶ Γ → H ∶ η̄ ↦ hη̄ where

hη̄(σ) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

τλ(η̄)(η i) if η i ∈ µ−1(σ) ,
⟨0, . . . , 0⟩ otherwise .

Note that, in the first case of the definition of hη̄(σ), the value does not
depend on the choice of i < d since

η i , η j ∈ µ−1(σ) implies τλ(η̄)(η i) = τλ(η̄)(η j) .

Finally, we define a function β ∶ H × Γ/≈n → C by

β(h, [η̄]≈n) ∶= c(ā[ζ̄]) where ζ̄ ∈ γ−1[[h]∼η̄] ∩ [η̄]≈n .

To prove that β is well-defined, we have to check that

γ−1[[h]∼η̄] ∩ [η̄]≈n ≠ ∅

and that the value of β does not depend on the choice of ζ̄.
For non-emptiness, fix h and [η̄]≈n . For i < d with ∣η i ∣ ≥ n, let ρ i ∈

m<ω be the sequence such that

η i = µ(η i)τλ(η̄)(η i)ρ i .

We set

ζ i ∶= µ(η i)h(µ(η i))ρ i .

For i < d with ∣η i ∣ < n, we set ζ i ∶= η i . Then ζ̄ ≈n η̄ and, since we have

λ(ζ̄) = n + ∣h(µ(η i))∣ , for any i < d with ∣η i ∣ ≥ n ,
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it also follows that γ(ζ̄) ∼η̄ h. Hence, ζ̄ ∈ γ−1[[h]∼η̄ ] ∩ [η̄]≈n .
To show that the value of β(h, [η̄]≈n) does not depend on the choice

of ζ̄, consider two tuples ξ̄, ζ̄ ∈ γ−1[[h]∼η̄ ] ∩ [η̄]≈n . First of all, note that
ξ̄ ≈n ζ̄ implies that µ(ξ i) = µ(ζ i), for all i with ∣ξ i ∣ ≥ n, since

σ ≺p ξ i iff σ ≺p ζ i , for all σ ∈ mn−1 and all p < m .

(For n = 0, we have µ(ξ i) = ⟨⟩ = µ(ζ i), for all i.) Consequently, γ(ξ̄) ∼η̄

h ∼η̄ γ(ζ̄) implies that

τλ( ξ̄)(ξ i) = h(µ(ξ i)) = h(µ(ζ i)) = τλ(ζ̄)(ζ i) ,

for all i < d with ∣ξ i ∣ ≥ n. In particular, λ(ξ̄) = λ(ζ̄) =∶ l and

ξ i ↾ l = µ(ξ i)τ l(ξ i) = µ(ζ i)τ l(ζ i) = ζ i ↾ l .

As ξ̄ ≈n ζ̄ it follows that ξ̄ ≈l+1 ζ̄. Since

∣Lvl(ξ̄) ∖ [l + 1]∣ = ∣Lvl(ζ̄) ∖ [l + 1]∣ ≤ k ,

we, therefore, have ξ̄ ≈l+1,k ζ̄ and, by assumption on c, it follows that
c(ξ̄) = c(ζ̄), as desired.

To conclude the proof, consider the function c0 ∶ H → CΓ/≈n mapping
a tuple h ∈ H to the function [η̄]≈n ↦ β(h, [η̄]≈n), and let c1 ∶ (m<ω)L →
CΓ/≈n be an arbitrary extension of c0.

Since CΓ/≈n is a finite set, we can use the Theorem of Halpern and
Läuchli to obtain embeddings gσ ∶ T0(m<ω)→ T0(m<ω), for σ ∈ L, such
that all gσ have the same level embedding function and the restriction
c1 ↾ H ∩∏σ∈L rng gσ is constant. We can define the desired embedding
g ∶ Tn+1(m<ω)→ Tn+1(m<ω) by setting

g(η) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

η if ∣η∣ ≤ n ,
σ gσ(ξ) if η = σ ξ for σ ∈ L and ξ ∈ m<ω .

It remains to prove that rng g is ≈n ,k+1-homogeneous with respect to c.
Let η̄, ζ̄ ∈ Γ ∩ (rng g)d be tuples with η̄ ≈n ζ̄. To show that c(η̄) = c(ζ̄),
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set h ∶= γ(η̄) and h′ ∶= γ(ζ̄). For each σ ∈ L, fix some ξσ ∈ rng gσ and
set

h0(σ) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

h(σ) if σ ⪯ η i for some i ,
ξσ otherwise .

Then h0 ∈ ∏σ∈L rng gσ and h0 ∼η̄ h. Similarly, we can find some h′0 ∈
∏σ∈L rng gσ with h′0 ∼ζ̄ h′. Since c0(h0) = c0(h′0) and [η̄]≈n = [ζ̄]≈n it
follows that

c(η̄) = β(h, [η̄]≈n) = β(h0 , [η̄]≈n)

= c0(h0)([η̄]≈n)

= c0(h′0)([η̄]≈n)

= c0(h′0)([ζ̄]≈n)

= β(h′0 , [ζ̄]≈n) = β(h
′ , [ζ̄]≈n) = c(ζ̄) . ◻

Lemma 2.8. Let m, d < ω, let C be a finite set, and let c ∶ (m<ω)d → C
be a function such that m<ω is ≈ω ,k-homogeneous with respect to c. There
exists an embedding g ∶ T0(m<ω)→ T0(m<ω) such that rng g is ≈ω ,k+1-
homogeneous with respect to c.

Proof. To simplify notation, we write c ○ g for the function mapping a
tuple η̄ ∈ (m<ω)d to the value c(g(η0), . . . , g(ηd−1)). We construct a
sequence of embeddings

gn ∶ Tn(m<ω)→ Tn(m<ω) , for n < ω ,

such that, for all i < n < ω, the set m<ω is ≈i ,k+1-homogeneous with
respect to the function cn ∶= c ○ g0 ○ . . . . . . gn .
We start with g0 ∶= id. Then c0 = c trivially satisfies the above condi-

tion. For the inductive step, suppose that we have already found func-
tions g0 , . . . , gn such that, for every i < n, m<ω is ≈i ,k+1-homogeneous
with respect to cn . We can use Lemma 2.7 to find an embedding gn+1 ∶
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Tn+1(m<ω)→ Tn+1(m<ω) such that m<ω is≈n ,k+1-homogeneouswith re-
spect to cn ○ gn+1 = cn+1. Furthermore, since m<ω is ≈i ,k+1-homogeneous
with respect to cn , for all i < n, it follows that it is also ≈i ,k+1-homoge-
neous with respect to cn ○ gn+1.

Having constructed the sequence g0 , g1 , . . . we obtain the desired
embedding g ∶ T0(m<ω) → T0(m<ω) as follows. For η ∈ mn , we set
g(η) ∶= (g0○⋅ ⋅ ⋅○gn+1)(η).Clearly, g is an embedding. Hence, it remains
to prove that rng g is ≈ω ,k+1-homogeneous. Fix n and consider two tuples
η̄, ζ̄ ⊆ m<ω such that

η̄ ≈n ζ̄ and ∣Lvl(η̄) ∖ [n]∣, ∣Lvl(ζ̄) ∖ [n]∣ ≤ k + 1 .

Choose n < l < ω such that η̄, ζ̄ ⊆ m<l . Then

g(η̄) = (g0 ○ ⋅ ⋅ ⋅ ○ g l)(η̄) and g(ζ̄) = (g0 ○ ⋅ ⋅ ⋅ ○ g l)(ζ̄) .

As rng(g0 ○ ⋅ ⋅ ⋅ ○ g l) is ≈n ,k+1-homogeneous with respect to c, it follows
that c(g(η̄)) = c(g(ζ̄)). ◻

Proof of Theorem 2.5. Note that, for every n < ω, the set m<ω is ≈n ,0-
homogeneous with respect to c. Hence, repeating Lemma 2.8 we obtain
embeddings

gk ∶ T0(m<ω)→ T0(m<ω) , for k ≤ 2d ,

such that rng(g0○⋅ ⋅ ⋅○gk) is ≈ω ,k-homogeneouswith respect to c. Setting
g ∶= g0 ○ ⋅ ⋅ ⋅ ○ g2d it follows that rng g is ≈0,2d -homogeneous with respect
to c. Since ∣Lvl(η̄)∣ ≤ 2d, for all η̄ ∈ (m<ω)d , this is the same as saying
that rng g is ≈0-homogeneous with respect to c. ◻

As for the Theorem of Ramsey, the Theorem of Milliken also has
a finitary version. The proof follows exactly the same lines as that of
Theorem 1.4.

Theorem 2.9. Let m, d , k < ω and let C be a finite set. There exists a
number n < ω such that, for every function c ∶ (m<n)d → C, there exists
an embedding g ∶ T0(m<k) → T0(m<n) such that rng g is ≈0-homoge-
neous with respect to c.
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Proof. For a contradiction, suppose that there exists no number n as
above. For n < ω, let Fn be the set of all functions c ∶ (m<n)d → C such
that there is no embedding g ∶ T0(m<k)→ T0(m<n) such that rng g is
≈0-homogeneous with respect to c. Each set Fn is finite and nonempty.
Furthermore, c ∈ Fn+1 implies that c↾(m<n)d ∈ Fn . Hence, ifwe order the
set T ∶= ⋃n Fn by inclusion, we obtain a tree ⟨T , ⊆⟩. This tree is infinite
and finitely branching. By the Lemma of Kőnig it therefore contains
an infinite branch (cn)n<ω where cn ∈ Fn . Set c ∶= ⋃n cn . Then c is a
function c ∶ (m<ω)d → C. By Theorem 2.5, there exists an embedding
g ∶ T0(m<ω) → T0(m<ω) such that rng g is ≈0-homogeneous with
respect to c. Fix a number n < ω such that rng(g ↾m<k) ⊆ m<n . Then
g ↾ m<k ∶ T0(m<k) → T0(m<n) is an embedding such that rng g is
≈0-homogeneous with respect to cn . A contradiction. ◻

Note that every ≈∗-homogeneous set is also ≈0-homogeneous. Hence,
wewould obtain a stronger version of theTheorem of Milliken ifwe could
replace the relation ≈0 by ≈∗. For the finitary version this is possible.

Theorem 2.10. Let m, d , k < ω and let C be a finite set. There exists a
number n < ω such that, for every function c ∶ (m<n)d → C, there exists
an embedding g ∶ T∗(m<k) → T∗(m<n) such that rng g is ≈∗-homoge-
neous with respect to c.

The proof consists in finding sets where the relations ≈∗ and ≈0 coin-
cide. To do so we introduce the following family of embeddings.

Definition 2.11. For 0 < k < ω, the k-th skew embedding

hk ∶ T∗(m<k)→ T∗(m<l(k))

is defined inductively as follows. We start with h1 ∶ ⟨⟩↦ ⟨⟩ and l(1) = 1.
If hk and l(k) are already defined, we set

hk+1(⟨⟩) ∶= ⟨⟩ and hk+1(pη) ∶= ⟨p, . . . , p
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

p+2+p l(k) times

⟩hk(η) ,

for η ∈ m<ω and p < m. Furthermore, l(k + 1) ∶= ml(k) +m + 1.
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l(k − 1)
⎧⎪⎪⎨⎪⎪⎩

l(k − 1)
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l(k − 1)
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l(k − 1)
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l(k)

Figure 2.. The k-th skew embedding hk .

Lemma 2.12. The k-th skew embedding hk ∶ T∗(m<k)→ T∗(m<l(k)) is
an embedding.

Proof. By an easy induction on ∣η∣, one can show that

η ⪯ ζ implies hk(η) ⪯ hk(ζ) ,
and η ≺p ζ implies hk(η) ≺p hk(ζ) .

Similarly, an induction on ∣η ⊓ ζ ∣ yields

hk(η ⊓ ζ) = hk(η) ⊓ hk(ζ) . ◻

A useful property of a skew embedding is that it upgrades ≈∗-equiva-
lence to ≈0-equivalence.

Lemma 2.13. Let η̄, ζ̄ ⊆ m<k . Then η̄ ≈∗ ζ̄ implies hk(η̄) ≈0 hk(ζ̄).

Proof. Let η̄, ζ̄ ∈ (m<k)d with η̄ ≈∗ ζ̄ . We start by proving the following
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claims :

(a) hk(η̄) ≈∗ hk(ζ̄) .

(b) ∣hk(η i)∣ < ∣hk(η j)∣ iff ∣hk(ζ i)∣ < ∣hk(ζ j)∣ , for all i , j < d .

(c) pf(hk(η i), hk(η j)) ≺p hk(η j)

iff pf(hk(ζ i), hk(ζ j)) ≺p hk(ζ j) , for all i , j < d .

(a) Since hk ∶ T∗(m<k)→ T∗(m<l(k)) is an embedding, it preserves
atomic types. Consequently, we have hk(η̄) ≈∗ η̄ ≈∗ ζ̄ ≈∗ hk(ζ̄).

(b) It follows by induction on ∣η i ⊓ η j ∣ that

∣hk(η i)∣ < ∣hk(η j)∣ iff η i <lex η j .

Hence, η̄ ≈∗ ζ̄ implies that

∣hk(η i)∣ < ∣hk(η j)∣ iff η i <lex η j

iff ζ i <lex ζ j iff ∣hk(ζ i)∣ < ∣hk(ζ j)∣ .

(c) By definition of hk , we have

pf(hk(η i), hk(η j)) ≺p hk(η j)

iff ∣hk(η i)∣ < ∣hk(η j)∣ and hk(η i ⊓ η j) ≺p hk(η j) .

Therefore, (c) follows from (a) and (b).
To conclude the proof, suppose that η̄ ≈∗ ζ̄. W.l.o.g. we may assume

that, for all i , j < d, there is some l < d such that η l = η i ⊓ η j . Then it
follows by (a), (b), and (c) that hk(η̄) ≈0 hk(ζ̄). ◻

Proof of Theorem 2.10. Let hk ∶ m<k → m<l(k) be the k-th skew embed-
ding. By Theorem 2.9, there exists a number n such that, for every func-
tion c ∶ (m<n)d → C, we can find an embedding g ∶ T0(m<l(k)) →
T0(m<n) such that rng g is ≈0-homogeneous with respect to c. We
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claim that g ○ hk ∶ T∗(m<k) → T∗(m<n) is the desired embedding.
For η̄, ζ̄ ∈ (m<k)d it follows by Lemma 2.13 that

η̄ ≈∗ ζ̄ ⇒ hk(η̄) ≈0 hk(ζ̄)

⇒ g(hk(η̄)) ≈0 g(hk(ζ̄))

⇒ c(g(hk(η̄))) = c(g(hk(ζ̄))) .

Hence, rng(g ○ hk) is ≈∗-homogeneous with respect to c. ◻

3. Indiscernible sequences
If we apply the Ramsey Theorem to sequences of elements in a structure
coloured by their types we obtain subsequences where each tuple has the
same type. Such sequences, called indiscernible, can be used to investigate
the structure of the given model. Let us fix some notation.

Definition 3.1. Let ⟨I, ≤⟩ be a linear order and (ā i)i∈I a sequence of
tuples ā i ∈ Aα , for some ordinal α.

(a) For ı̄ ∈ In , we set ā[ı̄] ∶= ā i0 . . . ā in−1 .
(b) The order type of a tuple ı̄ ∈ In is the atomic type of ı̄ in ⟨I, ≤⟩.

Definition 3.2. Suppose that X and Y are disjoint sets of variables and
∆ ⊆ FO[Σ, X ∪Y] a set of formulae. Let M be a Σ-structure, U ⊆ M, and
(ā i)i∈I a sequence of tuples in M.

(a) The ∆-type of a tuple b̄ ⊆ M over U is the set

tp∆(b̄/U) ∶= {φ(x̄; c̄) ∣M ⊧ φ(b̄; c̄), c̄ ⊆ U , φ(x̄ , ȳ) ∈ ∆,

x̄ ⊆ X , ȳ ⊆ Y }

(b) We call (ā i)i∈I a ∆-indiscernible sequence over U , or a sequence of
∆-indiscernibles, if

tp∆(ā[ı̄]/U) = tp∆(ā[k̄]/U) , for all ı̄ , k̄ ∈ [I]<ω .
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For ∆ = FO[Σ, X ∪ Y] we drop the ∆ and simply speak of indiscernible
sequences.

(c) The sequence (ā i)i is totally ∆-indiscernible over U if

tp∆(ā[ı̄]/U) = tp∆(ā[k̄]/U) ,

for all finite sequences ı̄ , k̄ ∈ I<ω of distinct elements with ∣ı̄∣ = ∣k̄∣.

Example. (a) If ⟨A, <⟩ is an open dense linear order then every strictly
increasing sequence (a i)i∈I in A is indiscernible. Such a sequence is
obviously not totally indiscernible.

(b) Let K be an algebraically closed field. Every sequence of algebra-
ically independent elements is totally indiscernible. Similarly, if V is a
vector space then every sequence of linearly independent elements is
totally indiscernible.

For finite sets ∆, we can use the Ramsey Theorem to show that every
infinite sequence contains a ∆-indiscernible subsequence. For infinite ∆,
we need to apply the Compactness Theorem to find ∆-indiscernible
sequences.

Lemma 3.3. Let (ā i)i∈I be an infinite sequence. For every finite set ∆
of formulae there exists an infinite subset I0 ⊆ I such that (ā i)i∈I0 is
∆-indiscernible.

Proof. Let n be the maximal number such that ∆ contains a formula
φ(x̄0 , . . . , x̄n−1) with n tuples of variables. We define a colouring c ∶
[I]n → ℘(∆) by

c(ı̄) ∶= {φ(x̄0 , . . . , x̄n−1) ∈ ∆ ∣M ⊧ φ(ā[ı̄]) } .

By the Ramsey Theorem there exists an infinite subset I0 ⊆ I that is
homogeneous with respect to c. By definition of c it follows that (ā i)i∈I0
is ∆-indiscernible. ◻

To find ∆-indiscernible sequences, for infinite sets ∆, we apply the
Compactness Theorem. Before doing so, let us introduce the average
type of a sequence.
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Definition 3.4. The average type of a sequence (ā i)i over U is the set

Av((ā i)i/U) ∶= {φ(x̄0 , . . . , x̄n−1; c̄) ∣
c̄ ⊆ U andM ⊧ φ(ā[ı̄]; c̄) for all ı̄ ∈ [I]n } .

Lemma 3.5. Let (ā i)i∈I be a sequence. Then Av((ā i)i/U) is a partial
type. If (ā i)i is indiscernible over U , it is complete.

Proposition 3.6. Let M be a Σ-structure and U ⊆ M a set of parameters.
For every infinite sequence (ā i)i∈I and every linear order J there exists an
elementary extension N ⪰M containing an indiscernible sequence (b̄ j) j∈J
over U such that

Av((ā i)i/U) ⊆ Av((b̄ j) j/U) .

Proof. For every j ∈ J, fix a tuple of new constant symbols c̄ j and set

Φ ∶= {φ(c̄[ ȷ̄]; d̄) ∣ φ(x̄; d̄) ∈ Av((ā i)i/U), ȷ̄ ∈ [J]<ω , d̄ ⊆ U }

Ψ ∶= {ψ(c̄[ı̄]; d̄)↔ ψ(c̄[ ȷ̄]; d̄) ∣ ψ a formula, ı̄ , ȷ̄ ∈ [J]<ω , and

d̄ ⊆ U } .

It is sufficient to prove that the set Γ ∶=Th(MM) ∪ Φ ∪ Ψ is satisfiable.
Consider a finite subset Γ0 ⊆ Γ. Since Th(MM) is closed under conjunc-
tions, we may assume that Γ0 = {ϑ(d̄)}∪Φ0 ∪Ψ0 for finite sets Φ0 ⊆ Φ
and Ψ0 ⊆ Ψ . By Lemma 3.3, there is an infinite subset I0 ⊆ I such that
we have

M ⊧ ψ(ā[ı̄]; d̄)↔ ψ(ā[ ȷ̄]; d̄) ,

for every formula ψ(x̄; d̄) ↔ ψ( ȳ; d̄) ∈ Ψ0 and all increasing ı̄ , ȷ̄ ⊆ I0.
For every formula φ(x̄; d̄) ∈ Φ0, there are only finitely many indices ı̄ ⊆
I0 such that M ⊭ φ(ā[ı̄]; d̄). Hence,we can find an infinite subset I1 ⊆ I0
containing no such tuple ı̄. Let J0 ⊆ J be the finite set of all indices j ∈ J
such that the constant c̄ j appears in Φ0 ∪ Ψ0, and fix an embedding
g ∶ J0 → I1. We can satisfy Γ0 by interpreting c̄ j by the tuple āg( j). ◻
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We can improve the preceding proposition as follows.

Theorem 3.7. Let M be a Σ-structure, U ⊆ M a set of parameters, s̄ a
sequence of sorts, and λ a cardinal such that λ ≥ ∣S s̄n

(U)∣, for all n < ω.
Set µ ∶= ℶλ+ .

For every sequence (āα)α<µ with āα ∈ M s̄ and for every linear order I,
there exists an elementary extension N ⪰M containing an indiscernible
sequence (b̄ i)i∈I over U such that, for every ı̄ ∈ [I]n , there are indices
ᾱ ∈ [µ]n with

tp(b̄[ı̄]/U) = tp(ā[ᾱ]/U) .

Proof. It is sufficient to prove the claim for I = ω. Then the general state-
ment will follow by compactness. We define a sequence of types (pn)n<ω
with pn ∈ S s̄n

(U) satisfying the following conditions :
(1) pn(x̄0 , . . . , x̄n−1) ⊧ pm(x̄ i0 , . . . , x̄ im−1), for all i0 < ⋅ ⋅ ⋅ < im−1 < n.
(2) For every cardinal ν < µ, there is some set I ⊆ µ of size ∣I∣ = ν

such that

tp(ā[ı̄]/U) = pn , for every tuple ı̄ ∈ [I]n .

Any sequence (b̄n)n<ω realising the limit pω ∶= ⋃n<ω pn has the desired
properties.
We start with p0 ∶=Th(MU). If we have already defined pn , we con-

sider the set X of all s̄n+1-types over U satisfying condition (1). If there
is some type q ∈ X that also satisfies condition (2), we are done. Suppose
there is no such type. Then we can choose, for every q ∈ X, a cardinal
νq < µ such that no subset I ⊆ µ of size νq satisfies the above condition.
Since ∣X∣ ≤ λ < λ+ = cf µ it follows that

ν∗ ∶= λ ⊕ sup{ νq ∣ q ∈ X } < µ .

By choice of ν∗ there exists, for every q ∈ X and all I ⊆ µ of size ∣I∣ = ν∗,
some increasing tuple ı̄ ∈ In+1 such that tp(ā[ı̄]/U) ≠ q. Since ν∗ < µ =
ℶλ+ there is some ordinal α < λ+ with ν∗ < ℶα . Let ρ ∶= ℶα+n+1. Then

ℶn(ν∗)+ ≤ ρ < µ .
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By choice of pn there is some set I ⊆ µ of size ∣I∣ = ρ such that

tp(ā[ı̄]/U) = pn , for every ı̄ ∈ [I]n .

Since ∣S s̄n
(U)∣ ≤ λ ≤ ν∗ we can use the Theorem of Erdős and Rado to

find a subset I0 ⊆ I of size ∣I0∣ = ν+∗ such that the types

tp(ā[ı̄]/U) , for ı̄ ∈ [I0]n+1 ,

are all equal. This contradicts the choice of ν∗. ◻

There is a close relationship between automorphisms and indiscernible
sequences. The next observation follows immediately from the defini-
tions of an indiscernible sequence and a strongly κ-homogeneous struc-
ture.

Lemma 3.8. Let M be strongly κ-homogeneous and let (ā i)i∈I be a se-
quence of indiscernible over U. Suppose that ∣U ∣⊕ ∣I∣⊕ ∣ā i ∣ < κ. For every
partial automorphism π ∈ pIso(I, I) of the index set I (considered as a
linear order), there exists an automorphism h ∈ Aut M such that

h ↾U = idU and h(ā i) = āπ(i) , for all i ∈ I .

In a sufficient saturated structure, we can extend every indiscernible
sequence to a longer one.

Lemma 3.9. Let M be κ-saturated. If (ā i)i∈I is indiscernible over U and
g ∶ I → J is an embedding with ∣J∣ ⊕ ∣U ∣ ⊕ ∣ā i ∣ < κ then there exists an
indiscernible sequence (b̄ j) j∈J such that ā i = b̄g(i), for i ∈ I.

Proof. We can use Proposition 3.6 to find an elementary extension N ⪰
M containing an indiscernible sequence (c̄ j) j∈J with Av((c̄ j) j/U) =
Av((ā i)i/U). This implies that

tp(⋃i c̄ g(i)/U) = tp(⋃i ā i/U) .
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W.l.o.g. we may assume that N is strongly κ-homogeneous. Therefore,
there exists an automorphism π of NU mapping c̄ g(i) to ā i . Since M is
κ-saturated it contains a sequence (b̄ j) j∈J such that

tp(⋃ j b̄ j/U ∪⋃i ā i) = tp(⋃ j π(c̄ j)/U ∪⋃i ā i) .

It follows that (b̄ j) j is the desired sequence of indiscernibles. ◻

Corollary 3.10. If (ā i)i∈I is indiscernible over U and g ∶ I → J an embed-
ding, then there exists an elementary extension N containing an indiscerni-
ble sequence (b̄ i)i∈J such that b̄g(i) = ā i , for i ∈ I.

Let us record the following consequence of Theorem 3.7.

Lemma 3.11. Let (ā i)i∈I be an indiscernible sequences over U. For every
set C ⊆ M, there exists a set C′ ≡U C such that (ā i)i∈I is indiscernible
over U ∪ C′.

Proof. Let κ ∶= ∣T ∣ ⊕ ∣U ∪ C∣ and λ ∶= ℶ(2κ)+ . By Corollary 3.10, there
exists an indiscernible sequence (b̄α)α<κ over U with

Av((b̄α)α/U) = Av((ā i)i/U) .

Furthermore, with the help of Theorem 3.7 we can find an indiscernible
sequence (c̄n)n<ω over U∪C such that, for every n < ω, there are indices
α0 < ⋅ ⋅ ⋅ < αn−1 with

c̄0 . . . c̄n−1 ≡U∪C b̄α0 . . . b̄αn−1 .

By Lemma 3.9, we can extend (c̄n)n<ω to an indiscernible sequence
(c̄ i)i∈ω+I over U ∪ C. Since

Av((c̄ i)i/U) = Av((ā i)i/U) ,

there exists an automorphism π ∈ AutMU such that π(c̄ω+i) = ā i , for all
i ∈ I. Then π[C] ≡U C and (ā i)i∈I is indiscernible over U ∪ π[C]. ◻
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The following technical lemma can be used to simplify proofs of
indiscernibility. It states that, if some formula is a witness for the failure
of indiscernibility, we can detect this fact already by varying a single
element of the sequence.

Lemma 3.12. Let α = (ā i)i∈I be a sequence and φ(x̄) a formula such that

M ⊧ φ(ā[ı̄]) ∧ ¬φ(ā[ ȷ̄]) , for some ı̄ , ȷ̄ ∈ [I]n .

Then there are indices ū < s < t < v̄ in I such that

M ⊧ φ(ā[ūsv̄])↔ ¬φ(ā[ūtv̄]) .

Proof. We define a sequence k̄0 , . . . , k̄2n ∈ [I]n by setting

k l
m ∶=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min{im , jm} if l ≤ n and m < l ,
im if l ≤ n and m ≥ l ,
min{im , jm} if l > n and m < 2n − l ,
jm if l > n and m ≥ 2n − l .

Then every k̄ l belongs to [I]n , k̄0 = ı̄, k̄2n = ȷ̄, and, for each l < 2n, the
tuples k̄ l and k̄ l+1 differ in at most one component. Let l < 2n be the
maximal index such that M ⊧ φ(ā[k̄ l ]). Then M ⊧ ¬φ(ā[k̄ l+1]) and
it follows by definition of k̄ l that k̄ l = ūsv̄ and k̄ l+1 = ūtv̄ for indices
ū < s < v̄ and ū < t < v̄. Interchanging k̄ l and k̄ l+1 if necessary, we may
assume that s < t. ◻

Recall that stable theories do not have the order property. This implies
that in a model of a stable theory every indiscernible sequence is totally
indiscernible.

Theorem 3.13. A theory T is stable if, and only if, every infinite indiscerni-
ble sequence in a model of T is totally indiscernible.
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Proof. (⇐) Suppose that there is a formula φ(x̄ , ȳ) with the order prop-
erty and let (ān)n<ω and (b̄n)n<ω be sequences such that

M ⊧ φ(ā i , b̄k) iff i ≤ k .

By Proposition 3.6, there exists an indiscernible sequence (c̄n d̄n)n<ω
with Av((ān b̄n)n) ⊆ Av((c̄n d̄n)n). Setting ψ(x̄ ȳ, x̄′ ȳ′) ∶= φ(x̄ , ȳ′) it
follows that

M ⊧ ψ(c̄ i d̄ i , c̄k d̄k) iff i ≤ k .

Hence, (c̄n d̄n)n is not totally indiscernible.
(⇒) Suppose that (ā i)i∈I is an infinite indiscernible sequence over U

that is not totally indiscernible. By Corollary 3.10, we may assume that
the ordering I is dense. There are a formula φ and two tuples of indices
ı̄ , k̄ ∈ In such that both ı̄ and k̄ consist of distinct elements and we have

M ⊧ φ(ā[ı̄]) ∧ ¬φ(ā[k̄]) .

Set l̄ r ∶= i0 . . . ir−1kr . . . kn−1 and let r be the maximal number such that

M ⊧ ¬φ(ā[ l̄ r]) .

Note that r is well-defined since l̄0 = k̄ implies M ⊧ ¬φ(ā[ l̄0]). Repla-
cing ı̄ by l̄ r+1 and k̄ by l̄ r , we may assume that ı̄ and k̄ differ in exactly
one component. Hence, suppose that

ı̄ = sūv̄w̄ and k̄ = tūv̄w̄ , where ū < s < v̄ < t < w̄ .

(Reversing the order of I, if necessary, we may assume that s < t.)
By indiscernibility, we know that the tuple v̄ is not empty. We claim

that wemay assume that v̄ is a singleton. If v̄ = v0 . . . vn−1 with n > 1 then,
choosing some index v0 < v′ < vn−1, we may replace either s or t by v′,
depending on whether or not the formula φ(ā[v′ūv̄w̄]) holds. Hence,
the claim follows by induction. Thus, we have arrived at the situation
that

ı̄ = svūw̄ and k̄ = v tūw̄ , where ū < s < v < t < w̄ .
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3. Indiscernible sequences

By indiscernibility, it follows that

M ⊧ φ(ā[stūw̄]) ∧ ¬φ(ā[tsūw̄]) , for all ū < s < t < w̄ .

Fix an infinite increasing sequence of indices kn , n < ω, with

ū < k0 < k1 < ⋅ ⋅ ⋅ < w̄ ,

set b̄ i ∶= āk i , and define

ψ(x̄ , ȳ) ∶= x̄ = ȳ ∨ [φ(x̄ , ȳ, ā[ūw̄]) ∧ ¬φ( ȳ, x̄ , ā[ūw̄])] .

Then we have

M ⊧ ψ(b̄ i , b̄k) iff i ≤ k .

Hence, T is unstable. ◻

When considering the automorphism group of a structure, an indis-
cernible sequence looks like a linear order while a totally indiscernible
sequence looks like a set. We can generalise the definition of an indis-
cernible sequence to include automorphism groups of other structures.

Definition 3.14. Let L be an algebraic logic, J a Γ-structure, M a Σ-
structure, and U ⊆ M.

(a) A U-indiscernible system over J (w.r.t. L) is an injective function
ā ∶ I → Mα , for some ordinal α, such that, for every partial isomorphism
ı̄ ↦ k̄ ∈ pIsoℵ0

(J, J), we have

tpL(ā[ı̄]/U) = tpL(ā[k̄]/U) .

(b) The average type of a U-indiscernible system ā over J is the func-
tion AvL(ā) with

AvL(ā/U) ∶ atp(ı̄/J)↦ tpL(ā[ı̄]/U) , for ı̄ ∈ I<ω .

For L = FO, we drop the index and just write Av(ā/U).
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(c) Let J and K be two index structures and ā ∶ I → Mα , b̄ ∶ K → Mα

arbitrary families of α-tuples. We say that ā is inspired by b̄ over U if,
for every finite set of formulae ∆ and every finite tuple ı̄ ∈ I<ω , there is a
finite tuple k̄ ∈ K<ω such that

atp(ı̄/J) = atp(k̄/K) and tp∆(ā[ı̄]/U) = tp∆(b̄[k̄]/U) .

Remark. (a) Using the terminology of the previous definition we can
restate Proposition 3.6 as : for every infinite sequence (ā i)i∈I , every linear
order J, and every set U of parameters, there exists an indiscernible
sequence (b̄ i)i∈J over U inspired by (ā i)i∈I .

(b) Note that, for indiscernible systems ā and b̄ over U , ā is inspired
by b̄ over U if, and only if, Av(ā/U) = Av(b̄/U).

In the same way as in Proposition 3.6 we can use the Compactness
Theorem to show that we can extend every indiscernible system.

Lemma 3.15. Let M be a structure containing a U-indiscernible system ā
over J. If H is a structure with Subℵ0(H) ⊆ Subℵ0(J) then there exists
an elementary extension N ⪰ M containing a U-indiscernible system b̄
over H with Av(b̄/U) = Av(ā/U).

In general, it is hard to prove the existence of indiscernible systems
over structures that are not linear orders. For trees we can use the The-
orem of Milliken to show that such systems always exist. Recall the trees
T∗(κ<α) introduced in Section 2.

Definition 3.16. Let κ be a cardinal and α an ordinal. A family (āη)η∈κ<α
is called tree-indiscernible over a set U if it is a U-indiscernible system
over T∗(κ<α).

Theorem 3.17 (Džamonja, Shelah, B. Kim, H.-J. Kim). Let m < ω. For
every family ā = (āη)η∈m<ω and every set U , there exists a family of
tree-indiscernibles (b̄η)η∈m<ω over U inspired by ā.
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3. Indiscernible sequences

Proof. Fix variable symbols x̄η , for each η ∈ m<ω , and define

Ψη̄ ∶= {φ(x̄[ζ̄]) ∣ φ a formula over U , ζ̄ ≈∗ η̄ , and

M ⊧ φ(ā[ξ̄]) for all ξ̄ ≈∗ η̄ } ,

Ξ ∶= {φ(x̄[η̄])↔ φ(x̄[ζ̄]) ∣ φ a formula over U , η̄ ≈∗ ζ̄ } ,

and Φ ∶= Ξ ∪ ⋃
η̄⊆m<ω

Ψη̄ .

We claim that Φ is satisfiable. Let Φ0 ⊆ Φ be finite. There exists a finite
set ∆ of formulae such that every formula in Φ0 is of the form

φ(x̄[η̄])↔ φ(x̄[ζ̄]) or φ(x̄[ζ̄]) ,

for some φ(x̄0 , . . . , x̄n−1) ∈ ∆. Let d be thenumber of variables appearing
in ∆ and let c ∶ (m<ω)d → S(∆) be the function mapping each tuple
η̄ ∈ (m<ω)d to the type tp∆(ā[η̄]).

Let k < ω be some number such that Φ0 only contains variables x̄η

with η ∈ m<k . We can use Theorem 2.10 to find an embedding g ∶
T∗(m<k)→ T∗(m<ω) such that rng g is ≈∗-homogeneous with respect
to c. It follows that the family (āg(η))η∈m<k satisfies Φ0.
By the Compactness Theorem we conclude that Φ is satisfiable. Let

b̄ = (b̄η)η∈m<ω be a family realising Φ. Then b̄ is tree-indiscernible over U
since it satisfies Ξ. Hence, it remains to show that b̄ is inspired by ā.

For a contradiction, suppose otherwise. Then there exist a finite tuple
η̄ ⊆ m<ω and a finite set of formulae ∆ over U such that

tp∆(b̄[η̄]) ≠ tp∆(ā[ζ̄]) , for all ζ̄ ≈∗ η̄ .

W.l.o.g. we may assume that ∆ is closed under negation. Set

ϑ(x̄) ∶=⋀ tp∆(b̄[η̄]) .

Then

M ⊧ ¬ϑ(ā[ζ̄]) , for all ζ̄ ≈∗ η̄ .

Consequently, ¬ϑ(x̄[η̄]) ∈ Ψη̄ . Since b̄ satisfies Ψη̄ it therefore follows
that M ⊧ ¬ϑ(b̄[η̄]). A contradiction. ◻
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4. The independence and strict order properties
In this section we use indiscernible sequences to study concepts related
to the order property. Recall that

⟦φ(ā, b̄ i)⟧i∈I ∶= { i ∈ I ∣M ⊧ φ(ā, b̄ i) } .

Definition 4.1. Let T be a theory. A formula φ(x̄ , ȳ) has the independ-
ence property (with respect to T) if there exists amodel M ⊧ T containing
two sequences (āw)w∈℘(ω) and (b̄n)n<ω such that

M ⊧ φ(āw , b̄n) iff n ∈ w .

If some formula has the independence property with respect to T , we
also say that T has the independence property.

Proposition 4.2. Let T be a first-order theory and φ(x̄ , ȳ) a formula. The
following statements are equivalent :

(1) φ has the independence property.
(2) For every finite number m < ω, there exist sequences (āw)w∈℘[m]

and (b̄n)n<m such that

M ⊧ φ(āw , b̄n) iff n ∈ w .

(3) There exist a sequence (āw)w∈℘(ω) and an indiscernible sequence
(b̄n)n<ω such that

M ⊧ φ(āw , b̄n) iff n ∈ w .

(4) There exist a tuple ā and an indiscernible sequence (b̄n)n<ω such
that

⟦φ(ā, b̄n)⟧n<ω = { 2n ∣ n < ω } .

(5) There exist a tuple ā and an indiscernible sequence (b̄ i)i∈I such that
⟦φ(ā, b̄ i)⟧i∈I is not a finite union of segments.
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Proof. The implications (3)⇒ (4)⇒ (5) are trivial and (2)⇒ (1) follows
by compactness.

For (1)⇒ (3), let (āw)w∈℘(ω) and (b̄n)n<ω be sequences such that

M ⊧ φ(āw , b̄n) iff n ∈ w .

By Proposition 3.6, there exists an indiscernible sequence (d̄n)n<ω with
the same average type as (b̄n)n<ω . By compactness, we can find a se-
quence (c̄w)w∈℘(ω) such that

M ⊧ φ(c̄w , d̄n) iff n ∈ w .

It remains to prove (5)⇒ (2). Fix m < ω and let ā and (b̄ i)i∈I be such
that ⟦φ(ā, b̄ i)⟧i∈I is not a finite union of segments. We can find a strictly
increasing sequence i0 < ⋅ ⋅ ⋅ < i2m−1 of indices in I such that

M ⊧ φ(ā, b̄ ik) iff k is odd .

Set d̄k ∶= b̄ ik and let

χw(k) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

0 if k ∉ w ,
1 if k ∈ w ,

be the characteristic function of w. Note that the sequence (d̄k)k<2m
is also indiscernible. For each w ⊆ [m], we can therefore find an auto-
morphism πw of M such that

πw(d̄k) = d̄2n+χw(k) , for k < m .

Setting c̄w ∶= π−1
w (ā) it follows that

M ⊧ φ(c̄w , d̄k) iff M ⊧ φ(πw(c̄w), πw(d̄k))

iff M ⊧ φ(ā, d̄2n+χw(k))

iff χw(k) = 1
iff k ∈ w . ◻
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We can generalise Condition (4) above as follows.

Corollary 4.3. Let φ(x̄; ȳ0 , . . . , ȳn−1) be a formula. If there exist a tuple c̄
and an indiscernible sequence (ā i)i∈I such that the order I has no last
element,

M ⊧ φ(c̄; ā[ı̄]) , for arbitrarily large ı̄ ∈ [I]n ,
and M ⊧ ¬φ(c̄; ā[ı̄]) , for arbitrarily large ı̄ ∈ [I]n ,

then φ has the independence property.

Proof. By assumption we can inductively choose tuples k̄0 < k̄1 < . . . in
[I]n such that

M ⊧ φ(c̄; ā[k̄ i]) iff i is even.

Since the sequence (ā[k̄ i])i<ω is indiscernible, the claim follows by
Proposition 4.2 (4). ◻

Lemma 4.4. Let T be a first-order theory. If φ(x̄ , ȳ) has the independence
property then so does φ( ȳ, x̄).

Proof. We apply the characterisation in Proposition 4.2 (2). Let m < ω.
Since φ(x̄ , ȳ) has the independence property there are tuples āw and b̄n

for w ⊆ ℘(2m) and n < 2m such that

M ⊧ φ(āw , b̄n) iff n ∈ w .

We identify each number k < 2m with the function k ∶ [m]→ [2] such
that k = ∑i<m k(i)2i . For i < m and s ⊆ [m], we define

c̄s ∶= b̄ns and d̄ i ∶= āw i ,

where

ns ∶= ∑i∈s 2i and w i ∶= { k < 2m ∣ k(i) = 1} .
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It follows that

M ⊧ φ(d̄ i , c̄s) iff M ⊧ φ(āw i , b̄ns)

iff ns ∈ w i

iff i ∈ s . ◻

Lemma 4.5. Let T be a first-order theory and φ(x̄ , ȳ) a formula with
the independence property. There exist formulae ψ(x , ȳ) and ϑ(x̄ , y)
with, respectively, a single variable x and a single variable y that have the
independence property.

Proof. We construction ψ using Proposition 4.2 (3). Let ā and (b̄n)n<ω be
tuples such that ⟦φ(ā, b̄n)⟧n<ω = { 2n ∣ n < ω }. Suppose that ā = a0 ā′.
We define a new sequence c̄n ∶= b̄n ā′ and the formula ψ(x , ȳz̄) ∶=
φ(xz̄, ȳ). It follows that ⟦ψ(a, c̄n)⟧n<ω = { 2n ∣ n < ω }. Hence, ψ has
the independence property.

To find ϑ(x̄ , y) it is sufficient to note that, according to Lemma 4.4,
the formula φ( ȳ, x̄) also has the independence property. Hence, we can
apply the first part of the lemma. ◻

The independence property is closely related to the order property
which characterises unstable theories.

Lemma 4.6. Every formula with the independence property has the order
property.

Proof. Suppose that φ is a formula with the independence property and
let (āw)w⊆℘(ω) and (b̄n)n<ω be sequences such that

M ⊧ φ(āw , b̄n) iff n ∈ w .

Setting wn ∶= ω ∖ [n] and c̄n ∶= āwn it follows that

M ⊧ φ(c̄n , b̄k) iff n ≤ k .

Hence, φ has the order property. ◻
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Lemma 4.7. No o-minimal theory has the independence property.

Proof. Let T be a theory with the independence property. Then there
exist a model M of T , a formula φ(x , ȳ), parameters c̄ ⊆ M, and an
indiscernible sequence (an)n<ω such that

M ⊧ φ(an , c̄) iff n ≡ 0 (mod 2) .

Since (an)n is indiscerniblewe either have a0 < a1 < . . . or a0 > a1 > . . . .
In both cases it follows that the set φ(x , c̄)M is not a finite union of
intervals. Hence, T is not o-minimal. ◻

Lemma 4.8. Let φ(x̄ , ȳ) be a formula without the independence property.
Suppose that there exists a tuple c̄ and a sequence (ā i)i∈I such that the
sets ⟦φ(c̄, ā i)⟧i and ⟦¬φ(c̄, ā i)⟧i are both infinite. Then there exists a
formula χ( ȳ, ȳ′; d̄) with parameters d̄ such that

M ⊧ χ(ā i , āk ; d̄) iff i ≤ k .

Proof. Let J be an open dense linear order with I ⊆ J such that J contains
infinitely many elements above I and below I. By Lemma 3.9, we can
extend (ā i)i∈I to an indiscernible sequence (ā i)i∈J . Replacing φ by ¬φ
if necessary, we may assume that ⟦φ(c̄, ā i)⟧i contains a final segment
of J. By Proposition 4.2 (2), there exists a number m such that, for all
indices s̄ ∈ [I]m ,

M ⊧ ¬∃x̄ ⋀
i<m−1

[φ(x̄ , ās i )↔ ¬φ(x̄ , ās i+1)] .

Consequently, there exists a number 0 < n ≤ m, a set w ⊆ [n], and
indices s̄ ∈ [I]n such that there is no c̄′ with

↓s0 ∪ { s i ∣ i ∉ w } ⊆ ⟦¬φ(c̄′ , ā i)⟧i

and ↑sn−1 ∪ { s i ∣ i ∈ w } ⊆ ⟦φ(c̄′ , ā i)⟧i .

We choose n and w such that ⟨n,w⟩ is minimal with respect to the
lexicographic order (treating w ⊆ [n] as a word in [2]n). By minimality
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of n, it follows that 0 ∈ w and n− 1 ∉ w. Hence, there is some index k < n
with [k] ⊆ w and k ∉ w.

By compactness, there are finite sets J− ⊆ ↓s0 and J+ ⊆ ↑sn−1 such that
there is no c̄′ with

J− ∪ { s i ∣ i ∉ w } ⊆ ⟦¬φ(c̄′ , ā i)⟧i

and J+ ∪ { s i ∣ i ∈ w } ⊆ ⟦φ(c̄′ , ā i)⟧i .

By indiscernibility, we may assume that

J− ∪ { s i ∣ i < k } < I < J+ ∪ { s i ∣ i ≥ k } .

Let w+ ∶= w ∖ {k − 1} and w− ∶= [n] ∖ (w ∪ {k}). We define

ψ(x̄) ∶= ⋀
i∈J−∪w−

¬φ(x̄ , ā i) ∧ ⋀
i∈J+∪w+

φ(x̄ , ā i) .

Then

M ⊧ ¬∃x̄[ψ(x̄) ∧ φ(x̄ , āsk−1) ∧ ¬φ(x̄ , āsk)] .

Hence,

M ⊧ ∀x̄[ψ(x̄) ∧ φ(x̄ , āsk−1)→ φ(x̄ , āsk)] .

Moreover, (w ∖ {k − 1}) ∪ {k} <lex w implies, by choice of w, that

M ⊧ ∃x̄[ψ(x̄) ∧ ¬φ(x̄ , āsk−1) ∧ φ(x̄ , āsk)] .

Consequently, it follows by indiscernibility that, for all i , l ∈ [sk−1 , sk],

M ⊧ ∀x̄[ψ(x̄) ∧ φ(x̄ , ā i)→ φ(x̄ , ā l)] iff i ≤ l .

In particular, this holds for all i , l ∈ I. ◻

Lemma 4.7 shows that there are unstable theories without the inde-
pendence property. Such theories can be characterised as follows.
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Definition 4.9. Let T be a theory. A formula φ(x̄ , ȳ) has the strict order
property (with respect to T) if there exists a model M ⊧ T containing a
sequence (ān)n<ω such that

M ⊧ ∃x̄[¬φ(x̄ , ā i) ∧ φ(x̄ , āk)] iff i < k .

If some formula has the strict order property with respect to T then we
also say that T has the strict order property.

Lemma 4.10. A theory T has the strict order property if and only if there
exists a formula φ(x̄ , ȳ) such that φM is a preorder with infinite chains.

Proof. (⇐) Suppose that φ(x̄ , ȳ) defines a preorder with an infinite
chain (ā i)i∈I . By compactness, there exists an infinite ascending φM-
chain (b̄n)n<ω . It follows that

M ⊧ ∃x̄[¬φ(x̄ , b̄ i) ∧ φ(x̄ , b̄k)] iff i < k .

(⇒) Suppose that there exists a formula ψ(x̄ , ȳ) with the strict order
property and let (ān)n<ω be a sequence with

M ⊧ ∃x̄[¬ψ(x̄ , ā i) ∧ ψ(x̄ , āk)] iff i < k .

We set

φ( ȳ, ȳ′) ∶= ∀x̄[ψ(x̄ , ȳ)→ ψ(x̄ , ȳ′)] .

Clearly, φM is reflexive and transitive. Furthermore, we have

M ⊧ φ(ā i , āk) iff i ≥ k .

Hence, (ān)n<ω is an infinite descending φM-chain. ◻

Proposition 4.11. A first-order theory T is unstable if, and only if, it has
the independence property or the strict order property.
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Proof. (⇐) If there is a formula φ with the independence property then,
according to Lemma 4.6, φ has also the order property and T is unstable.

Similarly, suppose that there exists a formula φ with the strict order
property and let (ān)n<ω be a sequence with

M ⊧ ∃x̄[¬φ(x̄ , ā i) ∧ φ(x̄ , āk)] iff i < k .

Setting

ψ(x̄ , ȳ) ∶= x̄ = ȳ ∨ ∃z̄[¬φ(z̄, x̄) ∧ φ(z̄, ȳ)]

it follows that

M ⊧ ψ(ā i , āk) iff i ≤ k .

Hence, ψ has the order property and T is unstable.
(⇒) Let φ(x̄ , ȳ) be a formula with the order property and suppose

that (ān)n<ω and (b̄n)n<ω are indiscernible sequences such that

M ⊧ ψ(ā i , b̄k) iff i ≤ k .

By compactness, there are indiscernible sequences (ā i)i∈Z and (b̄ i)i∈Z
such that

M ⊧ ψ(ā i , b̄k) iff i ≤ k .

If φ has the independence property we are done. Hence, suppose other-
wise. Since ⟦ψ(ā0 , b̄ i)⟧i and ⟦¬ψ(ā0 , b̄ i)⟧i are both infinite, we can use
Lemma 4.8 to construct a formula χ( ȳ, ȳ; d̄) such that

M ⊧ χ(b̄ i , b̄k ; d̄) iff i ≤ k .

It follows that

M ⊧ ∃x̄[¬χ(x̄ , b̄ i ; d̄) ∧ χ(x̄ , b̄k ; d̄)] iff i < k .

Consequently, the sequence (b̄ i d̄)i<ω witnesses that χ(x̄ , ȳ; z̄) has the
strict order property. ◻
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Proposition 4.12. Let φ(x̄ , ȳ) be a formula over a set U. The following
statements are equivalent :

(1) φ(x̄ , ȳ) has the order property.

(2) There exist an indiscernible sequence (ā i)i∈I over U and a tuple c̄
such that both the set ⟦φ(ā i , c̄)⟧i∈I and its complement are infinite.

(3) There exists an indiscernible sequence (ā i)i∈I such that, for every
number m < ω, there exists a tuple c̄ such that

∣⟦φ(ā i ; c̄)⟧i∈I ∣ > m and ∣⟦¬φ(ā i ; c̄)⟧i∈I ∣ > m .

Proof. (1)⇒ (3) By Proposition 3.6 and compactness, it is sufficient to
find, for every m < ω, a tuple c̄ and a sequence (ā i)i<ω such that

∣⟦φ(ā i , c̄)⟧i∈I ∣ ≥ m and ∣⟦¬φ(ā i , c̄)⟧i∈I ∣ ≥ m .

Since φ has the order property there are sequences (c̄n)n<ω and (d̄n)n<ω
such that

M ⊧ φ(c̄ i , d̄k) iff i ≤ k .

Given m < ω we consider the tuple c̄ ∶= d̄m and the sequence ā i ∶= c̄ i ,
i < ω. Then

⟦φ(ā i , c̄)⟧i∈I = ⟦φ(c̄ i , d̄m)⟧i∈I = {m,m + 1, . . . }
and ⟦¬φ(ā i , c̄)⟧i∈I = ⟦¬φ(c̄ i , d̄m)⟧i∈I = {0, . . . ,m − 1}

contain both at least m elements.
(2)⇒ (1) Let c̄ and (ā i)i∈I be given. According to Proposition 4.2, if

neither

I0 ∶= ⟦¬φ(ā i , c̄)⟧i∈I nor I1 ∶= ⟦φ(ā i , c̄)⟧i∈I

can bewritten as a finite union of segments then φ has the independence
property. By Lemma 4.6, this implies that φ has the order property.
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Hence, it remains to consider the case that both I0 and I1 are finite
unions of segments. Since these sets are both infinite it follows that each
contains at least one infinite segment. By taking a suitable subsequence of
(ā i)i∈I we may assume that both sets consist of a single infinite segment.
Reversing the sequence (ā i)i∈I if necessary, we may further assume that
I0 < I1.
By compactness it is sufficient to find, for every m < ω, sequences

(c̄ i)i<m and (d̄ i)i<m such that

M ⊧ φ(c̄ i , d̄k) iff i ≤ k .

Given m < ω we pick indices k0 < ⋅ ⋅ ⋅ < km−1 in I0 and km < ⋅ ⋅ ⋅ < k2m−1
in I1. For i < m, let π i be an automorphism with π i(āk j) = āk j−i and
define

c̄ i ∶= ākm−i and d̄ i ∶= π i(c̄) .

For i , l < m, it then follows that

M ⊧ φ(c̄ i , d̄ l) iff M ⊧ φ(ākm−i , π l(c̄))

iff M ⊧ φ(π l(ākm−i+l ), π l(c̄))

iff M ⊧ φ(ākm−i+l , c̄)
iff m − i + l ≥ m
iff i ≤ l .

(3)⇒ (2) By Corollary 3.10, we may assume that the order I is dense.
Set

Φ ∶= Av((ā i)i/U) ∪ {φ(x̄n ; ȳ)↔ ¬φ(x̄n+1; ȳ) ∣ n < ω } .

If Φ is satisfiable, there exists an indiscernible sequence (b̄n)n<ω over U
and a tuple c̄ such that

⟦φ(b̄n ; c̄)⟧n<ω = { 2n ∣ n < ω }
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and ⟦¬φ(b̄n ; c̄)⟧n<ω = { 2n + 1 ∣ n < ω } .

In particular, both sets are infinite.
Hence, it remains to prove that Φ is satisfiable. Consider a finite subset

Φ0 ⊆ Φ. Let n < ω be the maximal number such that Φ0 contains a
formula of the form

φ(x̄n ; ȳ)↔ ¬φ(x̄n+1; ȳ) .

By (3), there exists a tuple c̄ such that

∣⟦φ(ā i ; c̄)⟧i∈I ∣ > n and ∣⟦¬φ(ā i ; c̄)⟧i∈I ∣ > n .

If both sets are infinite, we are done. Hence, suppose that one of them is
finite. Choose indices k0 < ⋅ ⋅ ⋅ < kn−1 in the finite set. As the other set is
dense and cofinite, it contains indices l0 < ⋅ ⋅ ⋅ < ln−1 such that

k0 < l0 < k1 < l1 < ⋅ ⋅ ⋅ < kn−1 < ln−1 .

Let K be this set of indices. Then (ā i)i∈K and c̄ satisfy Φ0. ◻

Corollary 4.13. A first-order theory T is stable if, and only if, for every
formula φ(x̄) with parameters and all indiscernible sequences (ā i)i∈I at
least one of the sets ⟦φ(ā i)⟧i∈I and ⟦¬φ(ā i)⟧i∈I is finite.

Corollary 4.14. Let T be a stable theory and (ā i)i∈I an indiscernible
sequence over U. For every set C ⊆M, the set

Av1((ā i)i/C) ∶= {φ(x̄) ∣ φ a formula over C such that

⟦φ(ā i)⟧i∈I is cofinite}

forms a complete type over C.

Proof. By the preceding corollary, we have

φ(x̄) ∈ Av1((ā i)i/C) iff ⟦φ(ā i)⟧i∈I is cofinite

iff ⟦¬φ(ā i)⟧i∈I is finite

iff ⟦¬φ(ā i)⟧i∈I is not cofinite

iff ¬φ(x̄) ∉ Av1((ā i)i/C) .
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Hence, it remains to prove that Av1((ā i)i/C) is consistent with T . Let
φ0 , . . . , φn ∈ Av1((ā i)i/C). Then

⟦φ0(ā i)⟧i∈I , . . . , ⟦φn(ā i)⟧i∈I are cofinite.

Hence, so is

⟦φ0(ā i) ∧ ⋅ ⋅ ⋅ ∧ φn(ā i)⟧i∈I = ⟦φ0(ā i)⟧i∈I ∩ ⋅ ⋅ ⋅ ∩ ⟦φn(ā i)⟧i∈I .

Fixing some index i in this set, it follows that

M ⊧ φ0(ā i) ∧ ⋅ ⋅ ⋅ ∧ φn(ā i) .

Consequently, every finite subset of Av1((ā i)i/C) is satisfiable. ◻
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1. Local functors
In this section we consider functors preserving back-and-forth equi-
valence. Recall that Subκ(M) denotes the class of all κ-generated sub-
structures of M, and that a class K is κ-hereditary if M ∈ K implies
Subκ(M) ⊆ K.

Definition 1.1. LetK be a class of Σ-structures. We denote the subcat-
egory of Emb(Σ) induced byK by Emb(K).

Belowwewill show that functors preserving direct limits also preserve
∞-equivalence. We start by giving an alternative characterisation of such
functors.

Definition 1.2. A functor F ∶ Emb(C)→ Emb(K) is κ-local if, for every
embedding f ∶ B→ F(A) where B ∈ K is κ-generated and A ∈ C, there
exists an embedding g ∶ C → A where C ∈ C is κ-generated such that the
map f factors through F(g).

A F(A) B

C F(C)

g

f

F(g)

Example. The following operations are ℵ0-local functors.
(a) The function mapping a ring R to the polynomial ring R[x].
(b) The function mapping an integral domain R to its quotient field.
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(c) The function mapping a set X to the free group generated by X.
(d) The function mapping a structure M to the structure HF(M) con-

sisting of all hereditary finite sets with elements from M.

Lemma 1.3. If F ∶ Emb(C)→ Emb(D) and G ∶ Emb(D)→ Emb(K) are
κ-local then so is G ○ F.

Exercise 1.1. Prove the preceding lemma.

As a further, more involved example we show that quantifier-free
interpretations are ℵ0-local functors. While every interpretation is local
in an intuitive sense we need the restriction to quantifier-free formulae
to prove that the interpretation is a functor.

Lemma 1.4. Every QF∞ℵ0 -interpretation I ∶ Emb(K) → Emb(Σ) is an
ℵ0-local functor.

Proof. First, we show that quantifier-free interpretations are functors.
Suppose that

I = ⟨α, (δs)s∈S , (εs)s∈S , (φξ)ξ∈Σ⟩

is quantifier-free and let h ∶ A → B be an embedding. For ā ∈ δA
s , we

denote by [ā]s the element encoded by ā. We define I(h) by

I(h)[ā]s ∶= [h(ā)]s .

Since embeddings preserve quantifier-free formulae it follows that this
mapping is a well-defined embedding I(h) ∶ I(A)→ I(B). Obviously,
we have I( f ○ g) = I( f ) ○ I(g). Consequently, I is a functor.

To show that it is ℵ0-local let X ⊆ I(A) be finite. For each equivalence
class [ā]s ∈ X, fix a representative ā and let A0 be the set of these
representatives. Then A0 is finite and we have X ⊆ I(⟪A0⟫A). Note that
I(⟪A0⟫A) is defined since I is quantifier-free. ◻

Local functors can be characterised in purely category-theoretical
terms as those functors that preserve direct limits.
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Theorem 1.5. Let F ∶ Emb(C)→ Emb(K) be a functor where the classes
C andK are κ-hereditary. The functor F is κ-local if and only if it preserves
κ-filtered colimits.

Proof. (⇐) Let f ∶ B → F(A) be an embedding where B ∈ K is κ-
generated. According to Lemma ?? we can write A = lim

Ð→
D where D ∶

I → Subκ(A) is the canonical κ-filtered diagram of all κ-generated
substructures. The corresponding cocone µ from D to A consists of all
inclusion maps µi ∶ D(i)→ A. Since F preserves κ-direct limits we have
F(A) = lim

Ð→
(F ○ D) and the corresponding cone is F[µ].

To find the desired embedding g ∶ C → A we fix a set X ⊆ B of size
∣X∣ < κ generating B. For each x ∈ X, we choose an index ix ∈ I such
that f (x) ∈ rng F(µix ). Since I is κ-filtered there is some index k ∈ I and
morphisms hx ∶ ix → k, for all x. Hence, we have

f [X] ⊆ rng F(µk) ,

which, by Lemma b1.2.8, implies that

rng f = f [⟪X⟫B] = ⟪ f [X]⟫F(A)

⊆ ⟪rng F(µk)⟫F(A) = rng F(µk) .

Since f and F(µk) are injective and rng f ⊆ rng F(µk) we can define
a function g ∶ B → F(D(k)) by g ∶= F(µk)

−1 ○ f . Since f and F(µk)
preserve all quantifier-free formulae so does g. Hence, g is an embedding.
Furthermore, we have F(µk) ○ g = f .
(⇒) Let D ∶ I → Emb(C) be a κ-filtered diagram with A ∶= lim

Ð→
D,

and suppose that µ is a limiting cocone from D to A. We claim that
lim
Ð→
(F ○ D) = F(A). Let D ∶= lim

Ð→
(F ○ D) and let λ be a limiting cocone

from F ○ D to D. Since F[µ] is a cocone from F ○ D to F(A) it follows
that there exists an embedding h ∶ D→ F(A) with h ∗ λ = F[µ].
We only have to show that h is surjective. Fix c ∈ F(A). There exists

some substructure B ∈ Subκ(F(A)) with c ∈ B. Let j ∶ B → F(A) be
the inclusion map. Since F is κ-local we can find a κ-generated structure
C ∈ C and an embedding g ∶ C → A such that j = F(g) ○ j0, for some
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j0 ∶ B→ F(C). In the same way as above we can show that there is some
index k ∈ I and an embedding g0 ∶ C → D(k) with g = µk ○ g0.

C D(k) A

F(C) F(D(k)) D F(A)

B

g0 µk

F(g0) λk h

j0 j

Since a = j(a) = (h ○ λk ○ F(g0) ○ j0)(a) it follows that a ∈ rng h. ◻

Let us show that local functors preserve back-and-forth equivalences.

Definition 1.6. Suppose that F ∶ Emb(C)→ Emb(K) is a functor where
the classes C and K are κ-hereditary. Let p = ā ↦ b̄ ∈ pIso(A,B) be
a partial isomorphism between A,B ∈ C and let π ∶ A0 → B0 be the
unique isomorphism extending p, where A0 ∶= ⟪ā⟫A and B0 ∶= ⟪b̄⟫B

are the structures induced by, respectively, the domain and range of p.
Let i ∶ A0 → A and j ∶ B0 → B be the corresponding inclusion maps
and suppose that F(π) = ā′ ↦ b̄′. We define

pF ∶= F(i)(ā′)↦ F( j)(b̄′) .

Proposition 1.7. Let F ∶ Emb(C)→ Emb(K) be anℵ0-local functorwhere
the classes C and K are ℵ0-hereditary.

p ∈ Iℵ0
ωα(A,B) implies pF ∈ Iα(F(A), F(B)) .

Proof. The claim follows by induction on α. Let p ∶= ā ↦ b̄ ∈ Iℵ0
ωα(A,B),

set A0 ∶= ⟪ā⟫A and B0 ∶= ⟪b̄⟫B, and let π ∶ A0 → B0 be the isomorph-
ism extending p. Let i ∶ A0 → A and j ∶ B0 → B be the corresponding
inclusion maps and suppose that F(π) = ā′ ↦ b̄′.
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For α = 0, we have to check that F(p) is a partial isomorphism. Since
F(i), F( j), and F(π) are embeddings it follows, for every quantifier-free
formula φ(x̄), that

F(A) ⊧ φ(F(i)(ā′)) iff F(A0) ⊧ φ(ā′)

iff F(B0) ⊧ φ(b̄′)

iff F(B) ⊧ φ(F( j)(b̄′)) .

If α is a limit ordinal then the claim follows immediately by inductive
hypothesis. Hence, suppose that α = β + 1. By symmetry, we only need
to check the forth property. Fix c ∈ F(A). Since F is ℵ0-local there exist
a finitely generated structure C and an embedding g ∶ C → A such
that the inclusion h ∶ ⟪c⟫F(A) → F(A) factors through F(g), i.e., h =
F(g) ○ h0. Choose a finite tuple ē0 of generators of C and set ē ∶= g(ē0)
and A1 ∶= ⟪āē⟫A. Since p = ā ↦ b̄ ∈ pIsoℵ0

ω(β+1)(A,B) we can find some
f̄ ⊆ B with q ∶= āē ↦ b̄ f̄ ∈ pIsoℵ0

ωβ(A,B). Set B1 ∶= ⟪b̄ f̄ ⟫B and let
ρ ∶ A1 → B1 be the unique isomorphism extending q. We claim that
qF is an extension of pF with c ∈ dom qF .

Let i0 , i1 , j0 , j1 , g0 be the inclusion maps as depicted in the following
diagram

A0 B0

A A1 B1 B

C

π

i i0 j0
j

i1 ρ j1

g g0

Applying F to this diagram we obtain
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F(A0) F(B0)

F(A) F(A1) F(B1) F(B)

F(C)⟪c⟫F(A)

F(π)

F(i)
F(i0) F( j0)

F( j)

F(i1) F(ρ) F( j1)

F(g)
F(g0)h

h0

First, let us show that c ∈ dom qF . We have

c = h(c) = (F(i1) ○ F(g0) ○ h0)(c)

which implies that c ∈ rng F(i1) = dom qF .
It remains to prove that pF ⊆ qF . Let x ∈ dom pF . Then x = F(i)(a′l),

for some l . Setting w ∶= F(i0)(a′l) we have

F(i1)(w) = (F(i1) ○ F(i0))(a′l) = F(i)(a′l) = x .

It follows that

qF(x) = (F( j1) ○ F(ρ))(w)
= (F( j1) ○ F(ρ) ○ F(i0))(a′l)
= (F( j1) ○ F( j0) ○ F(π))(a′l)

= (F( j) ○ F(π))(a′l) = pF(x) . ◻

Corollary 1.8. Let F ∶ Emb(C)→ Emb(K) be an ℵ0-local functor where
the classes C and K are ℵ0-hereditary. For all A,B, we have

A ≅ωα B implies F(A) ≅α F(B) .

In particular,

A ≅∞ B implies F(A) ≅∞ F(B) .
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We conclude this section by showing that local functors are compatible
with universal theories.

Definition 1.9. Let F ∶ Emb(C) → Emb(K) be a functor and L a logic.
The L-theory of F is the set

ThL(F) ∶= {φ ∈ L ∣ F(A) ⊧ φ for all A ∈ C } .

Lemma 1.10. Let F ∶ Emb(C) → Emb(K) be an ℵ0-local functor where
the classes C and K are ℵ0-hereditary. If U ∈ C is ℵ0-universal then

Th∀∞ℵ0
(F(U)) =Th∀∞ℵ0

(F) .

Proof. (⊇) follows immediately from the definitions.
(⊆)We prove by induction on ψ(x̄) ∈ ∀∞ℵ0 that

F(U) ⊧ ψ(c̄) , for all c̄ ⊆ F(U) ,

implies that

F(A) ⊧ ψ(ā) , for all A ∈ C and every ā ⊆ F(A) .

First, suppose that ψ is quantifier-free. Let A ∈ C and ā ⊆ F(A).
We have to show that F(A) ⊧ ψ(ā). Since F is ℵ0-local we can find a
finitely generated substructure A0 ⊆ A with ā ⊆ F(A0). Since U is ℵ0-
universal there exists an embedding f ∶ A0 → U. We set b̄ ∶= F( f )(ā).
By assumption F(U) ⊧ ψ(b̄). Since ψ is quantifier-free and F( f ) is an
embedding it follows that F(A0) ⊧ ψ(ā). Hence, F(A) ⊧ ψ(ā).

For the inductive step, we have to distinguish three cases. Either

ψ(x̄) =⋀Ψ , or ψ(x̄) =⋁Ψ , or ψ(x̄) = ∀yϑ(x̄ , y) .

In each of these cases the claim follows directly from the inductive
hypothesis. ◻
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2. Word constructions
Local functors can be characterised in terms of a certain family of co-
morphisms called word constructions. Instead of defining these opera-
tions as a single, complex construction we will introduce several simple
operations which, when combined with first-order interpretations, yield
the required expressive power.

We startwith themain ingredient in aword construction, the so-called
term-algebra operation.

Definition 2.1. Let Γ be a functional S-sorted signature and Σ a relational
one that is S0-sorted for some S0 ⊆ S. The Γ-term algebra T [Γ ,A] over
a Σ-structure A is the T[Γ , S0]-sorted structure whose universe T[Γ ,A]
consists of all Γ-terms over A.Every element t(ā) ∈ T[Γ ,A] has sort t(s̄),
where s̄ are the sorts of ā. For each relation symbol R ∈ Σ, we have the
relation

RT [Γ ,A] = RA ,

and, for each n-ary function symbol f ∈ Γ, we have an n-ary function
defined by

f T [Γ ,A](t0 , . . . , tn−1) ∶= f t0 . . . tn−1 .

Example. Let us give two simple examples showing the versatility of the
term algebra operation in conjunction with a first-order interpretation.

(a) First, we interpret the product A × A in the structure T [{ f },A]
where f is a binary function symbol. When we encode a pair ⟨a, b⟩ ∈
A× A by the term f (a, b), we can define the universe by the formula

δ(x) ∶= “x = f (a, b) for some a, b ∈ A.”

Then we define each relation R by

φR(x̄) ∶= “x i = f (a i , b i) for some a i , b i ∈ A such that ā, b̄ ∈ R.”
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(b) Similarly,we can interpret the disjoint union A∪A in the structure
T [{ f },A] where f is a unary function symbol. The universe is the set

A∪ { f (a) ∣ a ∈ A}

which is obviously definable in T [{ f },A]. We can define the relations R
by

φR(x̄) ∶= “Either x̄ = ā or x̄ = f (ā), for some ā ∈ R.”

Lemma 2.2. Let Σ a relational signature and Γ a functional one. The
Γ-term-algebra operation

T [Γ ,−] ∶ Emb(Σ)→ Emb(Σ ∪ Γ)

is an ℵ0-local functor.

Proof. First, let us show that it is a functor. Let h ∶ A→ B be an embed-
ding of Σ-structures. We obtain an embedding

T [Γ , h] ∶ T [Γ ,A]→ T [Γ ,B]

by setting

T [Γ , h](t(ā)) ∶= t(h(ā)) .

To prove that T [Γ ,−] is ℵ0-local suppose that X ⊆ T[Γ ,A] is finite.
Then we have X ⊆ T[Γ ,A0] = ⟪A0⟫T [Γ ,A] where the set

A0 ∶=⋃{ ā ∣ t(ā) ∈ X }

is finite. ◻

It follows from the results of the previous section that T [Γ ,−] pre-
serves ∞-equivalence. The next lemma gives a more precise statement.
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Lemma 2.3. Suppose that Σ is a relational signature, Γ a functional one,
and κ an infinite cardinal. For each FOκℵ0 -formula φ(x0 , . . . , xn−1) and
all terms t i(x̄ i) ∈ T<ω[Γ], for i < n, we can construct an FOκℵ0 -formula
φt0 . . .tn−1(x̄0 , . . . , x̄n−1) such that

T [Γ ,A] ⊧ φ(t0(ā0), . . . , tn−1(ān−1))

iff A ⊧ φt0 . . .tn−1(ā0 , . . . , ān−1) .

Proof. W.l.o.g. we may assume that φ is term reduced. We construct φ t̄
inductively. First, suppose that φ is an atomic formula. If φ = Rx̄ with
R ∈ Σ then we can set

(Rx̄) t̄ ∶=

⎧⎪⎪
⎨
⎪⎪⎩

Rx0 . . . xn−1 if t i = x for all i ,
false otherwise .

For φ = x = y we set

(x = y)st ∶=

⎧⎪⎪
⎨
⎪⎪⎩

⋀i x i = y i if s = t ,
false otherwise .

Finally, if φ = f x̄ = y then we define

( f x̄ = y)s̄ t ∶=

⎧⎪⎪
⎨
⎪⎪⎩

⋀i , j x i
j = y

i
j if f s̄ = t ,

false otherwise ,

where s i = s i(x̄ i) and t = t( ȳ0 , . . . , ȳn−1) . Boolean operations are
unchanged:

(¬φ) t̄ ∶= ¬φ t̄ and (⋀Φ) t̄ ∶=⋀{φ t̄ ∣ φ ∈ Φ } .

For a quantifier over a variable y of sort s ∈ T[Γ , S0], we have

(∃yφ(x̄ , y)) t̄ ∶= ∃ ȳφ t̄ s(x̄0 , . . . , x̄n−1 , ȳ) . ◻
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The term-algebra operation creates structures with many sorts. To
reduce the number of sorts we employ a second operation that merges
several sorts into a single one. Recall that with every morphism ⟨S , Σ⟩→
⟨T , Γ⟩ of Sig we have associated a reduct mapping Str[Γ] → Str[Σ].
For relational signatures we can also define a mapping Str[Σ]→ Str[Γ]
in the other direction.

Definition 2.4. Let α = ⟨χ, µ⟩ ∶ ⟨S , Σ⟩ → ⟨T , Γ⟩ be a morphism of Sig
where the signatures Σ and Γ are relational. The inverse α-reduct of a
Σ-structure A is the Γ-structure Aα where the domain of sort t ∈ T is

Aα
t ∶=⊍{As ∣ s ∈ χ−1(t) } ,

and, for each relation symbol R ∈ Γ, we have

RAα
∶=⊍{QA ∣ Q ∈ µ−1(R) } .

Remark. We have defined inverse reducts only for relational signatures
in order to avoid the complications arising from the fact that we require
functions to be total. For instance, if V = ⟨V ,K ,+, ⋅⟩ is a {v , s}-sorted
vector space and α maps both sorts to the same value, then we get prob-
lems defining Vα since the operation + is a function V × V → V and
not a function (V ∪ K) × (V ∪ K)→ V ∪ K.

Lemma 2.5. Let α be a morphism of Sig. The operation A ↦ Aα is an
ℵ0-local functor.

Proof. Clearly the operation is ℵ0-local : for every finite subset X ⊆ Aα

we have X ⊆ (⟪X⟫A)
α . It remains to show that it is a functor. Let h ∶

A→ B be an embedding. We define

hα ∶ Aα → Bα by setting hα(a) ∶= h(a) .

To show that this function is an embedding suppose that ā ∈ RAα
. Then

there is some relation Q ∈ α−1(R) with ā ∈ QA. Hence, h(ā) ∈ QB ⊆
RBα

. ◻
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It follows that inverse reducts preserve FO∞ℵ0 -equivalence. The next
lemma states that they also preserve FOκℵ0 -equivalence for sufficiently
large cardinals κ.

Lemma 2.6. Let α = ⟨χ, µ⟩ ∶ ⟨S , Σ⟩→ ⟨T , Γ⟩ be amorphism of Sigwhere
the signatures Σ and Γ are relational, and let κ be an infinite cardinal such
that

∣χ−1(t)∣ < κ and ∣µ−1(R)∣ < κ , for all t ∈ T and R ∈ Γ .

For every formula φ(x̄) ∈ FOκℵ0[Σ] where x i is of sort t i and for all sorts
s i ∈ χ−1(t i), there exists a formula φα

s̄ (x̄) ∈ FOκℵ0[Γ] such that

Aα ⊧ φ(ā) iff A ⊧ φα
s̄ (ā) ,

for every Σ-structure A and all a i ∈ As i .

Proof. We construct φα
s̄ by induction on φ. For atomic formulae we set

(x0 = x1)
α
s̄ ∶= x0 = x1 and (Rx̄)αs̄ ∶=⋁{Q ∈ µ−1(R) ∣ Q x̄ }

(where we consider x i now to be of sort s i). Boolean operations remain
unchanged:

(¬φ)αs̄ ∶= ¬φα
s̄ and (⋀Φ)αs̄ ∶=⋀{φα

s̄ ∣ φ ∈ Φ } .

A quantifier with a variable y of sort t ∈ T is replaced by a disjunction
over all sorts r ∈ χ−1(t)

(∃yφ)αs̄ ∶=⋁{∃yφα
s̄r ∣ r ∈ χ

−1(t) } . ◻

We obtain an alternative characterisation of ℵ0-local functors by com-
bining these two operations with quantifier-free interpretations.

Definition 2.7. (a) Let Σ be a signature and let Σrel be the signature
obtained from Σ by replacing every function symbol f of type s̄ → t by a
relation symbol R f of type s̄t. The relational variant of a Σ-structureM is
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the Σrel-structureR(M) obtained from M by replacing every function f
by its graph.

(b) A κ-word construction is an operation of the form

F = I ○ S ○R ○ T ○R ,

where I is a QFκℵ0 -interpretation,R is the operation defined in (a), S is
an inverse reduct, and T is a Γ-term-algebra operation where ∣Γ∣ < κ.

Remark. Note thatR is a quantifier-free first-order interpretation.

Theorem 2.8. Let C be an ℵ0-hereditary class of Σ-structures and K a
class of Γ-structures. Suppose that κ is a cardinal such that

κ > 2∣Σ∣⊕ℵ0 and κ > ∣F(C)∣ , for all finitely generated C ∈ C .

A mapping F ∶ Emb(C)→ Emb(K) is an ℵ0-local functor if and only if it
is an κ-word construction.

Proof. (⇐)We have already seen that all operations aword construction
is built up from are ℵ0-local functors. Since ℵ0-local functors are closed
under composition the claim follows.
(⇒)We have to express F as composition

F = I ○ S ○R ○ T ○R .

To define T we use Theorem 1.5 which tells us that F preserves direct
limits. LetD ∶ I → Subℵ0(A) be the canonicaldiagramwith limit lim

Ð→
D =

A. We are looking for an operation mapping A to lim
Ð→
(F ○D).

Fix an enumeration (Cα)α<λ of⋃A∈K Subℵ0(A). Note that each struc-
ture Cα has at most ∣Σ∣⊕ ℵ0 elements. Hence, there are at most 2∣Σ∣⊕ℵ0

of them and we have λ ≤ 2∣Σ∣⊕ℵ0 < κ.
For each α < λ, we choose a finite tuple c̄α ⊆ Cα generating Cα . Set

Ξ ∶= { f αb ∣ α < λ, b ∈ F(Cα) } ,
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where f αb is a new function symbol of arity ∣c̄α ∣. Note that ∣Ξ∣ < κ since
λ < κ and ∣F(Cα)∣ < κ, for all α. For T we choose the Ξ-term-algebra
operation A↦ T [Ξ,A]. The inverse reduct S maps each element to the
correct sort.

Themainwork is done by the interpretation I . It creates the structures
F(Cα) and pastes them together. The domain formula δ(x) states that
x is a term of the form f αb (ā), for some α < λ and b ∈ F(Cα), such
that the substructure generated by ā is isomorphic to Cα . Each relation
R ∈ Γ can be defined by a formula φR(x̄) stating that x i = f α i

b i
(ā) and

the tuple b̄ is in the relation RF(Cα). The functions in Γ are defined in the
sameway. Two elements f αb (ā) and f α

′

b′ (ā
′) are defined to be equal iffwe

have i(b) = i′(b′)where i ∶ Cα → ⟪c̄α c̄α′⟫A and i′ ∶ Cα′ → ⟪c̄α c̄α′⟫A are
the canonical inclusion maps. Since λ < κ and every Cα has less than κ
elements, it follows that each of the above statements can be expressed
in FOκℵ0 . ◻

Corollary 2.9. Let F ∶ Emb(C) → Emb(K) be ℵ0-local and let Σ be the
signature of C. If κ is a cardinal such that

κ > 2∣Σ∣⊕ℵ0 and κ > ∣F(C)∣ , for all finitely generated C ∈ C ,

then A ≅FOκℵ0
B implies F(A) ≅FOκℵ0

F(B) .

Remark. We have characterised ℵ0-local functors in terms of word oper-
ations and we have shown that they preserve FO∞ℵ0 -equivalence. These
results can be generalised to κ-local functors for arbitrary cardinals κ.
To do so we have to allow term algebras with operations of infinite arity
less than κ. It follows that these operations preserve equivalence for
the logic FO∞κ which extends FO∞ℵ0 by quantifiers ∃{ x i ∣ i < α } and
∀{ x i ∣ i < α } over sets of α < κ variables. We can give a back-and-forth
characterisation of this logic if we replace the usual back-and-forth prop-
erty by the requirement that, for every tuple c̄ with ∣c̄∣ < κ, we can find a
corresponding tuple d̄ in the other structure.
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As an application of word constructions we consider varieties. With
each variety V we can associated a so-called replica functor that maps a
given structure to its closest approximation in V .

Definition 2.10. Let Σ ⊆ Σ+ be signatures, P ∈ Σ+ ∖ Σ a unary predicate,
and V a quasivariety of Σ+-structures.

The replica functor RV ∶ Hom(Σ) → Hom(V) of V maps an arbitrary
Σ-structure A to the free model of the V-presentation ⟨A; ΦA⟩ where

ΦA ∶= { Pa ∣ a ∈ A} ∪ {φ(ā) ∣ φ atomic, ā ⊆ A, A ⊧ φ(ā) } .

Remark. Note that replica functors differ from the functors considered
so far since, in general, they do not preserve embeddings. Hence, they
are functors Hom(Σ)→ Hom(Σ+), and not Emb(Σ)→ Emb(Σ+).

Lemma 2.11. The replica functor RV ∶ Hom(Σ)→ Hom(V) is a functor.

Proof. Let h ∶ A→ B be a homomorphism. By definition, the structure
RV(A) is the freemodel of ⟨A; ΦA⟩. Let ā be an enumeration of A and set
b̄ ∶= h(ā). Since homomorphisms preserve atomic formulae it follows
that

⟨RV(B), b̄⟩ ⊧ ΦA ,

that is, RV(B) is a model of ⟨A; ΦA⟩. Since RV(A) is the free model of
this presentation there exists a unique homomorphism g ∶ RV(A) →
RV(B) with g ↾ A = h. It is straightforward to check that we obtain a
functor if we define RV(h) ∶= g. ◻

Proposition 2.12. Each replica functor is a word construction.

Proof. Since the structure RV(A) is generated by the set A there exists a
homomorphism T[Σ+ ,A]→ RV(A) such that h ↾ A = idA. We define a
quantifier-free interpretation I such that

RV = I ○ S ○R ○ T ○R ,
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where T (A) ∶= T [Σ+ ,A] and S is the inverse reduct that maps every
sort t ∈ T[Σ+ , S0] of T [Σ+ ,A] to the sort s such that t ∈ Ts[Σ+ , S0].
According to Lemma d2.4.2, we have

RV(A) ⊧ ψ(ā) iff Th(V) ⊧⋀ΦA → ψ(ā) ,

for every atomic formula ψ(x̄) ∈ FO<ω[Σ+] and all ā ⊆ A.
Note that, by the interpolation theorem, we have

Th(V) ⊧⋀ΦA → ψ(ā) iff Th(V) ⊧⋀Φ⟪ā⟫A
→ ψ(ā) .

For each atomic formula ψ(x̄), we define

Dψ ∶= {⟪ā⟫A ∣Th(V) ⊧⋀ΦA → ψ(ā) } .

Let ηψ(x̄) be the FO∞ℵ0 -formula expressing that

⟪x̄⟫A ≅ C , for some C ∈ Dψ .

It follows that

RV(A) ⊧ ψ(ā) iff ⟪ā⟫A ∈ Dψ iff A ⊧ ηψ .

Consequently, we can define the desired interpretation

I = ⟨α, (δs)s∈S , (εs)s∈S , (φξ)ξ∈Σ+⟩

by setting

α ∶= true ,
δs(x) ∶= true ,

εs(x , y) ∶= “x = s(ā) and y = t(b̄) and A ⊧ ηs(x̄)=t( ȳ)(ā, b̄)” ,

φξ(x̄) ∶= “x i = t i(ā i) and A ⊧ ηRt̄(ā0 , . . . , ān−1)” . ◻
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3. Ehrenfeucht-Mostowski models

3. Ehrenfeucht-Mostowski models
If a functor F is ℵ0-local then with every element c of F(A) we can
associate some finitely generated substructure A0 ⊆ A such that c is
contained in F(A0). We can think of the generators of A0 as a code for c.
In general, c can have several such codes and the connection between
c and its codes is rather loose. In order to obtain a tighter relationship
and a canonical way to encode elements of F(A), we add a function
s ∶ A→ F(A) assigning to every element a of A some element of F(A)
encoded by a.

Definition 3.1. LetK be a class of Γ-structures and Σ a signature. A func-
tor F ∶ Emb(K) → Emb(Σ) is strongly local if there exists a family of
injective functions sJ ∶ I → F(J), for J ∈ K, such that

◆ F(J) is generated by rng sJ and
◆ F(h) ○ sJ = sK ○ h, for every embedding h ∶ J→ K.

We call sJ the spine of F(J).

Remark. Translated into category-theoretical terms the second of the
above conditions on sJ simply means that (sJ)J is a natural transforma-
tion between the functors U and V ○ F, where

U ∶ Emb(K)→ Set and V ∶ Emb(Σ)→ Set

are the forgetful functors mapping a structure to its universe.
Every strongly local functor is ℵ0-local. For the proof we need a tech-

nical lemma.

Lemma 3.2. Let F ∶ Emb(K)→ Emb(Σ) be a strongly local functor and
h ∶ J→ K an embedding in K. Then

F(h) ∶ F(J) ≅ ⟪sK[rng h]⟫F(K) .

Proof. It is sufficient to show that rng F(h) = ⟪sK[rng h]⟫F(K). Note
that F(h) ○ sJ = sK ○ h implies

F(h)[rng sJ] = sK[rng h] .
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Therefore, ⟪rng sJ⟫F(J) = F(I) implies

rng F(h) = F(h)[⟪rng sJ⟫F(J)]

= ⟪F(h)[rng sJ]⟫F(K) = ⟪sK[rng h]⟫F(K) . ◻

Proposition 3.3. Let F ∶ Emb(K)→ Emb(Σ) be a strongly local functor
where K is ℵ0-hereditary. Then F is ℵ0-local.

Proof. Fix J ∈ K and suppose that X ⊆ F(J) is finite. Then there is a
finite subset Z ⊆ rng sJ such that X ⊆ ⟪Z⟫F(J). Set

J0 ∶= ⟪s−1
J [Z]⟫J .

Note that J0 ∈ K sinceK is ℵ0-hereditary. By Lemma 3.2, it follows that

X ⊆ ⟪Z⟫F(J) = ⟪rng sJ0⟫F(J) ≅ F(J0) . ◻

By Corollary 2.9 it follows that strongly local functors preserve FOκℵ0 -
equivalence.

Corollary 3.4. Let F ∶ Emb(K) → Emb(Σ) be a strongly local functor
where K is an ℵ0-hereditary class of Γ-structures. For every cardinal κ ≥
2∣Γ∣⊕ℵ0 and all J,K ∈ K,

J ≡FOκℵ0
K implies F(J) ≡FOκℵ0

F(K) .

Strongly local functors also preserve QF-equivalence.

Lemma 3.5. Suppose that F ∶ Emb(K) → Emb(Σ) is a strongly local
functor where the class K is ℵ0-hereditary.

Let J,K ∈ K be structures and ā ⊆ I and b̄ ⊆ K finite tuples. Then

⟨J, ā⟩ ≡0 ⟨K, b̄⟩ implies ⟨F(J), sJ(ā)⟩ ≡0 ⟨F(K), sK(b̄)⟩ .

Proof. Set L ∶= ⟪ā⟫J and let sL be the spine of L. SinceK isℵ0-hereditary
we have L ∈ K. Since ⟨J, ā⟩ ≡0 ⟨K, b̄⟩, there are embeddings f ∶ L → J
and g ∶ L→ K with f (ā) = ā and g(ā) = b̄. Note that

(F( f ) ○ sL)(ā) = (sJ ○ f )(ā) = sJ(ā) ,
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and (F(g) ○ sL)(ā) = (sK ○ g)(ā) = sK(b̄) .

Since embeddings preserve every quantifier-free formula φ, it follows
that

F(J) ⊧ φ(sJ(ā)) iff F(L) ⊧ φ(sL(ā))

iff F(K) ⊧ φ(sK(b̄)) . ◻

Corollary 3.6. Let F ∶ Emb(K) → Emb(Σ) be a strongly local functor
where the classK is ℵ0-hereditary. For every J ∈ K, the spine sJ of F(J)
is a QF-indiscernible system over J.

Next we study the first-order theory of structures in the range of a
strongly local functor.

Proposition 3.7. Let F ∶ Emb(K)→ Emb(Σ) be a strongly local functor
and U ∈ K an ℵ0-universal structure. If Th(F(U)) is a Skolem theory
then Th(F) is complete. In particular,

F(J) ≡ F(K) , for all J,K ∈ K .

Furthermore, each spine sJ is an indiscernible system over J.

Proof. A Skolem theory is ∀-axiomatisable and admits quantifier elim-
ination. Let Φ ⊆ ∀ be an axiom system for Th(F(U)). By Lemma 1.10.
we have Φ ⊆Th(F). Hence,

Th(F(U)) = Φ⊧ ⊆Th(F) ⊆Th(F(U))

implies that F(J) ≡ F(U), for all J ∈ K.
To show that every spine sJ is indiscernible, fix J ∈ K and let c̄, d̄ ⊆ I

be tuples with atp(c̄) = atp(d̄). For every formula φ(x̄), there exists
a quantifier-free formula ψ(x̄) with F(J) ⊧ φ ↔ ψ. By Lemma 3.5, it
follows that

F(J) ⊧ φ(sJ[c̄]) iff F(J) ⊧ ψ(sJ[c̄])

iff F(J) ⊧ ψ(sJ[d̄])

iff F(J) ⊧ φ(sJ[d̄]) . ◻
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Existence and uniqueness of strongly local functors is proved in the
following proposition.

Proposition 3.8. Let A be a Σ-structure, U a Γ-structure, and set

K ∶= {J ∣ Subℵ0(J) ⊆ Subℵ0(U) } .

Suppose that A is generated by a QF-indiscernible system a ∶ U → A over U.
Up to natural isomorphism there exists a unique strongly local functor
F ∶ Emb(K)→ Emb(Σ) such that

F(U) ≅ A and AvQF(sU) = AvQF(a) .

Proof. For each J ∈ K, we define a set Φ(J) ⊆ QF0[ΣI] by

Φ(J) ∶= {φ(c̄) ∣ c̄ ⊆ I and φ(x̄) ∈ AvQF(a)(atp(c̄/J)) } .

We claim that Φ(J) is =-closed. Since every type q contains the equation
t(x̄) = t(x̄), we have

t(c̄) = t(c̄) ∈ Φ(J) , for every term t(c̄) ∈ T[ΣI ,∅] .

Furthermore, if Φ(J) contains the formulae φ(t(c̄), c̄) and t(c̄) = t′(c̄)
then

φ(t(x̄), x̄), t(x̄) = t′(x̄) ∈ AvQF(a)(atp(c̄/J))

implies

φ(t′(x̄), x̄) ∈ AvQF(a)(atp(c̄/J)) .

Consequently, φ(t′(c̄), c̄) ∈ Φ(J). Hence, we can use Lemma c2.4.4 to
construct a Herbrand model H(J) of Φ(J) such that

Φ(J) = {φ ∈ QF0[ΣI] ∣ H(J) ⊧ φ } .

We define the desired strongly local functor by setting

F(J) ∶= H(J)∣Σ and sJ(c) ∶= cH(J) , for c ∈ I .
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First, note that the mapping sJ is injective since we have x0 ≠ x1 ∈
tp(a[vv′]), for all elements v ≠ v′ of U. Furthermore, if h ∶ J→ K is an
embedding, c̄ ⊆ I, and φ(x̄) quantifier-free, then

F(J) ⊧ φ(sJ(c̄)) iff φ(x̄) ∈ AvQF(a)(atp(c̄/J))
iff φ(x̄) ∈ AvQF(a)(atp(h(c̄)/K))
iff F(K) ⊧ φ(sK(h(c̄))) .

By the Diagram Lemma it follows that the function

F(h) ∶ tF(J)(sJ(c̄))↦ tF(K)(sK(h(c̄)))

is an embedding F(h) ∶ F(J)→ F(K). Consequently, F is a functor. By
construction, it further follows that it is strongly local, that F(U) ≅ A,
and that AvQF(sU) = AvQF(a). Hence, it remains to check uniqueness.

Suppose that G is another strongly local functor such that G(U) ≅ A
and AvQF(s′U) = AvQF(a),where s′U is the spine of G(U). For every J ∈ K,
each finite tuple c̄ ⊆ I, and all quantifier-free formulae φ(x̄), it follows
that

G(J) ⊧ φ(s′J(c̄)) iff G(U) ⊧ φ((s′U ○ g)(c̄))
iff φ(x̄) ∈ AvQF(s′U)(atp(g(c̄)/U))
iff φ(x̄) ∈ AvQF(a)(atp(g(c̄)/U))
iff φ(x̄) ∈ AvQF(a)(atp(c̄/J))
iff F(J) ⊧ φ(sJ(c̄)) ,

where g ∶ ⟪c̄⟫J → U is an arbitrary embedding and s′J and s′U are the
spines of G(J) and G(U), respectively. Since F(J) and G(J) are gen-
erated by, respectively, rng sJ and rng s′J it follows that we obtain an
isomorphism π ∶ F(J)→ G(J) by setting

π(tF(J)(sJ(c̄))) ∶= tG(J)(s′J(c̄)) ,

for all terms t(x̄) and all c̄ ⊆ I. ◻
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Of particular importance are strongly local functors F ∶ Emb(L) →
Emb(Σ)whereL is the class of all linear orders. This is mainly due to the
fact that we always can find enough indiscernible sequences, whereas
arbitrary indiscernible systems do not need to exist. Note thatL is hered-
itary and every infinite linear order is ℵ0-universal.

Definition 3.9. Let Lin ∶= Emb(L) where L is the class of all linear
orders.

(a) A strongly local functor F ∶ Lin→ Emb(Σ) is called an Ehrenfeucht-
Mostowski functor. We say that F is an Ehrenfeucht-Mostowski functor
for a theory T if F is an Ehrenfeucht-Mostowski functor such that F(I) ⊧
T , for every linear order I.

(b) Let T be a first-order theory.An Ehrenfeucht-Mostowski model of T
is a model of the form F(I) where F is some Ehrenfeucht-Mostowski
functor for T and I is a linear order.

(c) Let F ∶ Lin→ Emb(Σ) be an Ehrenfeucht-Mostowski functor. The
average type of F is the set

Av(F) ∶= {φ(x̄) ∈ FO<ω[Σ] ∣

F(J) ⊧ φ(sJ(c̄)) for all J ∈ K and c̄ ∈ [I]<ω } .

Note that, by Proposition 3.7 and Lemma 3.5, the average type of an
Ehrenfeucht-Mostowski function is complete.

Lemma 3.10. If F ∶ Lin→ Emb(Σ) is an Ehrenfeucht-Mostowski functor,
then Av(F) is a complete type.

Theorem 3.11 (Ehrenfeucht-Mostowski). Let M be a model of a Skolem
theory T. For every sequence (a i)i∈I of distinct elements in M there exists
an Ehrenfeucht-Mostowski functor F for T such that

Av((a i)i/∅) ⊆ Av(F) .

Proof. ByProposition e5.3.6, there exists an elementary extension N ⪰M
containing an indiscernible sequence (cn)n<ω with

Av((a i)i∈I/∅) ⊆ Av((cn)n<ω/∅) .
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Let s ∶ ω → N be the function mapping n < ω to cn and set

U ∶= ⟪rng s⟫N .

Note that the function s is injective, since x0 ≠ x1 ∈ Av((a i)i/∅). Fur-
thermore, we have U ⪯ N since T is a Skolem theory. Hence, we can
use Proposition 3.8 to find an Ehrenfeucht-Mostowski functor F with
F(ω) = U and sω = s. It follows that Av((a i)i/∅) ⊆ Av((cn)n/∅) =
Av(F). ◻

Corollary 3.12. If a first-order theory T has infinite models then there
exists an Ehrenfeucht-Mostowski functor for T.

Proof. Let T+ be a Skolemisation of T . It is sufficient to find an Ehren-
feucht-Mostowski functor F for T+ since we can obtain the desired
Ehrenfeucht-Mostowski functor for T by composing F with a suitable
reduct functor.

Let M+ be an infinite model of T+ that contains an indiscernible
sequence (an)n<ω of distinct elements. By Theorem 3.11, there exists an
Ehrenfeucht-Mostowski functor F with Av((an)n) ⊆ Av(F). We claim
that F is the desired Ehrenfeucht-Mostowski functor for T+. As (an)n is
indiscernible, its average type Av((an)n) is complete and, therefore,
equal to Av(F). Consequently, F(ω) ⊧ T+. Since T+ is a Skolem theory,
it follows by Lemma 3.7 that F(I) ⊧ T+, for every I. ◻

We use Ehrenfeucht-Mostowski functors to construct models of a
theory with certain properties. As a first simple application, we build
models with many automorphisms.

Lemma 3.13. Let T be a complete first-order theory with infinite models.
For every cardinal κ ≥ ∣T ∣, there exists a model M of T of size ∣M∣ = κ
with 2κ automorphisms.

Proof. According to Corollary 3.12, there is an Ehrenfeucht-Mostowski
functor F ∶ Lin → Mod(T) for T . We will construct a linear order I of
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size ∣I∣ = κ with 2κ automorphisms. It follows that F(I) is the desired
model of T .

Let I ∶= Z ⋅ κ be the product of the order Z of the integers and the well-
order κ. For every set X ⊆ κ, we can define an automorphism πX ∶ I → I
by

πX⟨k, α⟩ ∶=
⎧⎪⎪
⎨
⎪⎪⎩

⟨k + 1, α⟩ if α ∈ X ,
⟨k, α⟩ if α ∉ X .

Since πX ≠ πY , for X ≠ Y , it follows that I has at least 2κ automorphisms.
◻

One important application of Ehrenfeucht-Mostowski models rests
on the fact that such models realise few types.

Theorem 3.14. Let T be a Skolem theory over the signature Σ and let M be
an Ehrenfeucht-Mostowski model of T.

(a) For every finite sequence of sorts s̄, M realises at most ∣Σ∣⊕ℵ0 types
in S s̄(T).

(b) Let s be a sort and U ⊆ M. If the spine of M is well-ordered then
M realises at most ∣Σ∣⊕ ∣U ∣⊕ ℵ0 types in Ss(U).

Proof. (a) Suppose that M = F(I) for some Ehrenfeucht-Mostowski
functor F. Fix a finite tuple s̄ of sorts and let ā ∈ M s̄ be a tuple of
elements of the corresponding sorts. For each index l there exists a term
t l(x̄) and an increasing tuple ı̄ l ⊆ I such that a l = tM

l (sI[ı̄ l ]). By adding
redundant variables we may assume that all the tuples ı̄ l are equal. We
denote this tuple by ı̄. If k̄ ⊆ I is another increasing tuple of the same
length then it follows from indiscernibility of the spine sI that

M ⊧ φ(t0(sI[ı̄]), . . . , tn−1(sI[ı̄]))
iff M ⊧ φ(t0(sI[k̄]), . . . , tn−1(sI[k̄])) ,
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for every formula φ. Setting b l ∶= t l(sI[k̄]) we obtain tp(ā) = tp(b̄).
Hence, the type of ā is uniquely determined by the terms t l . Since

∣T<ω
s l
[Σ]∣ = ∣Σ∣⊕ ℵ0

it follows that M realises at most ∣Σ∣⊕ ℵ0 types from S s̄(T).
(b) Suppose that M = F(α), for some ordinal α, and let U ⊆ M.

Each element c ∈ U can be written as c = tM
c (sα(ı̄c)), for some term tc

and indices ı̄c ⊆ α. The set W ∶= ⋃c∈U ı̄c has size ∣W ∣ ≤ ∣U ∣ ⊕ ℵ0. Let
u(x̄) ∈ T<ω[Σ] be a term and k̄ ⊆ α. By indiscernibility of sα the type
of uM(k̄) is determined by the relative position of k̄ with respect to the
elements of W . Since α is well-ordered, there are at most ∣W ∣⊕ℵ0 ways
in which k̄ can lie relative to W . Consequently, the elements uM(k̄) with
k̄ ⊆ α realise at most ∣W ∣⊕ℵ0 complete types over U . Therefore, at most

∣T<ω
s [Σ]∣⊕ ∣W ∣⊕ ℵ0 ≤ ∣Σ∣⊕ ∣U ∣⊕ ℵ0

complete s-types over U are realised in M. ◻

Corollary 3.15. Let T be a complete first-order theory with infinite models.
For every cardinal κ ≥ ∣T ∣, T has an Ehrenfeucht-Mostowski model M of
size ∣M∣ = κ such that, for every set U ⊆ M and every finite tuple s̄ of sorts,
M realises at most ∣U ∣⊕ ∣T ∣ types from S s̄(U).

Proof. According to Corollary 3.12, there is an Ehrenfeucht-Mostowski
functor F ∶ Lin → Mod(T) for T . Let M ∶= F(κ). Then ∣M∣ = κ and,
by Theorem 3.14 (b), M realises at most ∣U ∣ ⊕ ∣T ∣ types in Ss(U), for
every U ⊆ M. For a finite tuple s̄ = s0 . . . sn−1 it follows by induction that
M realises at most (∣U ∣⊕ ∣T ∣)n = ∣U ∣⊕ ∣T ∣ types in S s̄(U). ◻

Theorem 3.16. Let Σ be a signature. If a theory T over Σ is κ-categorical for
some κ ≥ ∣Σ∣⊕ ℵ0, then T is λ-stable, for every cardinal ∣Σ∣⊕ ℵ0 ≤ λ < κ.

Proof. Let M be the Ehrenfeucht-Mostowski model from Corollary 3.15.
For a contradiction, suppose that there is some set U of size ∣U ∣ = λ with
∣Ss(U)∣ > λ. Let N be a model of T containing U that realises λ+ of these
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types. By the Theorem of Löwenheim and Skolem we can choose N to
be of size ∣N ∣ = λ+ ≤ κ. Hence, N has an elementary extension N+ of size
∣N+∣ = κ. As T is κ-categorical this implies N+ ≅M and there exists an
elementary embedding h ∶ N → M. Hence, M contains a subset h[U]
of size λ such that more than λ types over h[U] are realised in M. This
contradicts our choice of M. ◻

Corollary 3.17. Let T be a theory over a countable signature. If T is
κ-categorical for some uncountable cardinal κ then T is ℵ0-stable.

The next proposition generalises Lemma e4.1.6.

Proposition 3.18. Let T be a countable, complete theory. If there is some
finite sequence s̄ of sorts such that S s̄(T) is uncountable then, for each
infinite cardinal κ, T has at least 2ℵ0 pairwise non-isomorphic models of
cardinality κ.

Proof. Let κ be an infinite cardinal and fix s̄ such that S s̄(T) is uncount-
able. By Corollary b5.7.5, it follows that ∣S s̄(T)∣ = 2ℵ0 . Note that this also
implies that T has infinite models. Let c̄ be a tuple of new constant sym-
bols of sorts s̄. For each p(x̄) ∈ S s̄(T) we form the theory Tp ∶= T ∪ p(c̄).
Let T+

p be a Skolemisation of Tp. We can use Theorem 3.11 to find an
Ehrenfeucht-Mostowski model Ap of T+

p with a spine sp ∶ κ → Ap. It
follows that

κ ≤ ∣Ap∣ ≤ κ ⊕ ∣T+
p ∣ = κ ⊕ ℵ0 = κ .

By Theorem 3.14 Ap realises only countably many s̄-types. Therefore, so
does Bp ∶= Ap∣Σ . Furthermore, the tuple c̄Ap realises the type p in Bp.
We claim that there are 2ℵ0 pairwise non-isomorphic models among

the Bp. Suppose otherwise. Then there exists a set I ⊆ S s̄(T) of size
∣I∣ < 2ℵ0 such that every Bp is isomorphic to some Bq with q ∈ I. Since
every type in S s̄(T) is realised in some Bp, but each Bp realises only
countably many types, it follows that

∣S s̄(T)∣ ≤ ∣I∣⊗ ℵ0 < 2ℵ0 .

Contradiction. ◻
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3. Ehrenfeucht-Mostowski models

Definable linear orders in an Ehrenfeucht-Mostowski model F(I)
are closely related to the order induced by I. We start with a technical
lemma.

Lemma 3.19. Let ⟨A, <⟩ be an infinite dense linear order and suppose
that ⊏ is a linear order on [A]n with the following property. For all tuples
ā, ā′ , b̄, b̄′ ∈ [A]n such that āb̄ and ā′b̄′ have the same order type with
respect to <, we have

ā ⊏ b̄ iff ā′ ⊏ b̄′ .

Then there exist a linear order ⊲ on [n] and a map σ ∶ [n]→ {−1, 1} such
that,

ā ⊏ b̄

iff there is some l ∈ [n] with a l <
σ(l) b l and a i = b i , for i ⊲ l ,

where <1 ∶= < and <−1 ∶= >.

Proof. We start by defining linear orders ≺i on A, for i < n, by

a ≺i b : iff c̄[i/a] ⊏ c̄[i/b] , for some c̄ ∈ [A]n with
c i−1 < a < c i+1 and c i−1 < b < c i+1 .

(Recall that, according to Definition b3.1.12, c̄[i/a] denotes the tuple
obtained from c̄ by replacing c i by a.) Note that, by our assumption on
⊏, if a ≺i b holds then we have c̄[i/a] ⊏ c̄[i/b] for all tuples c̄ satisfying
the above conditions. Furthermore, sincewe can always find such a tuple
and ⊏ is linear it follows that a ≺i b or b ≺i a. Finally, if a ≺i b holds
for some a < b then it holds for all a < b. Therefore, we have ≺i = < or
≺i = <

−1. Let σ ∶ [n]→ {1,−1} be the function with ≺i = <
σ(i).

We define the ordering ⊲ on [n] by

i ⊲ j iff i ≠ j and there are a ≺i a′ , b ≺ j b′ , and c̄ such
that c̄[i/a, j/b′] ⊏ c̄[i/a′ , j/b] and these tuples
are increasing.
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By assumption on ⊏ it follows that the definition of i ⊲ j does not depend
on the choice of a, a′ , b, b′ and c̄. If there are some elements satisfying the
definition above thenwe have c̄[i/a, j/b′] ⊏ c̄[i/a′ , j/b] for all elements
as above. Consequently, i ⊲ j implies j ⋪ i. Furthermore, since ⊏ is linear
we have i ⊲ j or j ⊲ i, for all i , j. In order to show that ⊲ is a linear order
it therefore remains to prove that it is transitive.

Suppose that i ⊲ j ⊲ k. We have to show that i ⊲ k. If i = k we would
have i ⊲ j and j ⊲ i, which is impossible. Hence, i ≠ k. Choose elements
a ≺i a′, b ≺k b′, and c̄ such that the tuples c̄[i/a, k/b′] and c̄[i/a′ , k/b]
are increasing. We claim that c̄[i/a, k/b′] ⊏ c̄[i/a′ , k/b]. Since A is
dense we can find some element d ≺ j c j such that c̄[i/a′ , j/d , k/b] is
increasing. Then i ⊲ j implies that

c̄[i/a, k/b′] = c̄[i/a, j/c j , k/b′] ⊏ c̄[i/a′ , j/d , k/b′] .

Similarly, j ⊲ k implies

c̄[i/a′ , j/d , k/b′] ⊏ c̄[i/a′ , j/c j , k/b] = c̄[i/a′ , k/b] .

Therefore, we have

c̄[i/a, k/b′] ⊏ c̄[i/a′ , k/b] ,

as desired.
It remains to prove that the ordering ⊏ coincides with the ordering ⊏σ

⊲
induced by ⊲ and σ as in the claim above. Since both relations are linear
orders it is sufficient to prove that ā ⊏σ

⊲ b̄ implies ā ⊏ b̄.
For ā, b̄ ∈ [A]n , let d(ā, b̄) be the number of indices i with a i ≠ b i .

We prove the claim by induction on d ∶= d(ā, b̄). If d = 0 then ā ⊏̸σ
⊲ b̄

and there is nothing to prove.
Suppose that d = 1 and let l be the unique index with a l ≠ b l . Then

we have

ā ⊏ b̄ iff a l ≺l b l iff a l <
σ(l) b l iff ā ⊏σ

⊲ b̄ .
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3. Ehrenfeucht-Mostowski models

Suppose that d = 2. Let l and j be the indices where ā and b̄ differ
and suppose that l ⊲ j. By definition of ⊑σ

⊲ we have a l ≺l b l . Hence, if
b j ≺ j a j then l ⊲ j implies that

ā = ā[l/a l , j/a j] ⊏ ā[l/b l , j/b j] = b̄ ,

and we are done. Suppose therefore that a j ≺ j b j . Let k0 ∶= min{l , j}
and k1 ∶= max {l , j} (with respect to the natural ordering on [n]). If
ak0 < bk0 then ā[k1/bk1] ∈ [A]n and, by inductive hypothesis, we have

ā ⊏ ā[k1/bk1] = b̄[k0/ak0] ⊏ b̄ .

Similarly, bk0 < ak0 implies that

ā ⊏ ā[k0/bk0] = b̄[k1/ak1] ⊏ b̄ .

Finally, suppose that d > 2. Let l be the ⊲-minimal index with a l ≠ b l
and let k be the <-maximal one. First, consider the case that k ≠ l . If
ak ≺k bk then we have

ā ⊏σ
⊲ ā[k/bk] ⊏

σ
⊲ b̄ ,

and the claim follows by inductive hypothesis. Therefore, suppose that
bk ≺k ak . Since A is densewe can find some element c with a l ≺l c ≺l b l
and a l−1 , b l−1 < c < a l+1 , b l+1. Then

ā ⊏σ
⊲ ā[l/c, k/bk] ⊏

σ
⊲ b̄ ,

and the claim follows by inductive hypothesis.
It remains to consider the case that k = l . Let k′ be the <-minimal

index with ak′ ≠ bk′ . Then k′ ≠ l and we can use a dual argument to
show that ā ⊏ b̄. ◻

Theorem 3.20. Let F ∶ Lin → Emb(Σ) be an Ehrenfeucht-Mostowski
functor and t(x0 , . . . , xn−1) a term over Σ. Suppose that χ(x , y) is a
quantifier-free formula such that Av(F) implies that χ linearly orders all
elements of the form t(sI[ı̄]) with ı̄ ∈ [I]n .
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Then there exist a linear order ⊲ on [n] and a map σ ∶ [n] → {−1, 1}
such that, for every linear order I and all tuples ı̄ , ȷ̄ ∈ In ,

F(I) ⊧ χ(t(sI[ı̄]), t(sI[ ȷ̄]))

iff there is some l ∈ [n] with i l <
σ(l) j l and is = js , for s ⊲ l ,

where <1 ∶= < and <−1 ∶= >.

Proof. Note that we can embed every model F(I) into a model F(J)
where J is a dense order. Since χ is quantifier-free it is therefore sufficient
to consider the case of a dense order I. Define

ı̄ ⊏ ȷ̄ : iff F(I) ⊧ χ(t(sI[ı̄]), t(sI[ ȷ̄])) .

According to Lemma 3.19 the order ⊏ has the desired form. ◻
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1. Abstract elementary classes
For every algebraic logic L, we can form the category EmbL(Σ) of L-
embeddings. This is a subcategory of the category Emb(Σ) of all embed-
dings. It has the same objects but fewer morphisms. In this section we
investigate to which extend these two categories determine L.

Definition 1.1. Suppose thatK is a class of Σ-structures that is closed un-
der isomorphisms and let E be a class of embeddings between structures
inK.

(a) The pair ⟨K, E⟩ forms an abstract elementary class if it satisfies the
following conditions.

(i) E is closed under composition and it contains all isomorphisms
between structures inK.

(ii) f , f ○ g ∈ E implies g ∈ E , for all embeddings f and g.
(iii) The subcategory of Emb(K) induced by E has direct limits and,

for every directed diagram D ∶ I → E , the direct limits of D in E
and in Emb(Σ) coincide.

(iv) There exists a cardinal ln(K) ≥ ∣Σ∣⊕ℵ0 such that, for every struc-
ture M ∈ K and every set X ⊆ M, we can find a substructure
C ∈ K of size ∣C∣ ≤ ∣X∣⊕ ln(K) such that ⟪X⟫M ⊆ C ⊆M and the
inclusion map C →M belongs to E .

The cardinal ln(K) is called the Löwenheim number ofK.
(b) Let ⟨K, E⟩ be an abstract elementary class. The elements of E are

called K-embeddings. Usually, we drop the class E from our notation
and just writeK for ⟨K, E⟩.
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(c) Let ⟨K, E⟩ be an abstract elementary class and let A ⊆ B be struc-
tures inK. We define

A ⪯K B : iff the inclusion map i ∶ A→ B belongs to E .

If A ⪯K B then we call A aK-substructure of B.
(d) The pair ⟨K, E⟩ forms an algebraic class if
(i) E = Emb(K) is the set of all embeddings and

(ii) K is closed under isomorphisms, substructures, and direct limits
of embeddings.

Example. (a) Every algebraic class ⟨K, E⟩ of Σ-structures is an abstract
elementary class with Löwenheim number ln(K) = ∣Σ∣⊕ ℵ0.

(b) Let L ∶= FOκℵ0 , let T ⊆ L0[Σ] be a theory, and let E be the class
of all L<ω-embeddings between models of T . Then ⟨Mod(T), E⟩ is an
abstract elementary class and the relation ⪯K coincides with the L<ω-
substructure relation ⪯L<ω . The same holds for many other algebraic
logics L.

Exercise 1.1. In (b) of the above example we have taken for E all em-
beddings that preserve every formula with finitely many free variables.
What goes wrong if we take only those embeddings that also preserve
formulae with infinitely many free variables?

Exercise 1.2. Let ⟨Ki , Ei⟩, i ∈ I, be a family of abstract elementary
classes over the signature Σ. Show that the intersection ⟨⋂i Ki ,⋂i Ei⟩ is
an abstract elementary class with Löwenheim number supi ln(Ki).

Remark. (a) We have defined theK-substructure relation ⪯K in terms
of the class E ofK-embeddings. Conversely, ⪯K determines E since an
embedding h ∶ A→ B belongs to E if and only if rng h ⪯K B.

(b) Let ⟨K, E⟩ be an abstract elementary class and letK0 ⊆ K be the
subclass of all structures of size at most ln(K). Every structure M ∈ K
can be written as a direct limit D ∶ I → E of its K-substructures in K0.
Hence,K is the class of all direct limits of structures inK0. In particular,
K0 and the restriction of E toK0 completely determine ⟨K, E⟩.
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We have seen that many algebraic logics give rise to an abstract ele-
mentary class. Conversely, we can show that every such class arises from
an algebraic logic in this way. To do so, we need the notion of a Galois
type.

Definition 1.2. Let ⟨K, E⟩ be an abstract elementary class. Let M ∈ K
be a structure and U ⊆ M a set of parameters.
We define the Galois type of a tuple ā ⊆ M over U by

tpAut(ā/M,U) ∶= [ā,M,U]≈

where the equivalence relation ≈ is the transitive closure of the following
relation ∼ on triples ⟨ā,M,U⟩ with U , ā ⊆ M. We set

⟨ā,A,U⟩ ∼ ⟨b̄,B,V⟩

iff U = V and, for some M ∈ K, there are K-embeddings f ∶ A0 → M
and g ∶ B0 → M where A0 ⪯K A and B0 ⪯K B are K-substructures
with U ∪ ā ⊆ A0 and U ∪ b̄ ⊆ B0 such that

f ↾U = g ↾U and f (ā) = g(b̄) .

We write S s̄
Aut(U) for the set of all Galois types of s̄-tuples over U .

Remark. (a) Let T be afirst-order theory andMod(T) the corresponding
abstract elementary class. Then the Galois type of a tuple coincides with
its first-order type.

(b) If an abstract elementary classK stems from an algebraic logic L
then no L-formula can distinguish between tuples of the same Galois
type. Hence, tuples with the same Galois type also have the same L-type.
In general the converse fails.

(c) Below we will not consider Galois types over arbitrary paramet-
ers U . The set U will always be either empty or the universe of some
K-substructure U.
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Proposition 1.3. Let ⟨K, E⟩ be an abstract elementary class of Σ-struc-
tures. There exists an algebraic logic L, a fragment ∆ ⊆ L<ω[Σ], and a
formula χ ∈ ∆ such that

K =ModL(χ) and E is the class of all ∆-embeddings.

Proof. For a set X of variables, we denote by ΦX the set of all Galois
types of X-tuples over the empty set. We start by defining the functor L.
For a signature Γ and a set X of variables, we set

L[Γ , X] ∶= ℘(ΦX) ×Sig(Σ, Γ) ,

and, for a morphism λ ∈ Sig(Γ , Γ′), we set

L[λ] ∶ ⟨Ψ , µ⟩↦ ⟨Ψ , λ ○ µ⟩ .

For a formula ⟨Ψ , µ⟩ ∈ L[Γ , X], a Γ-structure A, and a tuple ā ∈ AX , we
define the satisfaction relation by

A ⊧ ⟨Ψ , µ⟩(ā) : iff tpAut(ā/A∣µ ,∅) ∈ Ψ .

Finally, we set

∆ ∶= { ⟨Ψ , µ⟩ ∈ L<ω[Σ] ∣ µ = id} and χ ∶= ⟨Φ∅ , id⟩ . ◻

This proposition provides a syntax for each abstract elementary class.
But because of the high degree of generality in the definition of an
algebraic logic, this result is of little practical use. A more concrete way
of equipping an abstract elementary class with a kind of syntax is given
by the notion of a Skolem expansion.

Definition 1.4. Let ⟨K, E⟩ be an abstract elementary class of Σ-struc-
tures.

(a) An expansion of K is an abstract elementary class ⟨K+ , E+⟩ of
Σ+-structures, for some Σ+ ⊇ Σ, such that

prΣ(K+) = K , prΣ(E+) = E , and ln(K+) = ln(K) ,
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where prΣ ∶ Emb(Σ+)→ Emb(Σ) is the reduct functor.
(b) An expansion ⟨K+ , E+⟩ of ⟨K, E⟩ is a Skolem expansion if ⟨K+ , E+⟩

is an algebraic class.

Algebraic classes and, hence, Skolem expansions are very nicely be-
haved abstract elementary classes. For instance, the membership of a
structure in such a class only depends on its finitely generated substruc-
tures.

Lemma 1.5. Let K be an algebraic class and M a structure. Then

M ∈ K iff Subℵ0(M) ⊆ K .

Proof. (⇒) Suppose thatK is algebraic, M ∈ K, and A ⊆M. SinceK is
algebraic, we have A ⪯K M. This implies that A ∈ K.
(⇐) Each structure M can bewritten as direct limit M = lim

Ð→
D where

D ∶ I → Subℵ0(M) is the diagram of the finitely generated substructures
of M. By assumption we have D(i) ∈ K, for every i ∈ I. Since K is
algebraic it is closed under direct limits of embeddings. Consequently,
we have M = lim

Ð→
D ∈ K. ◻

As a corollary it follows that every algebraic class is ∀∞ℵ0 -axiomatis-
able.

Proposition 1.6. Let Σ be a signature and set κ ∶= ∣Σ∣⊕ℵ0. Every algebraic
class K of Σ-structures is ∀(2κ)+ℵ0 -axiomatisable.

Proof. Let

Cn ∶= { ⟨A, ā⟩ ∣ A ∈ K is generated by ā ∈ An }

be the class of all structures inK that are generated by a set of size n. Note
that every structure in Cn has size at most κ = ∣Σ∣⊕ ℵ0. Consequently,
Cn contains, up to isomorphism, at most 2κ structures. For every ⟨A, ā⟩ ∈
Cn , we can write down a quantifier-free formula φA, ā(x̄) ∈ QFn

κ+ℵ0
[Σ]

such that

B ⊧ φA, ā(b̄) iff ⟨⟪b̄⟫B , b̄⟩ ≅ ⟨A, ā⟩ .
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By Lemma 1.5, it follows that the ∀0
(2κ)+ℵ0

[Σ]-formula

⋀
n<ω

∀x0⋯∀xn−1 ⋁
⟨A, ā⟩∈Cn

φA, ā(x̄)

axiomatisesK. ◻

If we can show that every abstract elementary class has a Skolem
expansion, it follows that each such class is a projective ∀∞ℵ0 -class.

Theorem 1.7. LetK be an abstract elementary class of Σ-structures. There
exists a Skolem expansion K+ of K over a signature Σ+ ⊇ Σ of size ∣Σ+∣ =
ln(K).

Proof. Let λ ∶= ln(K) and set Σ+ ∶= Σ ⊍ { f n
α ∣ n < ω, α < λ } where

the f n
α are new n-ary function symbols. We call a Σ+-expansion M+ of a

structure M ∈ K admissible if

A∣Σ ⪯K M , for every A ⊆M+ .

We claim that the desired Skolem expansion ⟨K+ , E+⟩ is given by

K+ ∶= {M+ ∣M+ an admissible expansion of some M ∈ K } ,
E+ ∶= Emb(K+) .

Clearly, we have ln(K+) = ∣Σ+∣ = ln(K). Hence, it remains to prove the
following claims.

Claim. (a) For every pair A ⪯K B in K, there exist admissible ex-
pansions A+ and B+ such that A+ ⊆ B+. In particular, we have
prΣ(K+) = K.

(b) prΣ(E+) = E .
(c) K+ is closed under direct limits.

(a) By induction on n < ω, we can fix, for every subset X ⊆ B of size n,
aK-substructure BX ⪯K B of size at most λ containing X ∪⋃Y⊂X BY .
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Furthermore, if X ⊆ A thenwe chooseBX such that BX ⊆ A.By construc-
tion, we have BX ⊆ BY , for X ⊆ Y . Since BX ,BY ⪯K B this implies
that BX ⪯K BY .

For every ā ∈ Bn , n < ω, fix an enumeration (c āα)α<λ (possibly with
repetitions) of B ā . To obtain the desired expansion B+ we set f n

α (ā) ∶=
c āα , for ā ∈ Bn . Note that our construction ensures that A induces a
substructure of B+ since BX ⊆ A, for X ⊆ A, implies that ⟪X⟫B+

⊆ A.
Therefore, we can set A+ ∶= B+∣A.

To see that A+ and B+ are admissible, note that, by construction, we
have BX ⊆ ⟪X⟫B+

∣Σ , for every finite X ⊆ B. If C ⊆ B+ is an arbitrary
substructure then

C∣Σ = lim
Ð→

X⊆C finite

⟪X⟫C∣Σ = lim
Ð→

X⊆C finite

⟪X⟫B+
∣Σ = lim

Ð→
X⊆C finite

BX .

We have already seen that the BX form a directed system ofK-embed-
dings such that BX ⪯K B. Hence, the limit also satisfies C∣Σ ⪯K B, as
desired. Furthermore, if C ⊆ A+ ⊆ B+ then C∣Σ ,A ⪯K B implies that
C∣Σ ⪯K A. Thus, A+ and B+ are admissible.

(b) (⊆) Let h ∶ A+ → B+ be a K+-embedding and set C ∶= rng h.
Then C induces a substructure C+ ⊆ B+ and h induces an isomorphism
h′ ∶ A+ ≅ C+. The structure B+ is an admissible expansion of some
structure B ∈ K. Hence, C+∣Σ ⪯K B and the inclusion map i ∶ C+∣Σ → B
belongs to E . Since E contains all isomorphisms and it is closed under
composition, it follows that prΣ(h) = i ○ prΣ(h

′) ∈ E .
(⊇) Let h ∶ C → B be a K-embedding. Setting A ∶= rng h we can

use (a) to find admissible expansions A+ ⊆ B+ of A and B. Let C+ be the
expansion of C that corresponds to A+ via the isomorphism h ∶ C ≅ A.
Then h induces an embedding h+ ∶ C+ → B+. SinceK+ is closed under
isomorphisms we have C+ ∈ K+. Hence, h+ ∈ E+.

(c) Let D ∶ I → K+ be a directed diagram with limit M+ ∶= lim
Ð→

D. We
have to show that M+ ∈ K+. Let p ∶ K+ → K be the canonical projection
functor and set M ∶= M+∣Σ . Then p ○ D ∶ I → K is a directed diagram
with limit lim

Ð→
(p ○ D) = M+∣Σ = M. By (b), it follows that p ○ D is in

fact a diagram I → E . Hence, the limit M is in K. We claim that M+ is
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an admissible expansion of M. Let A ⊆M+ be a substructure. For every
finite set X ⊆ M, there exists some i with X ⊆ D(i). Since D(i) is an
admissible expansion it follows that

⟪X⟫D(i)∣Σ ⪯K D(i)∣Σ ⪯K lim
Ð→
(p ○ D) =M .

The substructure A is the direct limit of its finitely generated substruc-
tures X. We have just seen that X∣Σ ⪯K M, for all such X. By the definition
of a direct limit, it follows that A∣Σ = lim

Ð→
X∣Σ ⪯K M. ◻

The existence of Skolem expansions enables us to apply the theory of
Ehrenfeucht-Mostowski functors to abstract elementary classes. We will
make extensive use of these functors in Section 4 below. As an example
we use them in the remainder of this section to compute theHanf number
of a class.

Lemma 1.8. LetK be an algebraic class of Σ-structures and set κ ∶= ∣Σ∣⊕ℵ0
and λ ∶= ℶ(2κ)+ . IfK contains a structure of size at least λ then there exists
an Ehrenfeucht-Mostowski functor F ∶ Lin→ Emb(K).

Proof. Fix a structure M ∈ K of size ∣M∣ ≥ λ and let (a i)i<λ be a se-
quence of distinct elements of M. Since ∣S<ω(∅)∣ ≤ 2κ we can apply
Theorem e5.3.7 to (a i)i to obtain an elementary extension M+ ⪰FO M
that contains an indiscernible sequence (b i)i<ω such that, for all n < ω
and every ı̄ ∈ [ω]n , there is some k̄ ∈ [λ]n with

tp(b[ı̄]) = tp(a[k̄]) .

Note that this implies in particular that ⟪b[ı̄]⟫M+
≅ ⟪a[k̄]⟫M ∈ K. By

Proposition e6.3.8, there exists a unique strongly local functor F ∶ Lin→
Emb(Σ) such that F(ω) ≅ ⟪(b i)i⟫M+

. We claim that the range of F is
contained inK.

Let I be a linear order and consider a finitely generated substructure
A ⊆ F(I). Then there is a finite subset I0 ⊆ I such that A ⊆ F(I0).
Consequently, for some n < ω, A is isomorphic to a substructure of

F(n) ≅ ⟪b0 . . . bn−1⟫M+
⊆M+ ∈ K .

1002



1. Abstract elementary classes

SinceK is closed under substructures and isomorphisms, it follows that
A ∈ K. Hence, we have Subℵ0(F(I)) ⊆ K which, by Lemma 1.5, implies
that F(I) ∈ K. Thus, F ∶ Lin → Emb(K) is the desired Ehrenfeucht-
Mostowski functor. ◻

Using Skolem expansionswe can extend this result to arbitrary abstract
elementary classes.
Remark. Let ⟨K, E⟩ be an abstract elementary class,K+ a Skolem expan-
sion ofK, and F+ ∶ Lin→ Emb(K+) an Ehrenfeucht-Mostowski functor.
Composing F+ with the reduct functor prΣ ∶ Emb(Σ+) → Emb(Σ) we
obtain a functor F ∶= prΣ ○F+ ∶ Lin→ Emb(Σ). By definition of a Skolem
expansion, F is actually a functor Lin→ E , i.e., it maps every embedding
I → J of linear orders to aK-embedding F(I)→ F(J).

Definition 1.9. Let K be an abstract elementary class of Σ-structures
and K+ a Skolem expansion of K. An Ehrenfeucht-Mostowski functor
for K is a functor F ∶ Lin → Emb(K) of the form F = prΣ ○ F+, where
F+ ∶ Lin→ Emb(K+) is an ordinary Ehrenfeucht-Mostowski functor.

Corollary 1.10. Let K be an abstract elementary class and set κ ∶= 2ln(K).
If K contains a structure of size at least ℶκ+ , then there exists an Ehren-
feucht-Mostowski functor for K.

As promised we apply these results to compute the Hanf number of
an abstract elementary class.

Definition 1.11. Let K be an arbitrary class of Σ-structures. The Hanf
number ofK is

hn(K) ∶= sup{ ∣M∣+ ∣M ∈ K } .

If this supremum does not exist then we set hn(K) ∶= ∞. In this case
the classK is called unbounded.

Proposition 1.12. Let K be an abstract elementary class of Σ-structures
and set κ ∶= 2ln(K). We either have

hn(K) ≤ ℶκ+ or hn(K) =∞ .
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e7. Abstract elementary classes

Proof. Suppose that hn(K) > ℶκ+ . By Corollary 1.10, there exists an
Ehrenfeucht-Mostowski functor F ∶ Lin → Emb(K) for K. For every
cardinal λ, we have F(λ) ∈ K. This implies that

hn(K) > ∣F(λ)∣ = λ ⊕ ln(K) .

Consequently, hn(K) =∞. ◻

With this proposition we are finally able to provide the missing part
of the proof of Theorem c5.2.7. (Except that we do not obtain a strict
inequality hn1(FOκ+ℵ0) < ℶ(2κ)+ .)

Corollary 1.13. hn1(FOκ+ℵ0) ≤ ℶ(2κ)+ .

2. Amalgamation and saturation
In this section we consider saturated structures in abstract elementary
classes. As we have already seen in the first-order case, an important
ingredient in the construction of such structures is the amalgamation
property.

Definition 2.1. Let ⟨K, E⟩ be an abstract elementary class.
(a) For a cardinal κ, we set

Kκ ∶= {M ∈ K ∣ ∣M∣ = κ } and K<κ ∶= {M ∈ K ∣ ∣M∣ < κ } .

We defineK>κ ,K≤κ , andK≥κ analogously.
(b)K has the amalgamation property if, for allK-embeddings f ∶ A→

B and g ∶ A → C, there exist K-embeddings h ∶ B → D and k ∶ C → D
with h ○ f = k ○ g.

A

B C

D

f g

h k
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2. Amalgamation and saturation

(c)K has the joint embedding property if, for all A0 ,A1 ∈ K, there are
K-embeddings A0 → B and A1 → B, for some B ∈ K.

A0 A1

B

(d) An amalgamation class is an abstract elementary class with the
amalgamation property. A Jónsson class is an abstract elementary class
with the amalgamation property and the joint embedding property.

Example. Let T be an ∀∃-theory and K the class of all existentially
closed models of T . Then ⟨K, Emb(K)⟩ forms an abstract elementary
class with the amalgamation property.

In the same way that the class of all algebraically closed fields can
be decomposed into the classes of algebraically closed fields of charac-
teristic p, for the various p, we can write each amalgamation class as a
union of Jónsson classes.

Lemma 2.2. Every amalgamation class K is a disjoint union of at most
2ln(K) Jónsson classes.

Proof. We define an equivalence relation onK by

A ∼ B : iff there areK-embeddings A→ C and B→ C ,
for some C ∈ K .

Clearly, ∼ is reflexive and symmetric. For transitivity, let us assume that
A0 ∼ A1 ∼ A2. Then there are structures B0 ,B1 ∈ K andK-embeddings
f i ∶ Ai → B0, for i ∈ {0, 1}, and g i ∶ Ai → B1, for i ∈ {1, 2}.

A0 A1 A2

B0 B1

C

f0 f1 g1 g2

h0 h1
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e7. Abstract elementary classes

By the amalgamation property, we can find some structure C ∈ K and
K-embeddings h i ∶ Bi → C, for i < 2, such that h0 ○ f1 = h1 ○ g1.
Consequently, there are K-embeddings h0 ○ f0 ∶ A0 → C and h1 ○ g2 ∶
A2 → C. This implies that A0 ∼ A2.

By definition, every ∼-class is a Jónsson class. Furthermore, A ≁ B
implies that there is noK-embedding A→ B. Hence,K is the disjoint
union of all ∼-classes. Finally, every ∼-class contains a structure of size
at most ln(K). Consequently, there are at most 2ln(K) such classes. ◻

For amalgamation classes, the definition of a Galois type can be sim-
plified quite a bit.

Lemma 2.3. LetK be an amalgamation class, A,B,U ∈ K structures with
U ⪯K A,B, and let ā ⊆ A and b̄ ⊆ B. Then we have

tpAut(ā/A,U) = tpAut(b̄/B,U)

if and only if there exists a structure M ∈ K of size ∣M∣ ≤ ∣A∣⊕ ∣B∣⊕ ln(K)
and K-embeddings g ∶ A→M and h ∶ B→M such that

g ↾U = h ↾U and g(ā) = h(b̄) .

Proof. (⇐) is trivial. For (⇒), suppose that the Galois types are equal.
Recall the relation ∼ from Definition 1.2. There exists a finite sequence
⟨C0 , c̄0⟩, . . . , ⟨Cn , c̄n⟩ of structures such that

⟨C0 , c̄0⟩ = ⟨A, ā⟩ , ⟨Cn , c̄n⟩ = ⟨B, b̄⟩ ,

and ⟨c̄ i ,Ci ,U⟩ ∼ ⟨c̄ i+1 ,Ci+1 ,U⟩ , for all i < n .

We prove the claim by induction on n. For n = 0, we have A = B
and ā = b̄, and there is nothing to do. Hence, suppose that n > 0. By
inductive hypothesis, there exist a structure N0 ∈ K andK-embeddings
g0 ∶ A→ N0 and h0 ∶ Cn−1 → N0 such that

g0 ↾U = h0 ↾U and g0(ā) = h0(c̄n−1) .
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2. Amalgamation and saturation

Furthermore, by definition of ∼, we can find a structure N1 ∈ K, K-
substructures D ⪯K Cn−1 andB0 ⪯K Bwith U∪c̄n−1 ⊆ D andU∪b̄ ⊆ B0,
andK-embeddings g1 ∶ D→ N1 and h1 ∶ B0 → N1 such that

g1 ↾U = h1 ↾U and g1(c̄n−1) = h1(b̄) .

N5

N0

N4

A Cn−1 B

N2 N3

N1

D B0

g5

h5

g0 h0

g4 h4

⪯K ⪯K

g2 h2 g3 h3

g1 h1

By the amalgamation property, there exist structures N2 ,N3 ,N4 ,N5 ∈ K
such that we can complete the above diagram. Setting g ∶= g5 ○ g0 and
h ∶= h5 ○ h4 ○ h3 it follows that

g ↾U = h ↾U and g(ā) = h(b̄) .

Choosing a K-substructure M ⪯K N5 of size ∣M∣ ≤ ∣A∣ ⊕ ∣B∣ ⊕ ln(K)
with rng g ∪ rng h ⊆ M the claim follows. ◻

Next, we introduce a notion of saturation for abstract elementary
classes.

Definition 2.4. LetK be an abstract elementary class and let κ ≥ ln(K)
be a cardinal.
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e7. Abstract elementary classes

(a) A structure U ∈ K is κ-universal (for K) if, for all A ∈ K<κ , there
exists aK-embedding A→ U.We call UK-universal if it is ∣U ∣+-universal
forK.

(b) Similarly, we say that a structure U ∈ K is κ-universal over a
substructure A ⪯K U if, for all K-embeddings f ∶ A → B with ∣B∣ < κ,
there exists aK-embedding g ∶ B→ U such that g ○ f = idA.

UA

B

⪯

f g

(c) A structure J ∈ K is κ-injective (forK), or κ-model homogeneous,
if, for allK-embeddings f ∶ A→ J and g ∶ A→ B with ∣A∣, ∣B∣ < κ, there
exists aK-embedding h ∶ B→ J with h ○ g = f .

JA

B

f

g
h

J is calledK-injective if it is ∣I∣-injective.

Remark. Note that a structure M is κ-injective if and only if it is κ-
universal over every substructure A ⪯K M of size ∣A∣ < κ.
We can characterise κ-injective structures also by a back-and-forth

condition.

Definition 2.5. LetK be an abstract elementary class and A,B ∈ K.
(a) We denote by Iκ

K(A,B) the set of allK-embeddings f ∶ A0 → B0
betweenK-substructures A0 ⪯K A and B0 ⪯K B of size ∣A0∣, ∣B0∣ < κ.

(b) We write

A ⊑κ
K B : iff Iκ

K(A,B) ∶ A ⊑
κ
iso B ,

and A ≅κ
K B : iff Iκ

K(A,B) ∶ A ≅
κ
iso B .
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2. Amalgamation and saturation

In Lemma e1.2.2 we have characterised κ-saturated models in terms
of the relation ⊑κ

FO. The next lemma gives a similar characterisation of
κ-injective structures.

Lemma 2.6. Let K be an abstract elementary class and κ > ln(K) a
cardinal. A structure M ∈ K is κ-injective if and only if

A ⊑κ
K M , for all A ∈ K with Iκ

K(A,M) ≠ ∅ .

Proof. (⇐) Suppose that A,B ∈ K<κ are structures with A ⪯K B, and
let f ∶ A→M be aK-embedding. Then f ∈ Iκ

K(B,M). Since ∣B∣ < κ, we
can use Lemma c4.4.9 (b) to find a K-embedding g ∈ Iκ

K(B,M) with
dom g = B and g ↾ A = f .
(⇒) By assumption, Iκ

K(A,M) is nonempty. It has the forth prop-
erty since M is κ-injective. Furthermore, Iκ

K(M,A) is ln(K)+-bounded.
Finally, the closure of K-embeddings under direct limits implies that
Iκ
K(A,M) is κ-complete. ◻

As usual we can use Lemma c4.4.9 to prove that, up to isomorphism,
K-injective structures are uniquely determined by their cardinality.

Proposition 2.7. Let A,B ∈ K be twoK-injective structureswith ∣A∣ = ∣B∣.
Then

IK(A,B) ≠ ∅ implies A ≅ B .

The existence of κ-injective structures implies a weak form of the
amalgamation property.

Lemma 2.8. Let K be an abstract elementary class and suppose that
M ∈ K is κ-injective, for some κ > ln(K).

(a) The class of all K-substructures A ⪯K M with ∣A∣ < κ has the
amalgamation property.

(b) If K has the joint embedding property, then M is κ+-universal.
(c) If K has the joint embedding property, then the subclass K<κ has

the amalgamation property.
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e7. Abstract elementary classes

Proof. (a) Let f ∶ A → B and g ∶ A → C be K-embeddings with
A,B,C ⪯K M and ∣A∣, ∣B∣, ∣C∣ < κ. Replacing A by an isomorphic copy,
we may assume that g = idA. Since M is κ-injective, there exists a K-
embedding h ∶ B→M with h ○ f = idA. Let D ⪯K M be a substructure
containing C ∪ rng h. Then we can use h ∶ B → D and idC ∶ C → D to
complete the amalgamation diagram.

(b) As a first step, we show that M is κ-universal. Let A be some
structure of size ∣A∣ < κ. We can use the joint embedding property to
findK-embeddings f ∶ M→ N and g ∶ A→ N, for some N ∈ K.

N

M C A

U

f ⪯K
g

h g

⪯K f ↾U

Choose a K-substructure U ⪯K M of size ∣U ∣ < κ and let C ⪯K N be
a K-substructure of size ∣C∣ < κ with f [U] ∪ g[A] ⊆ C. Since M is κ-
injective, there exists a K-embedding h ∶ C →M with h ○ f ↾U = idU .
The composition h ○ g is aK-embedding A→M.

It remains to show that M is even κ+-universal. Let A be a structure
of size ∣A∣ = κ. Fix an increasing chain (Cα)α<κ of K-substructures
Cα ⪯K A of size ∣Cα ∣ < κ such that A = ⋃α<κ Cα . By induction on α, we
construct K-embeddings fα ∶ Cα → M such that fβ ↾ Cα = fα , for all
α ≤ β. We have already shown that M is κ-universal. Hence, there exists
aK-embedding f0 ∶ C0 →M which we can start our induction with. For
limit ordinals δ, we set fδ ∶= ⋃α<δ fα . For the successor step, suppose
that we have already defined fα ∶ Cα →M. Since M is κ-injective, there
exists aK-embedding fα+1 ∶ Cα+1 →M such that fα+1 ↾ Cα = fα .

Having defined the family ( fα)α we can use the properties of a direct
limit to find aK-embedding h ∶ ⋃α Cα →M such that h ↾ Cα = fα , for
all α. This is the desiredK-embedding A→M.
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2. Amalgamation and saturation

(c) Let f ∶ A→ B and g ∶ A→ C beK-embeddings with ∣A∣, ∣B∣, ∣C∣ <
κ. By (b), we may assume that A,B,C ⪯K M. Hence, we can use (a) to
complete f and g to an amalgamation diagram. ◻

κ-injective structures generalise the characterisation of κ-saturated
structures in terms of the relation ⊑κ

FO. We can also generalise the ori-
ginal definition of κ-saturation in terms of types. It turns out that, for
amalgamation classes, these two notions coincide.

Definition 2.9. LetK be an abstract elementary class.
(a) A structure M ∈ K is κ-Galois saturated if it realises every Galois

type in S<ω
Aut(U)where U ⪯K M is a substructure of size ∣U ∣ < κ. As usual

we say that M is Galois saturated if it is ∣M∣-Galois saturated.
(b)K is κ-Galois stable if ∣S<ω

Aut(U)∣ ≤ κ, for all U ∈ K≤κ .

Remark. Note that in the definition of κ-Galois stability we only count
the Galois types over K-substructures, not over arbitrary subsets. In
general, this does make a difference.

The following lemma is the main ingredient in showing that κ-Galois
saturated structures are κ-injective. We state it in a slightly more general
form than needed here, since we will use it again in Section 3.

Lemma 2.10. LetK be an amalgamation class and γ ≥ ln(K) an ordinal.
Suppose that (Mα)α<γ is an increasing chain such that each structureMα+1
realises every Galois type p ∈ S<ω

Aut(U) where U ⪯Mα is some substructure
of size ∣U ∣ ≤ ∣γ∣.

Then the limit M ∶= ⋃α<γ Mα is ∣γ∣+-universal over every substructure
A ⪯K M0 of size ∣A∣ ≤ ∣γ∣.

Proof. Let A ⪯K M0 be of size ∣A∣ ≤ ∣γ∣. To show that M is ∣γ∣+-universal
over A, we consider a K-embedding f ∶ A → B with ∣B∣ ≤ ∣γ∣. Set
λ ∶= ∣B∣⊕ ln(K) and fix an enumeration (bα)α<λ of B. We construct two
increasing chains (Aα)α<λ and (Cα)α<λ of structures with B ⪯K Cα and
A ⪯K Aα ⪯K Mα , and an increasing chain (hα)α<λ of K-embeddings
hα ∶ Aα → Cα such that

∣Aα ∣ ≤ λ , f ⊆ hα , and bα ∈ rng hα+1 .
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B

A

C0

A0

C1

A1

⋯

⋯

⋃α Cα

⋃α Aα

M0 M1 ⋯ M

f h0 h1 hλ

Then we obtain the desired embedding g ∶ B →M by taking the limit
hλ ∶= ⋃α<λ hα and setting g ∶= h−1

λ ↾ B.
We start with A0 ∶= A, C0 ∶= B, and h0 ∶= f . For limit ordinals δ, we

take limits :

Aδ ∶= ⋃
α<δ

Aα , Cδ ∶= ⋃
α<δ

Cα , and hδ ∶= ⋃
α<δ

hα .

For the successor step, suppose that hα ∶ Aα → Cα has already been
defined. If bα ∈ rng hα , we simply set hα+1 ∶= hα . Otherwise, we use
amalgamation to find a K-extension N ⪰K M and a K-embedding g ∶
Cα → N with g ○ hα = id.

N

Cα M

B rng hα Aα

rng f A

hα

f

g

By assumption on Mα+1, there is some element c ∈ Mα+1 with

tpAut(c/N,Aα) = tpAut(g(bα)/N,Aα) .
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2. Amalgamation and saturation

By Lemma 2.3, this implies that there is aK-extension N+ ⪰K N and a
K-embedding σ ∶ N→ N+ such that

σ ↾ Aα = id and σ(g(bα)) = c .

We choose aK-substructureAα+1 ⪯K Mα+1 of size ∣Aα+1∣ ≤ λ containing
Aα and c. Let C′α+1 ⪯K N+ be a K-substructure containing rng(σ ○ g)
and Aα+1, and let Cα+1 be the isomorphic copy of C′α+1 where each ele-
ment of rng(σ ○ g) is replaced by its preimage. We denote the corres-
ponding isomorphism C′α+1 → Cα+1 by π. It follows that Cα ⪯K Cα+1. We
claim that the restriction hα+1 ∶= π ↾ Aα+1 is the desiredK-embedding
Aα+1 → Cα+1. Note that

bα = π((σ ○ g)(bα)) = π(c) ∈ rng hα+1 .

Furthermore, σ ↾ Aα = idAα = g ○ hα ↾ Aα implies for a ∈ Aα that

hα+1(a) = π(a) = π(σ(a)) = π(σ((g ○ hα)(a))) = hα(a) .

Hence, hα ⊆ hα+1. ◻

Theorem 2.11. LetK be an amalgamation class and κ > ln(K).A structure
M ∈ K is κ-Galois saturated if and only if it is κ-injective.

Proof. (⇐) Let U ⪯K M be a substructure of size ∣U ∣ < κ and let p ∈
S<ω
Aut(U) be a type. There exists an extension A ⪰K U realising p. We

can choose A of size ∣A∣ ≤ ∣U ∣ ⊕ ln(K) < κ. Since M is κ-injective,
we can extend the K-embedding U → M to a K-embedding A → M.
Consequently, p is realised in M.
(⇒) Suppose that f ∶ A → B is a K-embedding with A ⪯K M and

λ ∶= ∣B∣ < κ. For α < λ, we set Mα ∶=M. Then (Mα)α<λ is an increasing
chain satisfying the hypothesis of Lemma 2.10. It follows that the limit
⋃α<λ Mα = M is λ+-universal over A. Consequently, there exists a K-
embedding g ∶ B→M with g ○ f ↾ A = id. ◻

The next lemma shows that Galois saturated structures are strongly
homogeneous.
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e7. Abstract elementary classes

Lemma 2.12. Let K be an amalgamation class, suppose that M ∈ K
is a Galois saturated structure of size ∣M∣ = κ, and let U ⪯K M be a
substructure of size ln(K) ≤ ∣U ∣ < κ. For ā, b̄ ∈ M<κ , we have

tpAut(ā/M,U) = tpAut(b̄/M,U)

if and only if there exists an automorphism π ∈ Aut M with π ↾U = idU
and π(ā) = b̄.

Proof. It is sufficient to find an embedding p ∈ Iκ
K(M,M) with p ↾U =

idU and p(ā) = b̄. Since M ≅κ
K M we can then use Lemma c4.4.9 to

extend p to the desired isomorphism π ∶ M→M.
Fix K-substructures U ⪯K A ⪯K M and U ⪯K B ⪯K M of size

∣A∣, ∣B∣ < κ with ā ⊆ A and b̄ ⊆ B. Since

tpAut(ā/M,U) = tpAut(b̄/M,U) ,

we can use Lemma 2.3 to findK-embeddings f , g ∶ M→ N with f ↾U =
g ↾U and f (ā) = g(b̄).

N

M C M

A B

U

f
⪯

g

⪯
f ↾ A g ↾ B ⪯

⪯ ⪯

h

Let C ⪯K M be a K-substructure of size ∣C∣ < κ with f [A] ∪ g[B] ⊆ C.
Since M is κ-injective, there exists a K-embedding h ∶ C → M with
h ○ g ↾ B = idB . Setting p ∶= h ○ f ↾ Awe have

p ↾U = h ○ f ↾U = h ○ g ↾U = idU ,
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2. Amalgamation and saturation

and p(ā) = h( f (ā)) = h(g(b̄)) = b̄ . ◻

When amalgamation is available we can construct κ-Galois saturated
structures in the same way as κ-saturated ones. The main step in the
inductive construction is the following lemma.

Lemma 2.13. Let K be an amalgamation class. Every M ∈ K has an
extension M+ ⪰K M that realises every Galois type over M. If K is κ-
stable, for κ ∶= ∣M∣⊕ ln(K), then we can choose M+ of size ∣M+∣ ≤ κ.

Proof. Let (pi)i<λ be an enumeration of S<ω
Aut(M). For every i < λ, we

can find an extension Ai ⪰K M of size ∣A i ∣ ≤ ∣M∣⊕ln(K) = κ realising pi .
We construct M+ as the limit of an increasing chain (Bi)i<λ where the
structure Bα realises all types pi with i < α. We start with B0 ∶=M. For
limit ordinals δ, we set Bδ ∶= ⋃i<δ Bi . For successor ordinals α = β + 1,
we use the amalgamation property to find an extension Bα ⪰K Bβ of
size ∣Bα ∣ ≤ ∣Bβ ∣ ⊕ ∣Aβ ∣ ⊕ ln(K) such that there exists a K-embedding
h ∶ Aβ → Bα with h ↾M = id.
We obtain the desired extension of M by setting M+ ∶= ⋃i<λ Bi . By

induction on α, it follows that ∣Bα ∣ ≤ κ⊗∣α+1∣. In particular, ∣M+∣ ≤ κ⊗λ.
Hence, ifK is κ-stable then we have λ ≤ κ and ∣M+∣ = κ. ◻

Iterating the construction of the preceding lemma, we obtain the
desired Galois saturated extension. For the proof that the limit really is
Galois saturated, we need the following technical lemma.

Definition 2.14. Let p ∈ S<ω
Aut(B) be a Galois type and let f ∶ A→ B be a

K-embedding. We define the restriction p∣ f of p along f as follows.
Fix a structure N ⪰K B containing a tuple ā ⊆ N with

p = tpAut(ā/N, B) .

Let M be the isomorphic copy of N obtained by replacing all elements of
rng f by their preimages in A, and let π ∶ N→M be the corresponding
isomorphism. We set

p∣ f ∶= tpAut(π(ā)/M,A) .
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e7. Abstract elementary classes

If A ⪯K B and f ∶ A→ B is the inclusion map, then we also write p∣A
for p∣ f .

Lemma 2.15. Let K be an amalgamation class and f ∶ A → B a K-
embedding. For every Galois type p ∈ S<ω

Aut(A), there is a Galois type
q ∈ S<ω

Aut(B) with q∣ f = p.

Proof. We fix an extension C ⪰K A and a tuple ā ⊆ C such that p =
tpAut(ā/C,A). By the amalgamation property, we can find an extension
D ⪰K B such that there exists aK-embedding h ∶ C → D with h ↾A = f .
We can set q ∶= tpAut(h(ā)/D, B). ◻

Lemma 2.16. LetK be an amalgamation class, γ an ordinal, and suppose
that (Aα)α<γ is an increasing chain of structures Aα ∈ K such that Aα+1
realises every type in S<ω

Aut(Aα), for all α. Then their union ⋃α<γ Aα is
cf(γ)-Galois saturated.

Proof. Let U ⪯K ⋃α<γ Aα be a substructure of size ∣U ∣ < cf(γ) and fix
a type p ∈ S<ω

Aut(U). There exists an index α < γ with U ⊆ Aα . Hence,
U ⪯K Aα and, by Lemma 2.15, we can find a type q ∈ S<ω

Aut(Aα) with
q∣U = p. By construction, q is realised in ⋃α<γ Aα ⪰K Aα+1. Hence, so
is p. ◻

Proposition 2.17. LetK be an amalgamation class and suppose that κ is a
regular cardinal. Every structureM ∈ K has a κ-Galois saturated extension
M+ ⪰K M.

Proof. We construct an increasing chain (Aα)α<κ as follows. We start
with A0 ∶= M. For limit ordinals δ, we set Aδ ∶= ⋃α<δ Aα . For the suc-
cessor step, we use Lemma 2.13 to find an extension Aα+1 ⪰K Aα real-
ising all Galois types over Aα . By Lemma 2.16, it follows that the limit
M+ ∶= ⋃α<κ Aα is κ-Galois saturated. ◻

As usual the existence of Galois saturated structures depends on an
additional hypothesis like stability.
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Theorem 2.18. Let K be a Jónsson class and suppose that κ is a regular
cardinal with ln(K) ≤ κ < hn(K). If K is κ-stable then every structure
M ∈ K of size ∣M∣ ≤ κ has a Galois saturated K-extension of size κ.

Proof. We construct an increasing chain (Aα)α<κ of structures Aα ∈ K
of size ∣Aα ∣ = κ as follows. Since κ < hn(K) we have Kκ ≠ ∅. Using
amalgamation and the joint embedding property,we can find a structure
A0 ∈ K of size ∣A0∣ = κ with M ⪯K A0. For limit ordinals δ, we set
Aδ ∶= ⋃α<δ Aα . Note that ∣Aδ ∣ ≤ ∣δ∣ ⊗ κ = κ. For the successor step,
suppose that Aα has already been defined. We use Lemma 2.13 to find an
extension Aα+1 ⪰K Aα of size ∣Aα+1∣ = κ that realises all types over Aα . By
Lemma 2.16, it follows that the limit ⋃α<κ Aα is κ-Galois saturated. ◻

3. Limits of chains
We have seen that we can inductively construct Galois saturated struc-
tures as limits of chains. In this sectionwe take a close look at such chains.
Our aim is Theorem 4.13,which states that, under certain conditions, the
union of a chain of Galois saturated structures is again Galois saturated.

Definition 3.1. LetK be an abstract elementary class and γ an ordinal.
(a) An increasing chain (Mα)α<γ is a weak γ-chain if each Mα+1 real-

ises every Galois type over Mα . In this case we say that M ∶= ⋃α Mα is
the weak γ-limit of the chain, or that M is a weak γ-limit over M0.

(b) An increasing chain (Mα)α<γ is a strong γ-chain if every Mα+1 is
∣Mα+1∣

+-universal over Mα . In this case we say that M ∶= ⋃α Mα is the
strong γ-limit of the chain, or that M is a strong γ-limit over M0.

The following observation is just a restatement of Lemma 2.16.

Lemma 3.2. LetK be an amalgamation class. Every weak γ-limit is cf(γ)-
Galois saturated.

Lemma 3.3. Suppose that K is an amalgamation class and γ ≥ ln(K) an
ordinal. Let M be a weak γ-limit over A ⪯K M. Then M is ∣γ∣+-universal
over every K-substructure A0 ⪯K A of size ∣A0∣ ≤ ∣γ∣.

1017



e7. Abstract elementary classes

Proof. Let (Mα)α<γ be a weak γ-chain with limit M and M0 = A. This
chain satisfies the hypothesis of Lemma 2.10. ◻

Corollary 3.4. Suppose thatK is an amalgamation class, let κ ≥ ln(K)
be a cardinal, and γ an ordinal. Let (Mα)α<κγ be a weak κγ-chain with
∣⋃α<κγ Mα ∣ ≤ κ. Then the subsequence (Mκα)α<γ is a strong γ-chain.

Proof. Let α < γ. The sequence (Mκα+β)β<κ is aweak κ-chain over Mκα
with limit N ∶= ⋃β<κ Mκα+β ⪯ Mκ(α+1). By the preceding lemma, N is
κ+-universal over Mκα . Hence, so is its extension Mκ(α+1) ⪰K N. As
∣Mκ(α+1)∣ ≤ κ, the claim follows. ◻

Corollary 3.5. Suppose that K is an amalgamation class. Let A ∈ K be
a structure of size κ ∶= ∣A∣ ≥ ln(K) and let γ < κ+ be an ordinal. If K is
κ-Galois stable, then there exists a strong γ-limit M ∈ K over A of size
∣M∣ = κ.

Proof. By Corollary 3.4, it is sufficient to construct a weak κγ-chain
(Mα)α<κγ over A such that ∣Mα ∣ = κ, for all α. We define such a chain
by induction on α starting with M0 ∶= A. For the inductive step, note
that, given Mα , we can use Lemma 2.13 to find a structure Mα+1 with the
desired properties. ◻

The next lemma implies that, in the definition of a strong γ-chain
(Mα)α , we could also require universality of Mα+1 over every K-sub-
structure of Mα .

Lemma 3.6. Suppose that K is an amalgamation class and let A ∈ K be a
structure of size ln(K) ≤ ∣A∣ < κ. If M is κ-universal over A ⪯K M, then
it is also κ-universal over every substructure A0 ⪯K A.

Proof. Let A0 ⪯K A and consider a K-embedding f ∶ A0 → C with
∣C∣ < κ. By amalgamation, we can find a K-extension C+ ⪰K C of size
∣C+∣ = ∣C∣⊕∣A∣ < κ and aK-embedding f+ ∶ A→ C+ such that f+↾A0 = f .
As M is κ-universal over A, there exists a K-embedding h+ ∶ C+ → M
with h+○ f+ = idA. Setting h ∶= h+↾C it follows that h○ f = h+○ f+↾A0 =
idA0 , as desired. ◻
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Lemma 3.7. LetK be an amalgamation class. If a structureM ∈ K realises
all Galois types over U ⪯K M, then it also realises all Galois type over every
U0 ⪯K U.

Proof. Let U0 ⪯K U and p ∈ S<ω
Aut(U0). By Lemma 2.15, there exists a type

q ∈ S<ω
Aut(U) with q∣U0 = p. By assumption, M realises q. Hence, it also

realises p. ◻

We conclude this section with a result stating that a strong limit is
unique up to isomorphism.

Theorem 3.8. Let K be an amalgamation class, A,A′ ∈ K structures of
size ∣A∣, ∣A′∣ ≥ ln(K), and let δ, δ′ be limit ordinals with cf(δ) = cf(δ′).

If M is a strong δ-limit over A and M′ is a strong δ′-limit over A′ with
∣M∣ = ∣M′∣, then we can extend every isomorphism f ∶ A → A′ to an
isomorphism π ∶ M→M′.

Proof. Fix strong chains (Mα)α<δ and (M′
α)α<δ′ such that

⋃
α<δ

Mα =M , ⋃
α<δ′

M′
α =M′ , M0 = A , M′

0 = A′ .

Set β ∶= cf(δ) and let h ∶ β → δ and h′ ∶ β → δ′ be strictly increasing
functions with h(0) = 0 and h′(0) = 0. We can choose h and h′ such
that, for every α < β, h(α + 1) and h′(α + 1) are successor ordinals.

Since ∣M∣ = ∣M′∣ we can find increasing chains (Nα)α<β and (N′
α)α<β

ofK-substructures Nα ⪯K Mh(α) and N′
α ⪯K M′

h′(α) such that

⋃
α<β

Nα =M , ⋃
α<β

N′
α =M′ , N0 = A , N′

0 = A′ ,

and ∣Nα ∣ = ∣N ′
α ∣ = min{∣Mh(α)∣, ∣M′

h′(α)∣} .

We construct an increasing chain (pα)α<β of isomorphisms pα ∶ Bα →
B′

α such that

Nα ⪯K Bα ⪯K Mh(α) ,
N′

α ⪯K B′
α ⪯K M′

h′(α)+1 ,
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e7. Abstract elementary classes

and ∣Bα ∣ = ∣Nα ∣ .

Then the limit π ∶= ⋃α<β pα is the desired isomorphism π ∶ M→M′.
We start with p0 ∶= f ∶ A → A′. For limit ordinals γ, we set pγ ∶=

⋃α<γ pα . For the successor step, suppose that pα ∶ Bα → B′
α has already

been defined. We fix a substructure C′ ⪯K M′
h′(α+1) such that

N ′
α+1 ∪ B′α ⊆ C

′ and ∣C′∣ = ∣N ′
α+1∣ .

By Lemma 3.6, Mh(α+1) is ∣Mh(α+1)∣
+-universal over Bα ⪯K Mh(α).

Since ∣C′∣ ≤ ∣Mh(α+1)∣, it therefore follows that there is aK-embedding
g ∶ C′ → Mh(α+1) such that g ○ pα = idBα . Fix a K-substructure C ⪯K
Mh(α+1) such that

Nα+1 ∪ rng g ⊆ C and ∣C∣ = ∣Nα+1∣ .

As above, M′
h′(α+1)+1 is ∣M′

h′(α+1)+1∣
+-universal over C′ ⪯K M′

h′(α+1),
and we have ∣C∣ ≤ ∣M′

h′(α+1)+1∣. Hence, we can find a K-embedding
g′ ∶ C →M′

h′(α+1)+1 such that g′ ○ g = idC′ . We take this embedding g′

for our isomorphism pα+1 ∶ Bα+1 → B′
α+1. Then

Nα+1 ⪯K Bα+1 ⪯K Mh(α+1) ,
N′

α+1 ⪯K B′
α+1 ⪯K M′

h′(α+1)+1 ,
and ∣Bα+1∣ = ∣Nα+1∣ .

Furthermore, for a ∈ Bα , we have

pα+1(a) = g′(a) = g′((g ○ pα)(a))
= (g′ ○ g)(pα(a)) = pα(a) .

Hence, pα ⊆ pα+1. ◻

Corollary 3.9. Suppose that K is an amalgamation class with κ ≥ ln(K),
and let M be a weak κδ-limit over A of size ∣M∣ = κ where δ is a limit
ordinal with δ < κ+. Every strong κδ-limit over A is isomorphic to M.

Proof. By Corollary 3.4, M is a strong δ-limit over A. Since δ is a limit
ordinal we have cf(δ) = cf(κδ). Consequently, the claim follows from
Theorem 3.8. ◻
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4. Categoricity and stability

4. Categoricity and stability
In this section we study the consequences of categoricity and stability for
an abstract elementary class. We will see that Ehrenfeucht-Mostowski
functors provide an invaluable tool in this context.

Lemma 4.1. Let K be a κ-categorical abstract elementary class with the
joint embedding property where κ ≥ ln(K). The structure M ∈ K of size κ
is K-universal.

Proof. Let A ∈ K be of size ∣A∣ ≤ κ. By the joint embedding property, we
can findK-embeddings f ∶ A→ N and g ∶ M→ N into some structure
N ∈ K of size ∣N ∣ ≤ ∣M∣⊕ ∣A∣⊕ ln(K) = κ. SinceK is κ-categorical, there
exits an isomorphism π ∶ N→M. It follows that π ○ f is aK-embedding
A→M. ◻

We start by showing that categoricity implies stability. This generalises
Theorem e6.3.16.

Lemma 4.2. Suppose that K is unbounded and κ-categorical, for κ ≥
ln(K), and let M ∈ K be the structure of size ∣M∣ = κ. For every U ⪯K M,
M realises at most ∣U ∣⊕ ln(K) Galois types over U.

Proof. By Corollary 1.10, there exists an Ehrenfeucht-Mostowski functor
F = prΣ ○ F+ forK. Then ∣F(κ)∣ = κ implies F(κ) ≅M. W.l.o.g. we may
assume that this isomorphism is the identity. Fix a substructure U ⪯K M.
There is some I ⊆ κ of size ∣I∣ ≤ ∣U ∣ such that U ⊆ F(I). Every finite
tuple ā ⊆ M = F+(κ)∣Σ is of the form a l = t l [ı̄] where t l is a term of the
expansion F+(κ)with parameters ı̄ ⊆ κ. By enlarging the tuples ı̄ wemay
assume that these parameters are the same for every a l . If a′l = t l [ı̄′] are
elements where ı̄ and ı̄′ have the same order type over I, then we can
find a linear order L extending κ and an automorphism π of L that fixes I
and maps ı̄ to ı̄′. Hence, F+(π) is an automorphism of F+(L) fixing U
and mapping ā to ā′. Consequently, tpAut(ā/M,U) = tpAut(ā

′/M,U).
It follows that the number of Galois types over U realised in M is

bounded by the number of terms t(x̄), times the number of order types
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of finite tuples ı̄ ⊆ κ over I. There are at most ln(K) such terms and,
since κ is well-ordered, at most ∣I∣ such order types. ◻

Theorem 4.3. An unbounded κ-categorical Jónsson class K is λ-Galois
stable, for every cardinal ln(K) ≤ λ < κ.

Proof. For a contradiction, suppose that K is not λ-Galois stable, for
some ln(K) ≤ λ < κ. Fix a structure U ∈ K of size ∣U ∣ = λ such that
∣S<ω

Aut(U)∣ > λ. By Proposition 2.17, we can find a K-extension A ⪰K U
of size ∣A∣ = λ+ realising λ+ types from S<ω

Aut(U).
Let M ∈ K be a structure of size κ. We have seen in Lemma 4.1 that

M is κ+-universal. Hence, there exists aK-embedding f ∶ A→M. It fol-
lows that M realises at least λ+ Galois types over f [U]. This contradicts
Lemma 4.2. ◻

Lemma 4.4. Let K be an amalgamation class. If K is κ-categorical for
κ > ln(K), then the structure M ∈ K of size κ is cf(κ)-Galois saturated.

Proof. Starting with an arbitrary structure A0 ∈ K<κ we use Lemma 2.13
to construct a strictly increasing chain (Aα)α<κ of structures Aα ∈ K of
size ∣Aα ∣ < κ such that Aα+1 realises every Galois type over Aα .
By Lemma 2.16, the union Aκ ∶= ⋃α<κ Aα is cf(κ)-Galois saturated.

Since ∣Aκ ∣ = κ and K is κ-categorical, we have Aκ ≅ M. Hence, M is
cf(κ)-Galois saturated. ◻

Corollary 4.5. LetK be an unbounded Jónsson class. IfK is κ-categorical,
for κ > ln(K), then K contains Galois saturated structures of size λ, for
every regular cardinal λ with ln(K) ≤ λ ≤ κ.

Proof. For λ = κ, we have already proved the claim in Lemma 4.4. For
λ < κ, it follows from Theorems 4.3 and 2.18. ◻

Next, we consider an analogue of the notion of an indiscernible se-
quence for abstract elementary classes. The following result is comparable
to Theorem e5.3.13.
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Lemma 4.6. Let K be an amalgamation class and let F ∶ Lin→ Emb(K)
be an Ehrenfeucht-Mostowski functor for K with spine s. Suppose that I is
a linear order, ı̄ ∈ [I]<ω a finite tuple, and σ ∶ ı̄ → ı̄ a permutation such
that

tpAut(sI(ı̄) / F(I),∅) ≠ tpAut(sI(σ(ı̄)) / F(I),∅) .

Then K is not κ-stable, for any κ ≥ ln(K).

Proof. We can write each permutation as a product of transpositions.
Hence, suppose that σ = σ0 ○ ⋅ ⋅ ⋅ ○ σn , where each σl ∶ ı̄ → ı̄ is a permuta-
tion of ı̄ interchanging two consecutive components of ı̄. There is at least
one index l such that

tpAut(sI(ı̄) / F(I),∅) ≠ tpAut(sI(σl(ı̄)) / F(I),∅) ,

since, otherwise, we would have

tpAut(sI(ı̄) / F(I),∅) = tpAut(sI(σ(ı̄)) / F(I),∅) .

Replacing σ by σl we may therefore assume that ı̄ = k̄ i jm̄ and σ(ı̄) =
k̄ jim̄ where k̄ < i < j < m̄.

Let J be a linear order of size ∣J∣ > κ containing a dense subset J0 ⊆ J of
size ∣J0∣ = κ. Set M ∶= F(J) and U ∶= F(J0). Since ∣U ∣ = κ, it is sufficient
to show that

tpAut(sJ(x)/M,U) ≠ tpAut(sJ(y)/M,U) , for all x ≠ y in J .

Fix elements x < y in J. To prove that the Galois types of sJ(x) and
sJ(y) over U are different, we choose indices w , ū, v̄ ⊆ J0 such that
x < w < y and the tuples ūxyv̄ and k̄ i jm̄ have the same order type. It
follows that

tpAut(sJ(xwūv̄)/M,∅) = tpAut(sI(i jk̄m̄)/F(I),∅)

≠ tpAut(sI( ji k̄m̄)/F(I),∅)
= tpAut(sJ(ywūv̄)/M,∅) .

Since sJ(wūv̄) ⊆ U the claim follows. ◻
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We have already seen that κ-categorical classes are stable and, there-
fore, they contain Galois saturated structures of all regular cardinals
below κ. We conclude this section with some results about the existence
of Galois saturated structures of singular cardinality.

Lemma 4.7. Let K be a κ-categorical amalgamation class, let F ∶ Lin→
Emb(K) be an Ehrenfeucht-Mostowski functor forK, let λ > ln(K) be a
cardinal, and set Cλ ∶= { µ+ ∣ µ < λ }. Then F(I) is λ-Galois saturated, for
every Cλ-universal linear order I of size λ ≤ ∣I∣ < cf(κ).

Proof. It is sufficient to show that F(I) is µ+-Galois saturated, for every
µ < λ. Since I is Cλ-universal there is some embedding h ∶ µ+ → I. Set
A ∶= ⇓ rng h, B ∶= I ∖ A, and J ∶= A + κ + B. Then ∣F(J)∣ = κ. Since
µ+ < cf(κ) it therefore follows by Lemma 4.4 that F(J) is µ+-Galois
saturated.

To show that also F(I) is µ+-Galois saturated, we consider a sub-
structure U ⪯K F(I) of size ∣U ∣ = µ and a type p ∈ S<ω

Aut(U). Let
q ∈ S<ω

Aut(F(h)[U]) be the type with q∣F(h) = p. Then q is realised by
some tuple ā ⊆ F(J). Each a l is denoted by a term t l [ı̄ k̄] (in the Skolem
expansion) with parameters ı̄ ⊆ I and k̄ ⊆ J ∖ I. By enlarging the tuples
of parameters we may assume without loss of generality that the para-
meters ı̄ k̄ are the same for every l . Let J0 ⊆ J be a set of size ∣J0∣ = µ
such that F(h)[U]∪ ı̄ ⊆ F(J0). Since µ+ is regular, there is some α < µ+
such that J0 ∩ A ⊆ h[↓α]. Hence, there is some tuple k̄′ ⊆ rng h such
that k̄ and k̄′ have the same order type over J0 ∪ ı̄. Setting b l ∶= t l [ı̄ k̄′]
it follows that tpAut(b̄/F(I),U) = p. ◻

In the following λ<ω denotes the linear order ⟨λ<ω , ≤lex⟩ where ≤lex is
the lexicographic order on λ<ω .

Proposition 4.8. Let K be an unbounded amalgamation class that is
κ-categorical, for some regular cardinal κ > ln(K). If F ∶ Lin→ Emb(K)
is an Ehrenfeucht-Mostowski functor for K, then

(a) F(λ) is Galois saturated, for every ln(K) < λ ≤ κ ;
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(b) F(λ<ωα) is Galois saturated, for every cardinal ln(K) < λ ≤ κ and
every ordinal α < λ+.

Proof. For λ < κ, the claims follow from Lemma 4.7 since the orders
λ<ωα and λ are both Cλ-universal. For λ = κ, note that F(κ<ωα) ≅ F(κ)
is the only structure inK of size κ. This structure is Galois saturated by
Corollary 4.5. ◻

We can use structures of the form F(λ<ωα) to build strong δ-chains.
We start by proving an universality lemma for the order λ<ω .

Lemma 4.9. Let λ be a cardinal. For every ordinal β < λ+, there exists an
embedding g ∶ β → λ<ω .

Proof. We define g by induction on β. If β ≤ λ then we can set g(α) ∶=
⟨α⟩, for all α < β. For the successor step, suppose that β = γ + 1 and let
g0 ∶ γ → λ<ω be the embedding obtained by inductive hypothesis. We
define g ∶ β → λ<ω by

g(α) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

⟨0⟩ ⋅ g0(α) for α < γ ,
⟨1⟩ for α = γ .

If β is a limit ordinal, we fix an increasing chain (γ i)i<λ of ordinals λ ≤
γ i < β with supi γ i = β. By inductive hypothesis, there are embeddings
g i ∶ γ i → λ<ω . We define g ∶ β → λ<ω by

g(α) ∶= ⟨i⟩ ⋅ g i(α) where i is the least index with α < γ i . ◻

Lemma 4.10. Let K be a κ-categorical amalgamation class where κ is
regular, let ln(K) ≤ λ < κ be a cardinal, and δ < λ+ a limit ordinal.
Suppose that F ∶ Lin → Emb(K) is an Ehrenfeucht-Mostowski functor
for K.

(a) (F(λ<ωα))α<δ is a strong δ-chain over F(λ<ω).
(b) If M is a strong δ-limit over F(λ<ω) of size ∣M∣ = λ, then M ≅

F(λ<ωδ) .
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Proof. (b) follows immediately by (a) and Theorem 3.8.
(a) We have to show that F(λ<ω(α+ 1)) is λ+-universal over F(λ<ωα).

Let f ∶ F(λ<ωα) → C be a K-embedding with ∣C∣ ≤ λ. Since K is κ-
categorical, we know by Lemma 4.4 that F(λ<ωκ) is Galois saturated.
In particular, F(λ<ωκ) is λ+-universal over F(λ<ωα). Hence, we can
find a K-embedding g ∶ C → F(λ<ωκ) such that g ○ f = id. There
exists a set I ⊆ λ<ωκ of size ∣I∣ = λ such that rng g ⊆ F(I). Setting
I0 ∶= I ∩ λ<ωα and I1 ∶= I ∖ λ<ωα, we obtain a partition I = I0 ⊍ I1
with I0 < I1. Since I1 is a well-order with ord(I1) < λ+, we can apply
Lemma 4.9 to find an embedding σ1 ∶ I1 → λ<ω . Using σ1, we define an
embedding σ ∶ I → λ<ω(α + 1) by

σ(i) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

i if i ∈ I0 ,
λ<ωα + σ1(i) if i ∈ I1 .

Setting h ∶= F(σ) ○ g we obtain aK-embedding h ∶ C → F(λ<ω(α + 1))
with

h ○ f = F(σ) ○ g ○ f = F(σ) ○ idF(λ<ωα) = idF(λ<ωα) . ◻

Using these technical results about Ehrenfeucht-Mostowski functors
we can prove the following two theorems on the existence of Galois
saturated structures.

Theorem 4.11. Suppose that K is an unbounded κ-categorical Jónsson
class where κ is regular. Let A ∈ K be a structure of size ∣A∣ = λ where
ln(K) < λ < κ, and let δ < λ+ be a limit ordinal. Every strong δ-limit M
over A of size ∣M∣ = λ is Galois saturated.

Proof. Let F ∶ Lin → Emb(K) be an Ehrenfeucht-Mostowski functor
forK and let (Mα)α<δ be a strong δ-chain over A with limit M. Accord-
ing to Proposition 4.8, the structure F(λ<ω) is Galois saturated and has
size λ. By Lemma 2.8 (b), F(λ<ω) is λ+-universal. Hence, there exists a
K-embedding f ∶ A → F(λ<ω). Since M1 is λ+-universal over M0 = A,
there also exists a K-embedding g ∶ F(λ<ω) → M1 with g ○ f = idA.
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Replacing the sequence (Mα)α by isomorphic copies, we may therefore
assume that

A ⪯K F(λ<ω) ⪯K M1 .

SinceM2 is λ+-universal over M1, it is also λ+-universal over F(λ<ω). Let
(M′

α)α<δ be the sequence obtained from (Mα)α<δ by replacing the first
two entries M0 ,M1 by the single entry F(λ<ω). Then (M′

α)α<δ is also a
strong δ-chain with limit M. By Lemma 4.10 (b), we have M ≅ F(λ<ωδ).
Since λ<ωδ is Cλ-universal, it follows by Lemma 4.7 that M is λ-Galois
saturated. ◻

Using the fact that Galois saturated structures of the same cardinality
are isomorphic, we obtain the following strengthening of Theorem 3.8.

Corollary 4.12. Suppose that K is an unbounded Jónsson class that is κ-
categorical, for some regular cardinal κ. Let λ be a cardinal with ln(K) <
λ < κ and let δ, δ′ < λ+ be limit ordinals. If M,M′ ,A,A′ ∈ K are struc-
tures of size λ such that M is a strong δ-limit over A and M′ is a strong
δ′-limit over A′, then M ≅M′.

Our final theorem concerns unions of Galois saturated structures.
One can show that we can do without the assumption that λ is a limit
cardinal, but the proof is much more involved for regular cardinals λ.

Theorem 4.13. LetK be an unbounded κ-categorical Jónsson class where
κ is regular, and let λ be a limit cardinalwith ln(K) < λ < κ. If (Mα)α<δ is
an increasing chain of Galois saturated structures Mα ∈ K of size ∣Mα ∣ = λ
with δ < λ+, then the union ⋃α<δ Mα is also Galois saturated.

Proof. Let N ∶= ⋃α<δ Mα be the limit. Then ∣N ∣ ≤ ∣δ∣⊗ λ = λ. To show
that N is Galois saturated fix a structure U ⪯K N of size µ ∶= ∣U ∣ < λ and
some type p ∈ S<ω

Aut(U). W.l.o.g. we may assume that µ ≥ ln(K). Note
that λ being a limit implies that µ++ < λ.

The set I ∶= { α < δ ∣ (Mα+1 ∖ Mα) ∩ U ≠ ∅} has size ∣I∣ ≤ ∣U ∣ = µ.
Consequently, there exists a cofinal strictly increasing map f ∶ µ0 → I
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where µ0 ∶= cf(µ) ≤ µ. We construct a strong µ0-chain (Nα)α<µ0 where
each Nα ⪯K M f (α) has size ∣Nα ∣ = µ+ and, for all α < µ0, we have

U ∩ M f (α+1) ⊆ Nα+1 ⊆ M f (α+1) .

We define Nα by induction on α. We start with an arbitrary structure
N0 ⪯K M of size ∣N0∣ = µ+. For limit ordinals γ, we set Nγ ∶= ⋃α<γ Nα .

For the successor step, suppose that Nα has already been defined. We
construct a weak µ+-chain (Bβ)β<µ+ with ∣Bβ ∣ = µ+ as follows. We
start with an arbitrary structure B0 ⪯K M f (α+1) of size ∣B0∣ = µ+ such
that Nα ∪ (U ∩ M f (α+1)) ⊆ B0. Then we use Lemma 2.13 to inductively
define Bβ , for 0 < β < µ+. Since K is µ+-Galois stable, we can choose
all Bβ of size ∣Bβ ∣ = µ+. Since M f (β+1) is µ++-Galois saturated, we can
further choose Bβ such that Bβ ⪯K M f (β+1). Let Nα+1 ∶= ⋃β<µ+ Bβ be
the limit. By Lemma 3.3, Nα+1 is µ++-universal over B0 ⪰K Nα .
We have constructed a strong µ0-chain (Nα)α<µ0 whose limit A ∶=

⋃α<µ0 Nα has size ∣A∣ = µ0 ⊗ µ+ = µ+. Since ∣N0∣ = µ+ it follows by
Theorem 4.11 that A is Galois saturated. Consequently, p is realised in
A ⪯K N. ◻
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f1. Geometries

1. Dependence relations
We have seen that a vector space or an algebraically closed field (of a given
characteristic) is uniquely determined by, respectively, its dimension and
its transcendence degree. In this chapter we try to generalise these two
results. We investigate first-order theories whose models are uniquely
determined by some kind of dimension. We start by introducing an
abstract notion of dimension. As for vector spaces and algebraically
closed fields, this notion is based on a closure operator. With these tools
in hand we can then prove categoricity results for certain theories. Our
first application will be Theorem 4.13, which states that two models of
the same dimension are isomorphic.

Definition 1.1. (a) A dependence relation on a set A is a system D ⊆ ℘(A)
with the property that

X ∈ D iff X0 ∈ D for some nonempty finite X0 ⊆ X .

A subset X ⊆ A is D-dependent if X ∈ D. Otherwise, it is called D-
independent.

(b) An element a ∈ A D-depends on a set X ⊆ A if a ∈ X or there is an
D-independent subset I ⊆ X such that I ∪ {a} is D-dependent. The set
of all elements D-depending on X is denoted by ⟪X⟫D .

(c) A dependence relation D on A is transitive if ⟪⟪X⟫D⟫D = ⟪X⟫D ,
for all X ⊆ A.

Remark. Note that, if I is D-independent then we have a ∈ ⟪I⟫D if and
only if I ∪ {a} is D-dependent.
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f1. Geometries

Example. (a) Let V be a K-vector space. Then

D ∶= {X ⊆ V ∣ X is linearly dependent}

is a transitive dependence system on V .
(b) Let K be a field. Then

D ∶= {X ⊆ K ∣ X is algebraically dependent}

is a transitive dependence system on K.
(c) Let G = ⟨V , E⟩ be an undirected graph. Then

D ∶= {X ⊆ E ∣ E contains a cycle}

is a transitive dependence system on E.

Lemma 1.2. Let D be a transitive dependence relation on A. The function
c ∶ X ↦ ⟪X⟫D is a finitary closure operator with the exchange property.

Proof. By definition c is finitary. To show that it is a closure operator
note that we have X ⊆ c(X) since all elements of X D-depend on X.
As D is transitive we further have c(c(X)) = c(X). Finally, if X ⊆ Y
then every element D-depending on X also D-depends on Y . Hence,
c(X) ⊆ c(Y).

For the exchange property, suppose that b ∈ c(X ∪{a})∖ c(X). Then
there is a D-independent subset I ⊆ X ∪ {a} with I ∪ {b} ∈ D. Let
I0 ∶= I ∖ {a}. Note that I′ ∶= I0 ∪ {b} is D-independent since, otherwise,
we would have b ∈ c(I0) ⊆ c(X). Therefore, I′ ∪ {a} ∈ D implies that
a ∈ c(I′) ⊆ c(X ∪ {b}), as desired. ◻

Lemma 1.3. Let D be a transitive dependence relation, I a D-independent
set, and I0 ⊆ I. If a ∈ ⟪I⟫D ∖⟪I0⟫D then there exists an element b ∈ I ∖ I0
such that I′ ∶= (I ∖ {b}) ∪ {a} is D-independent and b ∈ ⟪I′⟫D .

Proof. Since a ∈ ⟪I⟫D there is some D-independent subset J ⊆ I such
that J ∪ {a} ∈ D. Choose J minimal. Since a ∉ ⟪I0⟫D we have J ⊈ I0.
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Fix some element b ∈ J ∖ I0 and set J′ ∶= J ∖ {b} and I′ ∶= I ∖ {b}. By
minimality of J we have J′ ∪ {a} ∉ D. Consequently, b ∈ ⟪J′ ∪ {a}⟫D ⊆
⟪I′ ∪ {a}⟫D .

It remains to prove that I′∪{a} is D-independent. For a contradiction,
suppose that I′ ∪ {a} ∈ D. Then a ∈ ⟪I′⟫D . Since D is transitive it
follows that b ∈ ⟪I′ ∪ {a}⟫D ⊆ ⟪I′⟫D . Consequently, I = I′ ∪ {b} is not
D-independent. Contradiction. ◻

We can characterise transitive dependence systems in terms of closure
operators with the exchange property.

Proposition 1.4. (a) If c is a finitary closure operator on A with the ex-
change property, then

D ∶= {X ⊆ A ∣ there is some a ∈ X with a ∈ c(X ∖ {a}) }

is a transitive dependence relation with c(X) = ⟪X⟫D , for all X.
(b) A subset D ⊆ ℘(A) is a transitive dependence relation if and only if

the function c ∶ X ↦ ⟪X⟫D is a finitary closure operator with the exchange
property.

Proof. (a) To show that D is a dependence relation let X ∈ D. We have
to find a finite subset X0 ⊆ X with X0 ∈ D. By definition, there is some
element a ∈ X with a ∈ c(X∖{a}). Since c is finitary it follows that there
is some X0 ⊆ X ∖ {a} with a ∈ c(X0). Consequently, X0 ∪ {a} ∈ D.

It remains to show that D is transitive and that c(X) = ⟪X⟫D . We start
with the latter. Let a ∈ c(X) and choose a minimal subset X0 ⊆ X with
a ∈ c(X0). Then there is no b ∈ X0 with b ∈ c(X0∖{b}) since, otherwise,
c(X0) = c(X0∖{b}) and X0 would not beminimal. It follows that X0 is
D-independent while X0 ∪{a} is not. Consequently, we have a ∈ ⟪X⟫D .
Conversely, suppose that a ∈ ⟪X⟫D . Then there is a D-independent

subset I ⊆ X with I∪{a} ∈ D. Hence,we can find an element b ∈ I∪{a}
such that b ∈ c((I ∪ {a})∖ {b}). If b = a then we have a ∈ c(I) ⊆ c(X),
as desired. Otherwise, let I0 ∶= I ∖ {b}. Since I is D-independent we
have b ∉ c(I0). Therefore, b ∈ c(I0 ∪ {a}) ∖ c(I0) implies that a ∈
c(I0 ∪ {b}) ⊆ c(X).
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Finally, note that c ○ c = c implies that D is transitive.
(b) (⇒) was already proved in Lemma 1.2. (⇐) By (a), we only have

to show that, if D and D′ are sets such that ⟪X⟫D = ⟪X⟫D′ , for all
X ⊆ A, then we have D = D′. By symmetry, suppose that there is a
set X ∈ D ∖ D′. Then there is a finite nonempty subset X0 ⊆ X with
X0 ∈ D ∖ D′. Choose X0 such that its size is minimal and fix some
element a ∈ X0. By minimality we have X0 ∖ {a} ∉ D. This implies
that a ∈ ⟪X0 ∖ {a}⟫D . But X0 ∉ D′ implies X0 ∖ {a} ∉ D′. Therefore,
a ∉ ⟪X0 ∖ {a}⟫D′ = ⟪X0 ∖ {a}⟫D . A contradiction. ◻

We can use this proposition to translate between dependence relations
and closure operators. In the following we will use the terminology for
both interchangeably, e.g.,wewill speak of independent sets with respect
to a closure operator.

Using dependence relations or, equivalently, closure operators with
the exchange property, we can introduce bases and dimensions as for
vector spaces.

Definition 1.5. Let D be a dependence relation on A. A set X ⊆ A is
D-spanning if ⟪X⟫D = A. A D-basis is a D-spanning set which is D-
independent.

Lemma 1.6. Let D be a transitive dependence relation on A and X ⊆ A a
set. The following statements are equivalent :

(1) X is a maximal D-independent set.

(2) X is a minimal D-spanning set.

(3) X is a D-basis.

Proof. (1)⇒ (2) Let X be maximal D-independent and suppose that
there is some element a ∈ A∖⟪X⟫D . Since X is D-independent we have
X ∪ {a} ∉ D and X is not maximal.

(2)⇒ (3) Let X be minimal D-spanning. For a contradiction suppose
that X ∈ D. Let X0 ⊆ X be a minimal subset with X0 ∈ D and fix some
element a ∈ X0. By minimality, I ∶= X0 ∖ {a} is D-independent. Hence,
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1. Dependence relations

a ∈ ⟪I⟫D ⊆ ⟪X ∖ {a}⟫D . By transitivity, it follows that ⟪X ∖ {a}⟫D =
⟪X⟫D = A. This contradicts the minimality of X.

(3) ⇒ (1) Every D-basis X is D-independent. If X were not max-
imal, we could find an element a ∈ A ∖ X such that X ∪ {a} were
D-independent. But this would imply that a ∉ ⟪X⟫D = A. A contradic-
tion. ◻

Oncewe have shown that all bases have the same cardinality,we obtain
a well-defined notion of dimension.

Lemma 1.7 (Exchange Lemma). Let D be a transitive dependence relation
on A. If I is D-independent and S is D-spanning then there exists a subset
S0 ⊆ S with I ∩ S0 = ∅ such that I ∪ S0 is a D-basis.

Proof. The set F ∶= { J ∣ J is D-independent with I ⊆ J ⊆ I ∪ S } is
inductively ordered by ⊆ since⋃C ∈ D would imply that there is a finite
subset C0 ⊆ C with⋃C0 ∈ D. Consequently, F has amaximal element B.
Bymaximality, every element of S∖B D-depends on B. Hence, S ⊆ ⟪B⟫D
implies that ⟪B⟫D ⊇ ⟪S⟫D = A, and B is a D-basis. Setting S0 ∶= B ∖ I
yields the desired subset of S. ◻

Lemma 1.8. Let D be a transitive dependence relation on A. If I, J are
D-independent sets with J ⊆ ⟪I⟫D then ∣J∣ ≤ ∣I∣.

Proof. Since D induces a transitive dependence relation on ⟪I⟫D we
may assume that A = ⟪I⟫D and that I is a D-basis.

First, suppose that J is finite. We prove the claim by induction on
∣J ∖ I∣. If J ⊆ I then there is nothing to do. Hence, suppose that there is
some element a ∈ J ∖ I, and set H ∶= I ∩ J. Since J is D-independent we
have a ∈ ⟪I⟫D ∖ ⟪H⟫D . By Lemma 1.3, we can find an element b ∈ I ∖H
such that I0 ∶= (I ∖ {b}) ∪ {a} is D-independent and b ∈ ⟪I0⟫D . By
transitivity of D it follows that J ⊆ ⟪I⟫D ⊆ ⟪I0 ∪ {b}⟫D = ⟪I0⟫D . Since
∣J ∖ I0∣ < ∣J ∖ I∣ we can apply the induction hypothesis to conclude that
∣J∣ ≤ ∣I0∣ = ∣I∣.

It remains to consider the case that J is infinite. If I were finite, we
could choose a subset J0 ⊆ J of size ∣J0∣ = ∣I∣ + 1. This would contradict
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the finite case proved above. Hence, I is also infinite. Since the operator
X ↦ ⟪X⟫D is finitary we have

J ⊆⋃{⟪I0⟫D ∣ I0 ⊆ I is finite} .

If I0 ⊆ I is finite,we have seen above that ∣J∩⟪I0⟫D ∣ ≤ ∣I0∣. Consequently,

J =⋃{ J ∩ ⟪I0⟫D ∣ I0 ⊆ I is finite}

implies that

∣J∣ ≤∑{ ∣J ∩ ⟪I0⟫D ∣ ∣ I0 ⊆ I is finite} ≤ ∣I∣<ω = ∣I∣ . ◻

Theorem 1.9. Let D be a transitive dependence relation on A.

(a) For every D-independent set I and every D-spanning set S ⊇ I there
exists a D-basis B with I ⊆ B ⊆ S.

(b) There exists a D-basis and all D-bases have the same cardinality

Proof. (a) follows from Lemma 1.7.
(b) The existence of a D-basis follows from (a) by setting I ∶= ∅ and

S ∶= A. The fact that two bases have the same cardinality follows from
Lemma 1.8. ◻

2. Matroids and geometries
It will be convenient to work with closure operators instead of depend-
ence relations.

Definition 2.1. Let Ω be a set.
(a) A matroid is a pair ⟨Ω, cl⟩ where cl is a finitary closure operator

on Ω with the exchange property.
(b) A matroid ⟨Ω, cl⟩ is a geometry if it satisfies

cl(∅) = ∅ and cl({a}) = {a} , for every a ∈ Ω .
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(c) Let ⟨Ω, cl⟩ be a matroid. For U , I ⊆ Ω, we say that I is independent
over U if

a ∉ cl(U ∪ (I ∖ {a})) , for all a ∈ I .

We call I independent if it is independent over the empty set.
A basis of a set X ⊆ Ω is an independent set I ⊆ X with cl(I) ⊇ X.

The dimension of X is the cardinality of any basis of X. We denote it by
dimcl(X). Similarly, we define a basis of X over a set U as a maximal
set I ⊆ X that is independent over U . The dimension dimcl(X/U) of X
over U is the cardinality of any such set.

Example. Let f ∶ A→ B be a function and define

c(X) ∶= f −1[ f [X]] , for X ⊆ A .

Then ⟨A, c⟩ forms a matroid.

Remark. With any matroid ⟨Ω, cl⟩ we can associate the lattice ⟨fix cl, ⊆⟩
of all closed sets and the closure space ⟨Ω, fix cl⟩.

Exercise 2.1. Let ⟨Ω, cl⟩ be a matroid, X ⊆ Ω, and let C ⊆ fix cl be a
maximal chain of closed sets such that A ⊆ cl(X), for all A ∈ C. Prove
that ∣C∣ = dimcl(X)⊕ 1.

Definition 2.2. Let V be a vector space over a skew field S.
(a) The linear matroid associated with V is the matroid ⟨V , cl⟩ where

cl(X) ∶= ⟪X⟫V is the linear subspace spanned by X.
(b) The affine geometry associated with V is the matroid ⟨V , cl⟩ where

cl(X) ∶= { s0x0 + ⋅ ⋅ ⋅ + sn−1xn−1 ∣ n < ω, s i ∈ S , x i ∈ X with
s0 + ⋅ ⋅ ⋅ + sn−1 = 1} .

Example. Let V be a vector space and let x , y ∈ V be linearly independ-
ent. In the linear matroid the closure of {x , y} is the plain through x, y,
and the zero vector 0. In the affine geometry the closure of {x , y} is the
line through x and y.
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Remark. (a) The linear matroid is not a geometry since cl∅ = {0} ≠ ∅.
Furthermore, the usual dimension of a linear subspace U ⊆ V coincides
with its dimension dimcl(U) in the linear matroid as defined above.

(b) The affine geometry ⟨V , cl⟩ associated with a vector space V is
really a geometry. But note that the usual affine dimension of an affine
subspace U ⊆ V is one less than its dimension dimcl(U) in the affine
geometry as defined above.

The dimension function of a matroid has the following basic proper-
ties. In fact, we will show below that every function of this kind arises
from a matroid.

Definition 2.3. Let Ω be a set. A function dim ∶ ℘(Ω)×℘(Ω)→ Cn is a
geometric dimension function if, for all sets A, B,U ,V ⊆ Ω, the following
conditions are satisfied:

(1) dim(A/U) ≤ ∣A∖U ∣.

(2) dim(A∪U/U) = dim(A/U).

(3) A ⊆ B and U ⊆ V implies dim(A/V) ≤ dim(B/U).

(4) If, for some ordinal γ, (Aα)α<γ is an increasing chain of sets Aα ⊆
Ω, then

dim(A<γ/U) = ∑
α<γ

dim(Aα/U ∪ A<α) ,

where A<α ∶= ⋃β<α Aβ .

(5) For every element a ∈ Ω with dim(a/U) = 0, there is a finite
subset U0 ⊆ U such that dim(a/U0) = 0.

First, let us show that the dimension function of a matroid has these
properties.

Proposition 2.4. The dimension function dimcl associatedwith amatroid
⟨Ω, cl⟩ is a geometric dimension function.
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Proof. We have to check five conditions.
(1) If I is a basis of A over U , then I ⊆ A∖U . Hence, dimcl(A/U) =
∣I∣ ≤ ∣A∖U ∣.

(2) Every basis of A∪U over U is also a basis of A over U .
(3) Every set I ⊆ A that is independent over V is also independent

over U . Hence, ∣I∣ ≤ dimcl(B/U).
(4) Let I be a basis of U . We define an increasing sequence of sets
(Jα)α<γ such that Jα is a basis of U ∪ Aα with I ⊆ Jα . We proceed by
induction on α < γ. Suppose that we have already defined Jβ , for all
β < α. Set J<α ∶= I ∪⋃β<α Jβ . By inductive hypothesis, J<α is a basis of
U ∪ A<α . We can use Theorem 1.9 to extend J<α to a basis Jα of U ∪ Aα .
It follows that Bα ∶= Jα ∖ J<α is a basis of Aα over U ∪ A<α and J<γ ∖ I is
a basis of A<γ over U . Hence,

dimcl(A<γ/U) = ∣J<γ ∖ I∣ = ∑
α<γ
∣Bα ∣ = ∑

α<γ
dimcl(Aα/U ∪ A<α) .

(5) If dimcl(a/U) = 0 then a ∈ cl(U). Since cl has finite charac-
ter, there is a finite subset U0 ⊆ U such that a ∈ cl(U0). This implies
dimcl(a/U0) = 0. ◻

Before proving that, conversely, every geometric dimension function
arises from a matroid, let us collect some immediate consequences of
the definition of a dimension function.

Lemma 2.5. Let dim ∶ ℘(Ω) × ℘(Ω) → Cn be a geometric dimension
function.

(a) dim(A∪ B/U) = dim(A/U ∪ B)⊕ dim(B/U)

(b) If (aα)α<κ is an enumeration of A then

dim(A/U) = ∑
α<κ

dim(aα/U ∪ A<α) ,

where A<α ∶= { aβ ∣ β < α }.
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Proof. (a) Considering the two-element increasing sequence B ⊆ A∪ B,
it follows from the axioms of a geometric dimension function that

dim(A∪ B/U) = dim(A∪ B/U ∪ B)⊕ dim(B/U)

= dim(A∪ B ∪ (U ∪ B) / U ∪ B)⊕ dim(B/U)

= dim(A/U ∪ B)⊕ dim(B/U) .

(b) By (a) and the axioms of a geometric dimension function, we have

dim(A/U) = ∑
α<κ

dim({aα} ∪ A<α / U ∪ A<α)

= ∑
α<κ
[dim(aα/U ∪ A<α)⊕ dim(A<α/U ∪ A<α)]

= ∑
α<κ

dim(aα/X ∪ A<α)⊕ 0 .
◻

Proposition 2.6. Let dim ∶ ℘(Ω)×℘(Ω)→ Cn be a geometric dimension
function. For X ⊆ Ω, we define

cl(X) ∶= { a ∈ Ω ∣ dim(a/X) = 0} .

Then ⟨Ω, cl⟩ is a matroid such that dimcl = dim.

Proof. First, let us show that cl is a closure operator. Note that, for every
a ∈ X, dim(a/X) ≤ ∣{a} ∖ X∣ = 0 implies that a ∈ cl(X). Consequently,
X ⊆ cl(X).

For monotonicity, assume that X ⊆ Y and let a ∈ cl(X). Then

dim(a/Y) ≤ dim(a/X) = 0 implies a ∈ cl(Y) .

It remains to show that cl(cl(X)) = X. Let a ∈ cl(cl(X)). Then
dim(a/ cl(X)) = 0. Furthermore, dim(b/X) = 0 for each b ∈ cl(X).
Let (bα)α<κ be an enumeration of cl(X) and set B<α ∶= { bβ ∣ β < α }.
Then B<κ = cl(X) and, by Lemma 2.5 (b), it follows that

dim(B<κ/X) = ∑
α<κ

dim(bα/X ∪ B<α) ≤ ∑
α<κ

dim(bα/X) = 0 .
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Consequently, Lemma 2.5 (a) implies

dim(a/X) ≤ dim(cl(X) ∪ {a} / X)

= dim(a/ cl(X))⊕ dim(cl(X)/X) = 0⊕ 0 ,

as desired.
We have shown that cl is a closure operator. To prove that it has finite

character, suppose that a ∈ cl(X). Then dim(a/X) = 0. Hence, there is a
finite subset X0 ⊆ X such that dim(a/X0) = 0. This implies a ∈ cl(X0).

It remains to check that cl has the exchange property. Suppose that
b ∈ cl(U ∪ {a}) ∖ cl(U). Then dim(b/U ∪ {a}) = 0. Since b ∉ cl(U),
we have dim(b/U) = 1. Hence,

dim(a/U ∪ {b})⊕ 1
= dim(a/U ∪ {b})⊕ dim(b/U)
= dim(ab/U)
= dim(b/U ∪ {a})⊕ dim(a/U) = dim(a/U) ≤ 1

implies that dim(a/U ∪ {b}) = 0. Consequently, a ∈ cl(U ∪ {b}).
We have shown that ⟨Ω, cl⟩ is a matroid. To conclude the proof, we

must check that dimcl = dim. We proceed in two steps. First, we show
that dim(I/U) = ∣I∣ for every set I that is cl-independent over U . Let
I be such a set. By definition of cl, it follows that

dim(a/U ∪ (I ∖ {a})) = 1 , for every a ∈ I .

Set κ ∶= ∣I∣ and let (aα)α<κ be an enumeration of I. Setting I<α ∶= { aβ ∣
β < α } it follows from Lemma 2.5 (b) that

dim(I/U) = ∑
α<κ

dim(aα/U ∪ I<α)

≥ ∑
α<κ

dim(aα/U ∪ (I ∖ {aα})) = κ .

Therefore, dim(I/U) ≤ ∣I ∖U ∣ ≤ κ implies dim(I/U) = κ.
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Finally, we prove that dim(cl(X)/U) = dim(X/U), for every set X.
Let (aα)α<κ be an enumeration of cl(X) and set A<α ∶= { aβ ∣ β < α }.
Then

dim(cl(X)/U) = dim(cl(X)/X)⊕ dim(X/U)

= ∑
α<κ

dim(aα/X ∪ A<α)⊕ dim(X/U)

≤ ∑
α<κ

dim(aα/X)⊕ dim(X/U)

= 0⊕ dim(X/U) .

To prove thatdimcl(X/U) = dim(X/U), let I be a cl-basis of X over U .
Then dim(I/U) ≤ dim(X/U) ≤ dim(cl(I)/U) = dim(I/U) implies
that

dimcl(X/U) = ∣I∣ = dim(I/U) = dim(X/U) . ◻

Note that it follows from Proposition 2.6 that a dimension function is
uniquely determined by the set of all pairs A,U such that dim(A/U) = 0.

Corollary 2.7. Let d , d′ ∶ ℘(Ω)×℘(Ω)→ Cn be two geometric dimension
functions. If

d(A/U) = 0 iff d′(A/U) = 0 , for all A,U ⊆ Ω ,

then d = d′.

Proof. According to Proposition 2.6, we can associate with d and d′
matroids ⟨Ω, c⟩ and ⟨Ω, c′⟩, respectively. Since d(A/U) = 0 if, and only
if, d′(A/U) = 0, it follows that c = c′. Hence,

d = dimc = dimc′ = d′ . ◻

3. Modular geometries
There is a general construction turning an arbitrary matroid into a geo-
metry.
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Definition 3.1. Let ⟨Ω, cl⟩ be a matroid and U ⊆ Ω. The localisation of
⟨Ω, cl⟩ at U is the matroid ⟨Ω, cl⟩(U) ∶= ⟨Ω(U) , cl(U)⟩ where

Ω(U) ∶= { cl(U ∪ {a}) ∣ a ∈ Ω ∖ cl(U) } ,

cl(U)(X) ∶= { L ∈ Ω(U) ∣ L ⊆ cl(U ∪⋃X) } .

Lemma 3.2. Every localisation of a matroid is a geometry.

Exercise 3.1. Prove the preceding lemma.

Definition 3.3. Let V be a vector space over a skew fieldS. The projective
geometry associated with V is the localisation ⟨V , cl⟩(0) of the linear
matroid at the subspace {0}.

Remark. This coincides with the usual definition of a projective space:
the points are the lines L ⊆ V through the origin.

Lemma 3.4. Let ⟨Ω, cl⟩ be a matroid, U , X ⊆ Ω sets, and ⟨Ω(U) , cl(U)⟩
the localisation at U. Let

X(U) ∶= { cl(U ∪ {x}) ∣ x ∈ X ∖ cl(U) }

be the image of X in Ω(U).

dimcl(X/U) = dimcl(U)(X(U)) .

Proof. Let I be a basis of X over U . Then I ∩ cl(U) = ∅. Hence, if we
can show that

I(U) ∶= { cl(U ∪ {a}) ∣ a ∈ I }

is a basis of X(U), then ∣I(U)∣ = ∣I∣ and the claim follows.
For x ∈ X, let Lx ∶= cl(U ∪ {x}). To show that I(U) is independent,

suppose that there is some a ∈ I such that

La ∈ cl(U)(I(U) ∖ {La})

= { L ∈ Ω(U) ∣ L ⊆ cl(U ∪⋃(I(U) ∖ {La})) } .
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Since a ∈ La it follows that

a ∈ cl(U ∪⋃(I(U) ∖ {La})) ⊆ cl(U ∪ (I ∖ {a})) .

Hence, I is not independent over U . A contradiction.
It remains to show that X(U) ⊆ cl(U)(I(U)). Let Lx ∈ X(U). Then

U ∪ {x} ⊆ U ∪ X ⊆ cl(U ∪ I) implies Lx ∈ cl(U)(I(U)) . ◻

Some special properties of affine and projective geometries are worth
singling out.

Definition 3.5. Let ⟨Ω, cl⟩ be a matroid.
(a) ⟨Ω, cl⟩ is modular if the lattice ⟨fix cl, ⊆⟩ of its closed sets is modular.

The matroid is locally modular if all of its localisations at a single point
a ∈ Ω are modular.

(b) ⟨Ω, cl⟩ is disintegrated if cl(X) = X, for all X ⊆ Ω.
(c) ⟨Ω, cl⟩ is locally finite if the closure of every finite set is finite.
(d) A morphism between matroids is a continuous function between

the corresponding closure spaces.
(e) ⟨Ω, cl⟩ is homogeneous if, for every finite set U ⊆ Ω and all a, b ∈

Ω ∖ cl(U), there is an isomorphism π ∶ Ω → Ω with π ↾ cl(U) = id and
π(a) = b.

We have defined modularity of a matroid in terms of the correspond-
ing lattice of closed sets. The next lemma lists some equivalent conditions
on the matroid itself.

Lemma 3.6. Let ⟨Ω, cl⟩ be a matroid. The following statements are equi-
valent :

(1) ⟨Ω, cl⟩ is modular.

(2) For all finite X ,Y ⊆ Ω, we have

dimcl (X ∩ Y) + dimcl (X ∪ Y) = dimcl(X) + dimcl(Y) .
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3. Modular geometries

(3) For all closed sets C ⊆ Ω and every pair of elements a, x ∈ Ω with
x ∈ cl(C ∪ {a}), there exists an element c ∈ C with x ∈ cl({a, c}).

a

c
x

C

(4) For all closed sets C ,D ⊆ Ω and every element x ∈ cl(C ∪D), there
exist elements c ∈ C and d ∈ D with x ∈ cl({c, d}).

c

d

x

C

D

Proof. (1)⇒ (2)We have dimcl(X) = dimcl(cl(X)) and the latter di-
mension coincides with the height of cl(X) in the lattice ⟨fix cl, ⊆⟩. Con-
sequently, the equation follows from the modular law (Theorem b2.5.5).
(2)⇒ (3) If a ∈ C, we can take c ∶= x and, if x ∈ cl(a), we can take

an arbitrary c ∈ C. Hence, suppose that a ∉ C ∪ cl(a) and choose a finite
set C0 ⊆ C with x ∈ cl(C0 ∪ {a}). Then (2) implies that

dim(C0 ∩ cl(a, x)) = dim(C0) + dim(a, x) − dim(C0 ∪ {a, x})
= dim(C0) + 2 − (dim(C0) + 1) = 1 .

Hence, there is some c ∈ C0 ∩ cl(a, x). By the exchange property it
follows that x ∈ cl(a, c), as desired.
(3) ⇒ (4) Since cl has finite character, there are finite sets C0 ⊆ C

and D0 ⊆ D such that x ∈ cl(C0 ∪D0). We prove the claim by induction
on ∣C0∣. If C0 = ∅ then x ∈ cl(D0) ⊆ D and we are done. Suppose that
C0 = A∪ {a}. Since x ∈ cl(A∪ D0 ∪ {a}), we can use (3) to find some
b ∈ cl(A∪ D0) with x ∈ cl({a, b}). By inductive hypothesis, there are
a′ ∈ A and d ∈ D0 such that b ∈ cl({a′ , d}). Hence, x ∈ cl({a, a′ , d})
and, applying (3) again, we can find some c ∈ cl({a, a′}) ⊆ C with
x ∈ cl({c, d}).
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(4)⇒ (1) Let A, B,C ⊆ Ω be closed sets with A ⊆ B. We have to show
that cl(A∪ (B ∩ C)) = B ∩ cl(A∪ C). According to Lemma b2.2.6, one
inclusion holds in every lattice. For the other one, let x ∈ B ∩ cl(A∪ C).
By (4) there are elements a ∈ A and c ∈ C with x ∈ B ∩ cl({a, c}). If
x ∈ cl(a) then x ∈ A and we are done. Hence, suppose that x ∉ cl(a). By
the exchange property, it then follows that c ∈ cl({a, x}) ⊆ cl(A∪B) = B.
Hence, c ∈ B ∩ C and x ∈ cl({a, c}) ⊆ cl(A∪ (B ∩ C)). ◻

Disintegrated, projective, and affine geometries frequently appear in
model theory. The next lemma lists some of their properties.

Lemma 3.7. Disintegrated geometries and projective geometries are mod-
ular and homogeneous. Affine geometries are locally modular and homo-
geneous, but not modular if the dimension is at least 3.

Proof. To show that a disintegrated geometry ⟨Ω, cl⟩ is modular, one
only has to check that

X ⊆ Y implies X ∪ (Y ∩ Z) = Y ∩ (X ∪ Z) .

To show that it is homogeneous, let U ⊆ Ω and a, b ∈ Ω∖U . The bijection
h ∶ Ω → Ω exchanging a and b and fixing every other element of Ω is
continuous.

Suppose that ⟨Ω, cl⟩ is the projective geometry associatedwith a vector
space V. Modularity follows from Lemma b6.4.5. For homogeneity, let
U ⊆ Ω be finite and a, b ∉ cl(U). Let ⟨V , cl∧⟩ be the corresponding
linear matroid. For every element x ∈ Ω there is a non-zero vector x̂ ∈ V
such that x = cl∧(x̂). Fix a basis B of Û ∶= cl∧({ x̂ ∣ x ∈ U }). Since
â, b̂ ∉ Û , there exists a linear map h ∶ V → V fixing B and interchanging
â and b̂. The function Ω → Ω induced by h is the desired continuous
mapping.

Suppose that ⟨Ω, cl⟩ is the affine geometry associated with a vector
space V and let a ∈ Ω. Then ⟨Ω, cl⟩(a) ≅ ⟨Ω, cl⟩(0) and the latter geo-
metry is isomorphic to the projective geometry associated with V. Since
we have just seen that such geometries aremodular, it follows that ⟨Ω, cl⟩
is locally modular.
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To show that it is not modular let u, v ∈ V be linearly independent
vectors. Then cl(0) ⊆ cl(0, u) but

cl(cl(0) ∪ (cl(0, u) ∩ cl(v , v + u))) = cl(cl(0) ∪ ∅)

= cl(0) ,
and cl(0, u) ∩ cl(cl(0) ∪ cl(v , v + u)) = cl(0, u) ∩ cl(0, u, v)

= cl(0, u) .

0

u

v

v + u

For homogeneity, let U ⊆ Ω be finite and a, b ∉ cl(U) distinct ele-
ments. If U = ∅ and a and b are both non-zero, we can take some linear
map h ∶ V → V interchanging a and b. This map is continuous.

If U = ∅ and a = 0, we first apply a translation f that maps both
a and b to non-zero vectors. Then we can use a linear map h as above.
The composition f −1 ○ h ○ f is the desired continuous map.

Note that there is one case where such a translation f does not ex-
ists. If V has only two elements. Then V = {a, b} and the function
interchanging a and b is continuous.

It remains to consider the case that U ≠ ∅. Fix some x ∈ U .By applying
a suitable translation f , we can assume that x = 0 ∈ U . Hence, cl(U) is a
linear subspace of V. Let B be a basis of cl(U) and let h ∶ V → V be a
linear map fixing B and interchanging a and b. Then f −1 ○ h ○ f is the
desired continuous map. ◻

Algebraically closed fields provide examples of geometries that are
not locally modular.

Proposition 3.8. Let K be an algebraically closed field of infinite tran-
scendence degree and let ⟨K , cl⟩ be the matroid where cl maps a set X ⊆ K
to its algebraic closure.

1047



f1. Geometries

(a) ⟨K , cl⟩ is homogeneous.

(b) No localisation of ⟨K , cl⟩ at a finite set is modular.

Proof. (a) follows by Corollary b6.5.31.
(b) We consider the localisation ⟨K , cl⟩(U) at a finite set U ⊆ K. Let

n ∶= dimcl(U). Since K has infinite transcendence degree, there are
elements a, b, c, d that are algebraically independent over U . Set x ∶=
(a − c)/(b − d) and y ∶= a − bx, and let

A ∶= cl(a, b,U) and B ∶= cl(x , y,U) .

Then cl(A ∪ B) = cl(a, b, x ,U) has dimension n + 3, while A and B
both have dimension n + 2. To show that ⟨K , cl⟩(U) is not modular it is
sufficient to prove that the dimension of A∩ B is different from n + 1.

In fact, we claim that A∩ B = cl(U) and, hence, the dimension is n.
Clearly, we have U ⊆ A∩ B. Conversely, consider an element z ∈ A∩ B.
By (a), there exists an automorphism π ∈ Aut K that fixes B pointwise
and maps a tø c. It follows that π(b) = π((a − y)/x) = (c − y)/x = d.
Consequently, z ∈ B implies π(z) = z, and z ∈ A = cl(a, b,U) implies
z = π(z) ∈ cl(c, d ,U). Thus,

z ∈ cl(a, b,U) ∩ cl(c, d ,U) = cl(U) . ◻

We conclude this section with the following characterisation of ho-
mogeneous, locally finite geometries.

Theorem 3.9 (Cherlin, Mills, Zil’ber). Let ⟨Ω, cl⟩ be a homogeneous, loc-
ally finite geometry of infinite dimension. Then exactly one of the following
cases holds :

(1) ⟨Ω, cl⟩ is disintegrated.

(2) ⟨Ω, cl⟩ is isomorphic to a projective geometry over a finite field.

(3) ⟨Ω, cl⟩ is isomorphic to an affine geometry over a finite field.
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4. Strongly minimal sets
Having introduced geometries we are interested in first-order theories
where the algebraic closure operator forms such a geometry.

Definition 4.1. Let M be a structure and S ⊆ Mn an infinite M-definable
relation.

(a) We call S minimal if, for every M-definable subset X ⊆ S, either X,
or S ∖X is finite. A formula φ(x̄; c̄) with c̄ ⊆ M is minimal if the relation
φ(x̄; c̄)M it defines is minimal.

(b) A relation S, or a formula φ(x̄; c̄), is strongly minimal, if it is
minimal in every elementary extension of M.

Example. (a) Let E = ⟨E , ∼⟩ be a structure where ∼ is an equivalence
relation with infinitely many classes each of which is infinite. For every
a ∈ E, the formula x ∼ a is strongly minimal.

(b) Let K be an algebraically closed field. Every definable set X ⊆ K
is a boolean combination of solution sets of polynomials. Hence, every
such set is either finite or cofinite. Therefore, K is strongly minimal.

(c) In A = ⟨ω, ≤⟩ the set ω is minimal, but not strongly minimal since,
in every elementary extension B ≻ A we can pick an element c ∈ B ∖ ω
such that (x ≤ c)B and (x > c)B are both infinite.

We are mainly interested in strongly minimal relations. As the next
lemma shows, we can find such a relation by looking for a minimal
relation in an ℵ0-saturated structure.

Lemma 4.2. Every minimal relation in an ℵ0-saturated structure M is
strongly minimal.

Proof. Let φ(x̄; c̄) be a minimal formula with parameters c̄ ⊆ M. To
show that φ is stronglyminimalwe consider an elementary extension N ⪰
M and a formula ψ(x̄; d̄) with parameters d̄ ⊆ N . For a contradiction,
suppose that both sets

φ(x̄; c̄)N ∩ ψ(x̄; d̄)N and φ(x̄; c̄)N ∖ ψ(x̄; d̄)N
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are infinite.
Since M is ℵ0-saturated we can find a tuple d̄′ ⊆ M with tp(d̄′/c̄) =

tp(d̄/c̄). For every n < ω, we have

N ⊧ ∃n x̄[φ(x̄; c̄) ∧ ψ(x̄; d̄)] ∧ ∃n x̄[φ(x̄; c̄) ∧ ¬ψ(x̄; d̄)]

which implies that

N ⊧ ∃n x̄[φ(x̄; c̄) ∧ ψ(x̄; d̄′)] ∧ ∃n x̄[φ(x̄; c̄) ∧ ¬ψ(x̄; d̄′)] .

It follows that all these formulae also hold in M. Consequently, both sets
φ(x̄; c̄)M ∩ ψ(x̄; d̄′)M and φ(x̄; c̄)M ∖ ψ(x̄; d̄′)M are infinite. A contra-
diction. ◻

The reason for studying strongly minimal sets is the fact that the
algebraic closure operator has the exchange property for these sets.

Lemma 4.3. Let M be a structure and S ⊆ Mn a minimal set. The restric-
tion of acl to S forms a matroid.

Proof. We have already seen in Lemma e2.1.2 that acl is a finitary closure
operator. Hence, it remains to check that it has the exchange property.

Suppose that ā ⊆ acl(U ∪ b̄) ∖ acl(U) for ā, b̄ ∈ S. We have to show
that b̄ ⊆ acl(U ∪ ā). There exists a formula φ(x̄; ȳ) over U such that
φM(x̄; b̄) is a finite set containing ā. Set m ∶= ∣φM(x̄; b̄)∣ and let ψ( ȳ)
be the formula stating that there are exactly m tuples x̄ ∈ S such that
M ⊧ φ(x̄; ȳ). If ψM( ȳ) is finite, M ⊧ ψ(b̄) implies that b̄ ⊆ acl(U).
Consequently, we have ā ⊆ acl(U). A contradiction.

Hence, the set ψM( ȳ) is infinite. If (φ(ā; ȳ) ∧ ψ( ȳ))M is finite then
b̄ ⊆ acl(U ∪ ā) and we are done. For a contradiction, suppose that
this set if infinite. Since S is minimal it follows that the complement
S ∩ ¬(φ(ā; ȳ) ∧ ψ( ȳ))M is finite. Let k < ℵ0 be its cardinality and let
ϑ(x̄) be the formula stating that there are exactly k elements ȳ ∈ S
that do not satisfy φ(x̄; ȳ) ∧ ψ( ȳ). If ϑ(x̄)M is finite then ā ⊆ acl(U).
A contradiction.
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Hence, ϑ(x̄)M is infinite and we can choose m + 1 distinct elements
ā0 , . . . , ām ∈ ϑ(x̄)M. The set

B ∶= ⋂
i≤m
[φ(ā i ; ȳ) ∧ ψ( ȳ)]M

is a finite intersection of cofinite sets and, therefore, cofinite itself. In
particular, it is nonempty andwe can find some element b̄∗ ∈ B. It follows
that

M ⊧ φ(ā i ; b̄∗) , for all i ≤ m .

Consequently, ∣φM(x̄; b̄∗)∣ > m. But this implies that M ⊭ ψ(b̄∗). A con-
tradiction. ◻

The geometry of a strongly minimal relation is closely related to its
logical properties. For instance,we shall show below that all independent
sets are totally indiscernible with the same type. But first, let us collect
some technical properties of strongly minimal relations.

Lemma 4.4. Let φ(x̄; c̄) be a strongly minimal formulawith parameters c̄.
Let s̄ be the sorts of the variables x̄.

(a) If d̄ is a tuple with tp(d̄) = tp(c̄) then φ(x̄; d̄) is also strongly
minimal.

(b) For every set U ⊇ c̄, there exists a unique nonalgebraic type p ∈
S s̄(U) with φ ∈ p.

Proof. (a) For every formula ψ(x̄; ā) with parameters ā ⊆M, we have
to show that exactly one of

(φ(x̄; d̄) ∧ ψ(x̄; ā))M and (φ(x̄; d̄) ∧ ¬ψ(x̄; ā))M

is finite. Since tp(d̄) = tp(c̄) there is an automorphism π of M with
π(d̄) = c̄. Let b̄ ∶= π(ā). As φ(x̄; c̄) is strongly minimal, exactly one of

(φ(x̄; c̄) ∧ ψ(x̄; b̄))M and (φ(x̄; c̄) ∧ ¬ψ(x̄; b̄))M
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is finite. Since

π[(φ(x̄; d̄) ∧ ψ(x̄; ā))M] = (φ(x̄; c̄) ∧ ψ(x̄; b̄))M ,
and π[(φ(x̄; d̄) ∧ ¬ψ(x̄; ā))M] = (φ(x̄; c̄) ∧ ¬ψ(x̄; b̄))M ,

the claim follows.
(b) Let M be an ℵ0-saturated model containing U and set

p ∶= {ψ ∣ ψ a formula over U such that (φ ∧ ψ)M is infinite} .

Since φ is strongly minimal, it follows that

ψ ∈ p iff ¬ψ ∉ p , for every formula ψ over U .

Hence, p is a complete type over U containing φ.Clearly, p is nonalgebraic
since, if there were some algebraic formula ψ ∈ p, then φ ∧ ψ were also
algebraic, in contradiction to the definition of p.

Suppose that q ∈ S s̄(U) is another nonalgebraic type containing φ. To
show that q ⊆ p, consider ψ ∈ q. Then φ ∧ ψ ∈ q and, by assumption, this
formula is nonalgebraic. By definition of p it follows that ψ ∈ p. ◻

Lemma 4.5. Let φ(x̄) be a strongly minimal formula over a set U of
parameters. Let s̄ be the sorts of the variables x̄, and let p ∈ S s̄(U) be the
unique nonalgebraic type containing φ.

(a) p is isolated if, and only if, φM contains only finitely many tuples in
acl(U).

(b) Let V ⊇ U and let q ∈ S s̄(V) be the unique nonalgebraic extension
of p. If p is isolated, so is q.

Proof. (a) Let R ∶= { ā ∈ φM ∣ ā ⊆ acl(U) }. For (⇐), suppose that
R = {ā0 , . . . , ān−1} is finite. For each i < n, we fix an algebraic for-
mula ψ i over U such that M ⊧ ψ i(ā i). It follows that ψ ∶= ⋁i<n[ψ i ∧ φ]
is a formula over U defining R. We claim that φ ∧ ¬ψ isolates p.

Since p is nonalgebraic, we have ψ ∉ p. Therefore, φ ∧ ¬ψ ∈ p. Con-
versely, let q be an arbitrary complete type over U containing φ ∧ ¬ψ. If
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q is nonalgebraic, it coincides with p, by Lemma 4.4 (b), and we are done.
Therefore, we may assume that q contains an algebraic formula ϑ. Then
each of the finitely many realisations of q is in acl(U). Consequently,
qM ⊆ R, which implies that ψ ∈ q. A contradiction.
(⇒) For a contradiction, suppose that there is some ψ(x̄) ∈ p isolat-

ing p, but R is infinite. Let Γ be the set of all algebraic formulae over U .
As p is the unique nonalgebraic type in S s̄(U) containing φ, the set

{φ ∧ ¬ψ} ∪ {¬ϑ ∣ ϑ ∈ Γ }

is inconsistent. Hence, there are finitely many formula ϑ0 , . . . , ϑn−1 ∈ Γ
such that

T(U) ∪ {φ,¬ϑ0 , . . . ,¬ϑn−1} ⊧ ψ .

Since R is infinite and all ϑ i are algebraic, there is some element

ā ∈ R ∖ (ϑM
0 ∪ ⋅ ⋅ ⋅ ∪ ϑM

n−1) ⊆ (φ ∧ ¬ϑ0 ∧ ⋅ ⋅ ⋅ ∧ ¬ϑn−1)
M ⊆ ψM .

But tp(ā/U) ≠ p since the former type is algebraic, while the latter one
is not. Consequently, ψ does not isolate p. A contradiction.

(b) follows immediately from (a). ◻

Proposition 4.6. Let M be a structure, U ⊆ M, and suppose that S ⊆ Mk

a U-definable minimal relation. If ā, b̄ ∈ Sn are finite tuples each of which
is independent over U , then

tp(ā/U) = tp(b̄/U) .

Proof. We prove the claim by induction on n. For n = 0 there is nothing
to do. Suppose that we have already proved the claim for n-tuples and let
āc ∈ Sn+1 and b̄d ∈ Sn+1 be both independent over U . By inductive hy-
pothesis, we have tp(ā/U) = tp(b̄/U). Let ψ(x̄ , y) be a formula over U
such that

M ⊧ ψ(ā, c) .
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Since c ∉ acl(U ∪ ā) it follows that the set S ∩ψ(ā, y)M is infinite and its
complement S ∖ ψ(ā, y)M is finite. Furthermore, tp(ā/U) = tp(b̄/U)
implies that

∣S ∖ ψ(b̄, y)M∣ = ∣S ∖ ψ(ā, y)M∣ < ℵ0 .

Hence, d ∉ acl(U ∪ b̄) implies that M ⊧ ψ(b̄, d). ◻

Corollary 4.7. Let M be a structure, U ⊆ M a set of parameters, and
S ⊆ M a U-definable minimal set. Every U-independent set A ⊆ S is
totally indiscernible over U.

Proof. Let ā, b̄ ∈ [A]n . Then ā and b̄ are U-independent and, therefore,
they have the same type over U . ◻

We have seen that we can use geometric methods to study models
containing minimal sets. Let us turn to prove the existence of minimal
sets.

Lemma 4.8. Let T be a ℵ0-stable theory over a countable signature Σ,
M ⊧ T infinite, ϑ(x̄) a formula over M, and let κ ≤ ∣ϑM∣ be an infinite
cardinal. There exists a formula φ(x̄) over M such that φM ⊆ ϑM, ∣φM∣ ≥ κ
and, for every formula ψ(x̄) over M, we either have

∣(φ ∧ ψ)M∣ < κ or ∣(φ ∧ ¬ψ)M∣ < κ .

Proof. For a contradiction, suppose that there is no such φ. We construct
a family (φw)w∈2<ω of formulae over M such that, for all w ∈ 2<ω , we
have

φM
w ⊆ ϑM , ∣φM

w ∣ ≥ κ and φM
w0 ∩ φM

w1 = ∅ .

We start with φ⟨⟩ ∶= ϑ. Then φM
⟨⟩ = ϑM and ∣φM

⟨⟩ ∣ ≥ κ. For the inductive
step, suppose that we have already defined φw . By assumption, there is a
formula ψ over M such that

∣(φw ∧ ψ)M∣ ≥ κ and ∣(φw ∧ ¬ψ)M∣ ≥ κ .
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We set φw0 ∶= φw ∧ ψ and φw1 ∶= φw ∧ ¬ψ.
Having defined (φw)w , let U ⊆ M be the set of all parameters ap-

pearing in some φw . Then U is countable and the family (φw)w∈2<ω

is an embedding of 2<ω into FOs̄[ΣU]/T , where s̄ are the sorts of x̄.
By Lemma b5.7.3, it follows that ∣S s̄(U)∣ > ℵ0. A contradiction to ℵ0-
stability. ◻

Corollary 4.9. Let T be a ℵ0-stable theory over a countable signature Σ.
Every infinite model of T contains a minimal relation.

Proof. This follows from the preceding lemma for ϑ(x) ∶= true and
κ ∶= ℵ0. ◻

We can use minimal sets to define isomorphisms between models.

Lemma 4.10. Every elementary function f0 ∶ A→ B can be extended to a
elementary function f ∶ acl(A)→ acl(rng f0) that is bijective.

Proof. W.l.o.g. we may assume that B = rng f0. Let F be the set of all
elementary functions g ∶ C → D such that A ⊆ C ⊆ acl(A) and g↾A = f0.
Then ⟨F , ⊆⟩ is inductively ordered. Hence, it has a maximal element
f ∶ C → D. We claim that f is the desired function.

First of all, every elementary function is injective. For surjectivity,
suppose that b ∈ acl(B) ∖ D. Since b ∈ acl(D), we can use Lemma e3.1.3
to find a formula φ(x; d̄) with parameters d̄ ⊆ D isolating tp(b/D).
Since tp(b/D) is algebraic, φ must be an algebraic formula. Fixing c̄ ⊆ C
such that f (c̄) = d̄ it follows that

f [φ(x; c̄)M] ⊆ φ(x; d̄)M and ∣φ(x; c̄)M∣ = ∣φ(x; d̄)M∣ .

Consequently, there exists some element a ∈ φ(x; c̄)M ∖C. Furthermore,
φ(x; c̄) isolates tp(a/C). Hence, f [tp(a/C)] = tp(b/D) and we have
f ∪ {⟨a, b⟩} ∈ F. This contradicts the maximality of f .

It remains to prove that C = acl(A). Suppose that there exists an
element a ∈ acl(A) ∖ C. Then tp(a/C) is isolated and, as above, we can
find an element b such that f ∪ {⟨a, b⟩} ∈ F. Again a contradiction. ◻
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Corollary 4.11. Let T be a theory, φ(x) a strongly minimal formula, and
A and B models of T. If dim(φA) = dim(φB), there exists a bijective
elementary map f ∶ acl(φA)→ acl(φB).

Proof. Fix bases I and J of, respectively, φA and φB. By assumption,
∣I∣ = ∣J∣. Let f0 ∶ I → J be a bijection. ByCorollary 4.6, it follows that f0 is
elementary. Hence,we can use Lemma 4.10 to extend f0 to an elementary
map f ∶ acl(I) → acl(J). Since acl(I) = acl(φA) and acl(J) = acl(φB),
this is the desired map. ◻

We can apply the results on minimal sets to study theories where every
model consists of a minimal set. In fact, it is sufficient that every model
is generated by a minimal set.

Definition 4.12. Let T be a complete first-order theory.
(a) T is strongly minimal if the formula x = x is strongly minimal.
(b) T is almost strongly minimal if there exists a strongly minimal

formula φ(x; c̄) with parameters c̄ such that tp(c̄) is isolated and

acl(φM ∪ c̄) = M , for every model M of T(c̄) .

Example. The theories DAG and ACFp are strongly minimal.

Theorem 4.13. Let A and B be models of an almost strongly minimal
theory T and let φ(x; c̄) be the corresponding strongly minimal formula.
Then

A ≅ B iff dim(φA/c̄) = dim(φB/c̄) .

Proof. (⇒) is trivial and (⇐) follows from Corollary 4.11. ◻

Corollary 4.14. Every almost strongly minimal theory T is κ-categorical,
for all κ > ∣T ∣.

Proof. Let φ(x; c̄) be the strongly minimal formula associated with T
and let A and B be models of T of the same size ∣A∣ = ∣B∣ > ∣T ∣. Since
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tp(c̄) is isolated, there are tuples ā ⊆ A and b̄ ⊆ B realising tp(c̄). Fix
bases I ⊆ A and J ⊆ B of φA over ā and of φB over b̄, respectively. Then

dim(φA/ā) = ∣I∣ = ∣acl(I)∣ = ∣A∣ and dim(φB/b̄) = ⋅ ⋅ ⋅ = ∣B∣ .

By Theorem 4.13, it follows that A ≅ B. ◻

5. Vaughtian pairs and the Theorem of Morley

In this section we shall prove the Theorem of Morley which states that a
countable first-order theory T that is κ-categorical, for some uncountable
cardinal κ, is λ-categorical, for all uncountable cardinals λ. We have
already seen in Theorem e6.3.16 that such a theory is necessarily ℵ0-
stable. It follows that every uncountable model is saturated. Note that,
according to Lemma e1.2.17, we have ∣φM∣ < ℵ0 or ∣φM∣ = ∣M∣, for every
saturatedmodel M of T and every formula φ. In fact,wewill show below
that a ℵ0-stable theory T is uncountably categorical if, and only if, this
property holds for all uncountable models M.

Definition 5.1. Let T be a first-order theory.
(a) A Vaughtian pair for T consists of two models A ≺ B of T such

that, for some formula φ(x̄) over A, φA is infinite and φA = φB.
(b) The size of aVaughtian pair ⟨A,B⟩ is the tuple ⟨κ, λ⟩where κ ∶= ∣A∣

and λ ∶= ∣B∣.
(c) If A ⪯ B are structures, we denote by ⟨B,A⟩ the expansion of B

by a new unary predicate P with value A.

Example. Let A = ⟨A, ∼⟩ where ∼ is an equivalence relation on A and
let B ≻ A. Then ⟨A,B⟩ is a Vaughtian pair if, and only if, there is some
a ∈ Awhose equivalence class

[a]∼ ∶= { b ∈ B ∣ b ∼ a }

is infinite and contained in A.
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In the first part of this sectionwewill study constructions ofVaughtian
pairs. The goal is Lemma 5.8 which states that a countable theory with a
Vaughtian pair cannot be κ-categorical for an uncountable cardinal κ.
In the second part of the section, we will then investigate minimal sets
in theories without Vaughtian pairs.
We will use the following lemma to construct new Vaughtian pairs

from a given one.

Lemma 5.2. Suppose that A ⊆ B and A′ ⊆ B′ are structures such that
⟨B,A⟩ ≡ ⟨B′ ,A′⟩.

(a) A ⪯ B if, and only if, A′ ⪯ B′.

(b) Let φ(x̄ , ȳ) be a formula and ā ⊆ A and ā′ ⊆ A′ tuples such that
⟨B,A, ā⟩ ≡ ⟨B′ ,A′ , ā′⟩. Then φ(x̄ , ā) is a witness for ⟨A,B⟩ being
Vaughtian if, and only if, φ(x̄ , ā′) is a witness for ⟨A′ ,B′⟩ being
Vaughtian.

Proof. (a) By symmetry, it is sufficient to prove one direction. For every
formula ψ(x̄), A ⪯ B implies

⟨B,A⟩ ⊧ (∀x̄ .⋀i Px i)[ψ(x̄)↔ ψ(P)(x̄)] ,

where ψ(P) is the relativisation of ψ to P. Hence, all these formulae also
hold in ⟨B′ ,A′⟩. This implies that A′ ⪯ B′.

(b) Suppose that φ(x̄ , ā) witnesses that ⟨B,A⟩ is Vaughtian. By (a)
and the fact that

⟨B,A⟩ ⊧ ∃x¬Px ,

it follows that A′ ≺ B′. Furthermore, for every n < ω,

⟨B,A⟩ ⊧ ∃n x̄φ(x̄ , ā) ∧ ∀x̄[φ(x̄ , ā)→ ⋀i Px i] .

Hence, the tuple ā′ satisfies these formulae in ⟨B′ ,A′⟩. Consequently,
φ(x̄ , ā′)A

′

is infinite and φ(x̄ , ā′)A
′

= φ(x̄ , ā′)B
′

. ◻
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The aim of the following sequence of results is Proposition 5.7 below
which states that, given an arbitrary Vaughtian pair, we can construct a
pair of size ⟨κ,ℵ0⟩, for every infinite cardinal κ.

Lemma 5.3. Let T be a complete first-order theory. If there is a Vaughtian
pair for T , then there are Vaughtian pairs for T of size ⟨κ, κ⟩, for every
κ ≥ ∣T ∣.

Proof. Let A ≺ B be a Vaughtian pair for T and let φ(x̄) be the corres-
ponding formula with parameters ā ⊆ A. Since φA is infinite, we can
use the Compactness Theorem to construct an elementary extension
⟨B1 ,A1⟩ ⪰ ⟨B,A⟩ such that ∣φA1 ∣ ≥ κ.By theTheorem of Löwenheim and
Skolem, we can choose an elementary substructure ⟨B0 ,A0⟩ ⪯ ⟨B1 ,A1⟩
with ∣B0∣ = κ, ∣A0∣ = κ, and ā ⊆ A0. By Lemma 5.2, it follows that
A0 ≺ B0 is a Vaughtian pair. ◻

Proposition 5.4. Let T be a countable complete first-order theory. For
every pair A0 ⪯ B0 of countable models of T there exist countable homo-
geneous models A ⪯ B of T such that ⟨B0 ,A0⟩ ⪯ ⟨B,A⟩ and A and B
realise the same types in S<ω(T).

Proof. We start by proving the following claims.
(a) For every finite subset U ⊆ A0 and every type p ∈ S<ω(U), there

exists a countable extension ⟨B,A⟩ ⪰ ⟨B0 ,A0⟩ such that p is realised in
A ∶= B∣A.

(b) For every finite subset U ⊆ B0 and every type p ∈ S<ω(U), there
exists a countable extension ⟨B,A⟩ ⪰ ⟨B0 ,A0⟩ such that p is realised
in B.

(c) There exists a countable extension ⟨B,A⟩ ⪰ ⟨B0 ,A0⟩ such that
A ∶= B∣A realises every type over a finite subset U ⊆ A0 that is realised
in B0.

(a) We set

Φ ∶= ∆ ∪ {φ(P) ∣ φ ∈ p} ,
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where ∆ is the elementary diagram of ⟨B0 ,A0⟩. To show that Φ is satis-
fiable,we consider finitely many formulae φ0(x̄), . . . , φn−1(x̄) ∈ p. Since
p is a type and, hence, finitely satisfiable in every model of T , we have
A0 ⊧ ∃x̄⋀i<n φ i(x̄), which implies that

⟨B0 ,A0⟩ ⊧ ∃x̄⋀
i<n

φ(P)i (x̄) .

Consequently, Φ is finitely satisfiable. Fix a countable model ⟨B,A, ā⟩
of Φ. Then ⟨B0 ,A0⟩ ⪯ ⟨B,A⟩ and ā ⊆ A realises p.

(b) This claim follows immediately from compactness and the The-
orem of Löwenheim and Skolem.

(c) Let (pα)α<ω be an enumeration of all types over a finite set U ⊆
A0 that are realised in B0. We can use (a) to construct an increasing
chain ⟨Bα ,Aα⟩α<ω of countablemodels startingwith ⟨B0 ,A0⟩ such that
Aα+1 ∶= Bα+1∣Aα+1 realises pα . The union ⟨B,A⟩ ∶= ⋃α<ω ⟨Bα ,Aα⟩ is the
desired extension of ⟨B0 ,A0⟩.

To prove the proposition we construct a chain ⟨Bα ,Aα⟩α<ω of count-
able models starting with ⟨B0 ,A0⟩ as follows.

(1) For indices of the form α = 3n, we use (c) to find a countable
extension ⟨Bα+1 ,Aα+1⟩ ⪰ ⟨Bα ,Aα⟩ such that every type over a finite set
U ⊆ Aα that is realised in Bα is realised in Aα+1.

(2) For indices α = 3n + 1, we iterate (a) to find a countable extension
⟨Bα+1 ,Aα+1⟩ ⪰ ⟨Bα ,Aα⟩ such that, for all tuples ā, b̄ ∈ A<ω

α with tp(ā) =
tp(b̄) and every element c ∈ Aα , there is an element d ∈ Aα+1 such that
tp(āc) = tp(b̄d).

(3) For α = 3n + 2, we use (b), amalgamation, and the Theorem of
Löwenheim and Skolem to find an extension ⟨Bα+1 ,Aα+1⟩ ⪰ ⟨Bα ,Aα⟩
such that, for all tuples ā, b̄ ∈ B<ω

α with tp(ā) = tp(b̄) and every element
c ∈ Bα , there is an element d ∈ Bα+1 such that tp(āc) = tp(b̄d).

The limit ⟨B,A⟩ ∶= ⋃α<ω ⟨Bα ,Aα⟩ is a countable elementary exten-
sion of ⟨B0 ,A0⟩. Furthermore, by (1), the structures A ∶= B∣A and B
realise the same types in S<ω(T). Finally, (2) and (3) ensure that A andB
are homogeneous. ◻
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Proposition 5.5. Let T be a countable complete first-order theory. If there
is a Vaughtian pair for T , then there is a Vaughtian pair for T of size
⟨ℵ0 ,ℵ1⟩.

Proof. By Lemma 5.3 and Proposition 5.4, we can find a Vaughtian pair
A ≺ B for T of size ⟨ℵ0 ,ℵ0⟩ such that A and B are homogeneous and
realise the same types. By Theorem e1.1.9, this implies that A ≅ B. Let
φ be a formula over A such that φA is infinite and φB = φA.
We construct an elementary chain (Mα)α<ℵ1 of models of T such that,

for every α < ℵ1, we have

φMα = φA and ⟨Mα+1 , Mα⟩ ≅ ⟨B,A⟩ .

Note that, in particular, every Mα is isomorphic to A.
We start with M0 ∶= B. For the successor step, suppose that we have

already definedMα ≅ A.We choose an elementary extension Mα+1 ⪰Mα
such that ⟨Mα+1 , Mα⟩ ≅ ⟨B,A⟩. Then φMα+1 = φMα = φA.

For limit ordinals δ, we set Mδ ∶= ⋃α<δ Mα . Then φMδ = ⋃α<δ φMα =
φA. To show that Mδ ≅ A it is sufficient to prove that Mδ is homogeneous
and that it realises the same types as A. For homogeneity, suppose that
ā, b̄ ∈ M<ω

δ and c ∈ Mδ are elements such that tp(ā) = tp(b̄). Then there
is some α < δ such that ā, b̄, c ⊆ Mα . As Mα ≅ A is homogeneous, there
is some d ∈ Mα ⊆ Mδ such that tp(āc) = tp(b̄d).
Clearly, every type realised in A is realised in Mδ ⪰ A. Conversely,

let p ∈ S<ω(T) be realised in Mδ . Then there is some ā ∈ M<ω
δ with

tp(ā) = p. Let α < δ be an index such that ā ⊆ Mα . Then p is realised in
Mα ≅ A.

Having defined (Mα)α we set N ∶= ⋃α<ℵ1 Mα . Then ∣N ∣ = ℵ1 and
φN = φA. Hence,A ≺ N is the desiredVaughtian pair of size ⟨ℵ0 ,ℵ1⟩. ◻

Lemma 5.6. Let T be a complete ℵ0-stable theory over a countable signa-
ture. Every uncountable model M of T has a proper elementary extension
N ≻M such that every countable type p realised in N is already realised
in M.
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Proof. By Lemma 4.8 there exists a formula φ(x̄) over M such that
∣φM∣ ≥ ℵ1 and we have either

∣(φ ∧ ψ)M∣ ≤ ℵ0 or ∣(φ ∧ ¬ψ)M∣ ≤ ℵ0 ,

for every formula ψ(x̄) over M. Let s̄ be the sorts of the variables x̄ and
set

p ∶= {ψ(x̄) ∈ FOs̄[ΣM] ∣ (φ ∧ ψ)M is uncountable} .

Note that, for ψ0 , . . . ,ψn−1 ∈ p, we have

∣(φ ∧⋁
i<n

¬ψ i)
M∣ = ∣(φ ∧ ¬ψ0)

M ∪ ⋅ ⋅ ⋅ ∪ (φ ∧ ¬ψn−1)
M∣ ≤ ℵ0 ,

which implies that ⋀i<n ψ i ∈ p. Hence, (⋀i ψ i)
M ≠ ∅ and p is finitely

satisfiable. Furthermore, by choice of φ, we have ψ ∈ p or ¬ψ ∈ p, for
every formula ψ(x̄) over M. Therefore, p is a complete type.

Let M+ ⪰ M be an elementary extension containing a finite tuple
ā ∈ M s̄

+ realising p.ByTheorem e3.4.14, there exists amodel M ⪯ N ⪯M+
that is atomic over M ∪ ā.

To show that N has the desired property, we consider a countable
type Φ( ȳ) over M that is realised by some finite tuple b̄ ∈ N<ω . Since
N is atomic over M ∪ ā, there exists a formula χ( ȳ, ā) over M isolating
tp(b̄/M). Then N ⊧ χ(b̄, ā) implies

∃ ȳχ( ȳ, x̄) ∈ p

and ∀ ȳ[χ( ȳ, x̄)→ ϑ( ȳ)] ∈ p , for all ϑ( ȳ) ∈ tp(b̄/M) ⊇ Φ .

Hence, the set

Γ ∶= {∃ ȳχ( ȳ, x̄)} ∪ {∀ ȳ[χ( ȳ, x̄)→ ϑ( ȳ)] ∣ ϑ(x̄) ∈ Φ }

is a countable subset of p. Furthermore, if a tuple ā′ ∈ M s̄ realises Γ then
we have

M ⊧ ∃ ȳχ( ȳ, ā′)
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and every b̄′ ⊆ M with M ⊧ χ(b̄′ , ā′) realises Φ. Let ψ0 ,ψ1 , . . . be an
enumeration of Γ. By choice of p, we have

∣φM∣ > ℵ0 and ∣(φ ∧ ¬(ψ0 ∧ ⋅ ⋅ ⋅ ∧ ψn))
M∣ ≤ ℵ0 , for all n .

It follows that (φ ∧ ¬⋀ Γ)M = ⋃n<ω(φ ∧ ¬⋀i<n ψ i)
M is countable and

(φ ∧⋀ Γ)M = φM ∖ (φ ∧ ¬⋀ Γ)M

is uncountable. Hence, there are uncountably many ā′ ∈ M s̄ such that

M ⊧ φ(ā′) ∧⋀ Γ(ā′) .

As we have seen above, this implies that M contains a realisation of Φ.
◻

Proposition 5.7. Let T be an ℵ0-stable, countable, complete first-order
theory. If there is a Vaughtian pair for T , then there are Vaughtian pairs
for T of size ⟨ℵ0 , κ⟩, for every uncountable cardinal κ.

Proof. By Proposition 5.5, there is a Vaughtian pair A ≺ B for T of size
⟨ℵ0 ,ℵ1⟩. Let φ be a formula over A such that φA is infinite and φB = φA.
Starting with M0 ∶= B, we construct a strictly increasing elementary
chain (Mα)α<κ such that φMα = φA, for all α.
As usual, we take unions Mδ ∶= ⋃α<δ Mα for limit ordinals δ. For

the successor step, suppose that Mα has already been defined. We apply
Lemma 5.6 to find a proper elementary extension Mα+1 ≻ Mα that
realises the same countable types as Mα . In particular, Mα+1 does not
realise the type

{φ(x)} ∪ { x ≠ c ∣ c ∈ φMα } .

Therefore, φMα+1 = φMα = φA.
Let N ∶= ⋃α<κ Mα be the union of the chain and choose an elementary

substructure A ≺ C ⪯ N of size ∣C∣ = κ. Then A ≺ C is the desired
Vaughtian pair of size ⟨ℵ0 , κ⟩. ◻
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We can use this proposition to show that uncountably categorical
theories do not have Vaughtian pairs.

Lemma 5.8. Let T be a countable complete first-order theory with infinite
models. If T is κ-categorical, for some uncountable cardinal κ, then T has
no Vaughtian pairs.

Proof. For a contradiction, suppose that T is a κ-categorical theory with
a Vaughtian pair. By Theorem e6.3.16, T is ℵ0-stable. Hence, we can
use Proposition 5.7 to find a Vaughtian pair A ≺ B of size ⟨ℵ0 , κ⟩. Let
φ be a formula such that φA is infinite and φB = φA. By Theorem e1.2.16,
T has a saturated model C of size κ. But B ≇ C since we have ∣φC∣ = κ by
Lemma e1.2.17. This contradicts κ-categoricity. ◻

Next we study minimal formulae in theories without Vaughtian pairs.
First, we show that such a theory is graduated which, according to The-
orem d1.2.15, is equivalent to admitting elimination of the quantifier ∃ℵ0 .

Lemma 5.9. Suppose that T is a theory without Vaughtian pairs. Let M be
a model of T and φ(x̄; ȳ) a formula over M. There exists a number n < ω,
such that, for all c̄ ⊆ M,

∣φ(x̄; c̄)M∣ > n implies ∣φ(x̄; c̄)M∣ ≥ ℵ0 .

Proof. Suppose that such a number n does not exist. Then we can find,
for every n < ω, parameters c̄n ⊆ M with

n < ∣φ(x̄; c̄n)∣ < ℵ0 .

Let P be a new unary predicate and let Φ( ȳ) be the set of formulae
containing the following statements :

◆ P induces a proper elementary substructure ;
◆ ⋀i Py i ;
◆ there are infinitely many tuples x̄ such that φ(x̄; ȳ) ;
◆ ∀x̄[φ(x̄; ȳ)→ ⋀i Px i] .
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To see that T ∪ Φ( ȳ) is satisfiable, we fix an extension N ≻ M. Since
φ(x̄; c̄n)

M is finite, we have φ(x̄; c̄n)
N = φ(x̄; c̄n)

M. For every finite
subset Φ0 ⊆ Φ, we can therefore choose n large enough such that

⟨N, M⟩ ⊧ T ∪ Φ0(c̄n) .

Let ⟨B,A, c̄⟩ be a model of T ∪ Φ. Then A ∶= B∣A ≺ B are models of T
and φ(x̄; c̄)A = φ(x̄; c̄)B is infinite. Hence, A ≺ B is a Vaughtian pair.
A contradiction. ◻

Corollary 5.10. In a theory T without Vaughtian pairs, every minimal
formula is strongly minimal.

Proof. Let M be a model of T and φ(x̄) a minimal formula over M. For
a contradiction, suppose that φ(x̄) is not strongly minimal. Then we can
find an extension N ≻M and a formula ψ(x̄; c̄) with parameters c̄ ⊆ N
such that

φ(x̄)N ∩ ψ(x̄; c̄)N and φ(x̄)N ∖ ψ(x̄; c̄)N

are both infinite. By Lemma 5.9 there exists a number n < ω such that,
for all models A and all ā ⊆ A,

∣φ(x̄)A ∩ ψ(x̄; ā)A∣ > n implies ∣φ(x̄)A ∩ ψ(x̄; ā)A∣ ≥ ℵ0 ,
and ∣φ(x̄)A ∖ ψ(x̄; ā)A∣ > n implies ∣φ(x̄)A ∖ ψ(x̄; ā)A∣ ≥ ℵ0 .

By minimality of φ, it follows that

M ⊧ ∀ ȳ[∣φ(x̄)M ∩ ψ(x̄; ȳ)M∣ ≤ n ∨ ∣φ(x̄)M ∖ ψ(x̄; ȳ)M∣ ≤ n] .

Since M ⪯ N, the same formula also holds in N. A contradiction. ◻

Corollary 5.11. Let T be a countable, complete, ℵ0-stable theory without
Vaughtian pairs and let M0 be the primemodel of T. There exists a strongly
minimal formula φ(x) over M0.

Proof. We use Corollary 4.9 to find a minimal formula φ(x) over M0.
By Corollary 5.10, this formula is strongly minimal. ◻
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Lemma 5.12. Let T be a theory without Vaughtian pairs, B a model of T ,
and let φ(x̄; c̄) be a strongly minimal formula with parameters c̄ ⊆ B.

(a) If A ≺ B is a proper elementary substructure with c̄ ⊆ A, then
φA ⊂ φB.

(b) dim(φB) = ∣B∣.

(c) If T is ℵ0-stable then B is prime over φB ∪ c̄.

Proof. (a) A ≺ B implies φA ⊆ φB. Furthermore, if φA = φB, then A ≺ B
would be a Vaughtian pair.

(b) Let I be a basis of φB. If ∣I∣ < ∣B∣ then we can use the Theorem
of Löwenheim and Skolem to find an elementary substructure A ≺ B
of size ∣A∣ = ∣I∣ with I ∪ c̄ ⊆ A. It follows that φB ⊆ acl(I) ⊆ A. Hence,
φB = φA in contradiction to (a).

(c) Since T is ℵ0-stable there exists, according to Theorem e3.4.14 a
unique prime model M over φB ∪ c̄. W.l.o.g. we may assume that M ⪯ B.
Since φB ∪ c̄ ⊆ M ⊆ B it follows by (a) that M = B, as desired. ◻

Lemma 5.13. Let T be a countable, complete first-order theory with infinite
models. Suppose that there exists a strongly minimal formula φ(x; c̄) such
that

◆ tp(c̄) is isolated,

◆ every model M of T(c̄) is prime over φM ∪ c̄,

◆ no model M of T(c̄) has a proper elementary substructure A ≺M
such that φM ⊆ A.

Then

dim(φA/c̄) = dim(φB/c̄) implies A ≅ B ,

for all models A,B of T(c̄).

Proof. Set S ∶= φ(x̄; c̄)A and S′ ∶= φ(x̄; c̄)B. Since dim(S) = dim(S′)
we can use Corollary 4.11 to find an elementary bijection h0 ∶ S → S′. As
A and B are models of T(c̄), we can extend h0 to an elementary map
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h1 ∶ S ∪ c̄ → S′ ∪ c̄. Because A is prime over S ∪ c̄, we can extend this
map h1 to an elementary map h ∶ A→ B. We claim that h is surjective
and, therefore, the desired isomorphism.

For a contradiction, suppose otherwise. Then we obtain a proper
elementary substructure B0 ∶= f [A] ≺ B with S′ ∪ c̄ = rng h1 ⊆ B0. But
B is prime over S′ ∪ c̄. A contradiction. ◻

Theorem 5.14 (Morley). Let T be a countable, complete first-order theory
with infinite models. The following statements are equivalent :

(1) T is κ-categorical, for some uncountable cardinal κ.

(2) T is κ-categorical, for every uncountable cardinal κ.

(3) T is ℵ0-stable and it has no Vaughtian pairs.

(4) There exists a strongly minimal formula φ(x; c̄) such that

◆ tp(c̄) is isolated,
◆ every model M of T(c̄) is prime over φM ∪ c̄,
◆ no model M of T(c̄) has a proper elementary substructure

A ≺M such that φM ⊆ A.

Proof. (2)⇒ (1) is trivial.
(1)⇒ (3) follows by Theorem e6.3.16 and Lemma 5.8.
(3)⇒ (4) Let T be an ℵ0-stable theory without Vaughtian pairs. By

Theorem e3.4.14, T has a prime model M0. We can use Corollary 5.11 to
find a strongly minimal formula φ(x; c̄) with parameters c̄ ⊆ M0. Since
prime models are atomic, the type of c̄ ⊆ M0 is isolated. The remaining
two claims of (4) follow by Lemma 5.12 (a) and (c), respectively.
(4) ⇒ (2) Let κ be an uncountable cardinal. To show that T is κ-

categorical, we consider two models A and B of size κ. Since tp(c̄) is
isolated there are tuples ā ⊆ A and b̄ ⊆ B realising tp(c̄). Thus, ⟨A, ā⟩
and ⟨B, b̄⟩ are models of T(c̄). Set S ∶= φ(x̄; ā)A and S′ ∶= φ(x̄; b̄)B.

Since A and B have no proper elementary substructures containing,
respectively, S ∪ ā and S′ ∪ b̄, it follows by the Theorem of Löwenheim
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and Skolem that

dim(S) = ∣A∣ = ∣B∣ = dim(S′) .

Consequently, we can use Lemma 5.13 to show that A ≅ B. ◻
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1. Morley rank and ∆-rank
We have seen that each model of an uncountably categorical theory is
governed by a strongly minimal set and that we can define a geometry
on such a set. Unfortunately, for most theories we cannot find actual
geometries. But there is a large class of theories where we have some-
thing slightly weaker. In this chapter we study the kind of combinatorial
structure that will serve as our substitute for a geometry.

We start by defining certain ranks that provide aweak notion of dimen-
sion. Guided by the observation that, for a strongly-minimal formula φ
over a model M, the Cantor-Bendixson rank of the set ⟨φ⟩ in Ss̄(M) is
equal to 1,we take a look at the Cantor-Bendixson rank of type spaces. Let
us first describe how to compute the Cantor-Bendixson rank in S∆(U)
by using the equality of Cantor-Bendixson rank and partition rank.

Lemma 1.1. Let ∆ be a set of formulae, U a set of parameters, and let
∆+U be the set of all finite boolean combinations of formulae of the form
ψ(x̄; c̄) with ψ(x̄; ȳ) ∈ ∆ and c̄ ⊆ U.

For an arbitrary formula φ over U and an ordinal α > 0, we have

rkCB(⟨φ⟩S∆(U)) ≥ α

if, and only if, for all ordinals β < α, there are formulae ψ i ∈ ∆+U , for i < ω,
such that

rkCB(⟨φ ∧ ψ i⟩S∆(U)) ≥ β , for every i ,
and ψM

i ∩ ψM
k = ∅ , for all i ≠ k .
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Proof. Note that, by definition of S∆(U) and Lemma c3.3.5,

S∆(U) = S∆¬U (FO[ΣU , X]/T(U))

≅ S∆+U (FO[ΣU , X]/T(U)) = S∆+(U) ,

where ∆+ is the set of all finite boolean combinations of formulae in ∆.
Therefore, we may w.l.o.g. work in S∆+(U). Set C ∶= ⟨φ⟩S∆+(U) and
let SC be the subspace of S∆+(U) induced by C. According to Corol-
lary b5.7.10, we have

rkCB(⟨φ⟩S∆+(U)) = rkP(C/clop(SC)) .

Furthermore,

rkP(C/clop(SC)) ≥ α

if, and only if, for all β < α, there are clopen sets D i ∈ clop(SC), for
i < ω, such that

rkP(D i/clop(SC)) ≥ β and D i ∩ Dk = ∅ , for i ≠ k .

Hence, it is sufficient to show that this latter condition is equivalent to
the existence of formulae ψ i ∈ ∆+U , for i < ω, such that

rkCB(⟨φ ∧ ψ i⟩S∆(U)) ≥ β , for every i ,

and ψM
i ∩ ψM

k = ∅ , for all i ≠ k .

(⇐) Given formulae ψ i , we set D i ∶= ⟨φ ∧ ψ i⟩S∆+(U). By Corollaries
b5.7.10 and b5.7.13, it follows that

rkCB(⟨φ ∧ ψ i⟩S∆+(U)) = rkP(D i/clop(D i))

= rkP(D i/clop(SC)) ≥ β ,

as desired.
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(⇒) By Lemma b5.7.11, the clopen sets D i are of the form

D i = C ∩ ⟨ψ′i⟩S∆+(U) = ⟨φ ∧ ψ′i⟩S∆+(U) ,

for formulae ψ′i ∈ ∆
+
U . Setting

ψ i ∶= ψ′i ∧⋀
k<i

¬ψ′k

we obtain formulae ψ i ∈ ∆+U such that

ψM
i ∩ ψM

k = ∅ , for i ≠ k .

Furthermore, D i ∩ Dk = ∅, for k < i, implies that

D i = D i ∖ (D0 ∪ ⋅ ⋅ ⋅ ∪ D i−1) = ⟨φ ∧ ψ i⟩S∆+(U) .

The claim follows since, by Corollaries b5.7.10 and b5.7.13,

rkCB(⟨φ ∧ ψ i⟩S∆+(U)) = rkP(D i/clop(D i))

= rkP(D i/clop(SC)) ≥ β . ◻

When using the Cantor-Bendixson rank to define the dimension of a
definable relation, we have first to choose a set ∆ of formulae and a set U
of parameters to know which type space S∆(U) to consider. Let us take
a look at what happens to the Cantor-Bendixson rank when we change
these two sets. First of all, the dependence is monotone: if we enlarge
the set of formulae or the set of parameters, the rank either increases, or
it stays the same.

Lemma 1.2. Let ∆, Γ be sets of formulae, U ,V sets of parameters, and
Φ a set of formulae over U. Then

rkCB(⟨Φ⟩S∆(U)) ≤ rkCB(⟨Φ⟩S∆∪Γ(U∪V)) .

Proof. Let ∆¬U be the sets of all formulae of the form ψ(x̄; c̄) or ¬ψ(x̄; c̄)
with ψ ∈ ∆ and c̄ ⊆ U , and let ∆Γ¬UV be the corresponding set of formulae
for ∆ ∪ Γ and U ∪ V . The statement follows from Lemma b5.7.14 since

S(i)−1[⟨Φ⟩S∆(U)] = ⟨Φ⟩S∆∪Γ(U∪V) ,

where i ∶ ∆¬U → ∆Γ¬UV is the inclusion map. ◻
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If the set of parameters is an ℵ0-saturated model, the Cantor-Bendix-
son rank does not change anymore.

Lemma 1.3. Let ∆ be a set of formulae and φ(x̄; ȳ) a single formula. If
A and B are ℵ0-saturated structures with ⟨A, ā⟩ ≡ ⟨B, b̄⟩, then

rkCB(⟨φ(x̄; ā)⟩S∆(A)) = rkCB(⟨φ(x̄; b̄)⟩S∆(B)) .

Proof. By symmetry it is sufficient to prove that

rkCB(⟨φ(x̄; ā)⟩S∆(A)) ≥ α

implies

rkCB(⟨φ(x̄; b̄)⟩S∆(B)) ≥ α .

We proceed by induction on α. For α = 0 there is nothing to do. Since
the limit step follows immediately from the inductive hypothesis, we
may therefore assume that α = β + 1. If

rkCB(⟨φ(x̄; ā)⟩S∆(A)) ≥ β + 1 ,

we can use Lemma 1.1 to find formulae ψn(x̄; c̄n) ∈ ∆+A, for n < ω, with
c̄n ⊆ A such that

rkCB(⟨φ(x̄; ā) ∧ ψn(x̄; c̄n)⟩S∆(A)) ≥ β ,

and A ⊧ ¬[ψm(x̄; c̄m) ∧ ψn(x̄; c̄n)] , for m ≠ n .

Since A ⊑ℵ0
FO B, we can inductively find tuples d̄n ⊆ B, for n < ω, such

that

⟨A, āc̄0 . . . c̄n⟩ ≡ ⟨B, b̄d̄0 . . . d̄n⟩ , for all n < ω .

This implies that

B ⊧ ¬[ψm(x̄; d̄m) ∧ ψn(x̄; d̄n)] , for m ≠ n .
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By inductive hypothesis, we furthermore have

rkCB(⟨φ(x̄; b̄) ∧ ψn(x̄; d̄n)⟩S∆(B)) ≥ β , for all n .

Consequently, Lemma 1.1 implies that

rkCB(⟨φ(x̄; b̄)⟩S∆(B)) ≥ β + 1 . ◻

It follows that there is a limit of the Cantor-Bendixson rank for in-
creasing sets of parameters. This limit is called the ∆-rank of the theory.

Definition 1.4. (a) Let ∆ be a set of formulae and φ(x̄; c̄) an FO-formula
with parameters c̄ ⊆M. The ∆-rank of φ is

rk∆(φ(x̄; c̄)) ∶= rkCB(⟨φ(x̄; c̄)⟩S∆(M)) ,

where M ⪯M is an arbitrary ℵ0-saturated model with c̄ ⊆ M.
(b) Let s̄ be a tuple of sorts and let φ(x̄; c̄) be an FO-formula with

parameters c̄ ⊆M. The Morley rank of φ is

rks̄
M(φ(x̄; c̄)) ∶= rk∆(φ(x̄; c̄)) ,

where ∆ is the set of all first-order formulaeψ(x̄; ȳ)where the variables x̄
have sorts s̄.

(c) For a set of formulae Φ(x̄) (possibly with parameters) we define

rk∆(Φ) ∶= min{ rk∆(φ) ∣ Φ ⊧ φ } ,

rks̄
M(Φ) ∶= min{ rks̄

M(φ) ∣ Φ ⊧ φ } .

For ā ∈Ms̄ and U ⊆M, we set

rk∆(ā/U) ∶= rk∆(tp(ā/U)) ,

rkM(ā/U) ∶= rks̄
M(tp(ā/U)) .

Remark. (a) Note that, by Lemmas 1.2 and 1.3, the definitions of rk∆(φ)
and rks̄

M(φ) do not depend on the choice of M. According to The-
oremc3.4.5 (b), they also do not depend onwhatwe consider the free vari-
ables of the formula φ. But note that, by Lemma 1.2, we have rks̄

M(φ) ≤
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rk t̄
M(φ), for s̄ ⊆ t̄. This inequality can be strict. An example is given by

the formula x = x with respect to the theory of infinite structures with
empty signature. Then rks̄

M(x = x) = ∣s̄∣.
(b) If p is a complete type over an ℵ0-saturated model M, it follows by

Theorem b5.7.8 and Corollary b5.7.9 that

rk∆(p) = rkCB(p/S∆(M)) .

Example. Consider the theory T of structures of the form ⟨A, ∼⟩, where
∼ is an equivalence relation on Awith infinitelymany classes, all ofwhich
are infinite. For a ∈M and a model M ≺M, we have

rkM(a/M) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if a ∈ M ,
1 if a ∉ M and a ∼ b for some b ∈ M ,
2 otherwise .

Exercise 1.1. Show that rks̄
M(φ) = 1, for every strongly minimal formula

φ(x̄).

Exercise 1.2. Let T be the theory of structures of the form ⟨A, ∼⟩, where
∼ is an equivalence relation on A with infinitely many classes, all of
which are infinite. Determine the possible values of rkM(ab/M), for two
elements a, b ∈M and a model M ≺M.

Let us collect some basic properties of the ∆-rank of a formula.

Lemma 1.5. Let T be a theory and φ, ψ formulae.

(a) T ∪ {φ} ⊧ ψ implies rk∆(φ) ≤ rk∆(ψ).

(b) rk∆(φ ∨ ψ) = max {rk∆(φ), rk∆(ψ)}.

(c) If ∆ contains the formula x = y, then rk∆(φ) = 0 if, and only if, φ is
algebraic and consistent with T.

Proof. (a) follows from Lemma b2.5.10, (b) from Lemma b2.5.11, and (c)
follows immediately from the definition. ◻
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Exercise 1.3. Show that rk∆(φ ∧ ψ) ≤ min{rk∆(φ), rk∆(ψ)}, and that
this inequality may be strict.

Lemma 1.6. Let ā, b̄ ⊆M be tuples and U ,V ⊆M sets of parameters.

(a) rk∆(ā/U) ≤ rk∆∪Γ(ā/U).

(b) rk∆(ā/U) ≥ rk∆(ā/U ∪ V).

(c) There exists a finite subset U0 ⊆ U with rk∆(ā/U) = rk∆(ā/U0).

Proof. (a) follows immediately from Lemma 1.2.
(b) By definition of the ∆-rank of a type, we have

rk∆(ā/U) = min{ rk∆(φ) ∣ φ ∈ tp(ā/U) }
≥ min{ rk∆(φ) ∣ φ ∈ tp(ā/U ∪ V) }
= rk∆(ā/U ∪ V) .

(c) Fix a formula φ ∈ tp(ā/U) such that rk∆(φ) = rk∆(ā/U). Let
U0 ⊆ U be the finite set of parameters from φ. Then φ ∈ tp(ā/U0)
implies

rk∆(ā/U0) ≤ rk∆(φ) = rk∆(ā/U) ≤ rk∆(ā/U0) ,

where the last inequality holds by (b). ◻

For theories where it is defined, the Morley rank is usually better be-
haved than the ∆-rank. Let us collect some of its properties, in particular
with respect to strongly minimal sets. First of all note that, using the
equivalence of the Morley rank of a formula and its partition rank, we
can define a notion of degree.

Definition 1.7. The Morley degree degs̄
M(φ) of a formula φ is the max-

imal number m < ω such that there are formulae ψ0 , . . . ,ψm−1 of rank
rks̄

M(ψ i) = rks̄
M(φ) such that ψM

i ∩ψM
k = ∅, for i ≠ k. If such a number m

does not exist, we set degs̄
M(φ) ∶=∞.
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Remark. It follows by Lemma b2.5.16 that

rks̄
M(φ) <∞ implies degs̄

M(φ) <∞ .

Exercise 1.4. Show that a formula φ(x̄) is strongly minimal if, and only
if, rks̄

M(φ) = 1 and degs̄
M(φ) = 1.

For types there is a related notion of degree: the number of free exten-
sions.

Definition 1.8. Let p ⊆ q be (partial) types with free variables of sort s̄.
We say that q is a Morley-free extension of p if rks̄

M(q) = rks̄
M(p).

Lemma 1.9. Let p be a (partial) type over U and suppose that U ⊆ V .
(a) p has a Morley-free extension q ∈ S s̄(V).
(b) If rks̄

M(p) <∞, then p has only finitely many Morley-free extensions
in S s̄(V).

Proof. Choose an ℵ0-saturated model M containing V .
(a) First suppose that α ∶= rks̄

M(p) <∞. According to Lemma b5.5.15,
the closed set ⟨p⟩Ss̄(M) contains some type r with

rkCB(r/S
s̄(M)) = rkCB(⟨p⟩Ss̄(M)) = α .

Set q ∶= r∣V . Then p ⊆ q ⊆ r implies

α = rks̄
M(p) ≥ rks̄

M(q) ≥ rks̄
M(r) = rkCB(r/S

s̄(M)) = α .

Consequently, q is the desired extension of p.
It remains to consider the case where rks̄

M(p) =∞. Then

rkCB(⟨p⟩Ss̄(M)) =∞

implies that there is some r ∈ ⟨p⟩Ss̄(M) with rkCB(r/Ss̄(M)) = ∞. As
above, it follows that q ∶= r∣V is the desired Morley-free extension of p
over V .
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(b) Let α ∶= rks̄
M(p). By (a), every type q ∈ ⟨p⟩Ss̄(V) of rank α has

an extension r ∈ ⟨p⟩Ss̄(M) of the same rank. These extensions are obvi-
ously distinct, for different types q. The claim follows since, according to
Lemma b5.5.15, the set ⟨p⟩Ss̄(M) contains only finitely many types r with
rkCB(r/Ss̄(M)) = α. ◻

Corollary 1.10. For every formula φ(x̄) over a set U , there exists some
ā ∈ φM with rkM(ā/U) = rks̄

M(φ), where s̄ are the sorts of x̄.

Proof. By Lemma 1.9, there exists a type q ∈ S s̄(U) with {φ} ⊆ q and
rkM(q) = rkM(φ). Every tuple ā realising q has the desired properties.

◻

The following lemmas show that the notion of Morley rank generalises
the dimension of a strongly minimal set. We start by showing that the
Morley rank increases with the length of a tuple and that elements in the
algebraic closure do not increase the rank.

Lemma 1.11. Let T be a first-order theory and let φ(x̄ , ȳ) be a formula
with free variables x̄ and ȳ of sorts s̄ and t̄, respectively. Then

rks̄
M(∃ ȳφ) ≤ rks̄

M(φ) .

Proof. We prove by induction on α that

rks̄
M(∃ ȳφ) ≥ α implies rks̄

M(φ) ≥ α .

For α = 0, it is sufficient to note that the consistency of ∃ ȳφ implies the
one of φ. Hence, suppose that rks̄

M(∃ ȳφ) ≥ α, for some α > 0, and let
β < α. By Lemma 1.1, there are formulae ψk(x̄), for k < ω, such that

rks̄
M(∃ ȳφ ∧ ψk) ≥ β and ψM

i ∩ ψM
k = ∅ , for all i ≠ k .

Note that, if T ⊧ ¬∃ ȳ true, then ∃ ȳφ is inconsistent with T . Hence,
rks̄

M(∃ ȳφ) = −1 ≤ rks̄
M(φ) and we are done. Consequently, we may

assume that T ⊧ ∃ ȳ true. We therefore have

∃ ȳφ(x̄ , ȳ) ∧ ψk(x̄) ≡ ∃ ȳ[φ(x̄ , ȳ) ∧ ψk(x̄)] modulo T .
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It follows by inductive hypothesis that

β ≤ rks̄
M(∃ ȳφ ∧ ψk) = rks̄

M(∃ ȳ(φ ∧ ψk)) ≤ rks̄
M(φ ∧ ψk) .

Since this holds for every β, it follows byLemma 1.1 that rks̄
M(φ) ≥ α. ◻

Lemma 1.12. Let ā ∈Ms̄ and b̄ ∈M t̄ be finite tuples and U ⊆M a set of
parameters.

(a) rkM(ā/U) ≤ rkM(āb̄/U).
(b) rk∆(ā/ acl(U)) = rk∆(ā/U).
(c) rkM(āc/U) = rkM(ā/U), for all c ∈ acl(U ∪ ā).

Proof. (a) Let α ∶= rkM(āb̄/U). By definition, there is a formula φ(x̄ , ȳ)
over U such that M ⊧ φ(ā, b̄) and rks̄ t̄

M(φ) = rkM(āb̄/U). Then ∃ ȳφ ∈
tp(ā/U) implies, by Lemma 1.11, that

rkM(ā/U) ≤ rks̄
M(∃ ȳφ) ≤ rks̄

M(φ) ≤ rks̄ t̄
M(φ) = rkM(āb̄/U) ,

as desired.
(b) It follows by Lemma 1.6 that rkM(ā/ acl(U)) ≤ rkM(ā/U). For a

contradiction, suppose that this inequality is strict. Then there is some
formula φ(x̄; c̄) ∈ tp(ā/ acl(U)) such that rks̄

M(φ(x̄; c̄)) < rkM(ā/U).
Since c̄ is algebraic over U , we know by Lemma e3.1.3 that tp(c̄/U) is
isolated. Let ψ( ȳ) be a formula over U isolating this type and set

ϑ(x̄) ∶= ∃ ȳ[φ(x̄; ȳ) ∧ ψ( ȳ)] .

Then ϑ(x̄) ∈ tp(ā/U) implies, by Lemmas 1.5 and 1.11, that

rkM(ā/U) ≤ rks̄
M(ϑ) ≤ rks̄

M(φ ∧ ψ) ≤ rks̄
M(φ) < rkM(ā/U) .

A contradiction.
(c) We have just seen in (a) that rkM(āc/U) ≥ rkM(ā/U). For the

converse inequality, we prove by induction on α that, for elements c ∈
acl(U ∪ ā),

rkM(āc/U) ≥ α implies rkM(ā/U) ≥ α .
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For α = 0, note that rkM(ā/U) ≥ 0 since tp(ā/U) is satisfiable. For
limit ordinals α, the claim follows immediately by the inductive hypo-
thesis. For the successor step, let

rkM(āc/U) ≥ α + 1

and, for a contradiction, suppose that rkM(ā/U) ≤ α. Fix a formula
φ(x̄) ∈ tp(ā/U) over U with minimal rank. Since c ∈ acl(ā/U), there is
a formula χ(x̄ , y) over U such that χ(ā, y)M is a finite set containing c.
Let m ∶= ∣χ(ā, y)M∣ and set

ϑ(x̄ , y) ∶= φ(x̄) ∧ χ(x̄ , y) ∧ ¬∃m+1 yχ(x̄ , y) .

Since ϑ ∈ tp(āc/U) we have rks̄u
M (ϑ) ≥ rkM(āc/U) ≥ α + 1, where u is

the sort of c. By Lemma 1.1, there are formulae ψn , for n < ω, such that
rks̄u

M(ϑ ∧ ψn) ≥ α and ψM
i ∩ ψM

k = ∅, for i ≠ k. Set

ηn ∶= ∃y(ϑ ∧ ψn) and ηI ∶=⋀
i∈I

η i , for I ⊆ ω .

First, let us show that rks̄
M(ηn) ≥ α. By Lemma 1.10, there exists a

tuple b̄d ∈ (ϑ ∧ ψn)
M such that rkM(b̄d/U) = rks̄u

M(ϑ ∧ ψn). Then
d ∈ acl(b̄) and, by inductive hypothesis,

rkM(b̄d/U) = rks̄u
M(ϑ ∧ ψn) ≥ α implies rkM(b̄/U) ≥ α .

Since ηn ∈ tp(b̄/U), it follows that rks̄
M(ηn) ≥ α.

Furthermore, for every set I ⊆ ω of size ∣I∣ > m, the formula ηI is
unsatisfiable sinceM ⊧ ηI(b̄) implies that there are elements d i ∈M, for
i ∈ I, such that M ⊧ ϑ i(b̄, d i). But, since ∣ϑ(b̄, y)∣M ≤ m there must be
indices i < k in I such that d i = dk . Hence, b̄d i satisfies ψ i ∧ ψk , which
contradicts our choice of the formulae ψn , n < ω.

In particular, rks̄
M(ηI) = −1 < α, for large enough sets I. The set

F ∶= { I ⊆ ω ∣ rks̄
M(ηI) ≥ α and there is no J ⊃ I with

rks̄
M(ηJ) ≥ α }
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is infinite, since every I ∈ F is finite and, for each n < ω, there is some
I ∈ F with n ∈ I. Fix countably many distinct sets I0 , I1 , ⋅ ⋅ ⋅ ∈ F and set

ξn ∶= ηIn ∧⋀
i<n

¬ηI i .

By definition of F, i ≠ k implies I i ⊈ Ik . Therefore, I i ∪ Ik ∉ F and

rks̄
M(ηI i ∧ ηIk) = rks̄

M(ηI i∪Ik) < α , for i ≠ k .

By Lemma 1.5, this implies that

rks̄
M(ηI i ∧⋁k<i ηIk) = rks̄

M(⋁k<i(ηI i ∧ ηIk)) < α .

Since rks̄
M(ηI i ) = α, it therefore follows that

rks̄
M(ξ i) = rks̄

M(ηI i ∧ ¬⋁k<i ηIk) ≥ α .

Note that ξ i ⊧ ∃yϑ ⊧ φ implies rks̄
M(φ∧ξ i) ≥ rks̄

M(ξ i) ≥ α.As ξMi ∩ξ
M
k =

∅, for i ≠ k, it therefore follows by Lemma 1.1 that

α < rks̄
M(φ) = rkM(ā/U) ≤ α .

A contradiction. ◻

Corollary 1.13. Let φ(x̄) and ψ( ȳ) be formulae with parameters and let
s̄ and t̄ by the sorts of, respectively, x̄ and ȳ. If there exists a parameter-
definable surjective function f ∶ φM → ψM such that f −1(b̄) is finite, for
every b̄ ∈ ψM, then

rks̄
M(φ) = rk t̄

M(ψ) .

Proof. Let U ⊆M be a set of parameters such that φ and ψ are over U
and f is definable over U . By assumption, every ā ∈ φM is algebraic over
U ∪{ f (ā)}. Since f (ā) is algebraic over U ∪ ā, it follows by Lemma 1.12
that

rkM(ā/U) = rkM(ā f (ā)/U) = rkM( f (ā)/U) .
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We can use Corollary 1.10 to find tuples ā ∈ φM and b̄ ∈ ψM with

rkM(ā/U) = rks̄
M(φ) and rkM(b̄/U) = rk t̄

M(ψ) .

Then ψ ∈ tp( f (ā)/U) implies

rk t̄
M(ψ) ≥ rkM( f (ā)/U) = rkM(ā/U) = rks̄

M(φ) .

Conversely, by surjectivity of f , there is some c̄ ∈ f −1(b̄). Therefore,

rks̄
M(φ) ≥ rkM(c̄/U) = rkM(b̄/U) = rk t̄

M(ψ) . ◻

Finally, we are able to show that, in a strongly minimal set, the Morley
rank of a finite tuple coincides with its dimension.

Theorem 1.14. Let φ(x) be a strongly minimal formula over U.

rkM(ā/U) = dimacl(ā/U) , for all finite tuples ā ⊆ φM .

Proof. Let ā0 ⊆ ā be an acl-basis of ā over U . Then ∣ā0∣ = dimacl(ā/U)
and it follows by Lemma 1.12 that

rkM(ā/U) = rkM(ā0/U) .

Hence, it is sufficient to prove that rkM(ā0/U) = ∣ā0∣. W.l.o.g. we may
assume that ā0 = ā, i.e., ā is independent over U . We prove the claim by
induction on m ∶= ∣ā∣. Let s̄ be the sorts of ā.

First, suppose that m = 1, i.e., ā = a0 and s̄ = s0. As tp(a0/U) contains
the strongly minimal formula φ(x), we have rkM(a0/U) ≤ rks0

M(φ) = 1.
Conversely, a0 ∉ acl(U) implies that tp(a0/U) is non-algebraic. Hence,
for every formula ψ(x) ∈ tp(a0/U), the set ψM is infinite and, therefore,
rks0

M(ψ) ≥ 1.
For the inductive step, suppose that m > 1. We start by showing that

rkM(ā/U) ≥ m. Note that ∣acl(A)∣ ≤ ∣T ∣, for every countable set A,while
∣φM∣ = ∣M∣ > ∣T ∣. Therefore, dimacl(φM) > ℵ0 andwe can fix a countably
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infinite set I = { bn
i ∣ n < ω, i < m } ⊆ φM that is independent over U .

Setting b̄n ∶= ⟨bn
0 , . . . , b̄n

m−1⟩, it follows by Proposition f1.4.6 that

tp(b̄n/U) = tp(ā/U) , for every n < ω .

Let I0 ∶= { bn
0 ∣ n < ω }. Lemma f1.3.4 (a) implies that

dimacl(b̄n/U ∪ I0) = dimacl(b̄n/U ∪ {bn
0}) = m − 1 .

By inductive hypothesis it therefore follows that

rkM(b̄n/U ∪ I0) = m − 1 .

Let ϑ(x̄) ∈ tp(ā/U) be a formula with rks̄
M(ϑ) = rkM(ā/U) and set

ψn(x̄) ∶= x0 = bn
0 . Then ϑ ∧ ψn ∈ tp(b̄n/U ∪ I0) implies that

rks̄
M(ϑ ∧ ψn) ≥ rkM(b̄n/U ∪ I0) ≥ m − 1 .

Since ψM
i ∩ ψM

k = ∅, for i ≠ k, it follows by Lemma 1.1 that

rkM(ā/U) = rks̄
M(ϑ) > rks̄

M(ϑ ∧ ψn) ≥ m − 1 .

It remains to prove that rkM(ā/U) ≤ m. Let M be an ℵ0-saturated
model containing U . According to Proposition f1.4.6, every tuple c̄ that
is independent over M has the same type over U as ā. Replacing ā by c̄
we may therefore w.l.o.g. assume that ā is independent over M. Fix a for-
mula ϑ ∈ tp(ā/U) such that rks̄

M(ϑ) = rkM(ā/U). For a contradiction,
suppose that rks̄

M(ϑ) > m. Then, by Lemma 1.1, there are formulae ψ i ,
i < ω, such that rks̄

M(ϑ ∧ ψ i) ≥ m and ψM
i ∩ ψM

k = ∅, for i ≠ k. By
Lemma 1.3 and the definition of Morley rank, we can choose the formu-
lae ψ i over M. Since the sets ψM

i are disjoint, there is some index i such
that ā ∉ ψM

i . Consequently, there exists a formula ψ ∶= ψ i over M such
that ¬ψ ∈ tp(ā/M) and rks̄

M(ψ) ≥ rks̄
M(ϑ ∧ ψ) ≥ m.

By Corollary 1.10, there exists a tuple b̄ ∈ ψM with rkM(b̄/M) =
rks̄

M(ψ). Since tp(b̄/M) ≠ tp(ā/M), Proposition f1.4.6 implies that b̄ is
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not independent over M. Let b̄0 ⊆ b̄ be an acl-basis of b̄ over M. By
Lemma 1.12 and inductive hypothesis, it follows that

m ≤ rks̄
M(ψ) = rks̄

M(b̄/M) = rks̄
M(b̄0/M)

= dimacl(b̄0/M) = ∣b̄0∣ < m ,

a contradiction. ◻

2. Independence relations

Besides closure operators and dimensions, a matroid can also be charac-
terised in terms of a so-called independence relation. This characterisation
is the easiest to generalise to the geometry-like configurations appearing
in model theory. In this sectionwe introduce independence relations and
show that they give an alternative characterisation of matroids. In the
next section, we then present the generalisation used in model theory.

Definition 2.1. Let cl be a closure operator on the set Ω. The independ-
ence relation cl

√
associated with cl is the ternary relation between sets

A, B,U ⊆ Ω that is defined by

A cl
√

U B : iff every set I ⊆ B that is independent over U
is also independent over U ∪ A .

Example. Let V be a vector space, A, B,U ⊆ V subspaces with U ⊆ A, B,
and let cl be the closure operator mapping a set X ⊆ V to the subspace
⟪X⟫V spanned by X. Then

A cl
√

U B iff A∩ B = U .

In the abstract, the properties of an independence relation cl
√

are
given by the following axioms.
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Definition 2.2. Let Ω be a set and let A
√

U B be a ternary relation on
subsets A, B,U ⊆ Ω.

(a)
√

is an abstract independence relation if it satisfies the following
conditions :

(mon) Monotonicity. If A0 ⊆ A and B0 ⊆ B then

A
√

U B implies A0
√

U B0 .

(nor) Normality.

A
√

U B implies A∪U
√

U B ∪U .

(lrf) Left Reflexivity.

A
√

A B , for all A, B ⊆ Ω .

(ltr) Left Transitivity. If A0 ⊆ A1 ⊆ A2 then

A2
√

A1 B and A1
√

A0 B implies A2
√

A0 B .

(fin) Finite Character.

A
√

U B iff A0
√

U B for all finite A0 ⊆ A .

(b) A geometric independence relation is an abstract independence
relation

√
that satisfies the following additional conditions :

(sym) Symmetry.

A
√

U B implies B
√

U A .

(bmon) Base Monotonicity.

A
√

U B ∪ C implies A
√

U∪C B ∪ C .
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(srb) Strong Right Boundedness. Let γ be an ordinal and let (Uα)α≤γ be
a strictly increasing chain of subsets Uα ⊆ Ω. If AÒÒ

√
Uα

Uα+1, for
all α < γ, then ∣γ∣ ≤ ∣A∣.

(c) We call an abstract independence relation symmetric, base mono-
tone, or strongly right bounded if it satisfies the corresponding axiom.
Frequently, we will use the symbol ⫝ to denote symmetric independence
relations.

Example. (a) Let Ω be a set. For A, B,U ⊆ Ω, we set

A 0
√

U B : iff A ⊆ U .

0
√

is an abstract independence relation on Ω that satisfies (bmon) and
(srb), but not (sym). Moreover, it is minimal in the sense that 0

√
⊆
√
,

for every abstract independence relation
√

on Ω.
(b) Let Ω be a set. For A, B,U ⊆ Ω, define

A ⫝0U B : iff A∩ B ⊆ U .

Then ⫝0 is a geometric independence relation. It is minimal in the sense
that ⫝0 ⊆ ⫝, for every symmetric independence relation on Ω. Note that
⫝0 = cl

√
, where cl ∶ X ↦ X is the trivial closure operator on Ω.

(c) Let G = ⟨V , E⟩ be an undirected graph. For A, B,U ⊆ V ,we define

A ⫝sep
U B : iff every path connecting an element of A to

an element of B contains an element of U .

Then ⫝sep is an abstract independence relation that is symmetric and
base monotone.

As most axioms are immediatewe only check left transitivity. Suppose,
for a contradiction, that A2 ⫝

sep
A1

B and A1 ⫝
sep
A0

B, but A2Ò⫝
sep
A0

B. Then
there exists a path π from some vertex a2 ∈ A2 to some b ∈ B such
that π does not contain an element of A0. Since A2 ⫝

sep
A1

B, this path
contains a vertex a1 ∈ A1. Let π′ be the subpath of π connecting a1 to b.
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Since A1 ⫝
sep
A0

B, this subpath contains a vertex of A0. Hence, so does π.
A contradiction.

(d) Let X = ⟨X , d⟩ be a metric space. For A, B,U ⊆ X, we define

A ⫝dU B : iff for all a ∈ A and b ∈ B there is some c ∈ U
such that d(a, b) = d(a, c) + d(c, b) .

Again, ⫝d is a symmetric abstract independence relation.
Note that, for (undirected) trees, this definition generalises that in (c).

Given a tree T , we define the distance between two vertices u, v ∈ T
as the length of the unique path between u and v. The independence
relation ⫝d corresponding to this metric coincides with ⫝sep from (c)
since the equation d(u, v) = d(u,w)+d(w , v) implies that w is a vertex
on the path from u to v.

Exercise 2.1. Given an abstract independence relation
√
, we define the

relation

A b
√

U B : iff A
√

UB0 B , for all B0 ⊆ B .

Prove that b
√

is a base monotone abstract independence relation.

Let us collect some immediate consequences of the axioms of an
abstract independence relation. In proofs we will usually use the axioms
(mon), (nor), and (lrf) tacitly, while all uses of other axioms will be
explicit. The first two lemmas contain versions of the left transitivity
axiom that are frequently more convenient to use. The third lemma
presents an infinite version of left transitivity.

Lemma 2.3. Let
√

be an abstract independence relation.

A
√

U∪C B and C
√

U B implies A∪ C
√

U B .

Proof. By (nor), we have A ∪ U ∪ C
√

U∪C B and C ∪ U
√

U B. By
(ltr) it follows that A∪U ∪ C

√
U B. ◻
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Lemma 2.4. Let
√

be a base monotone abstract independence relation.

A
√

U B ∪ C and C
√

U B implies A∪ C
√

U B .

Proof. By (bmon), A
√

U B∪C implies A
√

U∪C B∪C. Since C
√

U B,
it follows by Lemma 2.3 and monotonicity that A∪ C

√
U B. ◻

Lemma 2.5. Let
√

be an abstract independence relation.

(a) If (A i)i∈I is an increasing chain of sets with A i
√

U B, for all i ∈ I,
then ⋃i∈I A i

√
U B.

(b) If γ is an ordinal and (Aα)α<γ an increasing chain of sets with
Aα
√

U∪⋃i<α A i B, for all α < γ, then ⋃α<γ Aα
√

U B.

Proof. (a) By (fin) it is sufficient to show that C
√

U B, for all finite
C ⊆ ⋃i∈I A i . Hence, let C ⊆ ⋃i∈I A i be finite. As (A i)i∈I is increasing,
there exists an index i ∈ I such that C ⊆ A i . Consequently, A i

√
U B

implies that C
√

U B.
(b) We prove the claim by induction on γ. For γ = 0,we have∅

√
U B

by (lrf). For the inductive step, suppose that ⋃i<α A i
√

U B, for all
α < γ. By (a) it follows that ⋃α<γ ⋃i<α A i

√
U B. If γ is a limit ordinal,

then ⋃α<γ ⋃i<α A i = ⋃α<γ Aα and we are done. Hence, suppose that
γ = β + 1. Then

Aβ
√

U∪⋃i<β A i B and ⋃
i<β

A i
√

U B

implies, by Lemma 2.3, that Aβ
√

U B. ◻

We will show that geometric independence relations are precisely
those associated with a matroid. The easy direction is to show that every
matroid induces a geometric independence relation. As a first step, let
us see which axioms hold if we do not assume the exchange property.
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Lemma 2.6. The independence relation cl
√

associated with a finitary
closure operator cl on Ω is an abstract independence relation.

Proof. We have to check five axioms.
(mon) Suppose that A cl

√
U B and let A0 ⊆ A and B0 ⊆ B. To show

that A0
cl
√

U B0, consider a subset I ⊆ B0 that is independent over U .
Since A cl

√
U B, I is also independent over U ∪ A. In particular, it is

independent over U ∪ A0.
(nor) Suppose that A cl

√
U B. To show that A∪U cl

√
U B∪U , consider

a set I ⊆ B ∪ U that is independent over U . Then I ⊆ B and A cl
√

U B
implies that I is independent over U ∪ A.

(lrf) Trivially, if I ⊆ B is independent over A, then it is independent
over A.

(ltr) Suppose that A2
cl
√

A1 B and A1
cl
√

A0 B, for A0 ⊆ A1 ⊆ A2.
If I is independent over A0, it is independent over A1 and, hence, also
over A2.

(fin) Suppose that A cl
ÒÒ
√

U B. We have to find a finite set A0 ⊆ A such
that A0

cl
ÒÒ
√

U B. By assumption, there is a set I ⊆ B that is independent
over U , but not over U ∪A. Hence, there is some element b ∈ I such that
b ∈ cl(U ∪ A∪ (I ∖ {b})). We choose a finite subset A0 ⊆ A such that
b ∈ cl(U ∪ A0 ∪ (I ∖ {b})). Since I is independent over U , but not over
U ∪ A0, it follows that A0

cl
ÒÒ
√

U B. ◻

To show that, for a matroid ⟨Ω, cl⟩, the relation cl
√

is a geometric
independence relation, we start with a technical lemma.

Lemma 2.7. Let ⟨Ω, cl⟩ be a matroid and let I, J ⊆ Ω be sets that are both
independent over U. If I is independent over U ∪ J, then J is independent
over U ∪ I.

Proof. Suppose that J is not independent over U ∪ I. Then there is some
b ∈ J such that

b ∈ cl(U ∪ I ∪ (J ∖ {b})) ∖ cl(U ∪ (J ∖ {b})) .
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By the exchange property, there is some a ∈ I such that

a ∈ cl(U ∪ (I ∖ {a}) ∪ J) .

Consequently, I is not independent over U ∪ J. ◻

Proposition 2.8. The relation cl
√

associated with a matroid ⟨Ω, cl⟩ is a
geometric independence relation.

Proof. We have already seen in Lemma 2.6 that cl
√

is an abstract in-
dependence relation. Hence, it remains to check the following three
axioms.

(sym) Suppose that A cl
√

U B. To show that B cl
√

U A, consider a
set I ⊆ A that is independent over U . Let J be a basis of B over U . By
assumption, J is independent over U ∪A. Hence, it follows by Lemma 2.7
that I is independent over U ∪ J and, therefore, over U ∪ B.

(bmon) Sincewe have already shown (sym), it is sufficient to prove that
A∪ C cl

√
U B implies A∪ C cl

√
U∪C B. Thus, suppose that A∪ C cl

√
U B.

If I ⊆ B is independent over U ∪ C, it is also independent over U and,
hence, over U ∪ A∪ C.

(srb) Let (Uα)α≤γ be a strictly increasing sequence with A cl
ÒÒ
√

Uα
Uα+1,

for all α < γ. By induction on α,we construct a decreasing chain (Iα)α≤γ
of subsets Iα ⊆ A such that Iα is a basis of A over Uα . We start with an
arbitrary basis I0 of A over U0. For the inductive step, suppose that we
have already defined Iβ for all β < α. For Iα we choose a maximal subset
of ⋂β<α Iβ that is independent over Uα .

Since A cl
ÒÒ
√

Uα
Uα+1 we can find a set J ⊆ Uα+1 that is independent

over Uα , but not over Uα ∪ A. By Lemma 2.7 it follows that Iα is not
independent over Uα ∪ J ⊆ Uα+1. Therefore, each inclusion Iα+1 ⊃ Iα is
strict. It follows that ∣γ∣ ≤ ∣I0∣ ≤ ∣A∣. ◻

Our next aim is to show that every geometric independence relation
arises from a matroid. As motivation for the definition below, let us
explain how one can recover the closure operation cl from the independ-
ence relation cl

√
associated with it.
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Lemma 2.9. Let cl
√

be the independence relation associatedwith a closure
operator cl on Ω and let a ∈ Ω and A, B,U ⊆ Ω.

(a) a ∈ cl(U) iff a cl
√

U a

iff a cl
√

U∪C B for all B,C ⊆ Ω .

(b) A ⊆ cl(U ∪ B) iff B cl
√

U C ⇒ A cl
√

U C for all C ⊆ Ω .

Proof. (a) First, suppose that a ∈ cl(U). We claim that a cl
√

U∪C B, for
all B,C ⊆ Ω. Fix B and C and let I ⊆ B be independent over U ∪C. Then
I is independent over cl(U∪C) and, therefore, over U∪{a} ⊆ cl(U∪C).

If a cl
√

U∪C B, for all B,C, then, trivially, a cl
√

U a.
Hence, it remains to show that a cl

√
U a implies a ∈ cl(U). Suppose

that a cl
√

U a. Since the set {a} is not independent over U ∪ {a}, it
follows that {a} is not independent over U . Hence, a ∈ cl(U).

(b) (⇒) Suppose that A ⊆ cl(U ∪ B) and B cl
√

U C. To show that
A cl
√

U C, consider a set I ⊆ C that is independent over U . Then I is also
independent over U ∪ B and, hence, over cl(U ∪ B). In particular, I is
independent over U ∪ A ⊆ cl(U ∪ B).
(⇐) Suppose that A ⊈ cl(U ∪B) and fix an element a ∈ A∖cl(U ∪B).

Then B cl
√

U a since ∅ and {a} are both independent over U and inde-
pendent over U ∪ B. But A cl

ÒÒ
√

U a since {a} is independent over U , but
not over U ∪ A. ◻

We use the characterisation in (a) to associate a closure operator with
an arbitrary abstract independence relation

√
.

Definition 2.10. Let
√

be an abstract independence relation on the set Ω.
For U ⊆ Ω, we define

cl√(U) ∶= { a ∈ Ω ∣ a
√

U∪C B for all B,C ⊆ Ω } .

Let us start by proving that this definition results in a closure operator.
The main technical argument is contained in the following lemma.
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Lemma 2.11. Let
√

be an abstract independence relation on the set Ω.

A ⊆ cl√(U) iff A
√

U∪C B for all B,C ⊆ Ω .

Proof. (⇐) Let a ∈ A. Then a
√

U∪C B, for all sets B,C. Consequently,
a ∈ cl√(U).
(⇒) By (fin), it is sufficient to prove the claim for finite sets A. We

proceed by induction on ∣A∣. For A = ∅ and arbitrary sets B,C ⊆ Ω,
U ∪ C

√
U∪C B implies that ∅

√
U∪C B, as desired.

Hence, suppose that A = A0 ∪ {a} and that we have already shown
that A0

√
U∪C B, for all sets B,C. Given B,C ⊆ Ω, it follows that

A0
√

U∪C∪{a} B and a
√

U∪C B which, by Lemma 2.3, implies that
A0 ∪ {a}

√
U∪C B. ◻

Corollary 2.12. Let
√

be an abstract independence relation on the set Ω.

cl√(U)
√

U∪C B , for all B,C ,U ⊆ Ω .

Proposition 2.13. Let
√

be an abstract independence relation on the set Ω.
Then cl√ is a closure operator on Ω.

Proof. To show that U ⊆ cl√(U), consider a ∈ U and B,C ⊆ Ω. Then
U ∪ C

√
U∪C B implies a

√
U∪C B. Hence, a ∈ cl√(U).

For monotonicity, let U ⊆ V and suppose that a
√

U∪C B, for all
B,C ⊆ Ω. Given B,C ⊆ Ω, we have a

√
U∪V∪C B. Hence, cl√(U) ⊆

cl√(V).
To show that cl√(cl√(U)) = cl√(U), fix an element a ∈ cl√(cl√(U))

and sets B,C ⊆ Ω. Then

a
√

cl√(U)∪cl√(U∪C) B .

Since we have already shown that cl√ is monotone, we have cl√(U) ⊆
cl√(U ∪ C) and it follows that a

√
cl√(U∪C) B. Furthermore, according

to Corollary 2.12, cl√(U ∪C)
√

U∪C B. By Lemma 2.3 and monotonicity,
it therefore follows that a

√
U∪C B. Hence, a ∈ cl√(U). ◻
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For symmetric independence relationswe have the following desirable
relationship to the associated closure operator.

Lemma 2.14. Let ⫝ be an abstract independence relation on the set Ω
satisfying (sym) and (bmon).

A ⫝U B iff cl⫝(A) ⫝cl⫝(U) cl⫝(B) , for all A, B,U ⊆ Ω .

Proof. (⇐) By Corollary 2.12, we have cl⫝(U) ⫝U cl⫝(B). Therefore,
cl⫝(A) ⫝cl⫝(U) cl⫝(B) implies cl⫝(A) ⫝U cl⫝(B), by Lemma 2.3. Hence,
the claim follows by (mon).
(⇒) Suppose that A ⫝U B. Then A ∪ U ⫝U B. We have shown

in Corollary 2.12 that cl⫝(A ∪ U) ⫝A∪U B. Using (ltr) we see that
cl⫝(A∪U) ⫝U B. By symmetry, it follows in exactly the same way that
cl⫝(A ∪ U) ⫝U cl⫝(B ∪ U). Hence, we can use (bmon) and (mon) to
show that cl⫝(A) ⫝cl⫝(U) cl⫝(B). ◻

If an abstract independence relation
√

is induced by a closure operator,
we obtain this operator back if we form cl√.

Lemma 2.15. cl = cl cl√ , for every finitary closure operator cl.

Proof. By definition of cl cl√ and Lemma 2.9,

a ∈ cl cl√(U) iff a cl
√

U∪C B for all sets B,C

iff a ∈ cl(U) . ◻

Remark. Note that, in general, the dual statement does not hold: there
are distinct independence relations inducing the same closure operator.

For a geometric independence relation ⫝,we not only obtain a closure
operator, but even amatroid. Again,we beginwith two technical lemmas.

Lemma 2.16. Let ⫝ be a geometric independence relation. Then

aÒ⫝U B iff a ∈ cl⫝(U ∪ B) ∖ cl⫝(U) .
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2. Independence relations

Proof. (⇐) Suppose that a ∈ cl⫝(U ∪ B) and a ⫝U B. We have to
show that a ∈ cl⫝(U). Hence, let C ,D ⊆ Ω be arbitrary sets. Then
a ⫝U∪B C ∪ D and a ⫝U B implies, by Lemma 2.3 and symmetry, that
a ⫝U C ∪ D. Consequently, we have a ⫝U∪C D by (bmon).
(⇒) Suppose that a Ò⫝U B. Then a ∉ cl⫝(U). For a contradiction,

assume that there are sets C ,D such that a Ò⫝U∪B∪C D. Then (mon)
implies

aÒ⫝U U ∪ B ∪ C and aÒ⫝U∪B∪C U ∪ B ∪ C ∪ D .

By (srb), it follows that 2 ≤ ∣{a}∣ = 1. A contradiction. ◻

Lemma 2.17. Let ⫝ be a geometric independence relation on Ω. For all
a ∈ Ω and B ⊆ Ω, there exists a finite set B0 ⊆ B such that a ⫝B0 B.

Proof. We prove the claim by induction on κ ∶= ∣B∣. For κ < ℵ0, we
have a ⫝B B by (lrf) and symmetry. Hence, suppose that κ ≥ ℵ0. Let
(bα)α<κ be an enumeration of B and set Bα ∶= { b i ∣ i < α }, for α ≤ κ.
If a ⫝∅ B, we are done. Otherwise, let α be the minimal ordinal such
that aÒ⫝∅ Bα . By Lemma 2.16, it follows that a ∈ cl⫝(Bα). Consequently,
a ⫝Bα B. Note that α < κ since a ⫝∅ Bβ for all β < κ would imply, by
Lemma 2.5 and symmetry, that a ⫝∅ B. Hence ∣Bα ∣ = ∣α∣ < κ, andwe can
apply the inductive hypothesis to find a finite set U ⊆ Bα with a ⫝U Bα .
Consequently, it follows by (ltr) and symmetry that a ⫝U B. ◻

Proposition 2.18. If ⫝ is a geometric independence relation on the set Ω,
then ⟨Ω, cl⫝⟩ is a matroid.

Proof. We have already seen in Proposition 2.13 that cl⫝ is a closure
operator. Hence, it remains to check that it has finite character and the
exchange property.

For finite character, suppose that a ∈ cl⫝(U). By Lemma 2.17 we can
find a finite set U0 ⊆ U such that a ⫝U0 U . For all sets B,C it follows by
a ⫝U B ∪ C, Lemma 2.3, and (sym) that a ⫝U0 B ∪ C. Hence, (bmon)
implies a ⫝U0∪C B and we have a ∈ cl⫝(U0).
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f2. Ranks and forking

It remains to check the exchange property. Suppose that

b ∈ cl⫝(U ∪ {a}) ∖ cl⫝(U) .

By Lemma 2.16, it follows that bÒ⫝U a. By symmetry, we have aÒ⫝U b
and we can use Lemma 2.16 again to conclude that

a ∈ cl⫝(U ∪ {b}) ∖ cl⫝(U) . ◻

The next lemma, together with Lemma 2.15, shows that the operation
cl↦ cl

√
is a bijective function from the class of all matroids to the class of

all geometric independence relations. Its inverse is given by the function
⫝ ↦ cl⫝.

Lemma 2.19. If ⫝ is a geometric independence relation then cl⫝
√
= ⫝.

Proof. (⊇) Suppose that Acl⫝
ÒÒ
√

U B. We have to show that AÒ⫝U B. By
assumption, there exists a set I ⊆ B that is cl⫝-independent over U , but
not over U ∪ A. Fix an element b ∈ I such that b ∈ cl⫝(U ∪ A ∪ I0)
where I0 ∶= I ∖ {b}. Since b ∉ cl⫝(U ∪ I0), it follows by Lemma 2.16 that
bÒ⫝U∪I0 A. By monotonicity, this implies that BÒ⫝U∪I0 A. Hence,we can
use symmetry and (bmon) to deduce that AÒ⫝U B.
(⊆) By (fin) and symmetry, it is sufficient to show that A cl⫝

√
U B

implies A ⫝U B, for all finite sets A, B. Furthermore, we may assume by
Lemmas 2.14 and 2.15 that A and B are cl⫝-independent over U . Hence,
suppose that A cl⫝

√
U B for finite sets A and B that are cl⫝-independent

over U . We prove by induction on ∣B∣ that B ⫝U A. If B = ∅, then
U ⫝U A implies ∅ ⫝U A. Hence, suppose that B = B0 ∪ {b} and that we
have already shown that B0 ⫝U A. Since B is cl⫝-independent over U ,
it is also cl⫝-independent over U ∪ A. Hence, b ∉ cl⫝(U ∪ A∪ B0) and
Lemma 2.16 implies that b ⫝U∪B0 A. Together with B0 ⫝U A it follows
by Lemma 2.3 that B0 ∪ {b} ⫝U A. ◻

We conclude this section with a characterisation of modularity in
terms of the independence relation cl

√
.
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2. Independence relations

Proposition 2.20. A matroid ⟨Ω, cl⟩ is modular if, and only if,

A cl
√

cl(A)∩cl(B) B , for all A, B ⊆ Ω .

Proof. (⇒) Suppose that ⟨Ω, cl⟩ is modular and let A, B ⊆ Ω. We have
to show that A cl

√
cl(A)∩cl(B) B. By Lemmas 2.14 and 2.15,wemay assume

that A and B are closed sets. Hence, let A and B be closed and I ⊆ B
independent over A∩ B. Let I0 ⊆ I be a basis of I over A and set C0 ∶=
cl(I0) and C ∶= cl(I). We have to show that I0 = I. Note that

cl(C0 ∪ A) = cl(I0 ∪ A) = cl(I ∪ A) = cl(C ∪ A) .

By Lemma b2.2.9, it follows that

C = cl(C0 ∪ (C ∩ A)) = cl(I0 ∪ (C ∩ A)) .

Hence, I0 is a basis of C over C ∩ A. Since I ⊇ I0 is independent over
C ∩ A, it follows that I = I0 and I is independent over A.
(⇐) Suppose that A cl

√
cl(A)∩cl(B) B, for all A, B ⊆ Ω. To show that

⟨Ω, cl⟩ is modular it is sufficient, by Lemma b2.2.9, to prove that

cl(A∪ C) = cl(B ∪ C) implies cl(A∪ (B ∩ C)) = B ,

for all closed sets A, B,C ⊆ Ω with A ⊆ B. Hence, fix closed sets A, B,C ⊆
Ω with A ⊆ B and cl(A∪ C) = cl(B ∪ C). Choose a maximal set I ⊆ A
that is independent over C. Then cl(I ∪C) = cl(A∪C) = cl(B ∪C) and
I is a basis of B ∪ C over C. We claim that B ⊆ cl(I ∪ (B ∩ C)). Suppose
otherwise. Then there is some element b ∈ B ∖ cl(I ∪ (B ∩C)). Since b ∈
B ⊆ cl(I∪C) and b ∉ cl(I∪(B∩C)), it follows that I∪{b} is independent
over B ∩ C, but not over C. Hence, C cl

ÒÒ
√

B∩C B. A contradiction.
We have shown that B ⊆ cl(I ∪ (B ∩ C)). It follows that

B ⊆ cl(I ∪ (B ∩ C)) ⊆ cl(A∪ (B ∩ C)) ⊆ B ,

as desired. ◻
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f2. Ranks and forking

Corollary 2.21. Let ⟨Ω, cl⟩ be a modular matroid. Then

A cl
√

U B iff cl(A∪U) ∩ cl(B ∪U) = cl(U) .

Proof. (⇐) According to Proposition 2.20, we have

A∪U cl
√

cl(A∪U)∩cl(B∪U) B ∪U .

If cl(A∪U) ∩ cl(B ∪U) = cl(U), then

A∪U cl
√

cl(U) B ∪U implies A cl
√

U B ,

by Lemma 2.14.
(⇒) Suppose that A cl

√
U B. By Lemma 2.14, it follows that

cl(A∪U) cl
√

cl(U) cl(B ∪U) .

For a contradiction, suppose that there is some element

c ∈ (cl(A∪U) ∩ cl(B ∪U)) ∖ cl(U) .

Then {c} is independent over cl(U), but not over cl(A ∪ U). Hence,
cl(A∪U) cl

ÒÒ
√

cl(U) cl(B ∪U). A contradiction. ◻

3. Preforking relations

We would like to define an independence relation using ∆-rank or Mor-
ley rank as our notion of dimension. In general, the resulting relation
will not be a geometric independence relation but something slightly
weaker, called a forking relation. In this section,we introduce the abstract
framework for forking relations and we will present several examples
of such relations. To simplify notation, we will frequently omit union
symbols and just write AB instead of A∪ B.
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3. Preforking relations

Definition 3.1. Let T be a complete first-order theory and suppose that
A
√

U B is a ternary relation that is defined on the class of all small
subsets A, B,U ⊆M.

(a) The relation
√

is a preforking relation for T if it is an abstract inde-
pendence relation that satisfies (bmon) and the following two axioms :
(inv) Invariance. ABU ≡∅ A′B′U ′ implies that

A
√

U B iff A′
√

U ′ B′ .

(def) Definability. If A ÒÒ
√

U B, there are finite tuples ā ⊆ A and b̄ ⊆ B
and a formula φ(x̄ , x̄′) ∈ tp(āb̄/U) such that

ā′ ÒÒ
√

U b̄ , for all ā′ ∈ φ(x̄ , b̄)M .

(b) The relation
√

is a forking relation if it is a preforking relation that
satisfies the following additional axiom :

(ext) Extension. If A
√

U B0 and B0 ⊆ B1 then there is some A′ with

A′ ≡UB0 A and A′
√

U B1 .

We are mostly interested in symmetric forking relations since many
properties of geometric independence relations can be generalised to
them. Unfortunately, there are first-order theories were no nontrivial
symmetric forking relations exist. On the other hand there are always
several natural preforking relations and below we will see that every
preforking relation can beused todefine a corresponding forking relation,
although not necessarily a symmetric one.
Remark. The intersection of an arbitrary family of preforking relations
is again a preforking relation. It follows that the class of all preforking
relations on a structureM forms a complete partial order.

Examples
Before proceeding let us collect several examples. We start with a trivial
one.
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f2. Ranks and forking

Example. The trivial relation
√

with A
√

U B, for all sets A, B,U , is a
symmetric forking relation.

Exercise 3.1. Prove that the relation

A ⫝0U B : iff A∩ B ⊆ U

is a symmetric preforking relation.

More interesting are the following three examples. The second one
has historically been used to develop stability theory.

Definition 3.2. For ā,A, B,U ⊆M, we define

A at
√

U B : iff for every finite ā ⊆ A ,
tp(ā/UB) is isolated by a formula over U .

ā df
√

U B : iff tp(ā/UB) is definable over U .

A s
√

U B : iff b̄ ≡U b̄′ ⇒ b̄ ≡UA b̄′ , for all b̄, b̄′ ⊆ B.

If ā s
√

U B,we say that the type tp(ā/UB) is invariant over U . Otherwise,
it splits over U .

Lemma 3.3.

(a) at
√
⊆ df
√
⊆ s
√

(b) at
√

is an abstract independence relation that satisfies (inv) and
(bmon).

(c) df
√

is an abstract independence relation that satisfies (inv) and
(bmon).

(d) s
√

is a preforking relation.

Proof. (a) Suppose that A at
√

U B and let ā be an enumeration of A. To
show that A df

√
U B, consider a formula φ(x̄; b̄) ∈ tp(ā/UB). Let ā0 ⊆ ā
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3. Preforking relations

be the finite tuple of elements mentioned in φ. By assumption, there is a
formula ψ(x̄) over U isolating tp(ā0/UB). It follows that

δ( ȳ) ∶= ∀x̄[ψ(x̄)→ φ(x̄; ȳ)]

is a φ-definition of tp(ā/UB).
For the second inclusion, suppose that A df

√
U B. Let b̄, b̄′ ⊆ B be

tuples with b̄ ≢UA b̄′. We have to show that b̄ ≢U b̄′. Fix a formula
φ(x̄; ā, c̄) with parameters ā ⊆ A and c̄ ⊆ U such that

M ⊧ φ(b̄; ā, c̄) ∧ ¬φ(b̄′; ā, c̄) .

By assumption, tp(ā/UB) has a φ-definition δ(x̄) over U . It follows that
M ⊧ δ(b̄) ∧ ¬δ(b̄′). Consequently, b̄ ≢U b̄′.

(b) (inv) and (fin) follow immediately from the definition.

(mon) Suppose that A at
√

U B and let A0 ⊆ A, B0 ⊆ B. For ā ⊆ A0
we know that tp(ā/UB) is isolated by a formula over U . Hence, so is
tp(ā/UB0).

(nor) Suppose that A at
√

U B. Let ā ⊆ A ∪ U be finite. Then ā =
ā′ ∪ c̄ for ā′ ⊆ A and c̄ ⊆ U . Furthermore, tp(ā′/UB) is isolated by a
formula φ(x̄) over U and tp(c̄/UB) is isolated by the formula x̄ = c̄.
Consequently, tp(ā′ c̄/UB) is isolated by ψ(x̄ , x̄′) ∶= φ(x̄) ∧ x̄′ = c̄.

(lrf) If ā ⊆ A is finite then tp(ā/AB) is isolated by the formula x̄ = ā.
Hence, A at

√
A B.

(ltr) Suppose that A2
at
√

A1 B and A1
at
√

A0 B for A0 ⊆ A1 ⊆ A2. Let
ā ⊆ A2 be finite. Then tp(ā/A1B) is isolated by a formula φ(x̄; c̄) with
parameters c̄ ⊆ A1. Furthermore, tp(c̄/A0B) is isolated by a formula
ψ(x̄) over A0. By Lemma e3.1.5, it follows that tp(āc̄/A0B) is isolated
by the formula φ(x̄; z̄) ∧ ψ(z̄). Therefore, tp(ā/A0B) is isolated by the
formula ∃z̄[φ(x̄; z̄) ∧ ψ(z̄)].

(bmon) Suppose that A at
√

U BC. For every ā ⊆ A, tp(ā/UBC) is
isolated by a formula over U and, hence, by a formula over U ∪ C.
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(c) (inv) follows immediately from the definition.

(mon) Suppose that ā df
√

U B. If ā0 ⊆ ā and B0 ⊆ B then

tp(ā0/UB0) ⊆ tp(ā/UB)

and every φ-definition of the latter type is also a φ-definition of the
former one.

(nor) Suppose that tp(ā/Bc̄) is definable over c̄. To find the desired
φ(x̄ , x̄′; ȳ)-definition of tp(āc̄/Bc̄) over c̄, let ψ( ȳ, ȳ′; c̄) be a φ(x̄; ȳ′ , ȳ)-
definition of tp(ā/Bc̄) over c̄. For b̄ ⊆ B ∪ c̄ it follows that

M ⊧ φ(ā, c̄; b̄) iff M ⊧ ψ(b̄, c̄; c̄) .

Hence, ψ( ȳ, c̄; c̄) is a φ-definition of tp(āc̄/B) over c̄.
(lrf) Note that φ(ā; ȳ) is a φ(x̄; ȳ)-definition of tp(ā/B ∪ ā). Hence,

tp(ā/Bā) is definable over ā.

(ltr) Suppose that ā0 ā1 ā2
df
√

ā0 ā1 B and ā0 ā1
df
√

ā0 B. For every
formula φ(x̄0 , x̄1 , x̄2; ȳ), there exist

◆ a φ-definition ψ( ȳ; ā0 , ā1) of tp(ā0 ā1 ā2/Bā0 ā1) over ā0 ā1, and
◆ a ψ( ȳ; x̄0 , x̄1)-definition ϑ( ȳ; ā0) of tp(ā0 ā1/Bā0) over ā0.

For b̄ ⊆ B ∪ ā0, we have

M ⊧ φ(ā0 , ā1 , ā2; b̄) iff M ⊧ ψ(b̄; ā0 , ā1)

iff M ⊧ ϑ(b̄; ā0) .

Hence, ϑ is a φ-definition of tp(ā0 ā1 ā2/Bā0) over ā0.
(bmon) Clearly, every φ-definition of tp(ā/UBC) over U is also a

φ-definition of tp(ā/UBC) over U ∪ C.
(fin) Since each formula φ(x̄) ∈ tp(ā/UB) contains only finitely

many variables from x̄, it follows that tp(ā/UB) is definable over U if,
and only if, tp(ā0/UB) is definable over U , for all finite ā0 ⊆ ā.

(d) (inv) follows immediately from the definition.
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3. Preforking relations

(mon) Suppose that A s
√

U B and let A0 ⊆ A and B0 ⊆ B. For b̄, b̄′ ⊆
B0 it follows that

b̄ ≡U b̄′ implies b̄ ≡UA b̄′ implies b̄ ≡UA0 b̄
′ .

Hence, A0
s
√

U B0.

(nor) Suppose that A s
√

U B. If b̄, b̄′ ⊆ B ∪ U are tuples such that
b̄ ≡U b̄′, then there are tuples b̄0 , b̄′0 ⊆ B and c̄ ⊆ U such that b̄ = b̄0 ∪ c̄
and b̄′ = b̄′0 ∪ c̄. It follows that

b̄ ≡U b̄′ implies b̄0 ≡U b̄′0
implies b̄0 ≡UA b̄′0
implies b̄0 c̄ ≡UA b̄′0 c̄ implies b̄ ≡UA b̄′ .

Consequently, AU s
√

U BU .

(lrf) Since, trivially, b̄ ≡A b̄′ implies b̄ ≡A b̄′, we have A s
√

A B, for
all sets A and B.

(ltr) Suppose that A2
s
√

A1 B and A1
s
√

A0 B, for A0 ⊆ A1 ⊆ A2. For
b̄, b̄′ ⊆ B it follows that

b̄ ≡A0 b̄ implies b̄ ≡A1 b̄ implies b̄ ≡A2 b̄ .

as desired.
(bmon) Suppose that A s

√
U BC. Let b̄, b̄′ ⊆ B ∪ C be tuples such that

b̄ ≢UAC b̄′. We claim that b̄ ≢UC b̄′. There exists a formula φ(x̄; ā, c̄, d̄)
with parameters ā ⊆ A, c̄ ⊆ C, and d̄ ⊆ U such that

M ⊧ φ(b̄; ā, c̄, d̄) ∧ ¬φ(b̄′; ā, c̄, d̄) .

Consequently, b̄c̄ ≢UA b̄′ c̄. Since A s
√

U BC it follows that b̄c̄ ≢U b̄′ c̄. As
c̄ ⊆ C this means that b̄ ≢UC b̄′, as desired.

(def) Suppose that A s
ÒÒ
√

U B. Then there exist tuples b̄, b̄′ ⊆ B such
that b̄ ≡U b̄′ and b̄ ≢UA b̄′. Fix a formula φ(x̄ , ȳ) over U and a tuple
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ā ⊆ A such that

M ⊧ φ(ā, b̄) ∧ ¬φ(ā, b̄′) .

For every tuple ā′ ⊆M it follows that

M ⊧ φ(ā′ , b̄) ∧ ¬φ(ā′ , b̄′) implies ā′ s
ÒÒ
√

U b̄b̄′ . ◻

Let us mention that, in general, df
√

and at
√

are no preforking relations.

Example. (a) The relation df
√

is not definable. As a counterexample,
consider the theory T of dense linear orders. Note that T has quantifier
elimination. Let a ∈ R ∖ Q be an irrational number. Then tp(a/Q)
is not definable over Q. Consider a formula φ(x; b̄) ∈ tp(a/Q) with
rational parameters b0 < ⋅ ⋅ ⋅ < bn−1. By enlarging the tuple b̄ we may
assume that there is some index i such that b i < a < b i+1. It follows that
⟨R, ≤⟩ ⊧ φ(a′; b̄), for all a′ ∈ (b i , b i+1). But for a′ ∈ (b i , b i+1) ∩Q the
type tp(a′/Q) is definable over Q. This contradicts (def).

(b) The relation at
√

is not definable. As a counterexample, consider the
theory T of the structure ⟨R, s⟩ where s(x) = x + 1. Note that tp(a/b) is
isolated if, and only if, a = b+k, for some k ∈ Z. In particular tp(⁄/0) is
not isolated. Using an Ehrenfeucht-Fraïssé argument, one can show that,
for every formula φ(x; y) with ⟨R, s⟩ ⊧ φ(⁄ ;0), there exists a number
a ∈ R such that ⟨R, s⟩ ⊧ φ(b;0), for all b ≥ a. But, for b ∈ N, the type
tp(b/0) is isolated by the formula x = sb(0).

Let us take a look at the closure operators associated with these rela-
tions. In each case, we obtain the definable closure.

Lemma 3.4. cl df√ = cl at√ = cl s√ = dcl

Proof. Note that at
√
⊆ df
√
⊆ s
√

implies cl at√ ⊆ cl df√ ⊆ cl s√ . Hence, we
only need to prove that dcl ⊆ cl at√ and cl s√ ⊆ dcl.

For the first inclusion, note that every formula defining a over U
isolates tp(a/UBC). Hence, a ∈ dcl(U) implies a at

√
UC B, for all B,C.
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3. Preforking relations

For the second inclusion, consider an element a ∉ dcl(U). By The-
orem e2.1.6, there exists an automorphism π ∈MU with π(a) ≠ a. Set-
ting a′ ∶= π(a) it follows that a ≡U a′ and a ≢Ua a′. Hence, a s

ÒÒ
√

U aa′
and a ∉ cl s√(U). ◻

We conclude this section with the remark that, for forking relations,
the definition of the closure operator cl√ can be simplified.

Lemma 3.5. If
√

is a forking relation, then

a
√

U a implies a
√

UC B for all B,C .

Proof. Suppose that a
√

U a and let B,C be arbitrary sets. By (ext),
there exists an element a′ ≡Ua a with a′

√
U BC. It follows that a′ = a.

Therefore, (bmon) implies a
√

UC B. ◻

Finitely satisfiable types
Let us take a look at some consequences of the definability axiom (def).
First, note that, by invariance, we can extend every preforking relation
from subsets of M to types.

Definition 3.6. Let
√

be a preforking relation and B,U ⊆M.
(a) A partial type Φ(x̄) over B

√
-forks over U if

ā ÒÒ
√

U B , for all ā ∈ ΦM .

Similarly, we say that a single formula φ(x̄) over B
√

-forks over U , if
the type {φ} does.

(b) A type p over B is
√

-free over U if it does not
√

-fork over U .
(c) For complete types p ∈ S s̄(U) and q ∈ S s̄(UB), we say that q is a√
-free extension of p if

p ⊆ q and q is
√

-free over U .

We denote this fact by p t√ q.
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Remark. (a) By (inv), we have ā
√

U B if, and only if, tp(ā/UB) is√
-free over U .
(b) By (def), a complete type p

√
-forks over U if, and only if, some

formula φ(x̄) ∈ p
√

-forks over U .

Lemma 3.7. Let
√

be a preforking relation. The set

F s̄√(A/U) ∶= { p ∈ S s̄(A) ∣ p is
√

-free over U }

is a closed subset of Ss̄(A).

Proof. Let

Φ ∶= {¬φ ∣ φ a formula over A that
√

-forks over U } .

Then Φ ⊆ p, for every p ∈ F s̄√(A/U), while (def) implies that Φ ⊈ p, for

every type p that
√

-forks over U . Hence,

F s̄√(A/U) ∶= ⟨Φ⟩Ss̄(A) . ◻

Let us treat in more detail one important forking relation that is con-
nected with the definability axiom. It is based on the notion of a finitely
satisfiable type.

Definition 3.8. A type p is finitely satisfiable in a set U if, for every
formula φ(x̄; c̄) ∈ p, there is some tuple ā ⊆ U with M ⊧ φ(ā; c̄). We
write

ā u
√

U B : iff tp(ā/U ∪ B) is finitely satisfiable in U .

Example. Let T be the theory of dense linear orders. For a single element
a ∈M and sets U , B ⊆M, we have a u

√
U B if, and only if, at least one of

the following conditions is satisfied:
◆ a ∈ U , or
◆ ⇑a∩U ≠ ∅ and, for every b ∈ ⇑a∩(U∪B), there is some c ∈ ⇑a∩U

with c ≤ b, or
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3. Preforking relations

◆ ⇓a∩U ≠ ∅ and, for every b ∈ ⇓a∩(U∪B), there is some c ∈ ⇓a∩U
with c ≥ b.

We shall prove that u
√

is the least preforking relation and that it is,
in fact, a forking relation. Before doing so, let us give an alternative
characterisation of finitely satisfiable types in terms of ultrafilters. (The
letter ‘u’ in u

√
stands for ‘ultrafilter’.)

Definition 3.9. Let T be a theory over the signature Σ, let U , B ⊆M be
sets, and u an ultrafilter over U s̄ , for some tuple s̄ of sorts. The average
type of u over B is the set

Av(u/B) ∶= {φ(x̄) ∈ FOs̄[ΣB] ∣ U s̄ ∩ φ(x̄)M ∈ u} .

Lemma 3.10. Let T be a complete first-order theory and u an ultrafilter
over U s̄ . Then Av(u/B) is a complete type over B that is finitely satisfiable
in U.

Proof. We start by showing that Av(u/B) is a type. For a contradiction,
suppose that T ∪Av(u/B) is unsatisfiable. Then there exist a finite subset
Φ ⊆ Av(u/B) such that T ⊧ ¬⋀Φ. By definition of Av(u/B),

U s̄ ∩ φM ∈ u , for all φ ∈ Φ .

As ultrafilters are closed under finite intersections, it follows that

U s̄ ∩ (⋀Φ)M ∈ u .

In particular, (⋀Φ)M ≠ ∅. Hence, T ⊧ ∃x̄⋀Φ. A contradiction.
Moreover, Av(u/B) is complete since, for every formula φ(x̄) over B,

φ(x̄) ∈ Av(u/B) iff U s̄ ∩ φ(x̄)M ∈ u

iff U s̄ ∖ φ(x̄)M ∉ u

iff U s̄ ∩ ¬φ(x̄)M ∉ u

iff ¬φ(x̄) ∉ Av(u/B) .
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Finally, to show that Av(u/B) is finitely satisfiable in U , note that
φ(x̄) ∈ Av(u/B) implies U s̄ ∩ φ(x̄)M ∈ u. In particular, this set is not
empty. Hence, there is some ā ∈ U s̄ satisfying φ(x̄). ◻

Lemma 3.11. A type p ∈ S s̄(B) is finitely satisfiable in U if, and only if,
p = Av(u/B), for some ultrafilter u over U s̄ .

Proof. (⇐) follows by Lemma 3.10. For (⇒), suppose that p is finitely
satisfiable in U . We start by showing that the set

u0 ∶= {U s̄ ∩ φ(x̄)M ∣ φ(x̄) ∈ p} .

has the finite intersection property. Let

U s̄ ∩ φ0(x̄)M , . . . ,U s̄ ∩ φn(x̄)M ∈ u0 , for φ0 , . . . , φn ∈ p .

Since p is closed under conjunction, it follows that φ0 ∧ ⋅ ⋅ ⋅ ∧ φn ∈ p. As
p is finitely satisfiable in U ,

(U s̄ ∩ φ0(x̄))M ∩ ⋅ ⋅ ⋅ ∩ (U s̄ ∩ φn(x̄))M

= U s̄ ∩ (φ0(x̄) ∧ ⋅ ⋅ ⋅ ∧ φn(x̄))M ≠ ∅ ,

as desired.
By Corollary b2.4.10, there exists an ultrafilter u ⊇ u0 over U s̄ . Since,

for every formula φ over B,

U s̄ ∩ φ(x̄)M ∈ u iff U s̄ ∩ φ(x̄)M ∈ u0 ,

it follows that

Av(u/B) = {φ(x̄) ∣ U s̄ ∩ φ(x̄)M ∈ u}

= {φ(x̄) ∣ U s̄ ∩ φ(x̄)M ∈ u0 } = {φ(x̄) ∣ φ ∈ p} = p ,

as desired. ◻

Using this characterisation of finite satisfiable types, we can prove that
u
√

is a forking relation.
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Proposition 3.12. u
√

is a forking relation.

Proof. (inv) follows immediately from the definition.
(mon) If tp(ā0 ā1/UB) is finitely satisfiable in U and B0 ⊆ B, then

tp(ā0/UB0) is finitely satisfiable in U .
(nor) If tp(ā/c̄B) is finitely satisfiable in c̄ then so is tp(āc̄/c̄B).
(lrf) Clearly, tp(ā/Bā) is finitely satisfiable in ā.
(ltr) Suppose that tp(ā0 ā1 ā2/ā0 ā1B) is finitely satisfiable in ā0 ā1

and tp(ā0 ā1/ā0B) is finitely satisfiable in ā0. If M ⊧ φ(ā0 , ā1 , ā2 , b̄), for
b̄ ⊆ ā0B, there exists a tuple ā′2 ⊆ ā0 ā1 such that M ⊧ φ(ā0 , ā1 , ā′2 , b̄).
Suppose that ā′2 = ā′0 ā′1 with ā′0 ⊆ ā0 and ā′1 ⊆ ā1. Then there are
tuples c̄1 , c̄′1 ⊆ ā0 with M ⊧ φ(ā0 , c̄1 , ā′0 c̄′1 , b̄). Hence, tp(ā0 ā1 ā2/ā0B)
is finitely satisfiable in ā0.

(bmon) Obviously, if tp(ā/UBC) is finitely satisfiable in U , it is also
finitely satisfiable in U ∪ C.

(def) Suppose that tp(ā/UB) is not finitely satisfiable in U . Then
there is some formula φ(x̄; b̄) ∈ tp(ā/UB) such that M ⊭ φ(ā′; b̄), for
all ā′ ⊆ U . It follows that tp(ā′/U b̄) is not finitely satisfiable in U , for
every tuple ā′ that satisfies φ(x̄; b̄).

(ext) Suppose that the type p ∶= tp(ā/UB0) is finitely satisfiable in U
and let B1 ⊇ B0. According to Lemma 3.11 there exists an ultrafilter u
such that p = Av(u/UB0). Let ā′ be a realisation of Av(u/UB1). Then
tp(ā′/UB0) = Av(u/UB0) = p and tp(ā′/UB1) = Av(u/UB1) is finitely
satisfiable in U . ◻

Our next aim is to show that u
√

is the least preforking relation.

Theorem 3.13 (Adler). u
√
⊆
√
, for every preforking relation

√
.

Proof. For a contradiction, suppose that A u
√

U B but AÒÒ
√

U B. By (def),
there are a formula φ(x̄ , ȳ) over U and tuples ā ⊆ A and b̄ ⊆ B such that
M ⊧ φ(ā, b̄) and

ā′ ÒÒ
√

U b̄ , for all ā′ ∈ φ(x̄ , b̄)M .
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Since tp(ā/BU) is finitely satisfiable in U , there is some tuple c̄ ⊆ U
with M ⊧ φ(c̄, b̄). Consequently, c̄ ÒÒ

√
U b̄ which, by (mon), implies that

U ÒÒ
√

U B. A contradiction to (lrf). ◻

As a corollary we obtain the following resultwhich, in the terminology
introduced below, states that the relation u

√
is left local. Below we will

extend this result to all preforking relations.

Lemma 3.14. Let T be a complete first-order theory. For all ā, B ⊆ M,
there is a set U ⊆ ā of size ∣U ∣ ≤ ∣T ∣⊕ ∣B∣ such that tp(ā/UB) is finitely
satisfiable in U.

Proof. We construct an increasing sequence U0 ⊆ U1 ⊆ . . . of sets Un ⊆
āwith ∣Un ∣ ≤ ∣T ∣⊕∣B∣ as follows.We startwith U0 ∶= ∅. For the inductive
step suppose that we have already constructed Un ⊆ ā. For every formula
φ(x̄; b̄) ∈ tp(ā/BUn), let c̄φ ⊆ ā be the elements of ā that are mentioned
in φ(x̄). Note that c̄φ is finite. Let Un+1 be the set obtained from Un by
adding all these tuples c̄φ . Then ∣Un+1∣ ≤ ∣T ∣⊕ ∣B∣⊕ ∣Un ∣ ≤ ∣T ∣⊕ ∣B∣.

Setting U ∶= ⋃n<ω Un it follows that tp(ā/UB) is finitely satisfiable
in U . Furthermore, ∣U ∣ ≤ ∣T ∣⊕ ∣B∣. ◻

Let us conclude this sectionwith a remark about sets where u
√

is right
reflexive.

Lemma 3.15. Let T be a complete first-order theory. A subset M ⊆M is
the universe of a model of T if, and only if, A u

√
M M, for all sets A.

Proof. (⇒) Let M ⪯M be a model of T and ā ⊆M a tuple. To show that
ā u
√

M M, consider a formula φ(x̄) ∈ tp(ā/M). Then M ⊧ ∃x̄φ implies
M ⊧ ∃x̄φ. Hence, there is some c̄ ⊆ M with M ⊧ φ(c̄).
(⇐) Suppose that A u

√
M M for all sets A. We prove that M satisfies

the Tarski-Vaught Test. Let φ(x) be a formula over M such that M ⊧
∃xφ(x). We fix an element a ∈ M with M ⊧ φ(a). Since a u

√
M M,

there is some element c ∈ M with M ⊧ φ(c). By Theorem c2.2.5, it
follows that M ⪯M. Consequently, M is a model of T . ◻

1108



3. Preforking relations

Local character and forking sequences
In the remainder of this section we study preforking relations with a
property called local character. In the next section, we will prove that
having local character is equivalent to being symmetric.

Definition 3.16. A ternary relation
√

has local character if it satisfies
the following two axioms :
(lloc) Left Locality. There exists some cardinal κ such that, for all sets

A and B, there is a subset A0 ⊆ A of size ∣A0∣ < κ ⊕ ∣B∣+ with
A
√

A0 B.
(rloc) Right Locality. There exists a cardinal κ such that, for all sets

A and B, there is a subset B0 ⊆ B of size ∣B0∣ < κ ⊕ ∣A∣+ with
A
√

B0 B.
If
√

is right local, we denote by loc(
√
) the least cardinal κ such that√

satisfies the condition in (rloc). Similarly, loc0(
√
) the least cardinal κ

such that
√

satisfies the above condition for finite sets A. If
√

is not right
local, we set loc(

√
) ∶=∞ and loc0(

√
) ∶=∞.

We start by proving that every preforking relation is left local.

Proposition 3.17. Let T be a complete first-order theory and let
√

be a
preforking relation. For all sets A, B ⊆M, there exists a subset A0 ⊆ A of
size ∣A0∣ ≤ ∣T ∣⊕ ∣B∣ such that

A
√

A0 B .

Proof. Let A and B be sets. By Lemma 3.14, there is a set A0 ⊆ A of size
∣A0∣ ≤ ∣T ∣⊕ ∣B∣ such that A u

√
A0 B. By Theorem 3.13, this implies that

A
√

A0 B. ◻

Corollary 3.18. Let T be a complete first-order theory and let ⫝ a symmet-
ric preforking relation. Then loc(⫝) ≤ ∣T ∣+.

The two parameters loc0(
√
) and loc(

√
) are nearly the same. They

can only differ if the first one is a singular cardinal.
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Definition 3.19. For a cardinal κ, we denote by κreg the minimal regular
cardinal with κreg ≥ κ, that is,

κreg ∶=

⎧⎪⎪
⎨
⎪⎪⎩

κ if κ is regular,
κ+ if κ is singular.

Lemma 3.20. Let
√

be an abstract independence relation that satisfies
(bmon) and (rloc). Then

loc0(
√
) ≤ loc(

√
) ≤ loc0(

√
)reg .

Proof. The lower bound follows immediately from the definitions. For
the upper bound, let κ ∶= loc0(

√
)reg and consider sets A, B ⊆ M. We

have to find a set U ⊆ A of size ∣U ∣ < κ ⊕ ∣A∣+ with A
√

U B.
For every finite set A0 ⊆ A, we choose a set U(A0) ⊆ B of size

∣U(A0)∣ < loc0(
√
) ≤ κ such that

A0
√

U(A0) B .

Setting U ∶= ⋃{U(A0) ∣ A0 ⊆ A finite} it follows by (bmon) that

A0
√

U B , for all finite A0 ⊆ A .

By (fin), this implies A
√

U B. Since the cardinal κ ⊕ ∣A∣+ is regular, we
furthermore have

∣U ∣ ≤ ∑
A0⊆A finite

∣U(A0)∣ < κ ⊕ ∣A∣+ .
◻

We can characterise preforking relations with local character in terms
of so-called forking chains.

Definition 3.21. Let
√

be a preforking relation.
(a) Let A,U ⊆ M be sets. A sequence of finite sets (Bα)α<γ is a

√
-

forking chain for A over U if

AÒÒ
√

UB[<α] Bα , for every α < γ ,
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where we have set B[<α] ∶= ⋃β<α Bβ . The ordinal γ is the length of the
chain.

(b) We denote by fc(
√
) the least cardinal κ such that no finite set A

has a
√

-forking chain over ∅ of length κ. If such a cardinal does not
exist, we set fc(

√
) ∶=∞.

In the theorem belowwe show that the cardinal fc(
√
) is closely related

to the parameter loc(
√
). As we will apply these results in a later chapter

to relations that are not preforking relations, we state them in a slightly
more general setting.

Definition 3.22. A ternary relation
√

has strong finite character if it
satisfies the following axiom :
(sfin) Strong Finite Character.

A
√

U B iff A0
√

U B0 for all finite A0 ⊆ A and B0 ⊆ B .

Remark. Note that every preforking relation has strong finite character
since (sfin) follows from (fin) and (def).

The following lemma contains the key argument of the translation
between fc(

√
) and loc(

√
).

Lemma 3.23. Let
√

be an abstract independence relation that satisfies
(bmon) and (sfin), let κ be an infinite cardinal and A ⊆M.

(a) If there exists some set B such that A ÒÒ
√

U B, for all U ⊆ B of size
∣U ∣ < κ, then there is a

√
-forking chain for A over ∅ of length κ.

(b) If κ is regular and every set B has a subset U ⊆ B of size ∣U ∣ < κ with
A
√

U B, then there is no
√

-forking chain for A over ∅ of length κ.

Proof. (a) We construct the desired
√

-forking chain (Bα)α<κ by induc-
tion on α. Suppose that we have already defined Bα , for all α < β. Then

∣B[<β]∣ < ℵ0 ≤ κ , for β < ω ,
and ∣B[<β]∣ ≤ ℵ0 ⊗ ∣β∣ < κ , for ω ≤ β < κ .
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In both cases it follows that A ÒÒ
√

B[<β] B. Hence, we can use (sfin) to
find a finite set Bβ ⊆ B with AÒÒ

√
B[<β] Bβ .

(b) Let (Bα)α<κ a sequence of finite sets of length κ. By assumption,
there exists a set U ⊆ B[<κ] of size ∣U ∣ < κ such that

A
√

U B[<κ] .

As κ is regular, there is some index α < κ with U ⊆ B[<α]. By (bmon)
and (mon) it follows that

A
√

B[<α] Bα .

Consequently, (Bα)α<κ is no
√

-forking chain for A over ∅. ◻

Proposition 3.24. Let
√

be an abstract independence relation satisfying
(bmon) and (sfin). Then

loc0(
√
) ≤ fc(

√
) ≤ loc0(

√
)reg .

Proof. For the lower bound, consider a finite set A and an arbitrary set B.
If there were no set U ⊆ B of size ∣U ∣ < fc(

√
) with A

√
U B, we could

use Lemma 3.23 (a) to construct a
√

-forking chain for A over∅ of length
fc(
√
). A contradiction.

For the upper bound, consider a finite set A. Then Lemma 3.23 (b) im-
plies that there is no

√
-forking chain for A over ∅ of length loc0(

√
)reg.
◻

Theorem 3.25. For a preforking relation
√
, the following statements are

equivalent :

(1)
√

has local character.

(2)
√

is right local.

(3) For every set A, there exists a cardinal κ such that there is no
√

-
forking chain for A over ∅ of length κ.
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(4) There exists a cardinal κ such that, for every finite set A, there is no√
-forking chain for A over ∅ of length κ.

Proof. (1)⇔ (2)⇔ (4) follow by Propositions 3.17 and 3.24, respectively.
(2)⇒ (3) Given a set A, it follows by Lemma 3.23 (b) that there is no√
-forking chain for A over ∅ of length κ ∶= loc(

√
)+ ⊕ ∣A∣+.

(3)⇒ (4) For every type p ∈ S<ω(∅), fix a tuple āp realising p. By (3),
there are cardinals κp such that there are no

√
-forking chains for āp

over ∅ of length κp. We claim that the cardinal

κ ∶= sup{ κp ∣ p ∈ S<ω(∅) }

has the desired properties. Let ā be a finite tuple and (Bα)α<κ a sequence
of finite sets of length κ. Then ā ≡∅ āp, for p ∶= tp(ā), and there exists an
automorphism π with π(ā) = āp. Since κ ≥ κp, there is an index α < κ
such that

āp

√
π[B[<α]] π[Bα] .

By invariance, it follows that ā
√

B[<α] Bα . Hence, (Bα)α<κ is not a√
-forking chain for ā over ∅. ◻

4. Forking relations

In this section we consider the special properties of forking relations
that follow form the extension axiom. We start by presenting a canonical
way to turn every preforking relation into a forking relation.

Definition 4.1. Let
√

be a preforking relation. We define a relation ∗√

by

A ∗√
U B : iff for every set C ⊆M there is some set A′ ⊆M

with A′ ≡UB A and A′
√

U BC .
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Remark. Note that ∗√ ⊆
√

. Furthermore, byProposition 4.5 below itwill
follow that ∗√ =

√
if, and only if,

√
is a forking relation. Consequently,

the operation
√
↦ ∗√ is a so-called kernel operator, the dual of a closure

operator :
∗√ ⊆

√
, ∗∗√ = ∗√, and

√
0 ⊆
√

1 ⇒
∗√

0 ⊆
∗√

1 .

Before proving that ∗√ is a forking relation,we present two alternative
definitions. The first one characterises such relations in terms of global
types.

Definition 4.2. A global type is a complete type over M.

Proposition 4.3. Let
√

be a preforking relation and ā,U , B ⊆M. Then

ā ∗√
U B iff tp(ā/UB) can be extended to a global type

that is
√

-free over U .

Proof. (⇐) Let p ⊇ tp(ā/UB) be a global type that is
√

-free over U .
To show that ā ∗√

U B, consider a set C ⊆ M. Choosing some tuple
ā′ realising p ↾UBC, we have ā′ ≡UB ā and ā′

√
U BC.

(⇒) Suppose that ā ∗√
U B and set

Φ(x̄) ∶= tp(ā/UB) ∪ {¬φ(x̄) ∣ φ a formula over M that
√

-forks over U } .

We start by proving that Φ is satisfiable. Let Φ0 ⊆ Φ be finite. Then

Φ0 ≡ {ψ(x̄),¬φ0(x̄; c̄0), . . . ,¬φn(x̄; c̄n)} ,

for some ψ ∈ tp(ā/UB) and formulae φ i(x̄; c̄ i) that
√

-fork over U .
Since ā ∗√

U B, there exists a tuple ā′ ≡UB ā such that ā′
√

U Bc̄0 . . . c̄n .
Then ā′ satisfies Φ0.

Hence, Φ is satisfiable and there exists a global type p ⊇ Φ. We claim
that p is

√
-free over U . For a contradiction, suppose that p ⊧ φ(x̄), for

some formula φ that
√

-forks over U . Then ¬φ ∈ Φ ⊆ p. A contradiction.
◻
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The second characterisation considers forking relations in terms of
types and formulae. The key here is that the formulae ψ i below might
have parameters that do not appear in Φ.

Lemma 4.4. Let
√

be a preforking relation. A partial type Φ ∗√-forks
over U if, and only if, for some n < ω, there are formulae ψ0 , . . . ,ψn−1
with parameters such that

Φ(x̄) ⊧ ⋁
i<n

ψ i(x̄) and each ψ i
√

-forks over U .

Proof. (⇐) Fix a tuple ā ∈ ΦM and let B be a set such that Φ is a partial
type over B. For a contradiction, suppose that ā ∗√

U B. We choose a
set C containing the parameters of every formula ψ i . By definition of ∗√,
there is some tuple ā′ ≡UB ā such that ā′

√
U BC. Since Φ ⊧ ⋁i ψ i , we

haveM ⊧ ψ i(ā′), for some i < n. As ψ i
√

-forks over U , it follows that
ā′ ÒÒ
√

U BC. A contradiction.
(⇒) Suppose that Φ ∗√-forks over U and let B be some set such that

Φ is a partial type over B. By definition of ∗√, there exists, for every tuple
ā ∈ ΦM, some set C ā such that

ā′ ÒÒ
√

U BC ā , for all ā′ ≡UB ā .

By (def), we can find a formula ψ ā(x̄ , b̄ ā , c̄ ā) with parameters b̄ ā ⊆ B
and c̄ ā ⊆ C ā such that

M ⊧ ψ ā(ā, b̄ ā , c̄ ā) and ψ ā(x̄ , b̄ ā , c̄ ā)
√

-forks over U .

Consequently, the set

Φ(x̄) ∪ {¬ψ ā(x̄ , b̄ ā , c̄ ā) ∣ ā ∈ ΦM }

is inconsistent. By compactness, we can therefore find finitely many
tuples ā0 , . . . , ān−1 such that

Φ(x̄) ⊧ ⋁
i<n

ψ ā i (x̄ , b̄ ā i , c̄ ā i )

and each formula ψ ā i (x̄ , b̄ ā i , c̄ ā i )
√

-forks over U . ◻
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Next we prove that the operations
√
↦ ∗√ turns every preforking

relation into a forking relation.

Proposition 4.5. If
√

is a preforking relation then ∗√ is a forking relation.

Proof. (inv) follows easily from the definition.
(mon) Suppose that A0A1

∗√
U B and let B0 ⊆ B. To show that

A0
∗√

U B0 let C ⊆ M. By definition of ∗√, there are sets A′0 and A′1
with A′0A′1 ≡UB A0A1 and A′0A′1

√
U BC. This implies that A′0 ≡UB0 A0

and A′0
√

U BC.

(nor) Suppose that A ∗√
U B. To show that AU ∗√

U BU , let C ⊆M.
There is some set A′ such that A′ ≡UB A and A′

√
U BCU . It follows by

(nor) that A′U
√

U BCU . Since A′U ≡UB AU the claim follows.

(lrf) For all sets A, B,C ⊆M, we have A
√

A BC. Hence, A ∗√
A B.

(ltr) Suppose that A2
∗√

A1 B and A1
∗√

A0 B for A0 ⊆ A1 ⊆ A2. To
show that A2

∗√
A0 B let C ⊆M. There exists a set A′1 with A′1 ≡A0B A1

and A′1
√

A0 BC. Let A′2 be some set such that A′1A′2 ≡A0B A1A2. By
(inv) it follows that A′2

∗√
A′1 B. Therefore, there exists a set A′′2 with

A′′2 ≡A′1B A′2 and A′′2
√

A′1 BC. By (ltr) it follows that A′′2
√

A0 BC, as
desired.

(bmon) Suppose that A ∗√
U BC. To show that A ∗√

UC BC, let D ⊆M.
There is a set A′ with A′ ≡UBC A such that A′

√
U BCD. By (bmon) it

follows that A′
√

UC BCD.

(ext) Suppose that A ∗√
U B and let ā be an enumeration of A. By

Proposition 4.3, there exists some global type p ⊇ tp(ā/UB) that is√
-free over U . Given a set C ⊆ M, we choose some tuple ā′ realising

p ↾ UBC. Then ā′ ≡UB ā and tp(ā′/UBC) = p ↾ UBC has the global
extension p, which is

√
-free over U . Hence, Proposition 4.3 implies that

ā′ ∗√
U BC.

(def) Suppose that ā ∗
ÒÒ
√

U B. Then there is a set C ⊆ M such that
ā′ ÒÒ
√

U BC for all tuples ā′ ≡UB ā. Let Φ be the set of all formulae
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4. Forking relations

φ(x̄) ∈ tp(ā/UBC) that
√

-fork over U . Since
√

is definable, it follows
by choice of C that the set

tp(ā/UB) ∪ {¬φ ∣ φ ∈ Φ }

is inconsistent. Hence, there is some formula ψ(x̄; b̄) ∈ tp(ā/UB) such
that

ψ(x̄; b̄) ⊧⋁Φ .

We claim that M ⊧ ψ(ā′; b̄) implies ā′ ∗ÒÒ
√

U b̄. Suppose otherwise. Then
there exists a tuple ā′′ such that ā′′ ≡U b̄ ā′ and ā′′

√
U BC. But there is

some formula φ ∈ Φ with M ⊧ φ(ā′′). By definition of Φ this implies
that ā′′ ÒÒ

√
U BC. A contradiction. ◻

Lemma 4.6. cl√ = cl ∗√ , for every preforking relation
√

.

Proof. Note that ∗√⊆
√

implies cl ∗√ ⊆ cl√. Conversely, suppose that
a ∉ cl ∗√(U). Then there are sets B and C such that a ∗

ÒÒ
√

UC B. Hence, we
can find a set D such that a′ ÒÒ

√
UC BD, for all a′ ≡UCB a. In particular,

we have a ÒÒ
√

UC BD, which implies that a ∉ cl√(U). ◻

Exercise 4.1. Let
√

be a preforking relation. Prove that, if ∗√ is right
local, then so is

√
.

To check whether a forking relation is contained in another one, we
can frequently use the following lemma.

Lemma 4.7. Let 0
√

be a relation satisfying (ext) and let 1
√

be a relation
satisfying (inv) and (mon). If, for all sets B and U , there exists some set C
such that

A 0
√

U BC implies A 1
√

U BC , for all sets A ,

then 0
√
⊆ 1
√

.
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f2. Ranks and forking

Proof. Suppose that A 0
√

U B. By assumption, we can find a set C such
that

A 0
√

U BC implies A 1
√

U BC , for all sets A .

By (ext), there is some set A′ ≡UB A such that A′ 0
√

U BC. By choice
of C, it follows that A′ 1

√
U BC. Consequently, (mon) and (inv) imply

that A 1
√

U B. ◻

Morley sequences
The aim of this section is to introduce the notion of a basis for an arbitrary
forking relation. Since, in general, forking relations are not symmetric,
these bases are ordered. To simplify notation we write ā[<k], for a se-
quence (ā i)i∈I , to denote the set ⋃i<k ā i .

Definition 4.8. Let
√

be a preforking relation and p ∈ S s̄(U ∪ B) a type.
(a) A

√
-Morley sequence for p over U is an indiscernible sequence

(ā i)i∈I over U ∪ B such that every ā i realises p and

ā i
√

U ā[<i] , for all i ∈ I .

We call (ā i)i∈I a
√

-Morley sequence over U if it is a
√

-Morley sequence
for tp(ā i/U) over U .

(b) A reverse
√

-Morley sequence for p over U is an indiscernible se-
quence (ā i)i∈I over U ∪ B such that every ā i realises p and

ā[<i]
√

U ā i , for all i ∈ I .

Remark. If (ā i)i∈I is a
√

-Morley sequence for p over U , then it follows
by (fin), Lemma 2.4, and induction, that

ā[I1]
√

U ā[I0] , for all I0 , I1 ⊆ I with I0 < I1 .

For symmetric preforking relations, we obtain the following stronger
result.
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4. Forking relations

Lemma 4.9. Let ⫝ be a symmetric preforking relation and (ā i)i∈I a se-
quence such that

ā i ⫝U ā[<i] , for all i ∈ I .

Then

ā[K] ⫝U ā[L] , for all disjoint K , L ⊆ I .

Proof. By (fin), it is sufficient to prove the claim for finite sets K and L.
We do so by induction on ∣K∪L∣. If both sets are empty, the claim follows
by (nor). Otherwise, let k ∶= max (K ∪ L). By (sym), we may assume
without loss of generality that k ∈ K. Set K0 ∶= K ∖ {k}. By inductive
hypothesis, we have

ā[K0] ⫝U ā[L] .

Furthermore,

āk ⫝U ā[<k] implies āk ⫝U ā[K0]ā[L] .

Consequently, it follows by Lemma 2.4 that

āk ā[K0] ⫝U ā[L] . ◻

We can use the extension axiom to construct Morley sequences.

Proposition 4.10. Let
√

be a forking relation. If ā
√

U B then there is a√
-Morley sequence (ān)n<ω for tp(ā/UB) over U.

Proof. Set λ ∶= ∣T ∣⊕∣U ∣⊕∣B∣⊕∣ā∣⊕ℵ0 and let κ > ℶ2λ . First,we construct
a sequence (c̄α)α<κ of tuples realising tp(ā/UB) such that

c̄α
√

U Bc̄[<α] , for all α < κ .

By induction, suppose that we have already defined c̄β , for all β < α.
Since ā

√
U B, we can use (ext) to find a tuple c̄α ≡UB ā such that

c̄α
√

U Bc̄[<α].
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f2. Ranks and forking

Having constructed (c̄α)α<κ , we use Theorem e5.3.7 to find an indis-
cernible sequence (ān)n<ω over U ∪ B such that, for every n < ω, there
are indices α0 < ⋅ ⋅ ⋅ < αn−1 < κ with

ā0 . . . ān−1 ≡UB c̄α0 . . . c̄αn−1 .

By (inv) and (mon) it follows that ān
√

U Bā[<n]. Hence, (ān)n<ω is
the desired

√
-Morley sequence. ◻

Corollary 4.11. Let ⫝ be a symmetric forking relation. For every tuple ā,
every set U , and every linear order I, there exists a ⫝-Morley sequence
(ā i)i∈I for tp(ā/U) over U.

Proof. As ⫝ is symmetric, we have ā ⫝U U . Therefore, we can use Pro-
position 4.10 to find a ⫝-Morley sequence (c̄n)n<ω for tp(ā/U) over U .
By compactness and (fin), it follows that there also exists a ⫝-Morley
sequence (ā i)i∈I for tp(ā/U) over U that is indexed by I. ◻

Lemma 4.12. Let
√

be a forking relation and let p be a type over U ∪ B.
If there exists a

√
-Morley sequence (c̄n)n<ω for p over U , then there exists

a reverse
√

-Morley sequence (ān)n<ω for p over U.

Proof. Let (c̄n)n<ω be a
√

-Morley sequence for p over U . By compact-
ness, there exists a sequence (ān)n<ω such that

ā0 . . . ān ≡UB c̄n . . . c̄0 , for all n < ω .

By definition of a Morley sequence we have

c̄n
√

U c̄0 . . . c̄n−1 .

Hence (inv) implies that

ā i
√

U ā i+1 . . . ān , for all i < n < ω .

Repeatedly applying Lemma 2.4 it follows that

ā0 . . . ān−1
√

U ān , for every n < ω . ◻
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4. Forking relations

The following lemma can be used in some cases to construct a reverse√
-Morley sequence out of an indiscernible sequence.

Lemma 4.13. Let
√

be a preforking relation and let I, J be linear orders
such that I has no maximal element. If (ā i)i∈I+J is indiscernible over U
then (ā j) j∈J is a reverse

√
-Morley sequence over U ∪ ā[I].

Proof. Clearly, (ā j) j∈J is indiscernible over U ∪ ā[I]. To show that it is
a reverse

√
-Morley sequence over U ∪ ā[I], it is sufficient, by (fin), to

prove that

ā j0 . . . ā jk−1

√
U ā[I] ā jk , for all j0 < ⋅ ⋅ ⋅ < jk in J , k < ω .

Hence, consider indices j0 < ⋅ ⋅ ⋅ < jk in J. By indiscernibility and the fact
that I has no maximal element, we can find, for every finite set I0 ⊆ I,
indices i0 < ⋅ ⋅ ⋅ < ik−1 in I such that

ā j0 . . . ā jk−1 ā jk ≡U ā[I0] ā i0 . . . ā ik−1 ā jk .

It follows that tp(ā j0 . . . ā jk−1/U ∪ ā[I] ∪ ā jk) is finitely satisfiable in
U ∪ ā[I]. Consequently,

ā j0 . . . ā jk−1
u
√

U∪ā[I] ā jk implies ā j0 . . . ā jk−1

√
U∪ā[I] ā jk ,

as desired. ◻

For preforking relations that are contained in the splitting relation s
√
,

we no not need to check for indiscernibility when proving that a given
sequence is a Morley sequence.

Lemma 4.14. Let α = (ā i)i∈I and β = (b̄ i)i∈I be two sequences and
U ⊆M a set of parameters.

(a) If b̄ i ≡U ā[<i] ā i and b̄ i
s
√

U ā[<i]b̄[<i], for all i ∈ I, then α ≡U β.

(b) If ā j ≡U ā[<i] ā i and ā i
s
√

U ā[<i], for all i ≤ j in I, then α is
indiscernible over U.
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f2. Ranks and forking

Proof. (a) We prove by induction on n < ω that

ā[ı̄] ≡U b̄[ı̄] , for all ı̄ ∈ [I]n .

For n = 0, the claim is trivial. For the inductive step, suppose that we
have already proved it for n and consider a tuple of indices ı̄ ∈ [I]n+1.
Setting ı̄′ ∶= i0 . . . in−1 we have

ā[ı̄′] ≡U b̄[ı̄′] and b̄ in
s
√

U ā[ı̄′]b̄[ı̄′] ,

which implies that ā[ı̄′] ≡U b̄ in
b̄[ı̄′]. Since b̄ in ≡U ā[<in] ā in , it follows

that

ā[ı̄′]ā in ≡U ā[ı̄′]b̄ in ≡U b̄[ı̄′]b̄ in .

(b) We have to prove that

ā[ı̄] ≡U ā[ ȷ̄] , for all ı̄ , ȷ̄ ∈ [I]n , n < ω .

Hence, let ı̄ , ȷ̄ ∈ [I]n . First, we consider the case where is ≤ js , for all
s < n. Then we have

ā js ≡U ā i0 . . . ā is−1
ā is and ā js

s
√

U ā i0 . . . ā is−1 ā j0 . . . ā js−1 ,

for all s < n. Consequently, it follows by (a) that ā[ı̄] ≡U ā[ ȷ̄].
For the general case, let ı̄ , ȷ̄ ∈ [I]n be arbitrary. We set

ks ∶= max {is , j j} , for s < n .

Then k̄ ∈ [I]n and it follows by the special case considered above that
ā[ı̄] ≡U ā[k̄] ≡U ā[ ȷ̄]. ◻

As an application of Morley sequences we show that, for forking rela-
tions, right locality and symmetry are equivalent. One direction is based
on the following two lemmas.
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4. Forking relations

Lemma 4.15. Let
√

-be a right local forking relation, B,U ⊆M sets, and
let κ ≥ loc(

√
)⊕ ∣B∣+ be a regular cardinal. For every reverse

√
-Morley

sequence (ā i)i<κ over U , there exists an index α < κ such that

Bā[<β]
√

U āβ , for all α ≤ β < κ.

Proof. By (rloc), there exists a set U0 ⊆ U ∪ ā[<κ] of size

∣U0∣ < loc(
√
)⊕ ∣B∣+ ≤ κ

such that

B
√

U0 U ā[<κ] .

Set I ∶= { i < κ ∣ ā i ∩U0 ≠ ∅}. Then ∣I∣ < κ and, by regularity of κ, there
exists an index α < κ that is larger than every element of I. For α ≤ β < κ,
it follows by (bmon) andmonotonicity that B

√
U ā[<β] āβ . Since (ā i)i<κ

is a reverse
√

-Morley sequence, we furthermore have ā[<β]
√

U āβ . By
Lemma 2.3, it follows that Bā[<β]

√
U āβ . ◻

Lemma 4.16. Let
√

be a right local preforking relation. If there exists a
reverse

√
-Morley sequence (ān)n<ω for tp(ā/BU) over U then B

√
U ā.

Proof. Set κ ∶= ∣B∣+ ⊕ loc(
√
)+ and let (ān)n<ω be a reverse

√
-Morley

sequence. By compactness, we can extend (ān)n<ω to an indiscernible
sequence (ā i)i<κ over B ∪U of length κ. By (fin) and (inv) it follows
that

ā[<α]
√

U āα , for all α < κ .

Hence, (ā i)i<κ is a reverse
√

-Morley sequence. By Lemma 4.15, there
is some index α < κ with B

√
U āα . As āα ≡UB ā, we can use (inv) to

conclude that B
√

U ā. ◻

Theorem 4.17 (Adler). A forking relation
√

is right local if, and only if, it
is symmetric.
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f2. Ranks and forking

Proof. (⇐) follows by Corollary 3.18.
(⇒) If ā

√
U B, we can use Proposition 4.10 and Lemma 4.12 to

construct a reverse
√

-Morley sequence of tp(ā/UB) over U . Therefore,
it follows by Lemma 4.16 that B

√
U ā. ◻
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1. Dividing and forking
In this section we introduce the central forking relation of model theory,
which is simply called forking.

Definition 1.1. Let T be a first-order theory, U a set of parameters, and
k < ω.

(a) We say that a set Φ of formulae over U is k-inconsistent (with
respect to T) if T(U) ∪ Φ0 is inconsistent, for every subset Φ0 ⊆ Φ of
size ∣Φ0∣ ≥ k.

(b) A formula φ(x̄; c̄) with parameters c̄ k-divides over U if there
exists a sequence (c̄n)n<ω such that

◆ c̄n ≡U c̄, for all n < ω, and
◆ the set {φ(x̄; c̄n) ∣ n < ω } is k-inconsistent.

We say that φ(x̄; c̄) divides over U if it k-divides over U , for some k < ω.
(c) A set Φ of formulae divides over U if T(M) ∪ Φ ⊧ φ, for some

formula φ that divides over U . We define

ā d
√

U B : iff tp(ā/UB) does not divide over U .

(d) A set Φ of formulae forks over U if there are finitelymany formulae
φ0 , . . . , φn−1 such that

T(M) ∪ Φ ⊧ φ0 ∨ ⋅ ⋅ ⋅ ∨ φn−1

and each φ i divides over U . We define

ā f
√

U B : iff tp(ā/UB) does not fork over U .
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f3. Simple theories

Example. (a) Consider the structure ⟨Q, <⟩ and let b < c be rational
numbers. The formula φ(x; b, c) ∶= b < x ∧ x < c divides over the
set U ∶= { a ∈ Q ∣ a < b } since we can choose numbers bn and cn
such that b ≤ b0 < c0 < b1 < c1 < . . . . Then bncn ≡U bc and the set
{ bn < x ∧ x < cn ∣ n < ω } is 2-inconsistent.

(b) We consider the tree ⟨A<ω , ⪯⟩ where A is an infinite set. Fix a
vertex u0 ∈ A<ω , an element a ∈ A, and set u ∶= u0a. The formula
φ(x; u) ∶= u ⪯ x divides over the set U ∶= { v ∈ A<ω ∣ u0 ⪯̸ v } since,
fixing distinct elements bn ∈ A, for n < ω, we can set cn ∶= ubn . Then
cn ≡U u and { cn ⪯ x ∣ n < ω } is 2-inconsistent.

Remark. Note that, if a formula φ divides over U and ψ ⊧ φ, then ψ also
divides over U . It follows that a formula φ divides over U if, and only if,
the set {φ} divides over U . Furthermore, if a set Φ divides over U , then
there exists a finite subset Φ0 ⊆ Φ such that the formula ⋀Φ0 divides
over U . In particular, a complete type p divides over U if, and only if,
some formula φ ∈ p divides over U . The same holds for forking.

Below we will prove that d
√

is a preforking relation and f
√

the associ-
ated forking relation. Before doing so, let us give an alternative charac-
terisation of dividing in terms of indiscernible sequences.

Lemma 1.2. Let φ(x̄; ȳ) be a formula and c̄,U ⊆M. The following state-
ments are equivalent :

(1) φ(x̄; c̄) divides over U.

(2) There exists an indiscernible sequence (c̄n)n<ω over U such that
c̄0 = c̄ and the set {φ(x̄; c̄n) ∣ n < ω } is k-inconsistent, for some
k < ω.

(3) There exists an indiscernible sequence (c̄n)n<ω over U such that
c̄0 = c̄ and the set

T(⋃n<ω c̄n) ∪ {φ(x̄; c̄n) ∣ n < ω }

is inconsistent.
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Proof. (2)⇒ (1) and (2)⇒ (3) are trivial.
(3)⇒ (2) Let (c̄n)n<ω be an indiscernible sequence over U with c̄0 = c̄

such that

T(⋃n<ω c̄n) ∪ {φ(x̄; c̄n) ∣ n < ω }

is inconsistent. Then there exists a finite subset I ⊆ ω such that

T(⋃n∈I c̄n) ∪ {φ(x̄; c̄n) ∣ n ∈ I }

is inconsistent. Let n0 < ⋅ ⋅ ⋅ < nk−1 be an enumeration of I. For every
k-tuple of indices i0 < ⋅ ⋅ ⋅ < ik−1, c̄[ı̄] ≡U c̄[n̄] implies that

T(c̄ i0 . . . c̄ ik−1) ∪ {φ(x̄; c̄ i0), . . . , φ(x̄; c̄ ik−1)}

is inconsistent. Hence, {φ(x̄; c̄n) ∣ n < ω } is k-inconsistent.
(1) ⇒ (2) Suppose that φ(x̄; c̄) divides over U . Then there exists a

sequence (c̄n)n<ω such that c̄n ≡U c̄ and {φ(x̄; c̄n) ∣ n < ω } is k-
inconsistent, for some k. By Proposition e5.3.6, there exists an indiscern-
ible sequence (d̄n)n<ω over U with

Av((cn)n/U) ⊆ Av((dn)n/U) .

In particular, tp(c̄/U) ⊆ Av((dn)n/U) and

¬∃z̄[φ(z̄; x̄0) ∧ ⋅ ⋅ ⋅ ∧ φ(z̄; x̄k−1)] ∈ Av((dn)n/U) .

Consequently, d̄0 ≡U c̄ and the set {φ(x̄; d̄n) ∣ n < ω } is k-inconsistent.
Fixing an automorphism π ∈ AutMU with π(d̄0) = c̄, we obtain a
sequence (π(d̄n))n<ω with the desired properties. ◻

Exercise 1.1. Prove that a formula φ(x̄; c̄) divides over a set U if, and
only if, it divides over some model M ⊇ U . (Hint. Use Lemma e5.3.11.)

Lemma 1.3. The following statements are equivalent :

(1) ā d
√

U b̄
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(2) For every infinite indiscernible sequence (b̄ i)i∈I over U with b̄ =
b̄ i , for some i, there exists a tuple ā′ ≡U b̄ ā such that (b̄ i)i∈I is
indiscernible over U ∪ ā′.

(3) For every indiscernible sequence (b̄n)n<ω over U with b̄ = b̄0, there
is some ā′ ≡U b̄ ā such that

b̄m ≡U ā′ b̄n , for all m, n < ω .

Proof. (2)⇒ (3) is trivial.
(3)⇒ (1) Suppose that ā d

ÒÒ
√

U b̄. By Lemma 1.2, we can find a formula
φ(x̄; c̄) ∈ tp(ā/U b̄) and an indiscernible sequence (c̄n)n<ω over U such
that c̄n ≡U c̄ and {φ(x̄; c̄n) ∣ n < ω } is k-inconsistent, for some k <
ω. By adding and permuting free variables of φ, we may assume that
c̄n = b̄n d̄ where d̄ ⊆ U and b̄n ≡U b̄, for all n. Finally, applying an
automorphism of M, we may assume that b̄0 = b̄.

To show that (3) fails, consider a tuple ā′ ≡U b̄ ā. Then

M ⊧ φ(ā′; b̄0d̄) ,

but the k-inconsistency of {φ(x̄; b̄n d̄) ∣ n < ω } implies that there is
some n < k with

M ⊭ φ(ā′; b̄n d̄) .

Consequently, b̄n ≢U ā′ b̄0.
(1)⇒ (3) Consider an indiscernible sequence (b̄n)n<ω over U with

b̄ = b̄0 and suppose that there is no such tuple ā′. Then the set

tp(ā/U b̄) ∪ {φ(x̄; b̄ i)↔ φ(x̄; b̄ j) ∣

i , j < ω and φ(x̄; ȳ) a formula over U }

is inconsistent. This set is equivalent to the union

⋃
n<ω

p(x̄ , b̄n) , where p(x̄ , x̄′) ∶= tp(āb̄/U) .
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By compactness, we can therefore find a finite subset Φ ⊆ p and indices
n0 < ⋅ ⋅ ⋅ < nk−1 < ω such that

T ∪ Φ(x̄ , b̄n0) ∪ ⋅ ⋅ ⋅ ∪ Φ(x̄ , b̄nk−1)

is inconsistent. Setting φ ∶= ⋀Φ it follows by indiscernibility that

T ⊧ ¬∃x̄[φ(x̄ , b̄ i0) ∧ ⋅ ⋅ ⋅ ∧ φ(x̄ , b̄ ik−1)] ,

for every increasing tuple i0 < ⋅ ⋅ ⋅ < ik−1. Hence, {φ(x̄ , b̄n) ∣ n < ω } is
k-inconsistent and φ divides over U . Consequently, ā d

ÒÒ
√

U b̄.
(3)⇒ (2) Let (b̄ i)i∈I be an infinite indiscernible sequence over U with

b̄ i0 = b̄, for some i0 ∈ I. Setting

Ψ ∶= {ψ(x̄; b̄[ı̄])↔ ψ(x̄; b̄[k̄]) ∣ ψ a formula over U and

ord(ı̄) = ord(k̄) } ,

it is sufficient to prove that tp(ā/U b̄) ∪ Ψ is satisfiable.
Fix a dense linear order J ⊇ I without end points. Using Lemma e5.3.9,

we can extend (b̄ i)i∈I to an indiscernible sequence (b̄ i)i∈J over U . By (3)
and compactness, there exists a tuple ā′ ≡U b̄ ā such that

b̄ i ≡U ā′ b̄ j , for all i , j ∈ J .

To show that tp(ā/U b̄) ∪ Ψ is satisfiable, let Ψ0 ⊆ Ψ be finite and let
I0 ⊆ I be the finite set of all indices i such that Ψ0 contains the con-
stants b̄ i . By the Theorem of Ramsey, there exist an order embedding
h0 ∶ I0 → J such that the sequence (b̄h(i))i∈I0 is indiscernible over U∪ ā′
with respect to the formulae in Ψ0. We extend h0 ∶ I0 → J to an order em-
bedding h ∶ I0 ∪ {i0} → J. There exists an automorphism π ∈ AutMU
mapping b̄h(i) to b̄ i , for i ∈ I0 ∪ {i0}. Then the tuple π(ā′) satisfies
⋃i∈I0∪{i0} tp(ā/U b̄ i)∪Ψ0. In particular, it satisfies tp(ā/U b̄)∪Ψ0. ◻

Remark. Comparing the statement in (2) above with Lemma e5.3.11, we
see that, when ā d

√
U B, we can choose ā′ ≡UB ā while, in general, we

only find ā′ ≡U ā.
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Example. (a)Consider the structure ⟨Q, <⟩ and let b < a < c be elements.
Then bc d

√
∅ a but a d

ÒÒ
√
∅ bc. In particular, d

√
is not symmetric.

We have already seen above that φ(x; b, c) ∶= b < x ∧ x < c divides
over ↓b and, hence, also over the empty set. Consequently, a d

ÒÒ
√
∅ bc. To

show that bc d
√
∅ a, let (a i)i<ω be an indiscernible sequence over ∅.

Choose elements b′ and c′ such that b′ < a < c′ and b′ < a i < c′, for
all i < ω. Then b′c′ ≡a bc and (a i)i<ω is indiscernible over {b′ , c′}. By
Lemma 1.3, it follows that bc d

√
∅ a.

(b) Let ⟨A, ∼⟩ be a structure where ∼ is an equivalence relation with
infinitely many classes all of which are infinite. Fix elements a, b ∈ A and
a set U ⊆ A. Then

a d
√

U b iff {a} ∩ {b} ⊆ U and,
a ≁ b or there is some c ∈ U with b ∼ c .

Let us show next that d
√

is a preforking relation, that f
√

is the corres-
ponding forking relation, and that acl is the closure operator associated
with them.

Proposition 1.4. d
√

is a preforking relation.

Proof. Throughout the proof we will tacitly make use of the character-
isation of d

√
from Lemma 1.3.

(inv) follows immediately from the definition.

(mon) Suppose that ā0 ā1
d
√

U B and let B0 ⊆ B. For a contradiction,
suppose that ā0 d

ÒÒ
√

U B0. Then we can find a formula φ ∈ tp(ā0/UB0)
that divides over U . Hence, φ ∈ tp(ā0 ā1/UB) implies that ā0 ā1

d
ÒÒ
√

U B.
A contradiction.

(nor) Suppose that ā d
√

c̄ b̄. To show that āc̄ d
√

c̄ b̄c̄, let (b̄n c̄n)n<ω be
an indiscernible sequence over c̄ with b̄0 c̄0 = b̄c̄. Then c̄n = c̄, for all n.
Since ā d

√
c̄ b̄, there is a tuple ā′ ≡b̄ c̄ ā such that (b̄n)n<ω is indiscernible

over ā′ c̄. Hence, (b̄n c̄)n<ω is also indiscernible over ā′ c̄. As ā′ c̄ ≡b̄ c̄ āc̄,
the claim follows.
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(lrf) Let ā, b̄ be tuples. To show that ā d
√

ā b̄ it is sufficient to note
that every indiscernible sequence (b̄n)n<ω over ā is also indiscernible
over ā ∪ ā.

(ltr) Suppose that ā0 ā1 ā2
d
√

ā0 ā1 b̄ and ā0 ā1
d
√

ā0 b̄. Let (b̄n)n<ω be
an infinite indiscernible sequence over ā0 such that b̄0 = b̄. We have to
find tuples

ā′′0 ā
′′
1 ā

′′
2 ≡ā0 b̄ ā0 ā1 ā2

such that (b̄n)n<ω is indiscernible over ā′′0 ā′′1 ā′′2 . Since ā0 ā1
d
√

ā0 b̄, there
are tuples ā′0 ā′1 ≡ā0 b̄ ā0 ā1 such that (b̄n)n<ω is indiscernible over ā′0 ā′1.
Let ā′2 be a tuple such that

ā′0 ā
′
1 ā
′
2 ≡ā0 b̄ ā0 ā1 ā2 .

Then ā′0 ā′1 ā′2
d
√

ā′0 ā′1 b̄ and there are tuples

ā′′0 ā
′′
1 ā

′′
2 ≡ā′0 ā′1 b̄ ā

′
0 ā

′
1 ā
′
2

such that (b̄n)n<ω is indiscernible over ā′′0 ā′′1 ā′′2 . Since

ā′′0 = ā0 and ā′′0 ā
′′
1 ā

′′
2 ≡ā0 b̄ ā0 ā1 ā2

the claim follows.
(bmon) Suppose that ā d

√
c̄ b̄d̄. To show that ā d

√
c̄ d̄ b̄, let (b̄n)n<ω

be a sequence of indiscernibles over c̄d̄ with b̄0 = b̄. Then (b̄n d̄)n<ω
is indiscernible over c̄. Consequently, there is some tuple ā′ ≡c̄ b̄ d̄ ā
such that (b̄n d̄)n<ω is indiscernible over ā′ c̄. It follows that (b̄n)n<ω is
indiscernible over ā′ c̄d̄.

(def) Suppose that ā d
ÒÒ
√

U B. Then there exists a formula φ(x̄; b̄) ∈
tp(ā/UB) that divides over U . For every ā′ ∈ φ(x̄; b̄)M it follows that
tp(ā′/U b̄) divides over U . ◻

Before proving that f
√

is the forking relation associated with d
√
, let

us show that forking satisfies the axiom (ext) even for incomplete types.
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Lemma 1.5. A partial type Φ over U ∪C forks over U if, and only if, every
complete type p ∈ ⟨Φ⟩ forks over U.

Proof. Clearly, if Φ forks over U , then so does every type containing Φ.
Conversely, suppose that every p ∈ ⟨Φ⟩ forks over U . For each p ∈ ⟨Φ⟩,
we fix a formula φp ∈ p that forks over U . By compactness,

⟨Φ⟩ = { p ∣ p ∈ ⟨Φ⟩ } ⊆ ⋃
p∈⟨Φ⟩
⟨φp⟩

implies that there are finitely many types p0 , . . . , pn−1 ∈ ⟨Φ⟩ such that

⟨Φ⟩ ⊆ ⟨φp0⟩ ∪ ⋅ ⋅ ⋅ ∪ ⟨φpn−1⟩ .

Consequently, Φ ⊧ φp0 ∨ ⋅ ⋅ ⋅ ∨ φpn−1 and Φ forks over U . ◻

Proposition 1.6. f
√
= ∗( d
√
)

Proof. (⊆) To prove that f
√
⊆ ∗( d
√
), note that f

√
⊆ d
√

and that the
operation

√
↦ ∗√ is monotone. Therefore, it is sufficient to prove that

f
√
= ∗( f
√
), i.e., that f

√
satisfies (ext). Hence, suppose that ā f

√
U B and

let C be an arbitrary set. By Lemma 1.5, there exists a complete type p
over U ∪ B ∪ C that contains tp(ā/UB) and that does not fork over U .
Fix a realisation ā′ of p. Then ā′ ≡UB ā and ā′ f

√
U BC.

(⊇) Suppose that ā f
ÒÒ
√

U B. Then we can find finitely many formulae
φ0(x̄; c̄0), . . . , φn−1(x̄; c̄n−1) that each divide over U and such that

tp(ā/UB) ⊧ φ0(x̄; c̄0) ∨ ⋅ ⋅ ⋅ ∨ φn−1(x̄; c̄n−1) .

For every tuple ā′ ≡UB ā, there is some i < n such that M ⊧ φ i(ā′; c̄ i).
Consequently,

ā′ d
ÒÒ
√

U Bc̄0 . . . c̄n−1 , for all ā′ ≡UB ā .

Hence, ā ∗( d
√
)U B does not hold. ◻
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Corollary 1.7. f
√

is a forking relation.

Lemma 1.8. cl f√ = cl d√ = acl

Proof. By Lemma f2.4.6, it is sufficient to prove that cl d√ = acl.
For one inclusion, let a ∉ acl(U). Then there exists an indiscernible

sequence (an)n<ω over U with a0 = a and a i ≠ ak , for i ≠ k. Since a is
the only element realising tp(a/Ua) and (an)n is not indiscernible over
U ∪ {a} it follows by Lemma 1.3 that a d

ÒÒ
√

U a.
Conversely, suppose that there are sets B,C such that a d

ÒÒ
√

UC B. By
Lemma 1.2, we can find a formula φ(x; c̄) ∈ tp(a/UCB) and an indis-
cernible sequence (c̄n)n<ω such that c̄0 = c̄ and {φ(x; c̄n) ∣ n < ω }
is k-inconsistent, for some k. For every n < ω, fix an element an such
that an c̄n ≡U ac̄. Since M ⊧ φ(an ; c̄n) and {φ(x; c̄n) ∣ n < ω } is k-
inconsistent, there exists an infinite subset I ⊆ ω such that a i ≠ a j , for dis-
tinct i , j ∈ I. As each an satisfies tp(a/U) it follows that a ∉ acl(U). ◻

At first sight, the definition of d
√

might seem rather ad-hoc. The
following result indicates that d

√
plays a rather distinguished role: it

is the largest preforking relation that is contained in every symmetric
forking relation.

Theorem 1.9. d
√
⊆ ⫝, for every symmetric forking relation ⫝.

Proof. Suppose that ā d
√

U b̄. Since ⫝ is symmetric, (lrf) implies that
B ⫝U U . Therefore, we can use Proposition f2.4.10 and Lemma f2.4.12
to construct a reverse ⫝-Morley sequence (b̄n)n<ω for tp(b̄/U) over U .
By (inv) we may assume that b̄0 = b̄. Since ā d

√
U b̄ there is a tuple

ā′ ≡U b̄ ā such that (b̄n)n<ω is indiscernible over U ā′. Hence, (b̄n)n<ω
is a reverse ⫝-Morley sequence for tp(b̄/U) over U ā′. Since ⫝ is right
local, it follows by Lemma f2.4.16 that ā′ ⫝U b̄. By invariance we obtain
ā ⫝U b̄. ◻

Remark. In the next section we will show that there are theories where
d
√

is symmetric and a forking relation. For such theories, d
√

is the largest
preforking relation that is contained in every symmetric forking relation.
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To conclude this section we compare d
√

and f
√

with the preforking
relations introduced in Section f2.3. First, let us introduce the forking
relation associated with the splitting relation s

√
.

Definition 1.10. i
√
∶= ∗( s
√
).

Lemma 1.11. i
√
⊆ d
√

Proof. Suppose that ā i
√

U B. To show that ā d
√

U B, consider a formula
φ(x̄; c̄) ∈ tp(ā/UB) and let (c̄n)n<ω be a sequence such that c̄n ≡U c̄,
for all n. We have to show that the set {φ(x̄; c̄n) ∣ n < ω } is not k-
inconsistent for any k.

There is a tuple ā′ ≡UB ā such that

ā′ s
√

U Bc̄[<ω] .

Hence, φ(x̄; c̄) ∈ tp(ā′/UBc̄[<ω]) implies that

φ(x̄; c̄n) ∈ tp(ā′/UBc̄[<ω]) , for all n .

Consequently, ā′ satisfies {φ(x̄; c̄n) ∣ n < ω } and this set is not k-
inconsistent. ◻

Proposition 1.12. u
√
⊆ i
√
⊆ f
√
⊆ d
√

Proof. The inclusions u
√
⊆ i
√
⊆ d
√

follow from Theorem f2.3.13 and the
preceding lemma, respectively. Since the operation

√
↦ ∗√ is monotone

and idempotent, we further have i
√
= ∗( i
√
) ⊆ ∗( d

√
) = f
√

. ◻

2. Simple theories and the tree property
The aim of this section is to characterise those theories where the rela-
tion f
√

is symmetric. In the sameway as stable theories are characterised
by the absence of the order property, we will present a combinatorial
property causing f

√
to be non-symmetric.
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Definition 2.1. A first-order theory T is simple if f
√

is symmetric. For
simple theories we will write ⫝f and ⫝d instead of f

√
and d
√

. In later
chapters, where ⫝f will be the only forking relation under consideration,
we will frequently drop the superscript and just write ⫝.

Before giving a combinatorial characterisation of simple theories, let
us note some special properties of the relation ⫝f in such theories. It
follows from Theorem 1.9 that, for complete types in simple theories,
forking and dividing is the same. According to the next lemma this is
also true for partial types.

Lemma 2.2. Let T be a simple theory, Φ(x̄; ȳ) a set of formulae over U ,
and c̄ ⊆M. The following statements are equivalent :

(1) Φ(x̄; c̄) forks over U.

(2) Φ(x̄; c̄) divides over U.

(3) For every ⫝f -Morley sequence (c̄n)n<ω for tp(c̄/U) over U , the set
⋃i<ω Φ(x̄; c̄n) is inconsistent.

Proof. (2)⇒ (1) follows immediately from the definition of forking.
(3)⇒ (2) Let (c̄n)n<ω be a ⫝f -Morley sequence for tp(c̄/U) over U .

Applying a U-automorphism we can ensure that c̄0 = c̄. By assumption,
⋃n<ω Φ(x̄; c̄n) is inconsistent. Using compactness, we obtain a finite
subset Φ0 ⊆ Φ such that ⋃n<ω Φ0(x̄; c̄n) is inconsistent. Set φ ∶= ⋀Φ0.
By Lemma 1.2, it follows that φ(x̄; c̄) divides over U . Since Φ(x̄; c̄) ⊧
φ(x̄; c̄), so does Φ(x̄; c̄).

(1)⇒ (3) Suppose that (c̄n)n<ω is a ⫝f -Morley sequence for tp(c̄/U)
over U such that the set ⋃n<ω Φ(x̄; c̄n) is consistent. Fix a regular car-
dinal κ ≥ loc(⫝f) ⊕ ∣x̄∣+. By compactness, there exists a ⫝f -Morley se-
quence (c̄ i)i<κ for tp(c̄/U) over U such that⋃i<κ Φ(x̄; c̄ i) is consistent.
Let ā be a tuple satisfying this set. By Lemma f2.4.15, we can find an
index α < κ such that

āc̄[<α] ⫝fU c̄α .
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Consequently, Φ(x̄; c̄α) does not fork over U . By (inv), the same holds
for Φ(x̄; c̄). ◻

Next, we present an improved version of Lemma 1.3.

Proposition 2.3 (Kim). Let T be a simple theory. The following statements
are equivalent.

(1) ā ⫝dU b̄
(2) ā ⫝fU b̄
(3) For every infinite ⫝f -Morley sequence (b̄ i)i∈I for tp(b̄/U) over U

there exists a tuple ā′ ≡U b̄ ā such that (b̄ i)i∈I is a ⫝f -Morley se-
quence over U ∪ ā′.

(4) For some ⫝f -Morley sequence (b̄ i)i<ω for tp(b̄/U) over U there
exists a tuple ā′ ≡U b̄ ā such that (b̄ i)i<ω is a ⫝f -Morley sequence
over U ∪ ā′.

Proof. (1)⇔ (2) has already been shown in Lemma 2.2 and (1)⇒ (3) is
a special case of Lemma 1.3.

(3)⇒ (4) is trivial since we have seen in Corollary f2.4.11 that, for
symmetric forking relations, Morley sequences always exist.

(4)⇒ (2) Let (b̄ i)i<ω be a⫝f -Morley sequence for tp(b̄/U) over U∪ ā′,
for some ā′ ≡U b̄ ā. Set p(x̄ , x̄′) ∶= tp(āb̄/U). Then ā′ realises p(x̄ , b̄).
Hence, ā′ is a realisation of ⋃i<ω p(x̄ , b̄ i) and it follows by Lemma 2.2
that p(x̄ , b̄) does not fork over U . ◻

Right locality

Note that, if the relation f
√

is right local, then f
√
⊆ d
√

implies that d
√

is
also right local. (This is also a consequence of Lemma 2.2.) In this section
we will prove that the converse is also true: if d

√
is right local, then so

is f
√

. Recall the notion of a
√

-forking chain introduced in Section f2.3.

Definition 2.4. (a) We call d
√

-forking chains and f
√

-forking chains
dividing chains and forking chains, respectively.
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(b) A specification of a dividing chain (b̄α)α<γ for ā over U is a se-
quence ⟨φα , kα⟩α<γ of pairs consisting of a formula φα(x̄; ȳα) and a
natural number kα such that, for all α < γ,

M ⊧ φα(ā; b̄α) and φα(x̄; b̄α) kα-divides over U ∪ b̄[<α] .

Similarly, a specification of a forking chain (b̄α)α<γ for ā over U is
a sequence ⟨φα , ψ̄α , k̄α ,mα⟩α<γ , where φα is a formula, mα a natural
number, ψ̄α an mα-tuple of formulae, and k̄α is an mα-tuple of natural
numbers such that, for all α < γ,

M ⊧ φα(ā; b̄α)

and there are tuples d̄0 , . . . , d̄mα−1 such that

φα(x̄; b̄α) ⊧ ψα ,0(x̄ , d̄0) ∨ ⋅ ⋅ ⋅ ∨ ψα ,mα−1(x̄ , d̄mα−1)

and each ψα , i(x̄ , d̄ i) kα , i-divides over U ∪ b̄[<α].
(c) A dividing chain is uniform if it has a specification ⟨φα , kα⟩α<γ

where

φα = φβ and kα = kβ , for all α, β < γ .

Similarly, we say that a forking chain is uniform if it has a specification
⟨φα , ψ̄α , k̄α ,mα⟩α<γ where

φα = φβ , mα = mβ , ψα , i = ψβ , i , kα , i = kβ , i ,

for all α, β < γ and i < mα .

Note that, according to Theorem f2.3.25, d
√

is not right local if, and
only if, there are arbitrarily long dividing chains. The same holds for
f
√

and forking chains. Our aim is therefore to show that, if a theory
has arbitrarily long forking chains, then there are also arbitrarily long
dividing chains. We start with the observation that any subsequence of a
forking chain is again a forking chain. As a consequence we can use the
Pigeon Hole Principle to construct uniform forking chains.
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Lemma 2.5. Let γ be an ordinal and I ⊆ γ.

(a) If (b̄α)α<γ is a dividing chain for ā over U with the specification
⟨φα , kα⟩α<γ , then (b̄α)α∈I is a dividing chain for ā over U with
specification ⟨φα , kα⟩α∈I .

(b) If (b̄α)α<γ is a forking chain for ā over U with the specification
⟨φα , ψ̄α , k̄α ,mα⟩α<γ , then (b̄α)α∈I is a forking chain for ā over U
with specification ⟨φα , ψ̄α , k̄α ,mα⟩α∈I .

Proof. (a) Fix α ∈ I and set B ∶= ⋃{ b̄β ∣ β ∈ I, β < α }. It is sufficient
to show that φα(x̄; b̄α) kα-divides over U ∪ B. This follows from the
definition of dividing and the fact that φα(x̄; b̄α) kα-divides over the
superset U ∪ b̄[<α] ⊇ U ∪ B.

(b) follows analogously. ◻

Corollary 2.6. Let κ > ∣T ∣ be a cardinal. If there exists a forking chain
for ā over U of length κ, then there also exists a uniform forking chain
for ā over U of length κ.

Proof. Let (b̄α)α<κ be a forking chain for ā over U with specification
⟨φα , ψ̄α , k̄α ,mα⟩α<κ . Since there are at most ∣T ∣ < κ formulae over ∅,
there exist a subset I ⊆ κ of size ∣I∣ = κ, formulae φ, ψ̄, and numbers m, k̄
such that

φα = φ , mα = m , ψα , i = ψ i , kα , i = k i ,

for all α < κ and i < m. By Lemma 2.5, the subsequence (b̄α)α∈I is a
uniform forking chain for ā over U . ◻

The key property of dividing which allows us to turn forking chains
into dividing chains is contained in the following lemma.

Lemma 2.7. Suppose that the formula φ(x̄; b̄) k-divides over a set U. For
every set C ⊆M, there is some tuple b̄′ ≡U b̄ such that φ(x̄; b̄′) k-divides
over U ∪ C.
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Proof. By Lemma 1.2, there exists an indiscernible sequence (b̄n)n<ω
over U such that b̄0 = b̄ and the set {φ(x̄; b̄n) ∣ n < ω } is k-inconsistent.
Using Lemma e5.3.11, we can find a set C′ ≡U C such that (b̄n)n<ω is
indiscernible over U ∪ C′. Let π ∈ AutMU be an automorphism with
π[C′] = C, and set b̄′n ∶= π(b̄n). Then (b̄′n)n<ω is indiscernible over
U ∪ C and the set {φ(x̄; b̄′n) ∣ n < ω } is k-inconsistent. By Lemma 1.2,
it follows that φ(x̄; b̄′0) k-divides over U ∪ C. Since b̄′0 ≡U b̄0 = b̄, the
claim follows. ◻

Corollary 2.8. Let (b̄ i)i<n be a dividing chain for ā over U with finite
length. For every set C ⊆M, there exist tuples

ā′b̄′0 . . . b̄′n−1 ≡U āb̄0 . . . b̄n−1

such that (b̄′i)i<n is a dividing chain for ā′ over U ∪ C with the same
specification as (b̄ i)i<n .

Proof. Let ⟨φ i , k i⟩i<n be a specification of (b̄ i)i<n . We prove the claim
by induction on n. For n = 0, there is nothing to do. Hence, suppose
that n > 0. We can use Lemma 2.7 to find a tuple b̄′0 ≡U b̄0 such that
φ0(x̄; b̄′0) k0-divides over U ∪ C. Let π ∈ AutMU be an automorphism
with π(b̄0) = b̄′0. Then (π(b̄ i))0<i<n is a dividing chain for π(ā) over
U ∪ b̄′0. Applying the inductive hypothesis to it, we obtain tuples

ā′b̄′1 . . . b̄′n−1 ≡U b̄′0 π(ā)π(b̄1) . . . π̄(bn−1)

such that (b̄′i)0<i<n is a dividing chain for ā′ over U ∪ C ∪ b̄′0. Since

ā′b̄′0 b̄
′
1 . . . b̄′n−1 ≡U π(ā)b̄′0π(b̄1) . . . π̄(bn−1) ≡U āb̄0 b̄1 . . . b̄n−1 ,

it follows that (b̄′i)i<n is the desired dividing chain for ā′ over U∪C. ◻

In order to turn a forking chain into a dividing chain, we iterate the
following construction.
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Lemma 2.9. Let (b̄ i)i<n be a dividing chain for ā over U ∪C with a finite
length n and with the specification ⟨φ i , k i⟩i<n . If

tp(ā/UC) ⊧ ϑ0(x̄; d̄0) ∨ ⋅ ⋅ ⋅ ∨ ϑm−1(x̄; d̄m−1) ,

where each ϑ j(x̄; d̄ j) l j-divides over U , then there exist an index j < m
and a tuple d̄′ ≡U d̄ j such that d̄′ , b̄0 , . . . , b̄n−1 is a dividing chain for ā
over U with specification

⟨ϑ j , l j⟩, ⟨φ0 , k0⟩, . . . , ⟨φn−1 , kn−1⟩ .

Proof. We prove the claim by induction on n. For n = 0, pick an index j
such that M ⊧ ϑ j(ā; d̄ j). Then d̄ j is a dividing chain for ā over U with
specification ⟨ϑ j , l j⟩. Hence, suppose that n > 0. By Corollary 2.8, there
exist tuples

ā′b̄′0 . . . b̄′n−1 ≡UC āb̄0 . . . b̄n−1

such that (b̄′i)i<n is a dividing chain for ā′ over U ∪C∪ d̄0 . . . d̄n−1. Since
ā′ ≡UC ā, there is some index j < m such that

M ⊧ ϑ j(ā′; d̄ j) .

It follows that d̄ j , b̄′0 , . . . , b̄′n−1 is a dividing chain for ā′ over U with
specification

⟨ϑ j , l j⟩, ⟨φ0 , k0⟩, . . . , ⟨φn−1 , kn−1⟩ .

Fix a tuple d̄′ such that

ād̄′b̄0 . . . b̄n−1 ≡U ā′d̄ j b̄′0 . . . b̄′n−1 .

Then d̄′ , b̄0 , . . . , b̄n−1 is the desired dividing chain. ◻

Corollary 2.10. Let (b̄ i)i<n be a uniform forking chain for ā over U with
specification ⟨φ, ψ̄, k̄,m⟩i<n . There exists a function g ∶ [n]→ [m] and a
dividing chain (b̄′i)i<n for ā over U with specification

⟨ψg(0) , kg(0)⟩, . . . , ⟨ψg(n−1) , kg(n−1)⟩.
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Proof. We prove the claim by induction on n. For n = 0, there is nothing
to do. Hence, suppose that n > 0. Applying the inductive hypothesis to
the subchain (b̄ i)0<i<n we obtain a dividing chain (b̄′i)0<i<n for ā over
U ∪ b̄0 with specification

⟨ψg(1) , kg(1)⟩, . . . , ⟨ψg(n−1) , kg(n−1)⟩.

SinceM ⊧ φ(ā; b̄0) and

φ(x̄; b̄0) ⊧ ψ0(x̄; d̄0) ∨ ⋅ ⋅ ⋅ ∨ ψm−1(x̄; d̄m−1) ,

for suitable d̄0 , . . . , d̄m−1, we can use Lemma 2.9 to find an index j < m
and a tuple b̄′0 ≡U d̄ j such that (b̄′i)i<n is a dividing chain for ā over U
with specification

⟨ψ j , k j⟩, ⟨ψg(1) , kg(1)⟩, . . . , ⟨ψg(n−1) , kg(n−1)⟩. ◻

Starting from a sufficiently long forking chain, we have constructed
arbitrarily long finite dividing chains. According to the next lemma, this
is sufficient to obtain dividing chains of every ordinal length.

Lemma 2.11. Let φ be a formula and k < ω a number. If, for each n < ω,
there exists a uniform dividing chain for ā over U of length n with specific-
ation ⟨φ, k⟩i<n , then, for every ordinal γ, we can find a uniform dividing
chain for ā over U of length γ with specification ⟨φ, k⟩α<γ .

Proof. Let γ be an ordinal. We define the following set of formulae with
variables x̄, ȳα , z̄αi , for α < γ and i < ω.

Φ ∶= {φ(x̄; ȳα) ∣ α < γ }

∪ {ψ(z̄αi ; ȳβ0 , . . . , ȳβn−1)↔ ψ( ȳα ; ȳβ0 , . . . , ȳβn−1) ∣

ψ a formula over U , i , n < ω, and

β0 < ⋅ ⋅ ⋅ < βn−1 < α < γ }

∪ {¬∃x̄[φ(x̄; z̄αi0) ∧ ⋅ ⋅ ⋅ ∧ φ(x̄; z̄αik−1
)] ∣

α < γ, i0 < ⋅ ⋅ ⋅ < ik−1 < ω } .
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Note that, if ā, b̄α , and c̄αi , for α < γ and i < n, satisfy Φ, then

c̄αi ≡U b̄[<α] b̄
α

and the set {φ(x̄; c̄αi ) ∣ i < ω } is k-inconsistent. Hence, the formula
φ(x̄; b̄α) k-divides over U b̄[<α]. Consequently, (b̄α)α<γ is a dividing
chain for ā over U with specification ⟨φ, k⟩α<γ .

It therefore remains to show that Φ is satisfiable. Let Φ0 ⊆ Φ be finite
and let I ⊆ γ be the finite set of indices α such that Φ0 contains some
of the variables ȳα or z̄αi , for i < ω. Choose a uniform dividing chain
(b̄ i)i<n for ā over U of length n ∶= ∣I∣.We can satisfy Φ0 by interpreting x̄
by ā, ȳα by the corresponding b̄ i , and z̄αi by tuples witnessing the fact
that φ(x̄; b̄ i) k-divides over U ∪ b̄[<i]. By the Compactness Theorem,
it follows that Φ is satisfiable. ◻

Combining the results of this section, we have proved that, if f
√

is not
right local, then neither is d

√
.

Theorem 2.12. Let T be a complete first-order theory. The following state-
ments are equivalent :

(1) d
√

is right local.

(2) f
√

is right local.

(3) There is no dividing chain of length ∣T ∣+.

Proof. (2)⇒ (1) If f
√

is right local, then T is simple. Hence, it follows
by Lemma 2.2 that d

√
= f
√

. In particular, d
√

is right local.
(1)⇒ (3) If there are arbitrarily long dividing chains, it follows by

Theorem f2.3.25 that d
√

is not right local.
(3) ⇒ (2) Suppose that f

√
is not right local and set κ ∶= ∣T ∣+. By

Theorem f2.3.25, there exists a forking chain of length κ for a suitable
tuple ā over the empty set ∅. Using Corollary 2.6 we obtain a uniform
forking chain of the same length. Let ⟨φ, ψ̄, k̄,m⟩α<κ be its specification.
According to Corollary 2.10, there exists, for every n < ω, a dividing
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chain of length n with specification ⟨ϑ i , l i⟩i<n , where ϑ i ∈ ψ̄ and l i ∈ k̄,
for every i < n.

By thePigeon HolePrinciple and Lemma 2.5,we can find a formula ϑ ∈
ψ̄ and a number l ∈ k̄ such that, for every n < ω, there exists a uniform
dividing chain of length n with specification ⟨ϑ , l⟩i<n . Consequently,
it follows from Lemma 2.11 that there exist arbitrarily long dividing
chains. ◻

The tree property
The following combinatorial property characterises simple theories in
the same way as the order property characterises stable theories.

Definition 2.13. Let T be a first-order theory. A formula φ(x̄; ȳ) has
the tree property if there exists a family (c̄η)η∈ω<ω of parameters and a
number k < ω such that

◆ for every β ∈ ωω , the set {φ(x̄; c̄η) ∣ η ≺ β } is consistent and

◆ for every η ∈ ω<ω , the set {φ(x̄; c̄ηi) ∣ i < ω } is k-inconsistent.

Exercise 2.1. Prove that, in the theory of dense linear orders, the formula
φ(x; y0 , y1) ∶= y0 < x ∧ x < y1 has the tree property.

Before proving that a theory is simple if, and only if, no formula has
the tree property, let us note that the tree property implies the order
property.

Lemma 2.14. Every formula with the tree property has the order property.

Proof. Let (c̄η)η∈ω<ω be a family witnessing the tree property of the
formula φ(x̄; ȳ). For every β ∈ ωω , we choose a tuple āβ satisfying
{φ(x̄; c̄η) ∣ η ≺ β }. To prove that φ has the order property it is sufficient
to find indices η0 ≺ η1 ≺ . . . in ω<ω and a sequence (βn)n<ω in ωω such
that ηn ≺ βn and

M ⊧ φ(āβ i ; c̄ηk) iff i ≤ k .
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We proceed by induction on n, starting with η0 ∶= ⟨⟩ and an arbitrary
β0 ∈ ωω . For the inductive step, suppose that ηn and βn are already
defined. The k-inconsistency of {φ(x̄; c̄ηn i) ∣ i < ω } implies that, for
each m ≤ n, there are only finitely many i < ω such that

M ⊧ φ(āβm ; c̄ηn i) .

Hence, there is some i < ω such that

M ⊧ ¬φ(āβm ; c̄ηn i) , for all m ≤ n .

We set ηn+1 ∶= ηn i, for such an index i, and we choose some βn+1 ∈ ωω

such that ηn+1 ≺ βn+1. Then ηm ≺ βn+1 implies that

M ⊧ φ(āβn+1 ; c̄ηm) , for all m ≤ n + 1 . ◻

To show that simple theories are exactly those where no formula has
the tree property, we introduce a generalised form of the tree property.

Definition 2.15. Let κ be a cardinal, γ an ordinal, (φα)α<γ a sequence
of formulae, and (kα)α<γ a sequence of numbers.

(a) A family (c̄η)η∈κ≤γ of tuples c̄η ⊆ M is a dividing κ-tree with spe-
cification ⟨φα , kα⟩α<γ if

◆ for each β ∈ κγ , the set {φα(x̄; c̄β↾(α+1)) ∣ α < γ } is consistent,

◆ for each η ∈ κ<γ , the set {φ∣η∣(x̄; c̄ηα) ∣ α < κ } is k∣η∣-inconsistent.

We call γ the height of the dividing κ-tree.
(b) A dividing κ-tree (c̄η)η∈κ≤γ with specification ⟨φα , kα⟩α<γ is uni-

form if

φα = φβ and kα = kβ , for all α, β < γ .

Remark. Note that a formula φ(x̄; ȳ) has the tree property if, and only
if, there exists a uniform dividing ω-tree of height ω with specification
⟨φ, k⟩n<ω , for some k < ω.
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Lemma 2.16. Let κ > ∣T ∣ be a cardinal. If there exists a dividing ω-tree of
height κ, then there also exists an uniform dividing ω-tree of height ω.

Proof. Let (b̄η)η∈ω<κ be a dividing ω-tree of height κ and let ⟨φα , kα⟩α<κ
be its specification. Since κ > ∣T ∣, there exist a subset I ⊆ κ of size ∣I∣ = κ,
a formula φ∗, and a number k∗ < ω such that

φα = φ∗ and kα = k∗ , for all α ∈ I .

Choose a strictly increasing map h ∶ ω → I. We inductively define an
embedding g ∶ ω<ω → ω<κ as follows. We start with g(⟨⟩) ∶= ⟨⟩. If
g(η) is already defined, we choose some ζ ∈ ω<κ with g(η) ⪯ ζ and
∣ζ ∣ = h(∣η∣), and we set g(ηi) ∶= ζ i, for i < ω.
We claim that the family (b̄g(η))η∈ω<ω is a uniform dividing ω-tree

of height ω. By construction, the set {φ∗(x̄; b̄g(ηn)) ∣ n < ω } is k∗-
inconsistent, for every η ∈ ω<ω . Furthermore, for each β ∈ ωω , we can
choose some β′ ∈ ω<κ with

β′ ⪰ g(β ↾ α) , for all α < ω ,

and we see that

{φ∗(x̄; b̄g(η)) ∣ η ≺ β } ⊆ {φα(x̄; b̄β′↾(α+1)) ∣ α < γ }

is consistent. ◻

The following lemma contains the main technical argument we use to
relate the tree property to dividing.

Lemma 2.17. The following statements are equivalent :

(1) There exists a dividing ω-tree of height γ.

(2) There exists a dividing chain of length γ.

Proof. (1)⇒ (2) Set κ ∶= (2∣T∣⊕∣γ∣)+. If there is a dividing ω-tree, we can
use the Compactness Theorem to construct a dividing κ-tree (b̄η)η∈κ≤γ .
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Let ⟨φα , kα⟩α<γ be its specification. We define an embedding h ∶ κ≤γ →
κ≤γ as follows. We start with h(⟨⟩) ∶= ⟨⟩. If ∣η∣ is a limit ordinal, we set

h(η) ∶= sup{ h(ζ) ∣ ζ ≺ η } .

For the successor step, we proceed as follows. Suppose that the value
of h(η) is already defined. Let s̄ be the sorts of b̄η0. As ∣S s̄(⋃ζ⪯η b̄ζ)∣ < κ
there exists a subset I ⊆ κ of size ∣I∣ = κ such that

b̄ηi ≡⋃ζ⪯η b̄ζ b̄ηk , for all i , k ∈ I .

We fix a bijection g ∶ κ → I and we set h(ηi) ∶= h(η)g(i).
Having defined the embedding h, we fix some β ∈ κ<ω and we set

c̄α ∶= b̄h(β↾(α+1)), for α < γ. We claim that the sequence (c̄α)α<γ is a
dividing chain for some ā over ∅ with specification ⟨φα , kα⟩α<γ .

Set β′ ∶= sup{ h(β ↾ α) ∣ α < γ } and choose some tuple ā satisfying

{φα(x̄; b̄β′↾(α+1)) ∣ α < γ } .

Then

{φα(x̄; c̄α) ∣ α < γ } = {φα(x̄; b̄h(β↾(α+1))) ∣ α < γ }

= {φα(x̄; b̄β′↾(α+1)) ∣ α < γ } ,

implies that

M ⊧ φα(ā; c̄α) , for all α < γ .

It therefore remains to show that φα(x̄; c̄α) kα-divides over c̄[<α]. Let
ān ∶= b̄h((β↾α)n), for n < ω. Then ān ≡c̄[<α] b̄h(β↾(α+1)) = c̄α and the set
{φα(x̄; ān) ∣ n < ω } is kα-inconsistent.

(2)⇒ (1) Given a dividing chain (c̄α)α<γ for ā over U with specific-
ation ⟨φα , kα⟩α<γ , we construct a dividing ω-tree (b̄η)η∈ω≤γ with the
additional property that, for every η ∈ ω≤γ ,

(b̄η↾(α+1))α<∣η∣ ≡∅ (c̄α)α<∣η∣ .
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If η = ⟨⟩ or if ∣η∣ is a limit ordinal, we can choose an arbitrary tuple b̄η ,
since the definition of a dividing ω-tree places no constraint on such
tuples. Hence, it remains to consider the successor step. Suppose that
b̄η has already been defined and set α ∶= ∣η∣. Since

(b̄η↾(i+1))i<α ≡∅ (c̄ i)i<α .

there exists some b̄′ such that

(b̄η↾(i+1))i<α b̄′ ≡∅ (c̄ i)i<α c̄α .

Since φα(x̄; c̄α) kα-divides over U ∪ c̄[<α], we can find a sequence
(c̄′n)n<ω such that c̄′n ≡U c̄[<α] c̄α and {φα(x̄; c̄′n) ∣ n < ω } is kα-incon-
sistent. By choice of b̄′, we can therefore find a sequence (b̄′n)n<ω such
that

b̄′n ≡⋃i<α b̄η↾(i+1)
b̄′

and {φα(x̄; b̄′n) ∣ n < ω } is kα-inconsistent. We set b̄ηi ∶= b̄′i , for i < ω.
To see that the family (b̄η)η∈ω≤γ constructed in this way is a dividing

ω-tree, note that, for each β ∈ ωγ , (b̄η↾(α+1))α<γ ≡∅ (c̄α)α<γ implies that
the set {φα(x̄; b̄β↾(α+1)) ∣ α < γ } is consistent. ◻

Using these two lemmas, we obtain the following characterisation of
simple theories.

Theorem 2.18. Let T be a complete first-order theory. The following state-
ments are equivalent :

(1) T is simple.

(2) d
√

is right local.

(3) No formula has the tree property.

(4) There is no dividing chain of length ∣T ∣+.

(5) For some cardinal κ, there is no dividing chain of length κ.
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Proof. (4)⇒ (5) is trivial and (1)⇔ (2)⇔ (4) was already shown in
Theorem 2.12.

(5)⇒ (3) Suppose that there exists a formula φ(x̄; ȳ) with the tree
property. Fix a family (c̄η)η∈ω<ω and a number k < ω witnessing this
fact.

For every cardinal κ, we will construct a dividing chain of length κ.
Given κ, we use compactness to find a family (b̄η)η∈ω<κ such that

◆ for every β ∈ ωκ , the set {φ(x̄; b̄η) ∣ η ≺ β } is consistent and

◆ for every η ∈ ω<κ , the set {φ(x̄; b̄ηi) ∣ i < ω } is k-inconsistent.

In particular, (b̄η)η∈ω<κ is a uniform dividing ω-tree of height κ. Hence,
we can use Lemma 2.17 to obtain a dividing chain of length κ. A contra-
diction.

(3)⇒ (4) Suppose that there exists a dividing chain of length κ ∶= ∣T ∣+.
We will show that some formula has the tree property. By Lemma 2.17,
there exists a dividing ω-tree (b̄η)η∈ω<κ of height κ. Hence, we can use
Lemma 2.16 to obtain a uniform dividing ω-tree (b̄′η)η∈ω<ω of height ω.
Let ⟨φ, k⟩n<ω be its specification. Then the formula φ has the tree prop-
erty. A contradiction. ◻

Corollary 2.19. Every stable theory is simple.

Proof. This follows by Theorem 2.18 and Lemma 2.14. ◻

Corollary 2.20. A theory T is simple if, and only if, Teq is simple.

Proof. Clearly, if φ has the tree property with respect to T , it also has
the tree property with respect to Teq. Conversely, if φ has the tree prop-
erty with respect to Teq we can use Proposition e2.2.10 to construct a
formula φ′ that has the tree property with respect to T . ◻

Finally, we show that no simple theory has the strict order property.
Consequently, all simple theories that are not stable have the independ-
ence property.

Proposition 2.21. No simple theory has the strict order property.
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Proof. Suppose that the formula φ(x̄; ȳ) has the strict order property.
We will show that the formula

ψ(x̄; ȳ0 ȳ1) ∶= ¬φ(x̄; ȳ0) ∧ φ(x̄; ȳ1)

has the tree property. By compactness, there exists a sequence (c̄ i)i∈Q
such that

φ(x̄; c̄ i)
M ⊂ φ(x̄; c̄k)

M , for all i < k .

We define two functions λ, ρ ∶ ω<ω → Q such that λ(η) < ρ(η), for
all η. We proceed by induction on η ∈ ω<ω starting with λ(⟨⟩) ∶= 0
and ρ(⟨⟩) ∶= 1. If λ(η) < ρ(η) are already defined, we choose a strictly
increasing sequence λ(η) < z0 < z1 < ⋅ ⋅ ⋅ < ρ(η) and we set λ(ηi) ∶= z i
and ρ(ηi) ∶= z i+1, for i < ω.

Having defined λ and ρ, we set b̄η ∶= c̄λ(η) c̄ρ(η), for η ∈ ω<ω . To show
that this family witnesses the tree property of ψ, note that

ψ(x̄; b̄η)
M = φ(x̄; c̄ρ(η))

M ∖ φ(x̄; c̄λ(η))
M .

Hence,

ψ(x̄; b̄η)
M ⊆ ψ(x̄; b̄ζ)M , for η ⪯ ζ ,

and ψ(x̄; b̄η)
M ∩ ψ(x̄; b̄ζ)M = ∅, for incomparable η and ζ .

Consequently, the set {ψ(x̄; b̄ηi) ∣ i < ω } is 2-inconsistent, for every η.
Furthermore, for every β ∈ ωω ,we can use compactness and the fact that
ψ(x̄; b̄η)

M ≠ ∅, for all η, to show that {ψ(x̄; b̄η) ∣ η ≺ β } is satisfiable.
◻

Strongly minimal theories
We conclude this section by considering the example of strongly min-
imal theories. Note that such theories are stable and, hence, simple. We
will show that, for strongly minimal theories, the relations f

√
and acl

√

coincide. One of the inclusions holds in general.
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Lemma 2.22. If
√

is a forking relation, then
√
⊆

cl√√
.

Proof. Suppose that A
√

U B. To show that A
cl√√

U B, consider a set
I ⊆ B that is not cl√-independent over U ∪ A. We have to show that I is
not cl√-independent over U . There exists an element b ∈ I such that b ∈
cl√(UAI0) where I0 ∶= I ∖ {b}. Consequently, b

√
UAI0 B. By (bmon),

A
√

U B implies A
√

U I0 B. Hence, it follows by Lemma f2.2.3 that
Ab
√

U I0 B. In particular, we have b
√

U I0 b which, by Lemma f2.3.5,
implies that b ∈ cl√(U I0). Therefore, I is not cl√-independent over U .

◻

The converse is given by the following lemma.

Lemma 2.23. Let T be a simple theory and S a U-definable strongly
minimal set. Then

A acl
√

U B implies A ⫝fU B , for all A, B,U ⊆ S .

Proof. Recall that we have shown in Lemma f1.4.3 that ⟨S, acl⟩ forms a
matroid. By (def), it is sufficient to prove the claim for finite sets A and B.
Hence, suppose that A and B are finite sets with A acl

√
U B. We choose

bases I ⊆ A and J ⊆ B of, respectively, A over U and B over U , and
enumerations ā of I and b̄ of J. Then ā acl

√
U b̄. Since b̄ is independent

over U , it follows that it is also independent over U ∪ ā. Hence, āb̄ is
independent over U .

To show that ā ⫝fU b̄, let (b̄n)n<ω be an indiscernible sequence over U
with b̄0 = b̄. Note that the union b̄[<ω] is independent over U . We
choose a tuple ā′ ⊆ S such that ∣ā′∣ = ∣ā∣ and ā′ is independent over
U ∪ b̄[<ω]. According to Proposition f1.4.6, we have ā′ ≡U b̄ ā. Since
b̄[<ω] is independent over U ∪ ā′, it follows by the same proposition
that the sequence (b̄n)n<ω is indiscernible over U ∪ ā′. By Lemma 1.3,
it follows that ā d

√
U b̄. Since T is simple, this implies that ā ⫝fU b̄.

Hence, we can use Lemma f2.2.14 to show that acl(āU) ⫝fU acl(b̄U). By
monotonicity, it follows that A ⫝fU B. ◻
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Corollary 2.24. For a strongly minimal theory T , we have acl
√
= ⫝f = ⫝d.

In particular, T is simple and ⫝f is a geometric independence relation.

Proof. First, note that, according to Lemma f1.4.3, ⟨M, acl⟩ is a matroid.
Hence, it follows from Proposition f2.2.8 that acl

√
is a geometric in-

dependence relation. We have seen in Corollary f1.4.14 that a strongly
minimal theory T is κ-categorical, for every κ > ∣T ∣. Consequently, it
follows by Theorem e6.3.16 that T is stable. Using Corollary 2.19, we see
that T is simple. Therefore, the equality acl

√
= ⫝f = ⫝d follows the two

preceding lemmas. ◻

Exercise 2.2. Prove that, in an arbitrary theory, acl
√

satisfies (inv) and
(def).
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f4. Theories without the independence
property

1. Honest definitions

Alternation numbers
We have seen in Proposition e5.4.2 that the independence property can
be characterised by counting the number of segments of sets of the
form ⟦φ(ā i)⟧i∈I for an indiscernible sequence (ā i)i∈I . In this section
we will use this characterisation to derive various properties of theories
without the independence property. We start by setting up the required
combinatorial machinery.

Definition 1.1. Let φ(x̄) be a formula over M.
(a) The φ-alternation number altφ(α) of a sequence α = (ā i)i∈I is the

maximal number n < ω such that there are indices k̄ ∈ [I]n+1 with

M ⊧ φ(āk i )↔ ¬φ(āk i+1) , for all i < n .

If this maximum does not exist, we set altφ(α) ∶=∞.
(b) The alternation rank of φ is

rkalt(φ) ∶= max{ altφ(α) ∣ α an indiscernible sequence in M} .

If this maximum does not exist, we set rkalt(φ) ∶=∞.
(c) A sequence α = (ā i)i∈I is maximally φ-alternating over U if it is

indiscernible over U and

altφ(α) = altφ(αβ) <∞ ,
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f4. Theories without the independence property

for every extension αβ of α that is still indiscernible over U .

Using these notions, we can characterise the independence property
as follows.

Proposition 1.2. Let φ(x̄; ȳ) be a formula without parameters and let
U ⊆M. The following statements are equivalent.

(1) φ(x̄; ȳ) does not have the independence property.

(2) rkalt(φ(x̄; c̄)) <∞, for all c̄ ⊆M.

(3) There exists some number n < ω such that

rkalt(φ(x̄; c̄)) ≤ n , for all c̄ ⊆M .

(4) altφ(x̄ ; c̄)(α) < ∞, for every indiscernible sequence α over U and
every tuple c̄ ⊆M.

(5) Let c̄ ⊆ M. Every indiscernible sequence α over U has an exten-
sion αβ that is maximally φ(x̄; c̄)-alternating over U.

Proof. (3)⇒ (2) is trivial.
(2)⇒ (5) Suppose that rkalt(φ(x̄; c̄)) <∞ and let α be an indiscern-

ible sequence over U . We construct a maximally φ(x̄; c̄)-alternating
extension of α by induction on the difference

rkalt(φ(x̄; c̄)) − altφ(x̄ ; c̄)(α) .

If α is already maximally φ(x̄; c̄)-alternating, there is nothing to do.
Hence, suppose otherwise. Then we can find some extension αβ that is
indiscernible over U such that altφ(x̄ ; c̄)(αβ) > altφ(x̄ ; c̄)(α). By inductive
hypothesis, this sequence has an extension αβγ that is maximally φ(x̄; c̄)-
alternating over U .

(5)⇒ (4) Let αβ be a maximally φ(x̄; c̄)-alternating extension of α
over U . Then altφ(x̄ ; c̄)(α) ≤ altφ(x̄ ; c̄)(αβ) <∞.

(4)⇒ (1) Suppose that φ(x̄; ȳ) has the independence property. By
Proposition e5.4.2, there exists an indiscernible sequence α = (ān)n<ω
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1. Honest definitions

and a tuple c̄ such that

M ⊧ φ(ān ; c̄) iff n is even.

Hence, altφ(x̄ ; c̄)(α) =∞.
(1)⇒ (3) Suppose that, for every number n < ω, there exists some

tuple c̄ ⊆M such that rkalt(φ(x̄; c̄)) > n. We claim that φ has the inde-
pendence property. Let Ψ be a set of formulae stating that the sequence
(x̄ i)i<ω is indiscernible and set

Φ ∶= Ψ ∪ {φ(x̄2i ; ȳ) ∣ i < ω } ∪ {¬φ(x̄2i+1; ȳ) ∣ i < ω } .

We will show that Φ is satisfiable. Then there exists an indiscernible
sequence (ā i)i<ω and a tuple b̄ such that

M ⊧ φ(ā i ; b̄) iff i is even,

and it follows by Proposition e5.4.2 that φ has the independence property.
Thus, let Φ0 ⊆ Φ be finite. Then there exists a number n < ω such that

all variables occurring in Φ0 are among x̄0 , . . . , x̄2n−1. By assumption,
we can find a tuple c̄ and an indiscernible sequence α = (ā i)i∈I such that

altφ(x̄ ; c̄)(α) ≥ 2n .

We choose indices m̄ ∈ [I]2n+1 such that

M ⊧ φ(ām i ; c̄)↔ ¬φ(ām i+1 ; c̄) , for all i < 2n .

Depending on whether or not M ⊧ φ(ām0 ; c̄), it follows that either the
sequence (ām i )0≤i<2n or the sequence (ām i )1≤i<2n+1 satisfies Φ0 together
with the tuple c̄. ◻

Below we will frequently make use of the following consequence of
this characterisation.

Corollary 1.3. Let T be a theory without the independence property and
let ∆ be a finite set of formulae over M. Every indiscernible sequence α
over U has an extension αβ that is maximally φ-alternating over U , for
all φ ∈ ∆.
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f4. Theories without the independence property

Proof. Let α be indiscernible over U . We construct the desired exten-
sion by induction on ∣∆∣. If ∆ = ∅, we can take the sequence α itself.
Hence, we may assume that there is some formula φ ∈ ∆. Suppose that
φ(x̄) = φ0(x̄; c̄) where c̄ ⊆M and φ0(x̄; ȳ) is a formula without para-
meters. As φ0(x̄; ȳ) does not have the independence property, it follows
by Proposition 1.2 that α has a maximally φ-alternating extension αβ.
By inductive hypothesis, this sequence has an extension αβγ that is max-
imally ψ-alternating, for every ψ ∈ ∆∖{φ}. Since altφ(αβ) ≤ altφ(αβγ),
this extension is also maximally φ-alternating. Hence, αβγ is the desired
extension of α. ◻

Honest definitions
Stable theories have the property that every set A ⊆M is self-contained
as far as definable relations are concerned, that is, all parameter-defin-
able relations R ⊆ As̄ are definable with parameters from A itself. In this
section, we will prove that theories without the independence property
have a similar, but weaker property : the parameters are not necessarily
in the set A, but in some elementary extension. We start by taking a look
at the stable case.

Definition 1.4. A set A ⊆M is stably embedded if, for every parameter-
definable relation R ⊆Ms̄ , there is a formula φ(x̄) over A such that

R ∩As̄ = φM ∩As̄ .

Proposition 1.5. In a stable theory, every set A ⊆M is stably embedded.

Proof. Let ψ(x̄; c̄) be a formula with parameters c̄ ⊆M. As T is stable,
it follows by Theorem c3.5.17 that the type tp(c̄/A) is definable over A.
Consequently, there exists a formula δψ( ȳ) over A such that

M ⊧ δψ(ā) iff M ⊧ ψ(ā; c̄) .

This implies that ψ(x̄; c̄)M ∩As̄ = δψ(x̄)M ∩As̄ . ◻
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1. Honest definitions

For theories with the independence property, we need to consider
elementary extensions of the given structure to find the desired paramet-
ers. Alternatively, we can also use the following finitary version of stable
embeddedness.

Definition 1.6. An honest definition of a relation R ⊆Ms̄ over a set U is
a formula φ(x̄; ȳ) without parameters such that, for every finite U0 ⊆ U ,
there is some tuple c̄ ⊆ U with

R ∩U s̄
0 ⊆ φ(x̄; c̄)M ∩U s̄ ⊆ R ∩U s̄ .

Example. The set Q of rationals is not stably embedded in ⟨R, ≤⟩. For
instance, for the parameter-definable relation (0,

√
2), there is no for-

mula φ(x) over Q with

φR ∩Q = (0,
√

2) ∩Q .

But (0,
√

2) does have an honest definition overQ. For every finite subset
A ⊆ (0,

√
2), we have

(0,
√

2) ∩ A ⊆ φ(x; a, b)R ∩Q ⊆ (0,
√

2) ∩Q ,

where φ(x; y, z) ∶= y ≤ x ∧ x ≤ z and a and b are, respectively, the
minimal and the maximal element of A.

Below we will prove that these two weaker version of stable embed-
dedness are equivalent and that they hold in theories without the in-
dependence property. The key argument is contained in the following
lemma.

Lemma 1.7. Let κ > ∣T ∣ be a cardinal and let ⟨M,C⟩ ⪯ ⟨M+ ,C+⟩ be
structures where the former one has size ∣M∣ < κ and the latter one is
κ-saturated. For all sets A, B ⊆ M+ of size ∣A∣, ∣B∣ < κ with A u

√
C B, there

exists some A′ ⊆ C+ such that A′ ≡B A.

Proof. Let ā = (a i)i<λ be an enumeration of A and let C ⊆M be a set
such that ⟨M,C⟩ ⪰ ⟨M+ ,C+⟩. Set

Φ(x̄) ∶=Th(⟨M,C⟩) ∪ tp(ā/B) ∪ { Px i ∣ i < λ } ,
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f4. Theories without the independence property

where the type tp(ā/B) is taken with respect to the structureM and P is
the predicate symbol of ⟨M,C⟩ corresponding to the set C. If Φ(x̄) is
satisfiable, it follows by κ-saturation of ⟨M+ ,C+⟩ that there is some tuple
ā′ ⊆ M+ with ⟨M+ ,C+⟩ ⊧ Φ(ā′). By definition of Φ, this implies that
ā′ ⊆ C+ and ā′ ≡B ā. Hence, it remains to prove that Φ is satisfiable.

Let Φ0 ⊆ Φ be finite. Then

Φ0(x̄) ≡ ψ ∧ φ(x̄) ∧⋀i∈I Px i ,

for suitable formulae ψ ∈Th(⟨M,C⟩), φ(x̄) ∈ tp(ā/B), and some finite
set I ⊆ λ. Since ā u

√
C B, we can find some tuple ā′ ⊆ C ⊆ C+ with

M ⊧ φ(ā′). Consequently,

⟨M+ ,C+⟩ ⊧ ψ ∧ φ(ā′) ∧⋀i∈I Pa′i ,

and ā′ satisfies Φ0(x̄). ◻

A second technical ingredientwe need in the proof below is the notion
of a type generating a sequence.

Definition 1.8. Let p be a type. A sequence (ā i)i∈I is generated by p
over U if ā i realises p ↾U ā[<i], for all i ∈ I.

Exercise 1.1. Prove that, for every type p ∈ S s̄(M) and every small index
set I, there is some sequence (ā i)i∈I generated by p.

When using a suitable type, the generated sequence is automatically a
Morley sequence.

Lemma 1.9. Let
√

be a preforking relation and p a global type that is
√

-
free over U. Every sequence generated by p over a set U ∪C is a

√
-Morley

sequence for p ↾UC over U.

The existence of honest definitions turns out to being equivalent to
not having the independence property.

Theorem 1.10. Let φ(x̄) be a formula over M and let s̄ be the sorts of x̄.
The following statements are equivalent :
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1. Honest definitions

(1) rkalt(φ) <∞.
(2) For every set C ⊆M, there is a honest definition of φM over C.
(3) For every model M containing the parameters of φ, every set C ⊆ M

of parameters, and every (∣T ∣⊕ ∣M∣)+-saturated elementary exten-
sion ⟨M+ ,C+⟩ ⪰ ⟨M,C⟩, there exists a formula φ+(x̄) over C+
such that

φ(x̄)M ∩ C s̄ ⊆ φ+(x̄)M ∩ C s̄
+ ⊆ φ(x̄)M ∩ C s̄

+ .

Proof. (3)⇒ (2) Fix a model M containing the parameters of φ, a set
C ⊆ M, and a (∣T ∣⊕ ∣M∣)+-saturated elementary extension ⟨M+ ,C+⟩ ⪰
⟨M,C⟩. By (3), there is some formula φ+(x̄; c̄) with parameters c̄ ⊆ C+
such that

φ(x̄)M ∩ C s̄ ⊆ φ+(x̄; c̄)M ∩ C s̄
+ ⊆ φ(x̄)M ∩ C s̄

+ .

We claim that φ+(x̄; ȳ) is a honest definition of φM over C. Let C0 ⊆ C
be finite. Then

⟨M+ ,C+⟩ ⊧ ⋀
ā∈C s̄

0

[φ+(ā; c̄)↔ φ(ā)]

∧ (∀x̄ .⋀i Px i)[φ+(x̄; c̄)→ φ(x̄)] .

Consequently,

⟨M,C⟩ ⊧ (∃ ȳ.⋀i Py i)[ ⋀
ā∈C s̄

0

[φ+(ā; ȳ)↔ φ(ā)]

∧ (∀x̄ .⋀i Px i)[φ+(x̄; ȳ)→ φ(x̄)]] ,

and there is some tuple c̄′ ⊆ C such that

φM ∩ C s̄
0 ⊆ φ+(x̄; c̄′)M ∩ C s̄ ⊆ φM ∩ C s̄ .

(2) ⇒ (1) For a contradiction, suppose that rkalt(φ(x̄)) = ∞ but
φM has honest definitions over all sets C ⊆ M. By compactness there
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f4. Theories without the independence property

exists an indiscernible sequence α = (ān)n<ω such that altφ(α) = ∞.
Omitting some elements of α we may assume that

M ⊧ φ(ān) iff n is even.

Let ψ(x̄; ȳ) be an honest definition of φM over the set C ∶= ā[<ω] and
let C0 ∶= ā[<2k + 2] where k ∶= ∣ ȳ∣. By assumption, there is some tuple
c̄ ⊆ C such that

φM ∩ C s̄
0 ⊆ ψ(x̄; c̄)M ∩ C s̄ ⊆ φM ∩ C s̄ .

Fix some tuple ȷ̄ ∈ [ω]k such that c̄ ⊆ ā[ ȷ̄]. Then there is some index
i < 2k + 1 such that

ord(i ȷ̄) = ord((i + 1) ȷ̄) .

Consequently,

M ⊧ ψ(ā i ; c̄)↔ ψ(ā i+1; c̄) .

If i is even, then

ψ(x̄; c̄)M ∩ C s̄ ⊆ φM ∩ C s̄ implies ā i+1∉ ψ(x̄; c̄)M ,

while φM ∩ C s̄
0 ⊆ ψ(x̄; c̄)M ∩ C s̄ implies ā i ∈ ψ(x̄; c̄)M .

A contradiction. In the case where i is odd, we can show in the same
way that ā i ∉ ψ(x̄; c̄)M and ā i+1 ∈ ψ(x̄; c̄)M.

(1) ⇒ (3) Let F ⊆ S s̄(M+) be the set of all types over M+ that are
finitely satisfiable in C and let Fφ ∶= F ∩ ⟨φ⟩ be the subset of those types
containing φ. As rkalt(φ) < ∞, we can choose, for every type p ∈ F, a
sequence αp ⊆ C+ that is generated by p over C and such that altφ(x̄)(αp)
is maximal (among all such sequences in C+).

Let ā′ ⊆ C+ be a tuple realising p ↾ Cαp, for some p ∈ F. We claim that

M ⊧ φ(ā′) iff φ(x̄) ∈ p .
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1. Honest definitions

By Lemma 1.7, there is some ā′′ ∈ C s̄
+ realising p ↾ Mαp ā′. Then the

sequence αp ā′ ā′′ is generated by p over C and our choice of αp implies
that

altφ(αp ā′ ā′′) = altφ(αp) .

As φ is over M, it follows by choice of ā′′ that

M ⊧ φ(ā′) iff M ⊧ φ(ā′′) iff φ(x̄) ∈ p ,

as desired.
For types p ∈ Fφ , the claim we have just proved implies that

Th(⟨MM ,C⟩) ∪ p ↾ Cαp ∪ {Px0 , . . . , Pxn−1} ⊧ φ(x̄) ,

where x̄ = x0 . . . xn−1, C is a set such that ⟨M,C⟩ ⪰ ⟨M+ ,C+⟩, and
P is the predicate symbol corresponding to C. Therefore, we can use
compactness to find a formula ϑp(x̄) ∈ p ↾ Cαp such that

Th(⟨MM ,C⟩) ∪ {ϑp(x̄), Px0 , . . . , Pxn−1} ⊧ φ(x̄) .

Note that ϑp ∈ p implies p ∈ ⟨ϑp⟩. Hence,

Fφ ⊆ ⋃
p∈Fφ

⟨ϑp⟩ .

By Lemma f2.3.7, F is a closed set. Hence, so is Fφ = F ∩ ⟨φ(x̄)⟩. As
closed sets in Hausdorff spaces are compact, it follows that there exists a
finite subset F0 ⊆ Fφ such that

Fφ ⊆ ⋃
p∈F0

⟨ϑp⟩ .

We claim that

φ+(x̄) ∶= ⋁
p∈F0

ϑp
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is the desired formula.
Consider a tuple ā ∈ C s̄ with M ⊧ φ(ā). Then p ∶= tp(ā/M+) is

trivially finitely satisfiable in C. Hence, p ∈ Fφ and we have ϑq ∈ p, for
some q ∈ F0. This implies that φ+(x̄) ∈ p. Consequently,

φ(x̄)M ∩ C s̄ ⊆ φ+(x̄)M ∩ C s̄ ⊆ φ+(x̄)M ∩ C s̄
+ .

For the second inclusion, let ā ∈ C s̄
+ be a tuple with M ⊧ ϑp(ā), for

some p ∈ F0. Then we haveM ⊧ φ(ā), by choice of ϑp. Hence,

φ+(x̄)M ∩ C s̄
+ ⊆ φ(x̄)M ∩ C s̄

+ . ◻

As a corollary, we obtain the following weak variant of stable embed-
dedness for theories without the independence property.

Corollary 1.11. For every model M, every set C ⊆ M, and every formula
φ(x̄) over M with rkalt(φ) < ∞, there exists an elementary extension
⟨M+ ,C+⟩ ⪰ ⟨M,C⟩ and a formula φ+(x̄) over C+ such that

φ(x̄)M ∩ C s̄ = φ+(x̄)M ∩ C s̄ .

Another convenient consequence of Theorem 1.10 is contained in the
proposition below. Again we isolate the main argument in a lemma.

Lemma 1.12. Let T be a theory without the independence property and
κ an infinite cardinal. Let M be a model of T of size ∣M∣ < κ, B ⊆ M a set,
and ⟨M+ , B+⟩ ⪰ ⟨M, B⟩ a κ-saturated elementary extension. For every set
C ⊆ M, there exists a set U ⊆ B+ of size ∣U ∣ ≤ ∣T ∣⊕ ∣C∣ such that

b̄ ≡U b̄′ implies b̄ ≡C b̄′ , for all b̄, b̄′ ⊆ B .

Proof. For every formula φ(x̄) over C, we use Theorem 1.10 to find a
formula φ+ over B+ such that

φ(x̄)M ∩ B s̄ ⊆ φ+(x̄)M ∩ (B+)s̄ ⊆ φ(x̄)M ∩ (B+)s̄ .

Let U ⊆ B+ be a set of size ∣U ∣ ≤ ∣T ∣⊕ ∣C∣ containing the parameters of
each of these formulae φ+.
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1. Honest definitions

To show that U has the desired properties, consider tuples b̄, b̄′ ⊆ B
with b̄ ≡U b̄′. For every formula φ(x̄) over C and every finite set I of
indices, it follows that

M ⊧ φ(b̄∣I) iff M ⊧ φ+(b̄∣I)

iff M ⊧ φ+(b̄∣′I) iff M ⊧ φ(b̄∣′I) .

Consequently, b̄ ≡C b̄′. ◻

Proposition 1.13. Let T be a theory without the independence property,
M a model of T , and B ⊆ M. Then there exists an elementary extension
⟨M+ , B+⟩ ⪰ ⟨M, B⟩ such that, for every set A ⊆ M, there exists a set
U ⊆ B+ of size ∣U ∣ ≤ ∣T ∣⊕ ∣A∣ with A s

√
U B+.

Proof. We iterate the preceding lemma. Let ⟨M+ , B+⟩ be the union of an
elementary chain ⟨Mn , Bn⟩n<ω starting with ⟨M0 , B0⟩ ∶= ⟨M, B⟩ where
each ⟨Mn+1 , Bn+1⟩ ⪰ ⟨Mn , Bn⟩ is (∣T ∣⊕∣Mn ∣)

+-saturated.We inductively
construct a sequence (Un)n<ω of sets Un ⊆ Bn+1 of size ∣Un ∣ ≤ ∣T ∣⊕∣A∣ as
follows. Suppose that we have already defined U0 , . . . ,Un−1 ⊆ Bn ⊆ Mn .
By Lemma 1.12, there exists some set Un ⊆ Bn+1 of size

∣Un ∣ ≤ ∣T ∣⊕ ∣A∣⊕ ∣U0∣⊕ ⋅ ⋅ ⋅ ⊕ ∣Un−1∣ = ∣T ∣⊕ ∣A∣

such that

b̄ ≡Un b̄
′ implies b̄ ≡A∪U0∪⋅⋅⋅∪Un−1 b̄

′ , for all b̄, b̄′ ⊆ Bn .

Set U ∶= ⋃n<ω Un and let b̄, b̄′ ⊆ B+ be finite tuples with b̄ ≡U b̄′. Then
∣U ∣ ≤ ∣T ∣ ⊕ ∣A∣ and there is some k < ω such that b̄, b̄′ ⊆ Bk . It follows
that

b̄ ≡A∪U0∪⋅⋅⋅∪Un−1 b̄
′ , for all n ≥ k .

Consequently, b̄ ≡AU b̄′, as desired.
For infinite tuples b̄, b̄′ ⊆ B+ with b̄ ≡U b̄′, it therefore follows that

b̄∣I ≡U b̄′∣I implies b̄∣I ≡AU b̄′∣I , for all finite sets I .

Consequently, b̄ ≡AU b̄′. ◻
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Convex equivalence relations
As an application we study the structure of indiscernible sequences in
theories without the independence property.

Definition 1.14. Let I = ⟨I, ≤⟩ be a linear order and ∼ an equivalence
relation on I.

(a) ∼ is convex if

i ∼ j implies i ∼ k for all i ≤ k ≤ j .

(b) ∼ is finite if it has only finitely many classes.
(c) The intersection number in(∼) of a convex equivalence relation ∼

is the least cardinal κ such that ∼ can be written as an intersection of κ
finite convex equivalence relations.

(d) For tuples ı̄ , ȷ̄ ∈ I<ω , we set

ı̄ ∼ ȷ̄ : iff ord(ı̄) = ord( ȷ̄) and is ∼ js for all s .

(e) For a subset C ⊆ I and tuples ı̄ , ȷ̄ ⊆ I, we define

ı̄ ≡0C ȷ̄ : iff I, ı̄ c̄ ≡0 I, ȷ̄c̄ where c̄ is an enumeration of C .

Let us note that the relation ≡0C is convex and that its definition for
tuples is consistent with the notation introduced in (d) above.

Lemma 1.15. ≡0C is a convex equivalence relation with in(≡0C) ≤ ∣C∣ that
satisfies

ı̄ ≡0C ȷ̄ : iff ord(ı̄) = ord( ȷ̄) and is ≡
0
C js for all s .

Proof. For the bound on the intersection number, note that

≡0C = ⋂
c∈C
≡0{c} .

The other claims are straightforward. ◻

1164



1. Honest definitions

The statement of the preceding lemma has a weak converse: every
convex equivalence relation can be obtained as a coarsening of a relation
of the form ≡0C .

Lemma 1.16. Let ∼ be a convex equivalence relation on a linear order I
and J a complete linear order containing I. Then there exists a set C ⊆ J of
size ∣C∣ ≤ in(∼)⊕ ℵ0 such that the restriction of ≡0C to I refines ∼.

Proof. Set κ ∶= in(∼)⊕ℵ0 and let F be a set of finite convex equivalence
relations of size ∣F∣ ≤ κ such that ∼ = ⋂ F. We set

C ∶= { inf E ∣ E an ≈-class for some ≈ ∈ F }
∪ { sup E ∣ E an ≈-class for some ≈ ∈ F } ,

where we take the infima and suprema in the ordering J. Then ∣C∣ ≤
∣F∣⊗ ℵ0 ≤ κ and the restriction of ≡0C to I refines ∼. ◻

Theorem 1.17. Let T be a theory without the independence property and
α = (ā i)i∈I an indiscernible sequence over U. For every set C ⊆M, there
exist a linear order J ⊇ I, an indiscernible sequence α+ = (ā j) j∈J over U
with α+ ↾ I = α, and a subset K ⊆ J of size ∣K∣ ≤ ∣T ∣⊕ ∣C∣ such that

ı̄ ≡0K ȷ̄ implies ā[ı̄] ≡UC ā[ ȷ̄] , for all ı̄ , ȷ̄ ∈ [J]<ω .

Proof. Let M be a model containing U ∪ C ∪ α. Suppose that the se-
quence α consists of γ-tuples ā i = (a i

k)k<γ and set

P ∶= U ∪ { a i
k ∣ i ∈ I , k < γ } ,

E ∶= { ⟨a i
k , a

i
l ⟩ ∣ i ∈ I , k, l < γ } ,

F ∶= { ⟨a i
k , a

j
k⟩ ∣ i , j ∈ I , k < γ } ,

R ∶= { ⟨a i
k , a

j
l ⟩ ∣ i < j in I , k, l < γ } .

Fix an ∣M∣+-saturated elementary extension

⟨M+ , P+ ,U+ , E+ , F+ , R+⟩ ⪰ ⟨M, P,U , E , F , R⟩ .
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f4. Theories without the independence property

Using the relations E+, F+, and R+, we see that there are a linear order
I+ ⊇ I, an ordinal γ+ ≥ γ, and a family (b i

k)i∈I+ ,k<γ+ of elements such
that

◆ P+ = U+ ∪ { b i
k ∣ i ∈ I+ , k < γ+ },

◆ b i
k = a

i
k , for i ∈ I and k < γ ,

◆ the sequence (b̄ i)i∈I+ consisting of b̄ i ∶= (b i
k)k<γ+ , i ∈ I+, is indis-

cernible over U+.
By Lemma 1.12, we can find a set W ⊆ P+ of size ∣W ∣ ≤ ∣T ∣ ⊕ ∣C∣ such
that

ā ≡W ā′ implies ā ≡C ā′ , for all ā, ā′ ⊆ P .

We claim that the sequence α′ ∶= (b̄ i ∣γ)i∈I+ and the set

K ∶= { i ∈ I+ ∣ b̄ i ∩W ≠ ∅}

have the desired properties. Consider tuples ı̄ , ȷ̄ ∈ [I+]<ω with ı̄ ≡0K ȷ̄
and let k̄ be an enumeration of K. Since (b̄ i)i∈I+ is indiscernible over U ,
it follows that

ı̄ ≡0K ȷ̄ ⇒ I+ , ı̄ k̄ ≡0 I+ , ȷ̄k̄ ⇒ b̄[ı̄ k̄] ≡U b̄[ ȷ̄k̄] .

Fix an enumeration c̄ of U . Since ā[ı̄], ā[ ȷ̄], c̄ ⊆ P, it follows by choice
of W that

ā[ı̄]c̄ ≡W ā[ ȷ̄]c̄ implies a[ı̄]c̄ ≡C ā[ ȷ̄]c̄ .

Hence, ā[ı̄] ≡UC ā[ ȷ̄] and the claim follows. ◻

Corollary 1.18. Let T be a theory without the independence property and
α = (ā i)i∈I an indiscernible sequence over U. For every set C ⊆M, there
exists a convex equivalence relation ≈ on I with in(≈) ≤ ∣T ∣ ⊕ ∣C∣ such
that

ı̄ ≈ ȷ̄ implies ā[ı̄] ≡UC ā[ ȷ̄] .
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Proof. Let α′ = (ā j) j∈J and K ⊆ J be the sequence and the set obtained
from Theorem 1.17. We claim that the restriction ≈ of ≡0K to I has the
desired properties. By Lemma 1.15, ≈ is convex and

in(≈) ≤ ∣K∣ ≤ ∣T ∣⊕ ∣C∣ .

Consider tuples ı̄ , ȷ̄ ⊆ I with ı̄ ≈ ȷ̄. Then

ord(ı̄) = ord( ȷ̄) and is ≈ js for all s ,

and it follows by Lemma 1.15 that ı̄ ≡0K ȷ̄. By choice of α′ and K, this
implies that ā[ı̄] ≡UC ā[ ȷ̄]. ◻

Corollary 1.19. Let T be a theory without the independence property, α =
(ā i)i∈I an indiscernible sequence over U , and C ⊆M a set of parameters.
If cf I > ∣T ∣⊕ ∣C∣, then there exists an index k ∈ I such that the subsequence
(ā i)i≥k is indiscernible over U ∪ C ∪ ā[<k].

Proof. Let α′ = (ā j) j∈J and K ⊆ J be the sequence and the set obtained
from Theorem 1.17. Since cf I > ∣K∣, there exists some index k ∈ J∖K that
is greater than all elements of K. This index has the desired properties.

◻

2. Lascar invariant types
As forking is less well-behaved in non-simple theories, we need addi-
tional tools to investigate theories without the independence properties.

Lascar strong types
We start by studying the question of when two tuples ā, b̄ can appear as
elements of the same indiscernible sequence.

Definition 2.1. For two tuples ā and b̄, we write

ā ≈ls
U b̄ : iff there is some indiscernible sequence (c̄n)n<ω

over U such that c̄0 = ā and c̄1 = b̄ .
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We denote the transitive closure of ≈ls
U by ≡ls

U . If ā ≡ls
U b̄, we say that

ā and b̄ have the same Lascar strong type over U .

Remark. Clearly, ā ≡ls
U b̄ implies ā ≡U b̄.

Example. If b ∈ acl(Ua), then a ≈ls
U b iff a = b.

Exercise 2.1. Prove that ≈ls
U is reflexive and symmetric, but in general

not transitive.

Let us start by giving an alternative characterisation of the relation ≈ls
U

in terms of formulae that are chain-bounded.

Definition 2.2. A formula φ(x̄ , ȳ) where x̄ and ȳ have the same sorts is
chain-bounded if there exists a number n < ω such that

M ⊧ ¬∃x̄0⋯∃x̄n ⋀
0≤i<k≤n

φ(x̄ i , x̄k) .

Remark. Let φ(x̄ , ȳ) be a formula where x̄ and ȳ both have sorts s̄. By
compactness, it follows that the formula φ is not chain-bounded if, and
only if, for every strict linear order ⟨I, <⟩, there exist a homomorphism
⟨I, <⟩→ ⟨Ms̄ , φM⟩.

Example. If χ(x̄ , ȳ) ∈ FEs̄(U), then ¬χ(x̄ , ȳ) is chain-bounded.

Lemma 2.3. The following statements are equivalent :

(1) ā ≈ls
U b̄

(2) ā ≈ls
C b̄ , for all finite C ⊆ U.

(3) ā ≈ls
M b̄ , for some model M ⊇ U.

(4) For every set C, there exists some set C′ ≡U C such that ā ≈ls
UC′ b̄.

(5) M ⊧ ¬φ(ā, b̄) , for every chain-bounded formula φ over U.

(6) ⋃0≤i<k<ω p(x̄ i , x̄k) is satisfiable, where p(x̄ , x̄′) ∶= tp(āb̄/U).
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Proof. (4)⇒ (3) Fix an arbitrary model M containing U . By (4), there
is some M′ ≡U M such that ā ≈ls

M′ b̄.
(3)⇒ (1)⇒ (2) If (c̄ i)i<ω is an indiscernible sequence over a model

M ⊇ U with c̄0 = ā and c̄1 = b̄, then (c̄ i)i<ω is also indiscernible over U .
Similarly, if (c̄ i)i<ω is indiscernible over U , it is also indiscernible

over every subset C ⊆ U .
(2)⇒ (5) Consider a chain-bounded formula φ(x̄ , ȳ) over U . Fix a

finite set C ⊆ U such that φ is over C. Since ā ≈ls
C b̄, there exists an

indiscernible sequence (c̄n)n<ω over C such that c̄0 = ā and c̄1 = b̄. If
M ⊧ φ(ā, b̄), then φ would not be chain-bounded since indiscernibility
would imply that

M ⊧ φ(c̄ i , c̄k) , for all i < k < ω .

Therefore,M ⊧ ¬φ(ā, b̄).
(5) ⇒ (6) Suppose that ⋃0≤i<k<ω p(x̄ i , x̄k) is inconsistent. By com-

pactness, there exists a number n < ω and a finite subset Φ ⊆ p such that
⋃0≤i<k<n Φ(x̄ i , x̄k) is inconsistent. Setting φ(x̄ , x̄′) ∶= ⋀Φ we have

M ⊧ ¬∃x̄0⋯∃x̄n−1 ⋀
0≤i<k<n

φ(x̄ i , x̄k) .

Hence, φ is chain-bounded formula, and φ ∈ p implies M ⊭ ¬φ(ā, b̄).
(6) ⇒ (4) Let (c̄n)n<ω be a sequence satisfying ⋃0≤i<k<ω p(x̄ i , x̄k).

By Proposition e5.3.6, there exists an indiscernible sequence (d̄n)n<ω
over U with

Av((c̄n)n<ω/U) ⊆ Av((d̄n)n<ω/U) .

Since p(x̄0 , x̄1) ⊆ Av((c̄n)n/U), the sequence (d̄n)n<ω also satisfies
⋃0≤i<k<ω p(x̄ i , x̄k). In particular, d̄0d̄1 ≡U āb̄ and there exists an auto-
morphism π ∈ AutMU such that π(d̄0) = ā and π(d̄1) = b̄. We can use
Lemma e5.3.11 to find a set C′ ≡U C such that (π(d̄n))n<ω is indiscerni-
ble over U ∪ C′. It follows that ā ≈ls

UC′ b̄. ◻

Our next goal is to show that, for amodel M, the relation ≡ls
M coincides

with ≡M . We start with a technical lemma.
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Lemma 2.4. If φ(x̄ , ȳ) and ψ(x̄ , ȳ) are chain-bounded, then so is φ ∨ ψ.

Proof. Suppose that φ ∨ ψ is not chain-bounded. Then there exists a
sequence (c̄n)n<ω such that

M ⊧ (φ ∨ ψ)(c̄ i , c̄k) , for all i < k < ω .

By the Theorem of Ramsey, we can find an infinite subset I ⊆ ω such
that

M ⊧ φ(c̄ i , c̄k) , for all i < k in I ,
or M ⊧ ψ(c̄ i , c̄k) , for all i < k in I .

In the first case, φ is not chain-bounded ; in the second case, ψ is not
chain-bounded. ◻

Proposition 2.5. For a model M, the following statements are equivalent :
(1) ā ≡ls

M b̄
(2) ā ≡M b̄
(3) ā ≈ls

M c̄ ≈ls
M b̄ , for some c̄ .

(4) There exist tuples c̄0 , c̄1 , . . . such that the sequences ā, c̄0 , c̄1 , c̄2 , . . .
and b̄, c̄0 , c̄1 , c̄2 , . . . are both indiscernible over M.

(5) M ⊧ ∃ ȳ[¬φ(ā, ȳ) ∧ ¬φ(b̄, ȳ)] , for every chain-bounded for-
mula φ(x̄ , ȳ) over M.

Proof. (3)⇒ (1) is trivial.
(1)⇒ (2) By definition of ≡ls

M , there are tuples c̄0 , . . . , c̄n such that

ā = c̄0 ≈ls
M ⋯ ≈ls

M c̄n = b̄ .

For each k < n, there is an indiscernible sequence (d̄k
i )i<ω over M with

d̄k
0 = c̄k and d̄k

1 = c̄k+1. Consequently, c̄k ≡M c̄k+1 and the claim follows.
(2)⇒ (4) Suppose that ā ≡M b̄. By Lemma f2.3.15, we have ā u

√
M M.

As u
√

is a forking relation, the type tp(ā/M) has some u
√

-free exten-
sion p ∈ S s̄(M). We construct a sequence β = (c̄n)n<ω by inductively
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choosing a tuple c̄n realising p ↾M āā′ c̄[<n]. Since u
√
⊆ s
√
, the type

p is invariant over M and the sequences α ∶= āβ and α′ ∶= ā′β both sat-
isfy the conditions of Lemma f2.4.14 (b). Hence, they are indiscernible
over M.

(4)⇒ (3) Suppose that ā, c̄0 , c̄1 , c̄2 , . . . and b̄, c̄0 , c̄1 , c̄2 , . . . are indis-
cernible sequences over M. Then

ā ≈ls
M c̄0 and b̄ ≈ls

M c̄0 ,

and the claim follows by symmetry of ≈ls
M .

(2) ⇒ (5) Suppose that ā ≡M b̄. Let φ(x̄ , ȳ) be a chain-bounded
formula over M and let n be the minimal number such that

M ⊧ ¬∃x̄0⋯∃x̄n ⋀
0≤i<k≤n

φ(x̄ i , x̄k) .

Then

M ⊧ ∃x̄0⋯∃x̄n−1 ⋀
0≤i<k<n

φ(x̄ i , x̄k) .

As the same formula holds in M, there are tuples c̄0 , . . . , c̄n−1 in M such
that

M ⊧ ⋀
0≤i<k<n

φ(c̄ i , c̄k) .

By choice of n, there is an index k < n such that M ⊭ φ(ā, c̄k). Since
ā ≡M b̄ we also haveM ⊭ φ(b̄, c̄k). Consequently,

M ⊧ ¬φ(ā, c̄k) ∧ ¬φ(b̄, c̄k) .

(5)⇒ (3) Set

Φ( ȳ) ∶= {¬φ(ā, ȳ) ∧ ¬φ(b̄, ȳ) ∣ φ(x̄ , ȳ) a chain-bounded

formula over M } .
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If there is a tuple c̄ satisfying Φ, then it follows from Lemma 2.3 that

ā ≈ls
M c̄ and b̄ ≈ls

M c̄ .

Hence, it remains to show that T(M) ∪ Φ is satisfiable. Let Φ0 ⊆ Φ
be finite. Then there are chain-bounded formulae φ0 , . . . , φn−1 over M
such that

Φ0 = {¬φ i(ā, ȳ) ∧ ¬φ i(b̄, ȳ) ∣ i < n } .

By Lemma 2.4 the disjunction ψ ∶= φ0 ∨ ⋅ ⋅ ⋅∨φn−1 is also chain-bounded.
Therefore, (5) implies that there is some tuple c̄ with

M ⊧ ¬ψ(ā, c̄) ∧ ¬ψ(b̄, c̄) .

Consequently, c̄ satisfies T(M) ∪ Φ0. By compactness, it follows that
T(M) ∪ Φ is satisfiable. ◻

Finally we provide several characterisations of the relation ≡ls
U for ar-

bitrary sets U . One of them is in terms of bounded equivalence relations,
where boundedness is an analog to the notion of chain-boundedness,
but for the complement of the relation.

Definition 2.6. Let R ⊆Ms̄ ×Ms̄ be a relation.
(a) R is U-invariant if

āb̄ ≡U ā′b̄′ implies ⟨ā, b̄⟩ ∈ R⇔ ⟨ā′ , b̄′⟩ ∈ R .

(b) R is co-chain-bounded if there exists a small cardinal κ such that,
for every sequence α = (ā i)i<κ in Ms̄ , there are indices i < j with
⟨ā i , ā j⟩ ∈ R. A co-chain-bounded equivalence relation is simply called
bounded.

Before concentrating on equivalence relations, let us first give several
characterisations of co-chain-boundedness for arbitrary relations.

Proposition 2.7. LetR ⊆Ms̄×Ms̄ be aU-invariant relation. The following
statements are equivalent.
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(1) R is co-chain-bounded.
(2) ≈ls

U ⊆ R
(3) For every indiscernible sequence (ān)n<ω over U with ān ∈Ms̄ , we

have ⟨ā i , ā j⟩ ∈ R, for all i < j < ω.

Proof. (2)⇒ (3) Let (ān)n<ω be an indiscernible sequence over U . For
every pair of indices i < j < ω, we obtain an indiscernible sequence
ā i , ā j , ā j+1 , . . . over U ,whichwitnesses that ā i ≈

ls
U ā j .By (2), this implies

that ⟨ā i , ā j⟩ ∈ R.
(3) ⇒ (2) Let ā ≈ls

U b̄. By definition, there exists an indiscernible
sequence (c̄n)n<ω over U with c̄0 = ā and c̄1 = b̄. Hence, it follows by (3)
that ⟨c̄0 , c̄1⟩ ∈ R.

(1)⇒ (3) Let R be co-chain-bounded and let κ be the corresponding
cardinal. For a contradiction, suppose that there exists an indiscernible
sequence α = (ān)n<ω such that ⟨ā i , ā j⟩ ∉ R, for some i < j.We extend α
to an indiscernible sequence (ā i)i<κ of length κ. By U-invariance, it
follows that ⟨ā i , ā j⟩ ∉ R, for all i < j < κ. This contradicts our choice
of κ.

(3)⇒ (1) Suppose that R is not co-chain-bounded. Then there exists
a sequence (ā i)i<κ of length κ ∶= ℶλ+ where λ ∶= 2∣T∣⊕∣U ∣⊕∣s̄∣ such that

⟨ā i , ā j⟩ ∉ R , for all i < j < κ .

We can use Theorem e5.3.7 to find an indiscernible sequence (b̄n)n<ω
over U such that, for every ı̄ ∈ [ω]<ω , there is some ȷ̄ ∈ [κ]<ω with

b̄[ı̄] ≡U ā[ ȷ̄] .

By U-invariance, it follows that ⟨b̄ i , b̄ j⟩ ∉ R, for all i < j < ω. This
contradicts (3). ◻

For equivalence relations, we obtain the following characterisation.

Proposition 2.8. Let ≈ be a U-invariant equivalence relation on Ms̄ . The
following statements are equivalent :
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(1) ≈ is bounded.

(2) ≈ has at most 2∣T∣⊕∣U ∣⊕∣s̄∣ classes.

(3) ≡ls
U ⊆ ≈

(4) For every indiscernible sequence (ān)n<ω over U with ān ∈Ms̄ , we
have ā i ≈ ā j , for all i , j < ω.

(5) For every model M containing U ,

ā ≡M b̄ implies ā ≈ b̄ , for all ā, b̄ ∈Ms̄ .

Proof. (2) ⇒ (1) is trivial, and the equivalence (1)⇔ (4) has already
been proved in Proposition 2.7. The equivalence (1)⇔ (3) also follows by
Proposition 2.7 since ≈ is an equivalence relation and ≡ls

U is the transitive
closure of ≈ls

U . Consequently, we have

≡ls
U ⊆ ≈ iff ≈ls

U ⊆ ≈ .

(4)⇒ (5) Suppose that ā ≡M b̄. By Proposition 2.5 (4), we can find a
sequence γ = (c̄n)n<ω such that āγ and b̄γ are both indiscernible over M.
By (4), this implies that ā ≈ c̄0 ≈ b̄.

(5)⇒ (2) Fix a model M containing U of size ∣M∣ ≤ ∣T ∣⊕ ∣U ∣. Then
≡M ⊆ ≈ implies that ≈ has at most as many classes as ≡M . The latter
number is ∣S s̄(M)∣ ≤ 2∣T∣⊕∣M∣⊕∣s̄∣ = 2∣T∣⊕∣U ∣⊕∣s̄∣. ◻

Corollary 2.9. Let U ⊆M.
(a) ≈ls

U is the finest relation that is co-chain-bounded and U-invariant.

(b) ≡ls
U is the finest equivalence relation that is bounded and U-invari-

ant.

Over arbitrary sets U , we can characterise the relation ≡ls
U as follows.

Proposition 2.10. Let ā, b̄ ∈ Ms̄ and U ⊆ M. The following statements
are equivalent :

(1) ā ≡ls
U b̄
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(2) ā ≈ b̄, for every equivalence relation ≈ on M that is bounded and
U-invariant.

(3) There are tuples c̄0 , . . . , c̄n andmodels M0 , . . . , Mn−1 ⊇ U , for some
n < ω, such that

ā = c̄0 ≡M0 c̄1 ≡M1 ⋅ ⋅ ⋅ ≡Mn−2 c̄n−1 ≡Mn−1 c̄n = b̄ .

(4) There are models M0 , . . . , Mn−1 ⊇ U , for some n < ω, and auto-
morphisms π i ∈ AutMM i such that

b̄ = (πn−1 ○ ⋅ ⋅ ⋅ ○ π0)(ā) .

Proof. (3)⇔ (4) follows from the fact that c̄ i ≡M i c̄ i+1 if, and only if,
there exists some automorphism π i ∈ AutMM i with c̄ i+1 = π(c̄ i).

(1)⇒ (2) follows by Proposition 2.8 (3).
(2)⇒ (3) Let ∼∗ be the transitive closure of the relation

c̄ ∼ d̄ : iff c̄ ≡M d̄ , for some model M containing U .

This relation is clearly U-invariant. Furthermore, it is bounded since it
satisfies property (4) of Proposition 2.8. By (2), it follows that ā ∼∗ b̄.

(3)⇒ (1) By Proposition 2.5, there are tuples d̄ i , for i < n, such that

c̄ i ≈
ls
M i

d̄ i ≈
ls
M i

c̄ i+1 .

According to Lemma 2.3 this implies that

c̄ i ≈
ls
U d̄ i ≈

ls
U c̄ i+1 , for all i < n .

Hence, ā = c̄0 ≡ls
U c̄n = b̄. ◻

Two tuples are said to have the same strong type over a set U if they
are elementarily equivalent over acleq(U). The next result shows that
having the same Lascar strong type implies having the same strong type.

Corollary 2.11. ā ≡ls
U b̄ implies ā ≡acleq(U) b̄ .
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Proof. Suppose that ā ≡ls
U b̄. We can use Proposition 2.10 to find tuples

c̄0 , . . . , c̄n and models M0 , . . . , Mm−1 ⊇ U such that

ā = c̄0 ≡M0 ⋅ ⋅ ⋅ ≡Mn−1 c̄n = b̄ .

This implies that

ā = c̄0 ≡Meq
0
⋅ ⋅ ⋅ ≡Meq

n−1
c̄n = b̄ .

Since acleq(U) ⊆ Meq
i , for all i, it follows that

ā = c̄0 ≡acleq(U) ⋅ ⋅ ⋅ ≡acleq(U) c̄n = b̄ . ◻

We conclude our investigation of Lascar strong types by two technical
results. The first one shows that the relation ≈ls

U satisfies a restricted form
of the back-and-forth property.

Lemma 2.12. If ā ≈ls
U b̄ and c̄ d

√
U ā b̄, there exists a tuple d̄ such that

āc̄ ≈ls
U b̄d̄.

Proof. Let (ā i)i<ω be an indiscernible sequence over U with ā0 = ā and
ā1 = b̄. Since the subsequence (ā i)0<i<ω is indiscernible over U ∪ ā and
c̄ d
√

U ā b̄,we can use Lemma f3.1.3 to find an element c̄′ ≡U ā b̄ c̄ such that
(ā i)0<i<ω is indiscernible over U āc̄′. Applying an U āb̄-automorphism
mapping c̄′ to c̄, we obtain an indiscernible sequence (ā′i)0<i<ω over
U āc̄ such that

(ā′i)0<i<ω ≡U ā b̄ (ā i)0<i<ω .

Replacing ā i by ā′i , for 0 < i < ω, we may therefore assume that the
sequence (ā i)0<i<ω is indiscernible over U āc̄.

For every i < ω, we choose an automorphism π i ∈ AutMU such
that π i(ān) = ān+i , for all n, and we set c̄ i ∶= π i(c̄). Since (ā i)0<i<ω is
indiscernible over U āc̄, it follows that

c̄ āb̄ ≡U c̄ āān ≡U c̄ i ā i ān+i , for all i < ω and 0 < n < ω .
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By Proposition e5.3.6, there exists an indiscernible sequence (c̄′i ā
′
i)i<ω

over U such that

Av((c̄ i ā i)i<ω/U) ⊆ Av((c̄′i ā
′
i)i<ω/U) .

In particular, we have

c̄′i ā
′
i ā
′
n+i ≡U c̄ i ā i ān+i ≡U c̄ āb̄ .

Let σ be an U-automorphism such that σ(c̄′0) = c̄, σ(ā′0) = ā, and
σ(ā′1) = b̄. The tuple d̄ ∶= σ(c̄′1) has the desired properties. ◻

The second observation contains a strengthening of the extension
axiom.

Lemma 2.13. Let
√

be a forking relation and suppose that ā
√

U U. For
every set B, there exists a tuple ā′ ≈ls

U ā such that ā′
√

U B.

Proof. Since ā
√

U U , we can use Proposition f2.4.10 to construct a√
-Morley sequence (ān)n<ω for tp(ā/U) over U . Applying a suitable

automorphismwemay assume that ā0 = ā. Since ā[>0]
√

U ā0, there ex-
ists a sequence α′ ≡U ā0 ā[>0] such that α′

√
U Bā0. Let α′ = (ā′i)0<i<ω .

As ā0α′ is indiscernible over U , we have ā0 ≈ls
U ā′1. Since ā′1

√
U B, the

claim follows. ◻

Lascar invariance
To study theories without the independence property, we introduce
variants of the relations s

√
and i
√

that are based on Lascar strong types
instead of elementary equivalence.

Definition 2.14. For A, B,U ⊆M we define

A q
√

U B : iff b̄ ≈ls
U b̄′ ⇒ b̄ ≈ls

UA b̄′ for all b̄, b̄′ ⊆ B ,

A ls
√

U B : iff b̄ ≡ls
U b̄′ ⇒ b̄ ≡UA b̄′ for all b̄, b̄′ ⊆ B ,

A li
√

U B : iff A ∗( ls
√
)U B .

1177



f4. Theories without the independence property

If ā ls
√

U B, we say that tp(ā/UB) is Lascar invariant over U .

Note that s
√
⊆ ls
√
⊆ q
√

. Unfortunately, the relation ls
√

is not a
preforking relation since it fails transitivity. But q

√
is. Hence, in order to

show that li
√

is a forking relation, we will prove below that li
√
= ∗( q
√
).

Exercise 2.2. Prove that ls
√

satisfies all axioms of a preforking relation
except for (ltr).

Before turning to li
√
, we take a look at the relation q

√
.

Lemma 2.15. q
√

is a preforking relation.

Proof. (inv) follows immediately from the definition.
(mon) Suppose that A q

√
U B and let A0 ⊆ A and B0 ⊆ B. For tuples

b̄, b̄′ ⊆ B0 ⊆ B, we have

b̄ ≈ls
U b̄′ ⇒ b̄ ≈ls

UA b̄′ ⇒ b̄ ≈ls
UA0

b̄′ .

(bmon) Suppose that A q
√

U BC and let b̄, b̄′ ⊆ B. Fixing an enumera-
tion c̄ of C, we have

b̄ ≈ls
UC b̄′ ⇒ b̄c̄ ≈ls

U b̄′ c̄ ⇒ b̄c̄ ≈ls
UA b̄′ c̄ ⇒ b̄ ≈ls

UCA b̄′ .

(nor) Suppose that A q
√

U B. To show that AU q
√

U BU , consider
tuples b̄, b̄′ ⊆ U ∪ B with b̄ ≈ls

U b̄′. Reordering b̄ and b̄′, we may assume
that b̄ = b̄0 c̄ and b̄′ = b̄′0 c̄ for b̄0 , b̄′0 ⊆ B and c̄ ⊆ U . Consequently,

b̄0 c̄ ≈ls
U b̄′0 c̄ ⇒ b̄0 ≈ls

U b̄′0 ⇒ b̄0 ≈ls
UA b̄′0 ⇒ b̄0 c̄ ≈ls

UA b̄′0 c̄ .

(lrf) To show that A q
√

A B, let b̄, b̄′ ⊆ B. Since, trivially,

b̄ ≈ls
A b̄′ implies b̄ ≈ls

A b̄′ ,

the claim follows.
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(ltr) Suppose that A2
q
√

A1 B and A1
q
√

A0 B for A0 ⊆ A1 ⊆ A2. To
show that A2

q
√

A0 B, consider two tuples b̄, b̄′ ⊆ B. Then

b̄ ≈ls
A0

b̄′ ⇒ b̄ ≈ls
A1

b̄′ ⇒ b̄ ≈ls
A2

b̄′ .

(fin) Suppose that A0
q
√

U B, for all finite A0 ⊆ A. To show that
A q
√

U B, consider two tuples b̄, b̄′ ⊆ B. Then

b̄ ≈ls
U b̄′ implies b̄ ≈ls

UA0
b̄′ , for all finite A0 ⊆ A .

By Lemma 2.3, it follows that b̄ ≈ls
UA b̄′.

(def) Suppose that ā q
ÒÒ
√

U B. Then there are tuples b̄, b̄′ ⊆ B such that

b̄ ≈ls
U b̄′ and b̄ ≉ls

U ā b̄
′ .

By Lemma 2.3, there exists some formula φ(x̄ , ȳ; z̄) over U such that
φ(x̄ , ȳ; ā) is chain-bounded andM ⊧ φ(b̄, b̄′; ā). Let n be the minimal
number such that

M ⊧ ¬∃x̄0⋯∃x̄n−1 ⋀
0≤i<k<n

φ(x̄ i , x̄k ; ā) ,

and set

ψ(z̄) ∶= φ(b̄, b̄′; z̄) ∧ ¬∃x̄0⋯∃x̄n−1 ⋀
0≤i<k<n

φ(x̄ i , x̄k ; z̄) .

If ā′ is a tuple satisfying ψ(x̄), then φ(x̄ , ȳ; ā′) is chain-bounded and it
follows by Lemma 2.3 that b̄ ≉ls

U ā′ b̄
′. Hence, ā′ q

ÒÒ
√

U B. ◻

There is also a characterisation of q
√

in terms of indiscernible se-
quences, which is obtained by simply replacing the relation ≈ls

U by its
definition.

Lemma 2.16. A q
√

U B if, and only if, for every indiscernible sequence
(b̄ i)i<ω over U with b̄0 , b̄1 ⊆ B, we can find some indiscernible sequence
(b̄′i)i<ω over U ∪ Awith b̄′0 = b̄0 and b̄′1 = b̄1.
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Proof. (⇐) To show that A q
√

U B, consider two tuples b̄, b̄′ ⊆ B with
b̄ ≈ls

U b̄′. Then there is some indiscernible sequence (c̄ i)i<ω over U
with c̄0 = b̄ and c̄1 = b̄′. By assumption, we can find an indiscernible
sequence (c̄′i)i<ω over U ∪ Awith c̄′0 = c̄0 and c̄′1 = c̄1. This implies that
b̄ = c̄′0 ≈ls

U∪A c̄′1 = b̄′.
(⇒) Suppose that A q

√
U B and let (b̄ i)i<ω be an indiscernible se-

quence over U with b̄0 , b̄1 ⊆ B. Then b̄0 ≈ls
U b̄1, which implies that

b̄0 ≈ls
UA b̄1. Consequently, there is some indiscernible sequence (b̄′i)i<ω

over U ∪ Awith b̄′0 = b̄0 and b̄′1 = b̄1. ◻

Before proving that li
√

is a forking relation,we collect several different
characterisations of this relation. We start with the following one.

Lemma 2.17. A li
√

U B if, and only if, for every finite set of indiscernible
sequences α0 , . . . , αn−1 over U , there exists a set A′ ≡UB A such that
each α i is indiscernible over U ∪ A′.

Proof. (⇒) Suppose that A li
√

U B and let α0 , . . . , αn−1 be indiscernible
over U .W.l.o.g.wemay assume that each α i is indexed by a dense order I i .
By definition of li

√
, there exists a set A′ ≡UB A such that

A′ ls
√

U Bα0 . . . αn−1 .

We claim that each sequence α i is indiscernible over U ∪ A′. Suppose
that α i = (ā i

j) j∈I i . By Lemma e5.3.12, it is sufficient to prove that

ā i[k̄] ≡UA′ ā i[ l̄] , for all k̄, l̄ ∈ [I i]
n such that k̄ = ūsv̄ and

l̄ = ūtv̄ with s < t .

Given ū, v̄ , s, t, we fix a strictly increasing function g ∶ ω → I i such that

g(0) = s , g(1) = t , and g( j) < v̄ , for all j < ω .

The sequence (ā i[ūg( j)v̄]) j<ω witnesses that

ā i[ūsv̄] ≈ls
U ā i[ūtv̄] .
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Therefore, A′ ls
√

U Bα0 . . . αn−1 implies that ā i[ūsv̄] ≡UA′ ā i[ūtv̄].
(⇐) Let ā, B, and U be sets such that, for all indiscernible sequences

α0 , . . . , αn−1 over U , there is some tuple ā′ ≡UB ā such that each α i is
indiscernible over U ∪ ā′. To show that ā li

√
U B, consider some set

C ⊆M. We have to find some tuple ā′ ≡UB ā such that ā′ ls
√

U BC. To
do so, it is sufficient to prove that the set

Φ(x̄) ∶= tp(ā/UB)

∪ {φ(x̄; b̄)↔ φ(x̄; b̄′) ∣ b̄, b̄′ ⊆ UBC , b̄ ≡ls
U b̄′ }

is satisfiable. Hence, consider a finite subset Φ0 ⊆ Φ. Then there are
formulae φ0(x̄; ȳ0), . . . , φn(x̄; ȳn) and parameters b̄0 , b̄′0 , . . . , b̄n , b̄′n ⊆
U ∪ B ∪ C such that b̄ i ≡

ls
U b̄′i , for all i ≤ n, and

Φ0 ⊆ tp(ā/UB) ∪ {φ i(x̄; b̄ i)↔ φ i(x̄; b̄′i) ∣ i ≤ n } .

For each i ≤ n, we fix a finite sequence c̄ i
0 ≈

ls
U ⋯ ≈ls

U c̄ i
m(i) with c̄ i

0 = b̄ i

and c̄ i
m(i) = b̄′i and, for every j < m(i), we choose an indiscernible

sequence β i
j over U starting with the tuples c̄ i

j and c̄ i
j+1. By assumption,

there exists a tuple ā′ ≡UB ā such that every β i
j is indiscernible over

U ∪ ā′. This implies that

c̄ i
j ≈

ls
U ā′ c̄

i
j+1 .

Hence, b̄ i ≡
ls
U ā′ b̄

′
i , which implies that b̄ i ≡U ā′ b̄′i . Consequently, ā′ real-

ises Φ0. ◻

It follows that li
√

is the coarsest forking relation that preserves indis-
cernibility.

Proposition 2.18. Let
√

be a forking relation. Then
√
⊆ li
√

if, and only
if, whenever β is an indiscernible sequence over some set U and A

√
U β,

then β is indiscernible over U ∪ A.

1181



f4. Theories without the independence property

Proof. (⇒) Suppose that
√
⊆ li
√

and that A
√

U β, for some indiscerni-
ble sequence β over U . Then A li

√
U β andwe can use Lemma 2.17 to find

a set A′ ≡Uβ A such that β is indiscernible over U ∪A′. Since A′β ≡U Aβ,
it follows that β is also indiscernible over U ∪ A.
(⇐) To show that

√
⊆ li
√
, suppose that A

√
U B. We use the char-

acterisation of Lemma 2.17 to prove that A li
√

U B. Hence, consider
indiscernible sequences α0 , . . . , αn−1 over U . By (ext), there exists a set
A′ ≡UB A such that

A′
√

U Bα0 . . . αn−1 .

By assumption, A′
√

U α i implies that α i is indiscernible over U ∪ A′.
◻

We also need the following technical lemma about the splitting rela-
tion s
√

.

Lemma 2.19. Let ā s
√

U M where M is a κ-saturated model and U ⊆ M
a set of size ∣U ∣ < κ. For every set C, there exists a unique extension of
tp(ā/M) over M ∪ C that is s

√
-free over U.

Proof. For uniqueness, suppose that there are two extension p and p′

of tp(ā/M) over C ⊇ M that are both s
√

-free over U . Fix realisations
b̄ and b̄′ of these two types and consider a finite tuple c̄ ⊆ C. Since M is
κ-saturated, we can find some tuple d̄ ⊆ M with d̄ ≡U c̄. Then

b̄ s
√

U C , b̄′ s
√

U C , and c̄ ≡U d̄

implies c̄ ≡U b̄ d̄ and c̄ ≡U b̄′ d̄ . Furthermore,

b̄ ≡M ā ≡M b̄′ implies b̄ ≡U d̄ b̄′ .

Consequently,

b̄c̄ ≡U b̄d̄ ≡U b̄′d̄ ≡U b̄′ c̄ .
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Hence, b̄ ≡U c̄ b̄′, for all finite c̄ ⊆ C, which implies that b̄ ≡UC b̄′.
Consequently, p = tp(b̄/C) = tp(b̄′/C) = p′.

It remains to prove the existence of a s
√

-free extension. As M is κ-
saturated, it realises every type over U . Hence, there exists a function
g ∶ C<ω → M<ω such that

g(c̄) ≡U c̄ , for all c̄ ∈ C<ω .

We claim that

p ∶= {φ(x̄; c̄) ∣ φ(x̄; ȳ) a formula, c̄ ∈ C<ω , M ⊧ φ(ā; g(c̄)) }

is the desired type.
Let us start by showing that the set p is satisfiable. Consider finitely

many formulae φ0(x̄; c̄0), . . . , φn(x̄; c̄n) ∈ p and set c̄ ∶= c̄0 . . . c̄n and
d̄ ∶= g(c̄0) . . . g(c̄n). By definition of p, we have

M ⊧ φ0(ā; g(c̄0)) ∧ ⋅ ⋅ ⋅ ∧ φn(ā; g(c̄n)) .

By κ+-saturation of M, there exists a tuple b̄ ⊆ M with b̄ ≡U c̄. Then

g(c̄) ≡U c̄ ≡U b̄ and ā s
√

U M implies g(c̄) ≡U ā b̄ .

Choosing some tuple ā′ such that āb̄ ≡U ā′ c̄, it follows that

āg(c̄) ≡U āb̄ ≡U ā′ c̄ .

Suppose that g(c̄) = d̄0 . . . d̄n . Then

M ⊧ φ i(ā; g(c̄ i)) and ā s
√

U M implies M ⊧ φ i(ā; d̄ i) .

By choice of ā′, it follows that

M ⊧ φ0(ā′; c̄0) ∧ ⋅ ⋅ ⋅ ∧ φn(ā′; c̄n) .

Thus, ā′ is the desired tuple satisfying every φ i(x̄; c̄ i).
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Furthermore, note that p is a complete type over C since, for every
formula φ(x̄; c̄) with parameters c̄ ⊆ C, we have

φ(x̄; c̄) ∈ p iff M ⊧ φ(ā; g(c̄))
iff M ⊭ ¬φ(ā; g(c̄)) iff ¬φ(x̄; c̄) ∉ p .

To see that p is s
√

-free over U , consider two tuples c̄, c̄′ ⊆ C such that
c̄ ≡U c̄′. Then

g(c̄) ≡U c̄ ≡U c̄′ ≡U g(c̄′) and ā s
√

U M

implies that g(c̄) ≡U ā g(c̄′). For a formula φ(x̄; ȳ) over U , it follows
that

φ(x̄; c̄) ∈ p iff M ⊧ φ(ā; g(c̄))
iff M ⊧ φ(ā; g(c̄′)) iff φ(x̄; c̄′) ∈ p . ◻

Proposition 2.20. Let ā,U ⊆M and let M be a model containing U that
is (∣T ∣ ⊕ ∣U ∣)+-saturated and strongly (∣T ∣ ⊕ ∣U ∣)+-homogeneous. The
following statements are equivalent :

(1) ā li
√

U M.

(2) ā ls
√

U M.

(3) ā q
√

U M.

(4) b̄ ≡ls
U b̄′ ⇒ b̄ ≡ls

U ā b̄
′ for all finite b̄, b̄′ ⊆ M .

(5) ā s
√

N M, for all models N ⪯M containing U.

(6) For all models N ⪯M containing U , we have

b̄ ≡N b̄′ ⇒ b̄ ≡U ā b̄′ , for all b̄, b̄′ ⊆ M .

(7) tp(ā/M) is invariant under all automorphisms of M that fix some
model N ⪯M containing U.
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(8) Every indiscernible sequence (b̄ i)i<ω over U that is contained in M
is also indiscernible over U ∪ ā.

(9) For every indiscernible sequence (b̄ i)i<ω over U with b̄0 , b̄1 ⊆ M,
we can find some indiscernible sequence (b̄′i)i<ω over U ∪ ā with
b̄′0 = b̄0 and b̄′1 = b̄1.

(10) b̄0 ≡U ā b̄1, for every indiscernible sequence (b̄ i)i<ω over U with
b̄0 , b̄1 ⊆ M.

Proof. Set κ ∶= ∣T ∣⊕ ∣U ∣.
(3)⇔ (9) was already proved in Lemma 2.16.
(3) ⇒ (4) Consider two finite tuples b̄, b̄′ ⊆ M with b̄ ≡ls

U b̄′. By
definition of ≡ls, there are tuples c̄0 , . . . , c̄n such that c̄0 = b̄, c̄n = b̄′
and c̄ i ≈

ls
U c̄ i+1, for all i < n. As M is κ+-saturated, we may assume that

c̄0 , . . . , c̄n are contained in M. By (3), it follows that c̄ i ≈
ls
U ā c̄ i+1, for all

i < n. This implies that b̄ ≡ls
U ā b̄

′.
(4)⇒ (7) Let π ∈ Aut MN , for some model N ⪯M containing U . For

every finite b̄ ⊆ M, it follows by Proposition 2.5 that

b̄ ≡N π(b̄) ⇒ b̄ ≡ls
N π(b̄)

⇒ b̄ ≡ls
N ā π(b̄) ⇒ b̄ ≡ā π(b̄) .

Consequently, for every formula φ(x̄; ȳ),

φ(x̄; b̄) ∈ tp(ā/M) iff φ(x̄; π(b̄)) ∈ tp(ā/M) .

(7)⇒ (2) Let b̄, b̄′ ⊆ M be tuples with b̄ ≡ls
U b̄′. First, we consider

the case where b̄ and b̄′ are finite. By Proposition 2.10, there are tuples
c̄0 , . . . , c̄n and models N0 , . . . , Nm−1 ⊇ U such that

ā = c̄0 ≡N0 c̄1 ≡N1 ⋅ ⋅ ⋅ ≡Nn−2 c̄n−1 ≡Nn−1 c̄n = b̄ .

Replacing each model Ni by a suitable elementary substructure, we
can ensure that ∣N i ∣ = κ. By κ+-saturation of M, we may therefore
assume that N i ⊆ M. Hence, κ+-homogeneity of M implies that there
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are automorphisms π i ∈ Aut MN i with π i(c̄ i) = c̄ i+1. By (7) it follows
that c̄ i ≡N i ā c̄ i+1. Consequently, b̄ ≡U ā b̄′.

For infinite tuples b̄, b̄′ ⊆ M, it follows that

b̄ ≡ls
U b̄′ ⇒ b̄∣I ≡U ā b̄′∣I , for all finite sets of indices I

⇒ b̄ ≡U ā b̄′ .

Consequently, ā ls
√

U M.
(2) ⇒ (5) Let N ⪯ M be a model containing U and consider two

tuples b̄, b̄′ ⊆ M with b̄ ≡N b̄′. Let c̄ be an enumeration of N . By (2) and
Proposition 2.5, it follows that

b̄ ≡N b̄′ ⇒ b̄c̄ ≡N b̄′ c̄

⇒ b̄c̄ ≡ls
N b̄′ c̄

⇒ b̄c̄ ≡ls
U b̄′ c̄

⇒ b̄c̄ ≡U ā b̄′ c̄

⇒ b̄ ≡U ā c̄ b̄′ ⇒ b̄ ≡N ā b̄′ .

(5)⇒ (6) is trivial.
(6) ⇒ (10) Let (b̄ i)i<ω be an indiscernible sequence over U such

that b̄0 , b̄1 ⊆ M. We fix an arbitrary model N ⪯ M of size ∣N ∣ = κ
containing U . By Lemma e5.3.11, there is some model N ′ ≡U N such that
(b̄ i)i<ω is indiscernible over N ′. In particular, we have b̄0 ≡N ′ b̄1. By
κ+-saturation of M, we can find some set N ′′ ⊆ M with N ′′ ≡U b̄0 b̄1

N ′.
Hence, b̄0 ≡N ′′ b̄1 and (6) implies that b̄0 ≡U ā b̄1.

(10)⇒ (8) Let (b̄ i)i<ω be an indiscernible sequence over U that is
contained in M. To show that (b̄ i)i<ω is indiscernible over U ∪ ā, we
will prove that

b̄[ı̄] ≡U ā b̄[k̄] , for all ı̄ , k̄ ∈ [ω]n , n < ω .

It is sufficient to consider the case where ı̄ < k̄. Hence, let ı̄ < k̄ be
elements of [ω]n . Fix some increasing sequence l̄0 < l̄1 < . . . in [ω]n
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with l̄0 = ı̄ and l̄1 = k̄. We set c̄ j ∶= b̄[ l̄ j]. Then (c̄ j) j<ω is indiscernible
over U and it follows by (10) that b̄[ı̄] = c̄0 ≡U ā c̄1 = b̄[k̄].

(8)⇒ (9) Let (b̄n)n<ω be an indiscernible sequence over U such that
b̄0 , b̄1 ⊆ M. We first consider the special case where the tuples b̄n are
finite. Since M is κ+-saturated, it contains some sequence (b̄′i)i<ω with
b̄′[ω] ≡U b̄0 b̄1

b̄[ω]. Then b̄′0 = b̄0, b̄′1 = b̄1 and it follows by (8) that
(b̄′i)i<ω is indiscernible over U ∪ ā.

For the general case, let Φ((x̄n)n<ω) be a set of formulae stating that
the sequence (x̄n)n<ω is indiscernible over U ∪ ā and that x̄0 = b̄0
and x̄ 1 = b̄1. We have to show that Φ is satisfiable. Thus, consider a
finite subset Φ0 ⊆ Φ. Then there is a finite set I of indices such that
the formulae in Φ0 only contain variables xn

i with i ∈ I. Applying the
special case we have proved above to the sequence (b̄n ∣I)n<ω , we obtain
an indiscernible sequence (b̄′n)n<ω over U ∪ ā with b̄′0 = b̄0 and b̄′1 = b̄1.
This sequence satisfies Φ0.

(1)⇒ (2) follows since li
√
= ∗( ls
√
) ⊆ ls
√

.
(5)⇒ (1) Fix some set C ⊆ M. We have to show that there is some

tuple ā′ ≡M ā with ā′ ls
√

U MC. Let N ⪯M be a model containing U of
size ∣N ∣ = κ. Then ā s

√
N M and we can use Lemma 2.19 to find some

tuple āN ≡M ā such that āN
s
√

N MC and tp(āN/MC) is the unique
s
√

-free extension of tp(ā/M). Furthermore, if we are given two such
models N,N′ ⪯M, we can find some model N+ ⪯M containing N ∪ N ′

of size ∣N+∣ = κ. Then

āN
s
√

N+ MC , āN ′
s
√

N+ MC , and āN ≡M āN ′ ,

and it follows by uniqueness that āN ≡MC āN ′ . Consequently, choosing
ā′ ∶= āN0 , for an arbitrary model N0, we have

ā′ ≡M ā and ā′ s
√

N MC , for all models U ⊆ N ⊆ M
of size ∣N ∣ = κ .

We claim that ā′ ls
√

N MC. Consider two tuples b̄, b̄′ ⊆ MC with
b̄ ≈ls

U b̄′. By Lemma 2.3, there is some model N ⊇ U with b̄ ≡N b̄′. We
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can choose N of size ∣N ∣ = κ and, by κ+-saturation of M,we may assume
that N ⊆ M. Consequently,

ā′ s
√

N MC implies b̄ ≡N ā′ b̄′ ,

as desired. ◻

Corollary 2.21. li
√
= ∗( q
√
) is a forking relation.

Proof. We have seen in Lemma 2.15 that q
√

is a preforking relation.
Consequently, ∗( q

√
) is a forking relation and it remains to prove that it

coincides with li
√

. The inclusion ls
√
⊆ q
√

follows immediately from the
respective definitions. Consequently, li

√
= ∗( ls
√
) ⊆ ∗( q

√
). Conversely,

by the implication (3)⇒ (1) of Proposition 2.20, we have

A ∗( q
√
)U M implies A li

√
U M ,

for sufficiently saturated models M. According to Lemma f2.4.7, this
implies that ∗( q

√
) ⊆ li
√

. ◻

Corollary 2.22. s
√
⊆ ls
√
⊆ q
√

and i
√
⊆ li
√
⊆ f
√

Proof. The first two inclusions follow immediately from the respective
definitions. For the thrid one, it follows that

i
√
= ∗( s
√
) ⊆ ∗( ls

√
) = li
√

.

For the last inclusion, it is sufficient to prove that

A li
√

U M implies A d
√

U M ,

for every sufficiently saturatedmodel M, sinceLemma f2.4.7 then implies
that li
√
= ∗( li
√
) ⊆ ∗(d

√
) = f
√

.
Hence, suppose that A li

√
U M whereM is a (∣T ∣⊕∣U ∣)+-saturated and

strongly (∣T ∣⊕ ∣U ∣)+-homogeneous model containing U . By finite char-
acter it is sufficient to show that A d

√
U B, for every finite subset B ⊆ M.
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Hence, let B ⊆ M be finite, and consider an indiscernible sequence
(b̄′i)i<ω over U where b̄′0 is an enumeration of B. By (∣T ∣ ⊕ ∣U ∣)+-sat-
uration of M, we can find an indiscernible sequence (b̄ i)i<ω over U
such that b̄[ω] ⊆ M and b̄[ω] ≡U b̄′0 b̄

′[ω]. By Proposition 2.20 (8), this
sequence is indiscernible over U ∪ A. Let A′ be some set such that

Ab̄[ω] ≡U b̄′0 A
′b̄′[ω] .

Then (b̄′i)i<ω is indiscernible over U ∪A′ and it follows by Lemma f3.1.3
that A d

√
U b̄′0. ◻

It the remainder of this section we compare the relations li
√

and f
√

.

Definition 2.23. We call an independence relation
√

weakly bounded if,
there exists a function f ∶ Cn→ Cn such that

mult√(p) ≤ f (∣T ∣⊕ ∣U ∣) , for all p ∈ S<ω(U) .

In this case we also say that
√

is weakly bounded by f .

We can characterise li
√

as the coarsest weakly bounded forking rela-
tion.

Proposition 2.24.

(a) li
√

is weakly bounded by f (κ) = 22κ
.

(b)
√
⊆ li
√
, for every weakly bounded forking relation

√
.

Proof. (a) Fix a type p ∈ S<ω(U) and some set C ⊇ U . We have to show
that p has at most κ ∶= 22∣T∣⊕∣U ∣ li

√
-free extensions over C. For q ∈ S<ω(C),

let gq be the function mapping a formula φ(x̄; ȳ) over U to the set

gq(φ) ∶= { [b̄]≡ls
U
∣ φ(x̄; b̄) ∈ q} .

We claim that gq = gq′ implies q = q′.
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f4. Theories without the independence property

For the proof, suppose that gq = gq′ and let φ(x̄; b̄) ∈ q. Then [b̄]≡ls
U
∈

gq = gq′ implies that there is some tuple b̄′ ≡ls
U b̄ with φ(x̄; b̄′) ∈ q′. Fix a

tuple ā′ realising q′. Then ā′ ls
√

U C and

b̄ ≡ls
U b̄′ implies M ⊧ φ(ā′; b̄)↔ φ(ā′; b̄′) .

Consequently, φ(x̄; b̄) ∈ q′, as desired.
To conclude the proof, let N ⊇ U be a model of size ∣T ∣ ⊕ ∣U ∣. Note

that the number of ≡N -classes of finite tuples is at most ∣S<ω(N)∣ = 2∣N ∣.
By Proposition 2.5, it follows that there are also at most that many ≡ls

U -
equivalence classes of finite tuples. Hence, there are at most 22∣N ∣ = κ
functions of the form gq. It follows that there are at most κ li

√
-free

extensions of p over C.
(b) For a contradiction, suppose that there is aweakly bounded forking

relation
√

with
√
⊈ li
√

. Then there are ā, B,U ⊆M such that

ā
√

U B and ā li
ÒÒ
√

U B .

Let f ∶ Cn → Cn be the function bounding
√

and let M ⊇ U ∪ B be a
model that is (∣T ∣⊕ ∣U ∣)+-saturated and strongly (∣T ∣⊕ ∣U ∣)+-homoge-
neous. By (ext), we can find some tuple ā′ ≡UB ā with ā′

√
U M. By

(mon), we have ā′ li
ÒÒ
√

U M. Hence, we can use Proposition 2.20 (10) to
find an indiscernible sequence (b̄ i)i<ω over U with b̄0 , b̄1 ⊆ M such that
b̄0 ≢U ā′ b̄1. Fix some formula φ(x̄; ȳ) such that

M ⊧ ¬φ(ā′; b̄0) ∧ φ(ā′; b̄1) .

Let I ⊆ ω be an infinite set of indices such that

M ⊧ φ(ā′; b̄ i)↔ φ(ā′; b̄k) for all i , k ∈ I ,

and let (c̄ j) j∈J be an extension of (b̄ i)i∈I∪{0,1} of size ∣J∣ > f (∣T ∣⊕ ∣U ∣)
that is indiscernible over U and such that the order J is strongly ℵ0-
homogeneous. Fix a tuple ā′′ ≡UM ā′ with ā′′

√
U M c̄[J]. For every
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j ∈ J, fix an order automorphism σ j ∶ J → J such that σ j(0) = j and let
π j ∈ AutMU be an automorphism with

π j(c̄k) = c̄σ j(k) , for all k ∈ J .

Setting ā j ∶= π j(ā′′) it follows by invariance that

ā j
√

U c̄[J] and ā j ≢U c̄[J] āk , for j ≠ k .

Hence, mult√(tp(ā/U)) ≥ ∣J∣ > f (∣T ∣⊕ ∣U ∣). A contradiction. ◻

Corollary 2.25. Let T be a complete first-order theory. The following
statements are equivalent.

(1) f
√
= li
√

.

(2) f
√

is weakly bounded.

(3) If β is an indiscernible sequence over some set U and A f
√

U β, then
β is indiscernible over U ∪ A.

Proof. (1)⇒ (2) follows by Proposition 2.24 (a).
(2) ⇒ (1) The inclusion li

√
⊆ f
√

follows by Corollary 2.22, while
f
√
⊆ li
√

follows by Proposition 2.24 (b).
(1)⇒ (3) follows by Proposition 2.18.
(3) ⇒ (1) The inclusion li

√
⊆ f
√

follows by Corollary 2.22, while
f
√
⊆ li
√

follows by Proposition 2.18. ◻

Theorem 2.26. If a theory T does not have the independence property,
then li

√
= f
√

.

Proof. The inclusion li
√
⊆ f
√

was proved in Corollary 2.22. For the
converse, it is sufficient, by Lemma f2.4.7, to prove that

ā f
√

U M implies ā li
√

U M ,
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for all models M that are (∣T ∣⊕ ∣U ∣)+-saturated and strongly (∣T ∣⊕ ∣U ∣)+-
homogeneous.

Hence, let ā f
√

U M. We check condition (10) of Proposition 2.20.
Let (b̄ i)i<ω be an indiscernible sequence over U with b̄0 , b̄1 ⊆ M. Then
ā f
√

U M implies that ā d
√

U b̄0 b̄1. By Lemma f3.1.3, there exists a tuple
ā′ ≡U b̄0 b̄1

ā such that the sequence (b̄2i b̄2i+1)i<ω is indiscernible over
U ∪ ā′. For a contradiction, suppose that b̄0 ≢U ā b̄1. Then b̄0 ≢U ā′ b̄1
and there is some formula φ(x̄) over U ∪ ā′ such that

M ⊧ φ(b̄0) ∧ ¬φ(b̄1) .

By indiscernibility of (b̄2i b̄2i+1)i<ω over U ∪ ā′, it follows that

M ⊧ φ(b̄ i) iff i is even.

Hence, Proposition e5.4.2 implies that T has the independence property.
A contradiction. ◻

Proposition 2.27. A simple theory T does not have the independence
property if, and only if, li

√
= f
√

.

Proof. (⇒) follows by Theorem 2.26.
(⇐) Suppose that T is a simple theory with the independence prop-

erty. We have to show that li
√
≠ f
√

. We can use Proposition e5.4.2
to find an indiscernible sequence (ān)n<ω and a formula φ(x̄; b̄) with
parameters b̄ ⊆M such that

M ⊧ φ(ān ; b̄) iff n is even.

Using Proposition e5.3.6 we fix an indiscernible sequence (ā′n ā′′n)n<ω+ω
over b̄ with

Av((ā′n ā
′′
n)n<ω+ω/b̄) ⊇ Av((ā2n ā2n+1)n<ω/b̄).

Note that this implies that the interleaved sequence ā′0 , ā′′0 , ā′1 , ā′′1 , . . . is
indiscernible. In particular, we have

ā′ω ≈
ls
U ā′′ω where U ∶= ā′[<ω]ā′′[<ω] .
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Let A ∶= ā′[<ω + ω]ā′′[<ω + ω]. Indiscernibility implies that A u
√

U b̄.
Since u

√
⊆ f
√
, it follows that A f

√
U b̄ and, by symmetry, b̄ f

√
U A. But

ā′ω ≢b̄ ā
′′
ω implies ā′ω ≉

ls
U b̄ ā

′′
ω .

Hence, b̄ q
ÒÒ
√

U A,which implies that b̄ li
ÒÒ
√

U A.Consequently, f
√
≠ li
√

. ◻

Theorem 2.28. Let T be a complete first-order theory. The following state-
ments are equivalent :

(1) T is stable.

(2) T is simple and it does not have the independence property.

(3) T is simple and li
√
= f
√

.

(4) li
√

is symmetric.

(5) li
√

is right local.

Proof. (2)⇔ (3) was already proved in Proposition 2.27.
(1)⇒ (2) If T is stable, it is simple by Corollary f3.2.19 and it does not

have the independence property by Proposition e5.4.11.
(2)⇒ (1) Let T be a simple theory without the independence property.

We have shown in Proposition f3.2.21 that T also does not have the strict
order property. Consequently, it follows by Proposition e5.4.11 that T is
stable.

(3)⇒ (4) If T is simple, f
√

is symmetric. Hence, so is li
√
= f
√

.
(4)⇒ (5) Since li

√
is a forking relation, this implication follows by

Theorem f2.4.17.
(5)⇒ (3) If li

√
is right local, so is f

√
⊇ li
√

. Consequently, T is simple.
Furthermore, Theorem f2.4.17 implies that li

√
is symmetric. Therefore,

it follows by Theorem f3.1.9 that f
√
⊆ d
√
⊆ li
√

. ◻
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3. i
√

-Morley sequences

In this section we study i
√

-Morley sequences in theories without the
independence property.

Cofinal types
We start by noting that finiteness of the alternation number can be used
to define a kind of ‘limit type’ of a sequences.

Definition 3.1. The cofinal type of a sequence α = (ā i)i∈I is the set

CF(α) ∶= {φ(x̄) ∣ φ a formula over M such that

⟦φ(ā i)⟧i∈I is cofinal in I } .

Lemma 3.2. Let T be a theory without the independence property and
let α be an indiscernible sequence. Then CF(α) is a complete type over M
which is finitely satisfiable in α.

Proof. Suppose that α = (ā i)i∈I . For completeness, consider a formula
φ(x̄) over M. Since altφ(α) <∞, there exists some index k ∈ I such that

M ⊧ φ(ā i)↔ φ(ā j) , for all i , j ≥ k .

Consequently,

φ ∈ CF(α) iff M ⊧ φ(āk) iff ¬φ ∉ CF(α) .

To show that CF(α) is consistent, consider finitely many formulae
φ0 , . . . , φn ∈ CF(α). There exists some index k ∈ I such that

M ⊧ φ j(ā i) , for all i ≥ k and all j ≤ n .

In particular,

M ⊧ φ0(āk) ∧ ⋅ ⋅ ⋅ ∧ φn(āk) .

Hence, {φ0 , . . . , φn} is satisfiable. As the tuple satisfying this set belongs
to α, it further follows that CF(α) is finitely satisfiable in α. ◻
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Cofinal types can be used to construct i
√

-Morley sequences as follows.

Lemma 3.3. Let T be a theory without the independence property and
α = (ā i)i∈I an indiscernible sequence over U where the order I has no first
element. Let αop ∶= (ā i)i∈Iop be the sequence with reverse ordering and let
β = (b̄ j) j∈J be generated by CF(αop) over UCα.

(a) β is a i
√

-Morley sequence over UCα.

(b) βα is indiscernible over U.

Proof. We start by proving that, for every formula φ over UCα and every
tuple ȷ̄ ∈ [J]n , there are arbitrarily small indices ı̄ ∈ [I]n such that

M ⊧ φ(b̄[ ȷ̄])↔ φ(ā[ı̄]) .

We proceed by induction on n. For n = 0 there is nothing to do. Hence,
suppose that we have proved the claim already for n < ω and that

M ⊧ φ(b̄[ ȷ̄], b̄ l) ,

where ȷ̄ ∈ [J]n and l ∈ J are indices with ȷ̄ < l . Since b̄ l realises the type
CF(αop) ↾ UCαb̄[<l], we have φ(b̄[ ȷ̄], x̄) ∈ CF(αop). Consequently,
there are arbitrarily small k ∈ I such that

M ⊧ φ(b̄[ ȷ̄], āk) .

By inductive hypothesis, we can find arbitrarily small ı̄ < k such that

M ⊧ φ(ā[ı̄], āk) .

Having proved the claim, it follows by Corollary e5.4.3 that

M ⊧ φ(b̄[ ȷ̄])↔ φ(b̄[ ȷ̄′]) , for all formulae φ over UCα and
all indices ȷ̄, ȷ̄′ ∈ [J]n .
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Hence, β is indiscernible over UCα. As α is indiscernible over U , it
further follows that

M ⊧ φ(b̄[ ȷ̄], ā[k̄])↔ φ(ā[ı̄], ā[k̄]) ,

for all formulae φ over U and all indices ı̄ ∈ [I]n , k̄ ∈ [I]m , ȷ̄ ∈ [J]n with
ı̄ < k̄. This implies that βα is indiscernible over U .

To show that β is a i
√

-Morley sequence, it remains to prove that

b̄ j
i
√

UCα b̄[< j] , for all j ∈ J .

We have shown in Lemma 3.2 that CF(αop) is a global type that is finitely
satisfiable in α. In particular, it is invariant over UCα. Hence, the type
CF(αop)↾UCαb̄[< j] realised by b̄ j has a global extension CF(αop) that
is invariant over UCα. ◻

As a concluding remark let us note that being generated by a type p
only depends on the average type of the sequence.

Lemma 3.4. Let α = (ā i)i∈I and β = (ā j) j∈J be infinite indiscernible
sequences over U and p ∈ S s̄(Uαβ) a type that is invariant over U.

(a) If α is generated by p over U and Av(α/U) = Av(β/U), then β is
also generated by p over U.

(b) If α and β are generated by p over U , then Av(α/U) = Av(β/U).

Proof. (a) Let φ(x̄; ȳ) be a formula over U such that M ⊧ φ(b̄ j ; b̄[k̄]),
for some k̄ < j in J. Let l̄ i be a tuple in I with the same order type as k̄ j.
Then Av(α/U) = Av(β/U) implies that M ⊧ φ(ā i ; ā[ l̄]). Consequently,
φ(x̄; ā[ l̄]) ∈ p↾U ā[<i]. Since ā[ l̄] ≡U b̄[k̄], it follows by invariance of p
that φ(x̄; b̄[k̄]) ∈ p.

(b) We prove by induction on n that

ā[ı̄] ≡U b̄[ ȷ̄] , for all ı̄ ∈ [I]n and ȷ̄ ∈ [J]n .

For n = 0, there is nothing to do. Hence, suppose that we have proved
the claim already for tuples of length n and consider tuples ı̄ ∈ [I]n+1 and
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ȷ̄ ∈ [J]n+1. Set ı̄′ ∶= i0 . . . in−1 and ȷ̄′ ∶= j0 . . . jn−1 and let φ(x̄0 , . . . , x̄n)
be a formula over U . By inductive hypothesis and invariance of p, it
follows that

M ⊧ φ(ā[ı̄′], ā in) iff φ(ā[ı̄′], x̄) ∈ p

iff φ(b̄[ ȷ̄′], x̄) ∈ p

iff M ⊧ φ(b̄[ ȷ̄′], b̄ jn) . ◻

The confluence property

Our next aim is to prove a combinatorial characterisation of i
√

-Morley
sequences in terms of the so-called confluence property.

Definition 3.5. Let U be a set of parameters.
(a) Let α = (αk)k∈K be a family of indiscernible sequences αk =

(āk
i )i∈Ik over U . We say that α is confluent over U if there exists some

tuple c̄ such that, for every k ∈ K, the extended sequence αk c̄ is still
indiscernible over U .

(b) A complete type Φ((x̄ i)i<ω) over U has the confluence property
if every family α = (αk)k∈K of indiscernible sequences αk = (āk

i )i∈Ik

over U with

Av(αk/U) = Φ , for all k ∈ K ,

is confluent over U .
(c) We say that a sequence α = (ā i)i∈I has the confluence property

over a set U if it is indiscernible over U and Av(α/U) has the confluence
property.

We start by showing how to find sequences with the confluence prop-
erty.

Lemma 3.6. Every infinite sequence α = (ā i)i∈I such that

ā j ≡U ā[<i] ā i and ā i
i
√

U ā[<i] , for all i ≤ j in I ,

has the confluence property over U.
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Proof. Indiscernibility follows by Lemma f2.4.14. For the confluence
property of Av(α/U), we choose a (∣T ∣⊕ ∣U ∣)+-saturated model M of T
containing U and we use Proposition e5.3.6 to find an indiscernible
sequence α′ = (ā′n)n<ω over U of length ω with Av(α′/U) = Av(α/U).
By invariance of i

√
, we have

ā′n
i
√

U ā′[<n] , for all n < ω .

Since i
√

is a forking relation, we can choose, by induction on n < ω,
tuples

b̄n ≡U ā′[<n] ā′n such that b̄n
i
√

U M ā′[<n]b̄[<n] .

By Lemma f2.4.14, we have (b̄n)n<ω ≡U (ā′n)n<ω . Hence, β = (b̄n)n<ω
is an indiscernible sequence over U with

Av(β/U) = Av(α′/U) = Av(α/U) .

To show that this average type has the confluence property over U ,
consider a family of indiscernible sequences βk = (b̄k

i )i∈Ik , for k ∈ K,
over U with Av(βk/U) = Av(β/U). Since b̄0 s

√
U M, it follows by

Lemma 2.19 that there is some tuple c̄ ≡M b̄0 such that

c̄ s
√

U Mβ ∪ ⋃
k∈K

βk .

We claim that every sequence βk c̄ is indiscernible over U . Note that
c̄ s
√

U βk . By Lemma f2.4.14, it is therefore sufficient to prove that

c̄ ≡U b̄k[<i] b̄
k
i , for all i ∈ Ik .

According to Lemma 2.19, tp(b̄k
i /M) has a unique s

√
-free extension

over M ∪ b̄k[<i]. Consequently,

c̄ s
√

M b̄k[<i] , b̄k
i

s
√

M b̄k[<i] , and c̄ ≡M b̄0 ≡M b̄k
i

implies that c̄ ≡M b̄k[<i] b̄k
i . ◻
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In particular, every i
√

-Morley sequence has the confluence property.
The converse statement also holds. The proof is split into several steps.
We start by showing that every sequence α with the confluence property
is generated by some invariant type. This type is the so-called eventual
type of α.

Definition 3.7. The eventual type of a sequence α = (ā i)i∈I is the set

Ev(α/U) ∶= {φ(x̄) ∣ φ(x̄) ∈ CF(αβ) for some maximally

φ-alternating extension αβ of α over U } .

Example. We consider the theory of open dense linear orders. By quan-
tifier-elimination, every strictly increasing sequence α = (a i)i∈I in M
is indiscernible. Furthermore, such a sequence α is maximally (x > c)-
alternating, for c ∈M, if a i > c, for some i ∈ I. It follows that the eventual
type Ev(α/∅) contains all formulae of the form x > c with c ∈M.

Lemma 3.8. Let φ(x̄) be a formula over M and α = (ā i)i∈I an infinite
indiscernible sequence over U.

(a) If α is maximally φ-alternating over U , then

φ(x̄) ∈ CF(α) iff φ(x̄) ∈ CF(αβ) ,

for every extension αβ of α that is indiscernible over U.

(b) If α has the confluence property over U , then

φ(x̄) ∈ CF(αβ) iff φ(x̄) ∈ CF(αγ) .

for all maximally φ-alternating extensions αβ and αγ of α.

Proof. (a) Set n ∶= altφ(α) and let k̄ ∈ [I]n+1 be a sequence of indices
such that

M ⊧ φ(āk i )↔ ¬φ(āk i+1) , for all i < n .
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Then

φ(x̄) ∈ CF(α) iff M ⊧ φ(ākn) .

For a contradiction, suppose that there is an extension αβ = (ā i)i∈I+J
that is indiscernible over U such that

φ(x̄) ∈ CF(α/M) iff φ(x̄) ∉ CF(αβ/M) .

Then there is some index j ∈ J such that

M ⊧ φ(ā j)↔ ¬φ(ākn) .

Consequently, the tuple k̄ j ∈ [I + J]n+2 witnesses that altφ(αβ) > n.
Hence, α is not maximally φ-alternating. A contradiction.

(b) As αβ and αγ have the same average type over U as α and this
type has the confluence property, we can find some tuple c̄ such that
αβc̄ and αγc̄ are indiscernible over U . Since αβ and αγ are maximally
φ-alternating, it follows by (a) that

φ(x̄) ∈ CF(αβ) iff φ(x̄) ∈ CF(αβc̄)
iff M ⊧ φ(c̄)
iff φ(x̄) ∈ CF(αγc̄)
iff φ(x̄) ∈ CF(αγ) . ◻

Lemma 3.9. Let T be a theory without the independence property and let
α = (ā i)i∈I be an infinite sequence with the confluence property over U.

(a) p ∶= Ev(α/U) is a complete type over M.

(b) p is invariant over U.

(c) α is generated by p over U.

Proof. (a) Let φ(x̄) be a formula over M. By Corollary 1.3 there exists a
maximally φ-alternating extension αβ of α. Then αβ is also maximally
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¬φ-alternating and it follows by Lemma 3.8 (b) that

φ(x̄) ∈ Ev(α/U) iff φ(x̄) ∈ CF(αβ)
iff ¬φ(x̄) ∉ CF(αβ)
iff ¬φ(x̄) ∉ Ev(α/U) .

Hence, it remains to prove that Ev(α/U) is satisfiable. Consider fi-
nitely many formulae φ0(x̄), . . . , φn(x̄) ∈ Ev(α/U). By Corollary 1.3
there exists an extension αβ of α that is maximally φ i-alternating over U ,
for all i ≤ n. Suppose that β = (b̄ j) j∈J . Then

φ i(x̄) ∈ Ev(α/U) implies φ i(x̄) ∈ CF(αβ) , for all i ≤ n ,

and there exists some index k ∈ J such that

M ⊧ φ i(b̄ j) , for all j ≥ k and i ≤ n .

This implies that M ⊧ φ0(b̄k) ∧ ⋅ ⋅ ⋅ ∧ φn(b̄k). Hence, {φ0 , . . . , φn} is
satisfiable.

(b) Consider tuples b̄ ≡U b̄′ and a formula φ(x̄; ȳ) over U . To show
that

φ(x̄; b̄) ∈ Ev(α/U) iff φ(x̄; b̄′) ∈ Ev(α/U)

we use Corollary 1.3 to find an extension αβ of α that is maximally
φ(x̄; b̄)-alternating and maximally φ(x̄; b̄′)-alternating over U . Choose
a sequence α′β′ such that

αβb̄ ≡U α′β′b̄′ .

Then α′β′ is maximally φ(x̄; b̄′)-alternating. As the type Av(αβ/U) =
Av(α′β′/U) has the confluence property over U , there is some tuple c̄
such that αβc̄ and α′β′ c̄ are both indiscernible over U . It follows by
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Lemma 3.8 (a) that

φ(x̄; b̄) ∈ Ev(α/U) iff φ(x̄; b̄) ∈ CF(αβ)

iff φ(x̄; b̄′) ∈ CF(α′β′)

iff φ(x̄; b̄′) ∈ CF(α′β′ c̄)

iff M ⊧ φ(c̄; b̄′)

iff φ(x̄; b̄′) ∈ CF(αβc̄)

iff φ(x̄; b̄′) ∈ CF(αβ)

iff φ(x̄; b̄′) ∈ Ev(α/U) .

(c) To show that āk realises the type p↾U ā[<k],we consider a formula
φ(x̄; ȳ0 , . . . , ȳn−1) over U and a tuple ı̄ ∈ [I]n of indices with ı̄ < k. Fix a
maximally φ(x̄; ā[ı̄])-alternating extension αβ of α over U and let c̄ be
a tuple such that αβc̄ is indiscernible over U . Then Lemma 3.8 implies
that

φ(x̄; ā[ı̄]) ∈ p ↾U ā[<k] iff φ(x̄; ā[ı̄]) ∈ CF(αβ)
iff φ(x̄; ā[ı̄]) ∈ CF(αβc̄)
iff M ⊧ φ(c̄; ā[ı̄])
iff M ⊧ φ(āk ; ā[ı̄]) ,

where the last step follows by indiscernibility. ◻

Combining the above results,we obtain the following characterisation
of i
√

-Morley sequences in theories without the independence property.

Theorem 3.10. Let T be a theory without the independence property,
α = (ā i)i∈I an infinite sequence, and p a type. The following statements
are equivalent :

(1) α is a i
√

-Morley sequence for p ↾U over U and p = Ev(α/U).

(2) α has the confluence property over U and p = Ev(α/U).
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(3) p is a global type that is invariant over U and α is generated by p
over U.

Proof. The implication (1)⇒ (2) follows by Lemma 3.6, and (2)⇒ (3)
was already proved in Lemma 3.9.

(3)⇒ (1) For i ≤ j in I, we have

tp(ā j/U ā[<i]) = p ↾U ā[<i] = tp(ā i/U ā[<i]) .

Furthermore, tp(ā i/U ā[<i]) extends to p, a complete type over M that
is invariant over U . Consequently, we have ā i

i
√

U ā[<i] and it follows
by Lemma f2.4.14 that α is indiscernible over U .
We have shown that α is a i

√
-Morley sequence for p ↾ U over U . It

therefore remains to prove that p = Ev(α/U). Let φ(x̄; c̄) ∈ Ev(α/U)
be a formula with parameters c̄ ⊆M. Then φ(x̄; c̄) ∈ CF(αβ), for some
maximally φ(x̄; c̄)-alternating extension αβ of α over U . Let b̄ be a tuple
realising p ↾ Uαβc̄. Applying Lemma 3.4 to the sequences α and αβ,
it follows that αβ is generated by p over U . By choice of b̄, so is αβb̄.
Consequently, Lemma f2.4.14 implies that the sequence αβb̄ is indis-
cernible over U . As αβ is maximally φ(x̄; c̄)-alternating, we therefore
have φ(x̄; c̄) ∈ CF(αβb̄),which implies that M ⊧ φ(b̄; c̄). By choice of b̄,
it follows that φ(x̄; c̄) ∈ p ↾Uαβc̄ ⊆ p. ◻

Corollary 3.11. Let α and β be infinite i
√

-Morley sequences over U. The
following statements are equivalent :

(1) Av(α/U) = Av(β/U)

(2) Ev(α/U) = Ev(β/U)

(3) There is some complete type p over M that is invariant over U such
that α and β are both generated by p.

Proof. (2)⇒ (3) By Theorem 3.10, both sequences are generated by the
type Ev(α/U) = Ev(β/U), which is complete and invariant over U .

(3)⇒ (2) If α and β are both generated by p, it follows by Theorem 3.10
that Ev(α/U) = p = Ev(β/U).
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(1)⇒ (3) By Theorem 3.10, α is generated by p ∶= Ev(α/U). Hence,
Lemma 3.4 implies that so is β.

(3)⇒ (1) follows by Lemma 3.4. ◻

As a consequence we can derive the following bound on the number
of invariant global types.

Proposition 3.12. Let T be a theory without the independence property
and let M be a model of T. There exists a bijection between types p ∈
S<ω(M) that are invariant over M and average types Av(α/M) of infinite
i
√

-Morley sequences α over M.

Proof. Wemap a type p ∈ S<ω(M) that is invariant over M to the average
type

Φp ∶= Av(α/M) ,

where α is any infinite sequence generated by p over M.According to The-
orem 3.10, the resulting sequence is a i

√
-Morley sequence. Furthermore,

if α and β are both generated by p over M, it follows by Corollary 3.11
that Av(α/M) = Av(β/M). Consequently, Φp does not depend on the
choice of α.

The inverse of the function p ↦ Φp maps an average type Φ of an
infinite i

√
-Morley sequence α over M to the type pΦ ∶= Ev(α/M).Again

it follows byCorollary 3.11 that the type pΦ does not depend on the choice
of α.

It remains to prove that the functions p↦ Φp and Φ ↦ pΦ are inverse
to each other. Let p ∈ S<ω(M) be a type that is invariant over M and let
α be an infinite sequence that is generated by p over M. Then it follows
by Theorem 3.10 that pΦp = Ev(α/M) = p.
Conversely, consider an average type Φ of some infinite i

√
-Morley

sequence α and let pΦ ∶= Ev(α/M). By Theorem 3.10, α is generated
by pΦ , which implies that ΦpΦ = Av(α/M) = Φ. ◻

As an application, we derive the following characterisation of theories
without the independence property.
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Theorem 3.13. Let T be a complete first-order theory. The following state-
ments are equivalent :

(1) T does not have the independence property.

(2) f
√

is weakly bounded by f (κ) = 2κ .
(3) There is some cardinal κ ≥ ∣T ∣ such that, for every type p ∈ S<ω(M)

where M is a model of size ∣M∣ = κ, there are less than 22κ u
√

-free
extensions of p over any given set C ⊇ M.

(4) For every κ ≥ ∣T ∣, every set U of size ∣U ∣ = κ, every type p ∈ S<ω(U),
and every set C, there are at most 2κ u

√
-free extensions of p over

U ∪ C.

Proof. (4)⇒ (3) is trivial.
(2)⇒ (4) Let κ ≥ ∣T ∣ and let U be a set of size ∣U ∣ = κ. Consider a

type p ∈ S<ω(U) and some set C ⊆ M. Let (qi)i<λ be an enumeration
of all u

√
-free extensions of p over U ∪ C. Since u

√
⊆ f
√
, it follows that

each qi is also a f
√

-free extension of p. By (2), there are at most 2∣T∣⊕∣U ∣

such extensions. Hence, λ ≤ 2∣T∣⊕∣U ∣ = 2κ .
(1)⇒ (2) Let U ,C ⊆ M be sets and let (pi)i<λ be an enumeration

without repetitions of all types over U ∪ C that do not fork over U . We
have to show that λ ≤ 2∣T∣⊕∣U ∣. Let M be a model of T containing U
of size ∣M∣ ≤ ∣T ∣ ⊕ ∣U ∣ and let N be a model containing M ∪ C that is
(∣T ∣⊕∣U ∣)+-saturated and strongly (∣T ∣⊕∣U ∣)+-homogeneous.By (ext),
we can fix, for every i < λ, some type qi ⊇ pi over N that does not fork
over U . Note that pi ≠ pk implies that qi ≠ qk , for i ≠ k. Since T does not
have the independence property, it follows by Theorem 2.26 that f

√
= li
√

.
Hence, each qi is li

√
-free over U and, thus, also over M. Consequently,

we can use Proposition 2.20 to show that qi is i
√

-free over M. Note that
there are at most 2∣T∣⊕∣M∣ = 2∣T∣⊕∣U ∣ average typesAv(α/M) of i

√
-Morley

sequences α over M. By Corollary 3.11, this means that there also are at
most that many eventual type Ev(α/M) of such sequences α. Therefore
we can use Theorem 3.10 to show that there are at most that many types
over N that are i

√
-free over M. This implies that λ ≤ 2∣T∣⊕∣U ∣.
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(3)⇒ (1) Suppose that there is some formula φ(x̄; ȳ) with the inde-
pendence property. Then there are families (ā i)i<ω and (b̄s)s⊆ω such
that

M ⊧ φ(ā i , b̄s) iff i ∈ s .

Let M be a model of T of size ∣M∣ = κ that contains α and β. We have
seen in Theorem b2.4.13 that there are 22κ

ultrafilters over the set A ∶=
{ ā i ∣ i < κ }. For every ultrafilter u over A, set

pu ∶= Av(u/MC) .

By Lemma f2.3.10, pu is a u
√

-free extension of pu ↾M. Furthermore, if
u ≠ v are distinct ultrafilters, we can fix some set B ∈ u ∖ v and an index
s ⊆ ω such that

M ⊧ φ(ā i ; b̄s) iff ā i ∈ B .

Consequently, φ(x̄; b̄s) ∈ pu ∖ pv, which implies that pu ≠ pv. It follows
that there are at least 22κ

types over M ∪C that are u
√

-free over M. ◻

4. Dp-rank

Mutually indiscernible sequences

We can characterise theories without the independence property also in
terms of a rank that is based on mutually indiscernible sequences.

Definition 4.1. A family (αk)k∈K of sequences is mutually indiscernible
over a set U if each sequence αk is indiscernible over U ∪ α[K ∖ {k}].

Before giving the definition of the dp-rank, we collect some technical
properties of mutually indiscernible sequences. Let us start with ways to
construct such families. The first observation is trivial.
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Lemma 4.2. Let α ∶= (ā i)i∈I be an indiscernible sequence over U and let
∼ be a convex equivalence relation on I. The family (α∣E)E∈I/∼ is mutually
indiscernible over U.

Lemma 4.3. Let (αk)k<γ be a family of sequences and U a set of paramet-
ers. If (βk)k<γ is a family such that each βk is an indiscernible sequence
over Uα[>k]β[<k] with

Av(βk/Uα[>k]β[<k]) ⊇ Av(αk/Uα[>k]β[<k]) ,

then (βk)k<γ is mutually indiscernible over U.

Proof. Suppose that αk = (āk
i )i∈Ik and βk = (b̄k

i )i∈Jk , for k < γ. To show
that (βk)k<γ is mutually indiscernible over U , we fix some index k < γ
and we prove by induction on k < l ≤ γ that βk is indiscernible over
Uα[≥l]β[↓l ∖ {k}]. The result then follows for l = γ.

For l = k + 1, the claim holds by choice of βk . For the inductive step,
suppose that we have already shown that βk is indiscernible over the set
Uα[≥l]β[↓l ∖ {k}]. To show that it is also indiscernible over

Uα[≥(l + 1)]β[↓(l + 1) ∖ {k}] ,

consider a formula φ(x̄0 , . . . , x̄n−1; c̄, d̄) with parameters

c̄ ⊆ β l and d̄ ⊆ Uα[≥(l + 1)]β[↓l ∖ {k}] .

We have to show that

M ⊧ φ(b̄k[ı̄]; c̄, d̄)↔ φ(b̄k[ ȷ̄]; c̄, d̄) , for all ı̄ , ȷ̄ ∈ [Jk]
n .

W.l.o.g. we may assume that c̄ = b̄ l [s̄], for some s̄ ∈ [J l ]
m . Fix indices

ı̄ , ȷ̄ ∈ [Jk]
n . By inductive hypothesis, the sequence βk is indiscernible

over Uα[≥l]β[↓l ∖ {k}]. Therefore, we have

M ⊧ φ(b̄k[ı̄]; ā l [t̄], d̄)↔ ¬φ(b̄k[ ȷ̄]; ā l [t̄], d̄) ,
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for all and all t̄ ∈ [I l ]
m . This implies that the formula

φ(b̄k[ı̄]; x̄ , d̄)↔ φ(b̄k[ ȷ̄]; x̄ , d̄)

belongs to

Av(α l /Uα[>l]β[<l]) ⊆ Av(β l /Uα[>l]β[<l]) .

Consequently,

M ⊧ φ(b̄k[ı̄]; b̄ l [s̄], d̄)↔ φ(b̄k[ ȷ̄]; b̄ l [s̄], d̄) , ◻

Let us note the following property of sequences ‘diagonally crossing’
a family of mutually indiscernible sequences.

Lemma 4.4. Let α = (αk)k∈K be a family of mutually indiscernible se-
quences αk = (āk

i )i∈Ik over U.
(a) (āk

η(k))k∈K ≡U (āk
ζ(k))k∈K , for all η, ζ ∈∏k∈K Ik .

(b) If the index set K is ordered and the sequence α = (αk)k∈K is indis-
cernible over U , then each sequence of the form (āk

η(k))k∈K with
η ∈∏k∈K Ik is also indiscernible over U.

Proof. (a) We prove by induction on n < ω that

āk0
η(k0) . . . ākn−1

η(kn−1) ≡Uα[K∖k̄] ā
k0
ζ(k0) . . . ākn−1

ζ(kn−1) , for all k̄ ∈ [K]n .

For n = 0, there is nothing to do. For the inductive step, suppose that
we have proved the claim already for n and let k̄ ∈ [K]n+1. By mutual
indiscernibility, we have

ākn
η(kn) ≡Uα[K∖{kn}] ā

kn
ζ(kn) .

Therefore, it follows by inductive hypothesis that

āk0
η(k0) . . . ākn−1

η(kn−1) ā
kn
η(kn) ≡Uα[K∖k̄] ā

k0
ζ(k0) . . . ākn−1

ζ(kn−1) ā
kn
η(kn)

≡Uα[K∖k̄] ā
k0
ζ(k0) . . . ākn−1

ζ(kn−1) ā
kn
ζ(kn) .
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(b) Note that indiscernibility of α implies that all index orders Ik are
isomorphic. Hence, we may w.l.o.g. assume that Ik = I, for some fixed
order I. Fix an element i ∈ I. Indiscernibility of α over U implies that
the restriction (āk

i )k∈K is also indiscernible over U . By (a) it follows that
so is every sequence of the form (āk

η(k))k∈K with η ∈ IK . ◻

We obtain the following generalisation of Lemma e5.3.11.

Corollary 4.5. Suppose that (αk)k∈K is a family of mutually indiscernible
sequences over U. For every set C, there exists a set C′ ≡U C such that
(αk)k∈K is mutually indiscernible over U ∪ C′.

Proof. Suppose that K = κ is a cardinal and let αk = (āk
i )i∈Ik . By in-

duction on k < κ, we use Proposition e5.3.6 to choose an indiscernible
sequence βk = (b̄k

i )i∈Ik over U ∪ C ∪ α[>k]β[<k] such that

Av(βk/Uα[>k]β[<k]) ⊇ Av(αk/Uα[>k]β[<k]) .

Then it follows by Lemma 4.3 that the family (βk)k∈K is mutually indis-
cernible over U ∪ C. As each αk is indiscernible over U ∪ α[K ∖ {k}],
we have

Av(βk/Uα[K ∖ {k}]) = Av(αk/Uα[K ∖ {k}]) .

This implies that

(βk)k∈K ≡U (αk)k∈K .

Therefore, there exists an automorphism π ∈ AutMU mapping one
family to the other one. Consequently, (αk)k∈K is mutually indiscernible
over U ∪ π[C]. ◻

Corollary 4.6. Let α = (αk)k∈K be a family of mutually indiscernible
sequences αk = (āk

i )i∈Ik over U. For every family of linear orders Jk ⊇ Ik ,
k ∈ K, there exist sequences α′k = (ā

k
j ) j∈Jk extending αk such that the

family (α′k)k∈K is mutually indiscernible over U.
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Proof. As in the preceding corollary, we choose by induction on k an
indiscernible sequence βk = (b̄k

i )i∈Jk over U ∪ α[>k]β[<k] such that

Av(βk/Uα[>k]β[<k]) ⊇ Av(αk/Uα[>k]β[<k]) .

Then it follows by Lemma 4.3 that the family (βk)k∈K is mutually indis-
cernible over U . As each αk is indiscernible over U ∪ α[K ∖ {k}], we
have

Av(βk ∣Ik /Uα[K ∖ {k}]) = Av(αk/Uα[K ∖ {k}]) .

Consequently, there exists an automorphism π ∈ AutMU mapping each
βk ∣Ik to αk . The family (π(βk))k∈K is the desired extension of α. ◻

Proposition 4.7. Let T be a theory without the independence property
and let (αk)k∈K be a family of mutually indiscernible sequences over U.
For every set C, there exists a subset K0 ⊆ K of size ∣K0∣ ≤ ∣T ∣⊕ ∣C∣ such
that (αk)k∈K∖K0 is mutually indiscernible over U ∪ C.

Proof. Suppose that αk = (āk
i )i∈Ik where each āk

i = (a
k
i , j) j<γk is a γk-

tuple. Let M be a model containing U and all sequences αk , and define

P ∶= U ∪ { ak
i , j ∣ k ∈ K , i ∈ Ik , j < γk } ,

E ∶= { ⟨ak
i , j , a

k
i , j′⟩ ∣ k ∈ K , i ∈ Ik , j, j′ < γk } ,

F ∶= { ⟨ak
i , j , a

k
i′ , j′⟩ ∣ k ∈ K , i , i′ ∈ Ik , j, j′ < γk } ,

R ∶= { ⟨ak
i , j , a

k
i′ , j⟩ ∣ k ∈ K , i < i′ in Ik , j < γk } .

Fix an ∣M∣+-saturated elementary extension

⟨M+ , P+ ,U+ , E+ , F+ , R+⟩ ⪰ ⟨M, P,U , E , F , R⟩ .

Using the relations E+, F+, and R+ we see that there are a set K+ ⊇ K,
linear orders I+k , ordinals γ+k , and a family

(bk
i , j)k∈K+ , i∈I+k , j<γ+k

of elements such that, setting b̄k
i ∶= (b

k
i , j) j<γ+k

and βk ∶= (b̄k
i )i∈I+k , we

have
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◆ P+ = U+ ∪ β[K+] ,

◆ I+k ⊇ Ik , γ+k ≥ γk , and bk
i , j = a

k
i , j , for k ∈ K , i ∈ Ik , j < γk ,

◆ the family (βk)k∈K+ is mutually indiscernible over U+.

By Lemma 1.12, we can find a set W ⊆ P+ of size ∣W ∣ ≤ ∣T ∣ ⊕ ∣C∣ such
that

ā ≡W ā′ implies ā ≡C ā′ , for all ā, ā′ ⊆ P .

We choose a set K0 ⊆ K of size ∣K0∣ ≤ ∣W ∣ ≤ ∣T ∣ ⊕ ∣C∣ such that W ⊆
β[K0]. We claim that the family (αk)k∈K∖K0 is mutually indiscernible
over U ∪ C. Fix k ∈ K′ ∶= K ∖ K0 and let ı̄ , ȷ̄ ∈ [Ik]

m . We have to show
that

āk[ı̄] ≡UCα[K′∖{k}] āk[ ȷ̄] .

Let d̄ ⊆ U ∪ α[K′ ∖ {k}] be finite. Since the sequence βk is indiscernible
over U ∪ β[K ∖ {k}] ⊇ d̄β[K0], we have

b̄k[ı̄] ≡d̄ β[K0] b̄
k[ ȷ̄] , which implies that āk[ı̄]d̄ ≡W āk[ ȷ̄]d̄ .

By choice of W , it follows that āk[ı̄]d̄ ≡C āk[ ȷ̄]d̄. We have shown that

āk[ı̄] ≡Cd̄ āk[ ȷ̄] , for all finite d̄ ⊆ U ∪ α[K′ ∖ {k}] .

Consequently, āk[ı̄] ≡UCα[K′∖{k}] āk[ ȷ̄]. ◻

Dp-rank
After these preparations we can introduce the dp-rank.

Definition 4.8. Let Φ(x̄) be a set of formulae over M and U ⊆M a set
of parameters.

(a) The dp-rank rkdp(Φ/U) of Φ over U is the least cardinal κ such
that, for every tuple b̄ realising Φ and every family (α i)i<κ of infinite
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mutually indiscernible sequences over U , there is some index i < κ such
that α i is indiscernible over U b̄. If such a cardinal does not exist, we set
rkdp(Φ/U) ∶=∞.

(b) For a tuple ā ⊆M, we set

rkdp(ā/U) ∶= rkdp(tp(ā/U)/U) .

Remark. Note that rkdp(Φ/U) = 0 if, and only if, Φ is inconsistent.

Example. Let us consider the theory of ⟨Q, ≤⟩. By quantifier-elimin-
ation it follows that a family α = (αk)k∈K of sequences is mutually
indiscernible over a set U if, and only if, all tuples in αk have the same
order type over the set U ∪ α[K ∖ {k}].
Consider a partial type Φ(x̄) with n free variables x̄. We claim that

rkdp(Φ/∅) ≤ n + 1 .

Let b̄ be an n-tuple realising Φ and α = (αk)k≤n+1 a family of infinitemu-
tually indiscernible sequences. For simplicity, let us assume that each αk
is a sequence of singletons. For i ≠ j, it follows that either α i < α j or
α j < α i . Furthermore, for every i < n, there is at most one index k such
that αk contains both elements below and above b i . Therefore, we can
find some index k ≤ n + 1 such that

αk < b i or b i < αk , for all i < n .

This implies that αk is indiscernible over b̄.

We start by stating some basicmonotonicity properties of the dp-rank.

Lemma 4.9. Let Φ be a partial type over U. Then

rkdp(Φ/U) = rkdp(Φ/UC) , for every set C .

Proof. Let κ ∶= rkdp(Φ/U) and consider a tuple b̄ realising Φ and a
family (αk)k<κ of infinite mutually indiscernible sequences over U ∪ C.
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Suppose that αk = (āk
i )i∈Ik and let c̄ be an enumeration of C. Setting

α′k ∶= (ā
k
i c̄)i∈Ik , we obtain a family (α′k)k<κ of infinite mutually indis-

cernible sequences over U . By choice of κ, there exists some index k < κ
such that α′k is indiscernible over U∪b̄.Consequently, αk is indiscernible
over U ∪ b̄c̄. Hence, rkdp(Φ/UC) ≤ κ.

For the converse inequality, let λ < κ. Then there exists a tuple b̄ real-
ising Φ and a family (αk)k<λ of infinitemutually indiscernible sequences
over U such that no αk is indiscernible over U∪ b̄. ByCorollary 4.5, there
exists an automorphism π ∈ AutMU such that the family (π(αk))k<λ
is mutually indiscernible over U ∪ C. It follows that the tuple π(b̄) real-
ises Φ and no sequence π(αk) is indiscernible over U ∪C∪π(b̄). Hence,
rkdp(Φ/UC) > λ. ◻

Corollary 4.10.

(a) Φ ⊆ Ψ implies rkdp(Φ/U) ≥ rkdp(Ψ/U) .

(b) U ⊆ V implies rkdp(ā/U) ≥ rkdp(ā/V) .

Proof. (a) follows immediately from the definition. For (b), note that
Lemma 4.9 and (a) implies that

rkdp(ā/U) = rkdp(tp(ā/U)/V) ≥ rkdp(ā/V) . ◻

The next proposition collects several alternative characterisations of
the dp-rank.

Proposition 4.11. Let Φ(x̄) be a partial type over U and κ > 0 a cardinal.
The following statements are equivalent :

(1) rkdp(Φ/U) ≤ κ

(2) For every tuple b̄ realising Φ and every family (αk)k∈K of infinite
mutually indiscernible sequences over U , there is a set K0 ⊆ K of
size ∣K0∣ < κ such that, for every k ∈ K ∖K0, all elements of αk have
the same type over U b̄.
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(3) For every tuple b̄ realising Φ and every family (αk)k∈K of infinite
mutually indiscernible sequences over U , there is a set K0 ⊆ K
of size ∣K0∣ < κ such that the subfamily (αk)k∈K∖K0 is mutually
indiscernible over U b̄.

Proof. (3)⇒ (2) is trivial.
(2)⇒ (1) Suppose that there exist a tuple b̄ realising Φ(x̄) and a fam-

ily (αk)k<κ of infinite mutually indiscernible sequences αk = (āk
i )i∈Ik

over U such that no αk is indiscernible over U b̄. By Corollary 4.6, we
may assume that every index order Ik is dense. For each k < κ, there are
indices ı̄ , ȷ̄ ∈ [Ik]

<ω such that

āk[ı̄] ≢U b̄ ā
k[ ȷ̄] .

Using Lemma e5.3.12 we obtain indices ūk < sk < tk < v̄k in Ik such that

āk[ūk sk v̄k] ≢U b̄ ā
k[ūk tk v̄k] .

It follows that the family (α′k)k<κ with α′k ∶= (ā
k[l ūk v̄k])ūk<l<v̄ k viol-

ates (2).
(1) ⇒ (3) First, we consider the case where κ is infinite. Suppose

that there exist a tuple b̄ realising Φ and a family (αk)k∈K of infinite
mutually indiscernible sequences over U such that, for every K0 ⊆ K
of size ∣K0∣ < κ, the subfamily (αk)k∈K∖K0 is not mutually indiscernible
over U ∪ b̄. By induction on i < κ, we choose an index k i ∈ K and a
finite subset s i ⊆ K as follows. Suppose that we have already defined
k j and s j , for all j < i. Set S ∶= k[<i] ∪ s[<i]. Then ∣S∣ < κ and, by
assumption, we can find an index k i ∈ K ∖ S such that the sequence αk i

is not indiscernible over U ∪ b̄ ∪ α[K ∖ (S ∪ {k i})]. Therefore, we can
find a finite subset s i ⊆ K ∖ (S ∪ {k i}) such that αk i is not indiscernible
over U ∪ b̄ ∪ α[s i].

Having defined (k i)i<κ and (s i)i<κ , we set

C ∶= ⋃
i<κ

α[s i] .
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Then the family (αk i )i<κ is mutually indiscernible over U ∪ C, but no
sequence αk i is indiscernible over U ∪ C ∪ b̄. Consequently, it follows
by Lemma 4.9 that rkdp(Φ/U) = rkdp(Φ/UC) > κ.

It remains to consider the casewhere κ = n+ 1 is finite. Let (αk)k<λ be
a family of infinite mutually indiscernible sequences over U and let b̄ be
a tuple realising Φ. We construct the desired subset K0 ⊆ λ by induction
on λ.

If λ ≤ n, we can take K0 ∶= λ. Hence, suppose that λ = n +m + 1 < ω
and that we have already proved the claim for families of size n + m.
Extending the sequences αk if necessary, we may assume that they do
not have a last element. By induction on k < λ, we choose a sequence βk
indexed by Z such that the sequence βop with the reversed ordering is
generated by the type pk ∶= CF(αk) over U b̄α[<λ]β[<k]. By Lemma 3.3,
the family (α+k )k<λ with α+k ∶= αkβk is mutually indiscernible over U .
As (αk)k<λ is mutually indiscernible over Uβ[<λ] and

rkdp(Φ/Uβ[<λ]) = rkdp(Φ/U) ≤ n + 1 ≤ λ ,

we can find an index k0 < λ such that αk0 is indiscernible over Uβ[<λ]b̄.
Furthermore, since (α+k )k∈λ∖{k0} is mutually indiscernible over Uαk0 ,
we can use the inductive hypothesis to find a set H ⊆ λ ∖ {k0} of size
∣H∣ ≤ n such that (α+k )k∈λ∖(H∪{k0}) is mutually indiscernible over Uαk0 b̄.
If the sequence αk0 is indiscernible over U b̄α[λ ∖ (H ∪ {k0})], then
(αk)k∈λ∖H is mutually indiscernible over U b̄ and we are done.

For a contradiction, suppose otherwise. Then there is some finite set
C ⊆ U b̄α[λ ∖ (H ∪ {k0})] such that αk0 is not indiscernible over C.
Let c̄k be an enumeration of C ∩ αk and set C0 ∶= C ∩ (U ∪ b̄). Since
(α+k )k∈λ∖(H∪{k0}) is mutually indiscernible over U b̄αk0 , we can find, for
every k ∈ λ ∖ (H ∪ {k0}), a tuple d̄k ⊆ βk such that

d̄k ≡U b̄αk0 α+[λ∖(H∪{k ,k0})] c̄k .

It follows that αk0 is not indiscernible over C0 ∪⋃k d̄k ⊆ U b̄β[<λ]. This
contradicts our choice of k0.
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It remains to consider the case where λ is an infinite cardinal. For
every ordinal γ < λ, we can use the inductive hypothesis to find a set
Hγ ⊆ γ of size ∣Hγ ∣ ≤ n such that the family (αk)k∈γ∖Hγ is mutually
indiscernible over U b̄. We will construct finite sets K0 , . . . ,Kn−1 ⊆ λ
and indices s0 , . . . , sn−1 < λ as follows. Suppose that we have already
chosen K0 , . . . ,K i−1 and s0 , . . . , s i−1 such that

{s0 , . . . , s i−1} ⊆ Hγ , for arbitrarily large γ .

If the family (αk)k∈λ∖{s0 , . . . ,s i−1} is mutually indiscernible over U b̄, we
are done. Otherwise, there exists a finite set K i ⊆ λ ∖ {s0 , . . . , s i−1} such
that (αk)k∈K i is not mutually indiscernible over U b̄. By choice of the
sets Hγ , we have K i ∩Hγ ≠ ∅, for all γ < λ. As the set K i is finite, there
is therefore some index s i ∈ K i such that

{s0 , . . . , s i−1 , s i} ⊆ Hγ , for arbitrarily large γ .

Having constructed s0 , . . . , sn−1 as above, it follows that there are arbit-
rarily large γ such that Hγ = {s0 , . . . , sn−1}. Hence, there are arbitrarily
large γ < λ such that the family (αk)k∈γ∖{s0 , . . . ,sn−1} is mutually indis-
cernible over U b̄. This implies that (αk)k∈λ∖{s0 , . . . ,sn−1} is also mutually
indiscernible over U b̄. ◻

We can use this characterisation to give a straightforward proof that
the dp-rank is sub-additive.

Proposition 4.12. rkdp(āb̄/U)⊕ 1 ≤ rkdp(ā/U)⊕ rkdp(b̄/U ā).

Proof. Let κ ∶= rkdp(ā/U) and λ ∶= rkdp(b̄/U ā). To show that

rkdp(āb̄/U)⊕ 1 ≤ κ ⊕ λ ,

consider a tuple ā′b̄′ ≡U āb̄ and a family (αk)k∈K of infinite mutually
indiscernible sequences over U . According to Proposition 4.11 (3), it is
sufficient to find a subset K′ ⊆ K of size ∣K′∣ ⊕ 1 < κ ⊕ λ such that
(αk)k∈K∖K′ is mutually indiscernible over U ā′b̄′.
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Note that invariance implies that rkdp(b̄′/U ā′) = rkdp(b̄/U ā). We
use the characterisation in Proposition 4.11 (3) two times : first, to find
a subset K0 ⊆ K of size ∣K0∣ < κ such that (αk)k∈K∖K0 is mutually
indiscernible over U ∪ ā′ ; and then, to find a subset K1 ⊆ K ∖ K0 of
size ∣K1∣ < λ such that (αk)k∈K∖(K0∪K1) is mutually indiscernible over
U ∪ ā′b̄′. Since ∣K0 ∪ K1∣⊕ 1 < κ ⊕ λ, the claim follows. ◻

The dp-rank is well-behaved in theories without the independence
properties. In particular, it always exists.

Theorem 4.13. Let T be a complete first-order theory. The following state-
ments are equivalent :

(1) T does not have the independence property.

(2) rkdp(Φ/U) ≤ ∣T ∣+ ⊕ ∣x̄∣+, for every partial type Φ(x̄) with vari-
ables x̄ and every set U.

(3) rkdp(Φ/U) <∞, for every partial type Φ(x̄) and every set U.

Proof. (1)⇒ (2) Let b̄ be a tuple realising Φ and (αk)k<κ a family of
infinite mutually indiscernible sequences over U of size κ ∶= ∣T ∣+ ⊕ ∣x̄∣+.
By Proposition 4.7, there exists a set K0 ⊆ κ of size ∣K0∣ ≤ ∣T ∣⊕ ∣b̄∣ < κ
such that the family (αk)k∈κ∖K0 is mutually indiscernible over U ∪ b̄. Fix
k ∈ κ ∖ K0 ≠ ∅. Then αk is indiscernible over U ∪ b̄.

(2)⇒ (3) is trivial.
(3) ⇒ (1) Let κ be an infinite cardinal and let I ∶= ω × κ, ordered

lexicographically. Suppose that there exists a formula φ(x̄; ȳ) with the
independence property. By compactness, there exists a tuple b̄ and an
indiscernible sequence (ā i)i∈I such that

M ⊧ φ(ā i ; b̄) iff i ∈ {0} × κ .

By Lemma 4.2, the sequences α i ∶= (ā⟨i ,k⟩)k<κ are mutually indiscerni-
ble over ∅, but none of them is indiscernible over b̄. This implies that
rkdp(b̄/∅) > κ. ◻
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property

1. The array property
In this chapter we consider a property of formulae that generalises both
the tree property and the independence property. It is based on families
of tuples with a two-dimensional index set.

Definition 1.1. Let γ, δ be ordinals and α = (ā i j)i<γ , j<δ a family of
tuples.

(a) The i-th row of α is the sequence α i ∶= (ā i j) j<δ , its j-th column is
α j ∶= (ā i j)i<γ , and its diagonal is (ā i i)i<min {γ ,δ}.

(b) For I ⊆ γ and J ⊆ δ, we set

ā[I; J] ∶= ⋃
i∈I , j∈J

ā i j .

(c) α is biindiscernible over a set U if the sequence (α i)i<γ of rows
and the sequence (α j) j<δ of columns are both indiscernible over U . We
call α strongly indiscernible over U if, in addition, the sequence (α i)i<γ
of rows is mutually indiscernible over U .

We start with presenting two methods to construct strongly indiscern-
ible families.

Lemma 1.2. Let α = (ā i j)i<γ , j<δ be a family such that the sequence
of rows (α i)i<γ is both mutually indiscernible over U and indiscernible
over U. Then α is strongly indiscernible.
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Proof. It remains to prove that the sequence of columns (α j) j<δ is indis-
cernible over U . Fix indices l̄ ∈ [γ]m and ı̄ , ȷ̄ ∈ [δ]n . We claim that

ā[ l̄ ; ı̄] ≡U ā[ l̄ ; ȷ̄] .

Let s < m. Since α ls is indiscernible over U ∪ ā[γ ∖ {ls}; δ], we have

ā[ls ; ı̄] ≡U ā[γ∖{ls};δ] ā[ls ; ȷ̄] ,

which implies that

ā[l0 . . . ls−1; ı̄]ā[ls ; ı̄]ā[ls+1 . . . lm−1; ȷ̄]
≡U ā[l0 . . . ls−1; ı̄]ā[ls ; ȷ̄]ā[ls+1 . . . lm−1; ȷ̄] .

By transitivity, it follows that ā[ l̄ ; ı̄] ≡U ā[ l̄ ; ȷ̄]. ◻

The next remark generalises Lemma f4.4.2.

Lemma 1.3. Let β = (b̄ i)i<δγ be an indiscernible sequence over U and
define

α = (ā i j)i<γ , j<δ by ā i j ∶= b̄δ i+ j .

Then α is strongly indiscernible over U.

Proof. Note that the i-th row

α i = (ā i j) j<δ = (b̄δ i+ j) j<δ

is indiscernible over

U ∪ b̄[<δi] ∪ b̄[≥δ(i + 1)] = U ∪⋃
l≠i

α l .

By Lemma 1.2, it is therefore sufficient to show that the sequence of rows
(α i)i<γ is indiscernible over U . Fix indices ı̄ , ȷ̄ ∈ [γ]m and l̄ ∈ [δ]n . Then

(b̄δ is+l t)s<m ,t<n ≡U (b̄δ js+l t)s<m ,t<n

implies that ā[ı̄; l̄] ≡U ā[ ȷ̄; l̄]. ◻
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Using two-dimensional families we can introduce the array property,
which generalises the independence property and the tree property.

Definition 1.4. Let φ(x̄; ȳ) be a formula and k < ω.
(a) We say that φ(x̄; ȳ) is consistent over a family β = (b̄ i)i∈I of tuples

if the set {φ(x̄; b̄ i) ∣ i ∈ I } is consistent. Similarly, we say that φ is
inconsistent or k-inconsistent over β, it the above set is, respectively,
inconsistent or k-inconsistent.

(b) A k-array for φ is a family α = (ā i j)i , j<ω of tuples such that

◆ φ is k-inconsistent over each row α i = (ā i j) j<ω , i < ω, and

◆ for every function η ∶ ω → ω, φ is consistent over the sequence
(ā iη(i))i<ω .

(c) We say that φ has the array property, or the tree property of the
second kind, if, for some k < ω, there exists a k-array for φ. A theory T
has the array property if some formula does.

Let us first note that we can choose a k-array always to be strongly
indiscernible.

Lemma 1.5. A formula φ(x̄; ȳ) has a k-array if, and only if, it has a
strongly indiscernible k-array.

Proof. (⇐) is trivial. For (⇒), suppose that the formula φ has a k-array
α = (ā i j)i , j<ω with rows (α i)i<ω . By induction on i, we use Propos-
ition e5.3.6 to choose an indiscernible sequence β i = (b̄ i j) j<ω over
α[>i]β[<i] such that

Av(β i/α[>i]β[<i]) ⊇ Av(α i/α[>i]β[<i]) .

According to Lemma f4.4.3, the family (β i)i<ω is mutually indiscernible.
Furthermore, the k-inconsistency of {φ(x̄; ā i j) ∣ j < ω } implies the
k-inconsistency of {φ(x̄; b̄ i j) ∣ j < ω }.

To show that all sets of the form {φ(x̄; b̄ iη(i)) ∣ i < ω } are consistent,
it is sufficient by compactness to prove that, for every n < ω and every
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η ∶ [n]→ ω, there exists some tuple c̄ with

M ⊧ ⋀
i<n

φ(c̄; b̄ iη(i)) .

To do so, we prove by induction on m ≤ n, that, for every function
η ∶ [n]→ ω, there is some tuple c̄ with

M ⊧ ⋀
i<m

φ(c̄; b̄ iη(i)) ∧ ⋀
m≤i<n

φ(c̄; ā iη(i)) .

For m = 0, the existence of c̄ follows by choice of the ā i j . For the inductive
step, suppose that, for every η ∶ [n]→ ω,we have already found a tuple c̄
such that

M ⊧ ψη(c̄; āmη(m)) ,

where

ψη(x̄; ȳ) ∶= ⋀
i<m

φ(x̄; b̄ iη(i)) ∧ φ(x̄; ȳ) ∧ ⋀
m<i<n

φ(c̄; ā iη(i)) .

For a given j < ω,we consider the function η′ ∶ [n]→ ω with η′(m) ∶= j
and η′(i) ∶= η(i), for i ≠ m. Then ψη′ = ψη and the inductive hypothesis
implies that

M ⊧ ∃x̄ψη(x̄; ām j) , for every j < ω .

Hence,

∃x̄ψη(x̄; ȳ) ∈ Av(αm/α[>m]β[<m]) ⊆ Av(βm/α[>m]β[<m]) .

Consequently, there is some tuple c̄ such that

M ⊧ ψη(c̄; b̄mη(m)) .

We have shown that the family β = (β i)i<ω has all of the desired
properties except possibly for biindiscernibility. To conclude the proof,
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we can use Proposition e5.3.6 to choose an indiscernible sequence β′ =
(β′i)i<ω such that

Av(β′/∅) ⊇ Av(β/∅) .

By Lemma 1.2, it follows that β′ is strongly indiscernible. ◻

Next we show that the class of theories without the array property
generalises both the simple theories and thosewithout the independence
property. We start by proving this implication for formulae.

Proposition 1.6. Every formula with the array property has the tree prop-
erty and the independence property.

Proof. Suppose that φ has a k-array (ā i j)i , j<ω . We start by showing that
φ has the tree property. We set

c̄⟨⟩ ∶= ā00 and c̄w ∶= ānwn−1 , for w ∈ ωn , n > 0 .

Then the family (c̄w)w∈ω<ω is a witness for the tree property of φ since
◆ for every η ∈ ωω , the set

{φ(x̄; c̄w) ∣ w ≺ η }
= {φ(x̄; ā00)} ∪ {φ(x̄; ā(n+1)η(n)) ∣ n < ω }

is consistent and
◆ for every w ∈ ω<ω of length n ∶= ∣w∣, the set

{φ(x̄; c̄w i) ∣ i < ω } = {φ(x̄; ā(n+1)i) ∣ i < ω }

is k-inconsistent.
It remains to check the independence property. By Lemma 1.5,wemay

assume that α is strongly indiscernible. Let m be the maximal number
such that, for some infinite subset I ⊆ ω, there exists a tuple c̄ with

M ⊧ φ(c̄; ā i j) , for all i ∈ I and j < m .
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As φ is k-inconsistent over every column, we have m < k. Furthermore,
it follows by maximality of m that there exists an infinite subset J ⊆ I
such that

M ⊧ ¬φ(c̄; ā im) , for all i ∈ J .

Choose a strictly increasing function g ∶ ω → J and define η ∶ ω → ω by

η(i) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

0 if i is even,
m if i is odd.

It follows that

M ⊧ φ(c̄; āg(i)η(i)) iff i is even.

Since, according to Lemma f4.4.4, the sequence (āg(i)η(i))i<ω is indis-
cernible, it follows by Proposition e5.4.2 that φ has the independence
property. ◻

Thus, theories without the array property generalise both simple the-
ories and theories without the independence property.

Corollary 1.7. Let T be a complete first-order theory with the array prop-
erty. Then T is not simple and it has the independence property.

Our next goal is an alternative characterisation of the array property.

Definition 1.8. Let α = (ā i j)i<γ , j<δ be a family of tuples.
(a) The transpose of α is αT ∶= (ā ji)i<δ , j<γ .
(b) The column k-condensation of α is the family α(k) ∶= (ā′i j)i<γ , j<δ

with

ā′i j ∶= ā[k ∗ i; j] where k ∗ i ∶= ⟨ki , ki + 1, . . . ki + k − 1⟩ .

For ı̄ ∈ [γ]n , we similarly set

k ∗ ı̄ ∶= (k ∗ i0) . . . (k ∗ in−1) .
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(c) For a formula φ(x̄; ȳ), we set

φ(k)(x̄; ȳ0 . . . ȳk−1) ∶= ⋀
i<k

φ(x̄; ȳ i) .

Remark. Note that a formula φ is consistent over a column α j if, and
only if, φ(k) is consistent over the condensed column α(k)j .

Lemma 1.9. Let α = (ā i j)i<γ , j<δ be a family of tuples and k < ω.

(a) If α is biindiscernible over U , then so are αT and α(k).
(b) If α is strongly indiscernible over U , then so is α(k).

Proof. (a) Clearly, if α is biindiscernible over U , so is αT . To see that
the column k-condensation α(k) = (b̄ i j)i<γ , j<δ is also biindiscernible
over U , note that, for all tuples of indices ı̄ , ȷ̄, l̄ ,

ā[k ∗ l̄ ; ı̄] ≡U ā[k ∗ l̄ ; ȷ̄] implies b̄[ l̄ ; ı̄] ≡U b̄[ l̄ ; ȷ̄] ,
and ā[k ∗ ı̄; l̄] ≡U ā[k ∗ ȷ̄; l̄] implies b̄[ı̄; l̄] ≡U b̄[ ȷ̄; l̄] .

(b) Suppose that α is strongly indiscernible over U . It follows by (a) that
the column k-condensation β ∶= α(k) = (b̄ i j)i<γ , j<δ is biindiscernible
over U . To prove that the family (β i)i<γ of rows is mutually indiscernible
over U , consider indices ı̄ , ȷ̄ ∈ [δ]n and set

B l ∶= U ∪ b̄[γ ∖ {l}; δ] .

Then B l = U ∪ ā[γ ∖ k ∗ l ; δ] and

ā[k ∗ l ; ı̄] ≡UB l ā[k ∗ l ; ȷ̄] implies b̄[l ; ı̄] ≡UB l b̄[l ; ȷ̄] .

Hence, β l is indiscernible over U ∪ B l . ◻

Lemma 1.10. Let T be a theory without the array property, φ(x̄; ȳ) a
formula, and α = (ā i j)i , j<ω a biindiscernible family.

(a) Suppose that α is strongly indiscernible. If φ is consistent over the
0-th column α0 = (ā i0)i<ω , it is consistent over all of α.
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(b) If φ is consistent over the diagonal (ā i i)i<ω of α, the formula φ(k) is
consistent over the diagonal (b̄ i i)i<ω of the column k-condensation
α(k) = (b̄ i j)i , j<ω .

Proof. (a) By compactness, it is sufficient to prove that, for every k < ω,
φ is consistent over (ā i j)i<k , j<ω . Fix k < ω. By Lemma 1.9, the column
k-condensation α(k) = (b̄ i j)i , j<ω is also strongly indiscernible. Further-
more, as φ is consistent over (ā i0)i<ω and ā[ω;0] = b̄[ω;0], it follows
that φ(k) is consistent over (b̄ i0)i<ω . By Lemma f4.4.4, this implies that
φ(k) is consistent over (b̄ i ,η(i))i<ω , for every η ∶ ω → ω. As φ(k) does
not have the array property, there therefore exists some i < ω such
that φ(k) is consistent over (b̄ i j) j<ω . By indiscernibility, it follows that
it is also consistent over (b̄0 j) j<ω . This implies that φ is consistent over
(ā i j)i<k , j<ω .

(b) We can use Corollary e5.3.10 to extend the sequence (α i)i<ω of
rows to an indiscernible sequence (α i)i<ω2 of length ω2. Suppose that
α i = (ā i j) j<ω and set c̄ i j ∶= āωi+ j, i . By mutual indiscernibility of (α i)i ,
we have

(c̄ i j)i , j<ω = (āωi+ j, i)i , j<ω ≡ (āωi+ j,0)i , j<ω .

Furthermore, according to Lemma 1.3, the latter family is strongly indis-
cernible. Hence, so is (c̄ i j)i , j<ω . Furthermore, by biindiscernibility of α,
we have

(c̄ i0)i<ω = (āωi , i)i<ω ≡ (ā i i)i<ω .

Consequently, the consistency of φ over (ā i i)i<ω implies the consistency
of φ over (c̄ i0)i<ω . It therefore follows by (a) that φ is consistent over
(c̄ i j)i , j<ω . Finally, by biindiscernibility of α, we have

(c̄ i j)i<ω , j<k = (āωi+ j, i)i<ω , j<k ≡ (āki+ j, i)i<ω , j<k .

Consequently, φ is consistent over (āki+ j, i)i<ω , j<k , which implies that
φ(k) is consistent over (b̄ i i)i<ω . ◻
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Proposition 1.11. A theory T does not have the array property if, and
only if, for every biindiscernible family α = (ā i j)i , j<ω , the consistency of a
formula φ(x̄; ȳ) over the diagonal (ā i i)i<ω implies the consistency of φ
over α.

Proof. (⇐) Suppose that some formula φ has a k-array. By Lemma 1.5,
we can choose this k-array to be biindiscernible. It follows that φ is
consistent over the diagonal of α, but not over α itself.
(⇒) Suppose that T does not have the array property and let α be a

biindiscernible family such that φ is consistent over the diagonal of α. By
compactness, it is sufficient to prove that, for every k < ω, φ is consistent
over (ā i j)i , j<k . By Lemma 1.10, φ(k) is consistent over the diagonal
of α(k). Since β ∶= (α(k))T has the same diagonal, it follows by another
application of Lemma 1.10 that (φ(k))(k) is consistent over the diagonal
of β(k) = (b̄ i j)i , j<ω . In particular, (φ(k))(k)(x̄; b̄00) is consistent. Since
b̄00 = (ā i j)i , j<k the claim follows. ◻

As an application, let us show that, in theories without the array prop-
erty, we can characterise dividing in the following way.

Definition 1.12. A formula φ(x̄; b̄) array-divides over a set U if there
exists a biindiscernible family β = (b̄ i j)i , j<ω over U such that b̄00 = b̄
and φ is inconsistent over β.

Lemma 1.13. Every formula that divides over U also array-divides over U.

Proof. Suppose that φ(x̄; b̄) divides over U . Then there exists an in-
discernible sequence β = (b̄ i)i<ω over U such that b̄0 = b̄ and φ is
k-inconsistent over β. By Corollary e5.3.10, we can extend β to an indis-
cernible sequence β = (b̄ i)i<ω2 over U of length ω2. Set α ∶= (ā i j)i , j<ω
with ā i j ∶= b̄ωi+ j . By Lemma 1.3, it follows that α is biindiscernible
over U . Furthermore, ā00 = b̄ and φ is inconsistent over α. Hence,
φ(x̄; b̄) array-divides over U . ◻

Corollary 1.14. Let T be a theory without the array property. A formula
φ(x̄; b̄) divides over U if, and only if, it array-divides over U.
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Proof. We have proved the implication (⇒) already in Lemma 1.13. For
(⇐), suppose that φ(x̄; b̄) does not divide over U . To show that it does
not array-divide over U , consider a biindiscernible family β = (b̄ i j)i , j<ω
over U such that b̄00 = b̄. Since the diagonal (b̄ i i)i<ω is indiscernible
over U , the fact that φ(x̄; b̄00) does not divide over U implies that φ is
consistent over (b̄ i i)i<ω .By Proposition 1.11, it follows that φ is consistent
over β. ◻

2. Forking and dividing

Extension bases
Our first question regarding theories without the array property is over
which base sets forking and dividing coincide. For this to be the case, the
forking relation should have all the properties of the dividing relation.
Therefore, we start by collecting some of them.

Definition 2.1. Let 0
√

and 1
√

be preforking relations and U ⊆M. We say
that 0
√

-forking implies 1
√

-forking over U if every formula that 0
√

-forks
over U also 1

√
-forks over U . Similarly, we say that 0

√
and 1
√

coincide
over U if we have implications in both directions.

Definition 2.2. Let
√

be an independence relation and U ⊆M a set.
(a) We say that

√
has left extension over a set U if it satisfies the

following axiom :

(lext) Left Extension. If A0
√

U B and A0 ⊆ A1 then there is some B′
with

B′ ≡UA0 B and A1
√

U B′ .

(b) U is a
√

-base if A
√

U U , for all A ⊆M.
(c) U is a

√
-extension base if U is a

√
-base and

√
has left extension

over U .
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Let us first note that
√

-bases do exist.

Lemma 2.3. (a) Every set is a
√

-base if
√

is one of the relations ls
√
,

s
√
, or d
√

.

(b) u
√

has left extension over every set.

(c) Every model is a u
√

-extension base.

(d) Every model is a
√

-base for all preforking relations
√

.

Proof. (a) It follows immediately form the definition that A s
√

U U , for
all sets A and U . As we have seen in Corollary f4.2.22 that s

√
⊆ ls
√

it
follows that A ls

√
U U as well. For d

√
, the claim follows immediately

from the characterisation in Lemma f3.1.3.
(b) Suppose that A u

√
U b̄ and let C ⊆M. We have to show that there

is some tuple b̄′ ≡UA b̄ with AC u
√

U b̄′. In other words,we have to show
that the set

Φ(x̄) ∶= tp(b̄/UA)
∪ {φ(x̄; c̄) ∣ c̄ ⊆ UAC and φ(x̄; ȳ) a formula over U

such that M ⊧ φ(b̄; d̄) for all d̄ ⊆ U }

is satisfiable. For a contradiction, suppose that Φ is inconsistent. Thenwe
can find a formulaψ(x̄; ā) ∈ tp(b̄/UA), finitelymany formulae φ i(x̄; ȳ i)
over U , and parameters c̄ i ⊆ UAC such that

ψ(x̄; ā) ⊧ ⋁
i<n

¬φ i(x̄; c̄ i) and M ⊧ φ i(b̄; d̄) for all d̄ ⊆ U .

W.l.o.g. we may assume that the parameters c̄ i are all of the form c̄ i = āc̄,
for some tuple c̄ ⊆ UAC that is disjoint from ā. Hence,

ψ(x̄; ā) ⊧ ⋁
i<n

¬φ i(x̄; ā, c̄)
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and it follows by the Coincidence Lemma that

ψ(x̄; ȳ) ⊧ ∀z̄⋁
i<n

¬φ i(x̄; ȳ, z̄) .

Since A u
√

U b̄, there is some tuple ā′ ⊆ U such that M ⊧ ψ(b̄; ā′). Fix
some tuple d̄ ⊆ U . Then it follows by the above implication that

M ⊧ ⋁
i<n

¬φ i(b̄; ā′ , d̄) .

Hence, there is some index i with M ⊧ ¬φ i(b̄; ā′ , d̄). As ā′d̄ ⊆ U , this
contradicts our choice of φ i .

(c) We have already seen in Lemma f2.3.15 that each model is a u
√

-
base. Hence, the claim follows by (b).

(d) It follows by (c) that every model M is a u
√

-base. Furthermore,
we have shown in Theorem f2.3.13 that u

√
⊆
√

. Hence, M is also a√
-base. ◻

The reason we are interested in extension bases is the following result.

Lemma 2.4. If forking equals dividing over U , then U is a f
√

-extension
base.

Proof. As forking equals dividing over U , it is sufficient to show that
U is a d

√
-extension base. We have already shown in Lemma 2.3 that U is

a d
√

-base. It therefore remains to show that d
√

has left extension over U .
Suppose that ā d

√
U b̄ and let c̄ ⊆M. To find some tuple b̄′ ≡U ā b̄ with

āc̄ d
√

U b̄′, we set p ∶= tp(b̄/U ā) and

Φ(x̄) ∶= p(x̄) ∪ {¬φ(x̄ , ā, c̄) ∣ φ(b̄, ȳ, z̄) divides over U } .

Clearly, every tuple b̄′ realising Φ(x̄) has the desired properties. Hence,
it remains to prove that Φ is consistent.
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For a contradiction, suppose otherwise. Then

p ⊧ ⋁
i<n

φ i(x̄ , ā, c̄) ,

where each formula φ i(b̄, ȳ, z̄) divides over U . In particular, the disjunc-
tion

ψ(b̄, ȳ, z̄) ∶= ⋁
i<n

φ i(b̄, ȳ, z̄)

forks over U . By assumption, this implies that ψ also divides over U .
Thus, there exists an indiscernible sequence β = (b̄ i)i<ω over U such that
b̄0 = b̄ and {ψ(b̄ i , ȳ, z̄) ∣ i < ω } is k-inconsistent, for some k < ω. By
Lemma e5.3.11, we can find a sequence β′ ≡U b̄ β such that β′ = (b̄′i)i<ω
is indiscernible over U ā. As p is a type over U ā, it follows that

tp(b̄′i/U ā) = tp(b̄′0/U ā) = tp(b̄/U ā) = p , for all i < ω .

This implies that M ⊧ ψ(b̄′i , ā, c̄), for all i. Thus, the tuple c̄ ā satisfies
the set {ψ(b̄′i , ȳ, z̄) ∣ i < ω }, which is k-inconsistent by choice of β′.
A contradiction. ◻

Quasi-dividing and the Broom Lemma
Before attacking the questions of when forking and dividing coincide,
we take a look at a weakening of dividing called quasi-dividing.

Definition 2.5. A formula φ(x̄; b̄) quasi-divides over a set U if there are
tuples b̄0 , . . . , b̄n−1, for some n < ω, such that

b̄ i ≡U b̄ and {φ(x̄; b̄ i) ∣ i < n } is inconsistent.

Lemma 2.6. Dividing implies quasi-dividing.

Proof. Suppose that φ(x̄; b̄) divides over U . Then there is a sequence
(b̄ i)i<ω such that b̄ i ≡U b̄ and {φ(x̄; b̄ i) ∣ i < ω } is k-inconsistent, for
some k < ω. Consequently, the tuples b̄0 , . . . , b̄k−1 show that φ(x̄; b̄)
quasi-divides over U . ◻

1231



f5. Theories without the array property

We start with a technical lemma that, given a forking relation with left
extension, constructs something like a Morley sequence for the inverse
relation.

Lemma 2.7. Let
√

be a forking relation with left extension over a set U ,
β = (b̄n)n<ω an indiscernible sequence over U ∪ C, and ā a tuple such
that

C
√

U āβ and b̄n
√

U āb̄[<n] , for all 0 < n < ω .

For every number k < ω, there exists a sequence α = (ā i)i<k such that
ā0 = ā and, for all i < k,

ā i b̄ i ≡UC āb̄0 and Cāk−1 b̄k−1 . . . ā i+1 b̄ i+1
√

U ā i b̄ i .

Proof. We prove the claim by induction on k. For k = 0, there is nothing
to do. For the inductive step, suppose that we have already found a
sequence α′ = (ā′i)i<k of length k. We will construct one of length k + 1.
Let σ ∈ AutMUC be an automorphism such that σ(b̄n) = b̄n+1, for all
n < ω. Note that C

√
U āb̄0 . . . b̄k and b̄ i

√
U āb̄0 . . . b̄ i−1 implies, by

Lemma f2.2.4 and induction on i < k, that

Cb̄k . . . b̄k−i+1
√

U āb̄0 . . . b̄k−i .

For i = k, we obtain

Cb̄k . . . b̄1
√

U āb̄0 .

By (lext), we can therefore find tuples ā′b̄′ ≡UCb̄k . . .b̄1
āb̄0 such that

Cb̄k . . . b̄1σ(ā′k−1) . . . σ(ā′0)
√

U ā′b̄′ .

Let π ∈ AutMUCb̄k . . .b̄1
be an automorphism with π(ā′b̄′) = āb̄0 and set

ā0 ∶= ā and ā i+1 ∶= π(σ(ā′i)) , for i < k .
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Then invariance implies that

Cb̄k . . . b̄1 āk . . . ā1
√

U āb̄0 .

We claim that the sequence α ∶= (ā i)i<k+1 obtained in this way has the
desired properties.
Clearly, we have ā0 = ā. Furthermore, since π(b̄ i) = b̄ i for 0 < i ≤ k,

we have

ā i+1 b̄ i+1 = π(σ(ā′i))b̄ i+1 ≡UC σ(ā′i)σ(b̄ i) ≡UC ā′i b̄ i ≡UC āb̄0 .

For the last condition, note that, for i < k,

Cā′k−1 b̄k−1 . . . ā′i+1 b̄ i+1
√

U ā′i b̄ i

⇒ Cπ(σ(ā′k−1 b̄k−1 . . . ā′i+1 b̄ i+1))
√

U π(σ(ā′i b̄ i))

⇒ Cāk b̄k . . . ā i+2 b̄ i+2
√

U ā i+1 b̄ i+1 .

Furthermore, we have already seen above that

Cāk b̄k . . . ā1 b̄1
√

U ā0 b̄0 . ◻

The following result is our main technical lemma. Note that, in the
case where ψ = false, it states that a formula that forks in a particular
way also quasi-divides.

Lemma 2.8 (Broom Lemma). Let
√
⊆ li
√

be a forking relation with left
extension over some set U. Suppose that

ϑ(x̄; ā) ⊧ ψ(x̄; c̄) ∨⋁
i<n

φ i(x̄; b̄ i)

and there are indiscernible sequences β i = (b̄ i
j) j<ω over U such that

◆ b̄ i
0 = b̄ i and {φ i(x̄; b̄ i

j) ∣ j < ω } is k-inconsistent, for every i < n,

◆ b̄ i
j

√
U β[<i]b̄ i[< j] , for all i < n and 0 < j < ω,
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◆ c̄
√

U β[<n] .
Then there exist a number m < ω and tuples ā0 , . . . , ām−1 ⊆M such that

⋀
i<m

ϑ(x̄; ā i) ⊧ ψ(x̄; c̄) and ā i ≡U ā , for all i < m .

Proof. We prove the claim by induction on n. For n = 0, there is nothing
to do. For the inductive step, suppose that we have already shown the
claim for n. We aim to prove it for n+ 1. According to Proposition f4.2.18,
c̄
√

U β0 . . . βn implies that each sequence β i is indiscernible over U ∪ c̄.
Consequently, we can use Lemma 2.7 with ā ∶= β0 . . . βn−1 and β ∶= βn
to construct a sequence α = (α i)i<k such that

◆ α0 = β0 . . . βn−1 ,
◆ α i b̄n

i ≡U c̄ α0 b̄n
0 , for all i < k ,

◆ c̄αk−1 b̄n
k−1 . . . α i+1 b̄n

i+1

√
U α i b̄n

i , for all i < k .
For each j < k, we choose an automorphism π j ∈ AutMU c̄ such that
π j(α0 b̄n

0) = α j b̄n
j . Then

ϑ(x̄; π j(ā)) ⊧ ψ(x̄; c̄) ∨ ⋁
i<n+1

φ i(x̄; π j(b̄ i)) .

Consequently,

⋀
j<k

ϑ(x̄; π j(ā)) ⊧

⋀
j<k
[ψ(x̄; c̄) ∨⋁

i<n
φ i(x̄; π j(b̄ i)) ∨ φn(x̄; π j(b̄n))] .

This implies that

⋀
j<k

ϑ(x̄; π j(ā)) ∧ ¬[ψ(x̄; c̄) ∨⋁
i<n
⋁
j<k

φ i(x̄; π j(b̄ i))]

⊧ ⋀
j<k

φn(x̄; π j(b̄n)) .
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2. Forking and dividing

Since {φn(x̄; b̄n
j ) ∣ j < ω } is k-inconsistent and π j(b̄n) = b̄n

j , it follows
that the formula

⋀
j<k

ϑ(x̄; π j(ā)) ∧ ¬[ψ(x̄; c̄) ∨⋁
i<n
⋁
j<k

φ i(x̄; π j(b̄ i))]

is inconsistent. Hence,

⋀
j<k

ϑ(x̄; π j(ā)) ⊧ ψ(x̄; c̄) ∨⋁
i<n
⋁
j<k

φ i(x̄; π j(b̄ i)) .

For s ≤ k, set

ψs(x̄; c̄s) ∶= ψ(x̄; c̄) ∨⋁
i<n
⋁

s≤ j<k
φ i(x̄; π j(b̄ i)) .

By induction on s, we will find tuples ā0 , . . . , ām−1 such that

⋀
i<m

ϑ(x̄; ā i) ⊧ ψs(x̄; c̄s) and ā i ≡U ā , for all i < m .

Then the statement of the lemma will follow for s = k. For s = 0, we can
take the tuples π i(ā) from above. For the inductive step, suppose that

⋀
i<m

ϑ(x̄; ā i) ⊧ ψs(x̄; c̄s) where ā i ≡U ā .

Note that

ψs(x̄; c̄s) ≡ ψs+1(x̄; c̄s+1) ∨⋁
i<n

φ i(x̄; πs(b̄ i))

and the sequences πs(β i) satisfy

◆ πs(b̄ i
0) = πs(b̄ i) and {φ i(x̄; πs(b̄ i

j)) ∣ j < ω } is k-inconsistent,
for every i < n,

◆ πs(b̄ i
j)
√

U πs(β[<i])πs(b̄ i[< j]) , for all i < n and j < ω.
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Furthermore, b̄0 . . . b̄n−1 ⊆ β0 . . . βn−1 = α0 implies

π j(b̄0) . . . π j(b̄n−1) ⊆ π j(α0) = α j .

Consequently, we have c̄s+1 ⊆ c̄αk−1 . . . αs+1 and

c̄αk−1 . . . αs+1
√

U αs implies c̄s+1
√

U πs(β[<n]) .

Therefore, we can use the inductive hypothesis on n to obtain a number
m′ < ω and tuples ā i j , for i < m and j < m′, such that ā i j ≡U ā i ≡U ā
and

⋀
j<m′

⋀
i<m

ϑ(x̄; ā i j) ⊧ ψs+1(x̄; c̄s+1) .
◻

Remark. Note that we do not require that b̄ i
0

√
U β[<i]. This will be

essential in the applications below.
Recall that the Lemma of Kim states that, in a simple theory, every

f
√

-Morley sequence is a witness for dividing. The next result contains a
similar statement for certain

√
-Morley sequences.

Lemma 2.9. Let
√
⊆ li
√

be a forking relation, U a
√

-extension base, and
φ(x̄; ȳ) a formula without the array property. For every tuple b̄ such that
φ(x̄; b̄) divides over U , there exists a model M containing U and a global
type p extending tp(b̄/M) such that p is

√
-free over U and every sequence

generated by p over M witnesses that φ(x̄; b̄) divides over U.

Proof. Since φ(x̄; b̄) divides over U , there exists a number k < ω and an
indiscernible sequence β = (b̄ i)i<ω over U such that b̄0 = b̄ and the set
{φ(x̄; b̄ i) ∣ i < ω } is k-inconsistent. Let N be a (∣T ∣⊕ ∣U ∣)+-saturated
and strongly (∣T ∣⊕ ∣U ∣)+-homogeneous model containing U . We can
use Lemma e5.3.9 to extend β to an indiscernible sequence β′ = (b̄ i)i<λ

over U of length λ ∶= (2∣T∣⊕∣N ∣)+. As β′
√

U U , we find a sequence
β′′ = (b̄′′i )i<λ such that β′′ ≡U β′ and β′′

√
U N .

As there are at most 2∣T∣⊕∣N ∣ < λ types over N , there exists an infinite
subset I ⊆ λ such that every tuple b̄′′i with i ∈ I has the same type over N .
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Let q0 be this type and let M ⪯ N be some model containing U of size
∣M∣ ≤ ∣T ∣⊕ ∣U ∣. Choose a strictly increasing function g ∶ ω → I and set
α ∶= (b̄′′g(i))i<ω .

Let q be the type of α over N . Since β′′
√

U N and
√
⊆ li
√
, it follows

that q0 and q are li
√

-free over U . By Proposition f4.2.20 (5), this implies
that they are s

√
-free over M. By saturation of N, there exists a sequence

(α i)i<ω in N that is generated by q over M. By Lemma f2.4.14, (α i)i<ω
is indiscernible over M. Suppose that α i = (ā i

n)n<ω .
Let i , j, k < ω. As q is s

√
-free over M it follows by transitivity that

α[>k] s
√

M α[≤k] .

Since āk
i and āk

j both realise q0 ↾Mα[<k], we furthermore have

āk
i ≡Mα[<k] āk

j .

Consequently, α[>k] s
√

Mα[<k] αk implies that

āk
i ≡Mα[<k]α[>k] āk

j .

As in Lemma f4.4.4, it follows that

(āk
η(k))k<ω ≡M (āk

0)k<ω , for all η ∶ ω → ω .

By Proposition f2.4.3, q0 has some global extension q1 that is
√

-free
over U . Fix a tuple b̄′ realising q1 ↾ M. Then b̄′ ≡U b̄ and there exists an
automorphism π ∈ AutMU with π(b̄′) = b̄. Applying π to q1 we obtain
a global type p extending tp(b̄/π[M]) that is

√
-free over U . We claim

that this type p and the model M′ ∶= π[M] have the desired properties.
As q1 is

√
-free over U , so is p. By base monotony it follows that p is

√
-

free over M. Hence, consider a sequence (c̄ i)i<ω generated by p over M.
As each tuple c̄ i realises p↾U = q1 ↾U ,we have c̄ i ≡U b̄. Set d̄ i ∶= π−1(c̄ i).
Then the sequence (d̄ i)i<ω is generated by q1 over M. Since so is the
sequence (ā i

0)i<ω , it follows by Lemma f2.4.14 that

(d̄ i)i<ω ≡M (ā i
0)i<ω .
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Note that α i ≡M α implies that {φ(x̄; ā i
n) ∣ n < ω } is k-inconsistent.

If the set {φ(x̄; ā i
0) ∣ i < ω } were consistent, the family (ā i

j)i , j<ω
would form a k-array. Since the formula φ does not have the array prop-
erty, the set {φ(x̄; ā i

0) ∣ i < ω } is therefore inconsistent. By indiscern-
ibility, it follows that it is l-inconsistent, for some l . Hence, so is the
set {φ(x̄; d̄ i) ∣ i < ω } and, applying the automorphism π, also the set
{φ(x̄; c̄ i) ∣ i < ω }. ◻

Using these lemmas we can derive the first step of our proof that
forking equals dividing over certain sets.

Lemma 2.10. Let T be a theory without the array property and
√
⊆ li
√

a
forking relation. Then forking implies quasi-dividing over every

√
-exten-

sion base U.

Proof. Consider a formula φ(x̄; ā) that forks over U . By Lemma f2.4.4,
there are formulae ψ i(x̄; b̄ i) that divide over U such that φ(x̄; ā) ⊧
⋁i<n ψ i(x̄; b̄ i). By Lemma 2.9, there are models Mi and global types pi ,
for i < n, such that pi extends tp(b̄ i/M), pi is

√
-free over U , and every

sequence generated by pi over M witnesses that ψ i(x̄; b̄ i) divides over U .
For i < n, we choose a sequence β i = (b̄ i

j) j<ω generated by pi as follows.
We start with b̄ i

0 ∶= b̄ i , which realises pi ↾ M. For j > 0, we choose a
tuple b̄ i

j realising pi ↾Mβ[<i]b̄ i[< j]. It follows that

◆ b̄ i
0 = b̄ i and the set {φ i(x̄; b̄ i

j) ∣ j < ω } is k i-inconsistent, for
every i < n,

◆ b̄ i
j

√
U β[<i]b̄ i[< j] , for all i < n and 0 < j < ω,

◆ ∅
√

U β[<n] .

By Lemma 2.8, we can therefore find tuples ā i ≡U ā, for i < m, such that

φ(x̄; ā) ⊧ false ∨⋁
i<n

ψ i(x̄; b̄ i) implies ⋀
i<m

φ(x̄; ā i) ⊧ false .

Consequently, φ(x̄; ā) quasi-divides over U . ◻
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Strict Lascar invariance
Above we have found a criterion for the fact that forking implies quasi-
dividing over a given set. It remains to find conditions showing that
quasi-dividing implies dividing. To do so, we introduce the following
combination of the relations li

√
and f
√

.

Definition 2.11. For sets A, B,U ⊆M, we define

A fli
√

U B : iff A li
√

U B and B f
√

U A ,

A sli
√

U B : iff A ∗( fli
√
)U B .

Lemma 2.12. ā sli
√

U B if, and only if, tp(ā/UB) has a global extension p
that is Lascar-invariant over U and such that

BC f
√

U ā′ , for all C ⊆M and all ā′ realising p ↾UBC .

Proof. (⇐) Let p be an extension of tp(ā/UB) as above. To show that
ā ∗( fli
√
)U B, we fix some set C ⊆M. Let ā′ be a tuple realising p ↾UBC.

Then ā′ ≡UB ā and, by choice of p, we have ā li
√

U BC and BC f
√

U ā.
This implies that ā fli

√
U BC.

(⇒) Let ā ∗( fli
√
)U B. By Proposition f2.4.3, tp(ā/UB) has a global

extension p that is fli
√

-free over U . As fli
√
⊆ li
√
, it is also Lascar invariant

over U . For the second condition, suppose that C ⊆M and let ā′ be a
realisation of p ↾UBC. Then ā′ fli

√
U BC implies BC f

√
U ā′. ◻

Lemma 2.13. The relation fli
√

satisfies (inv), (mon), (nor), and (fin).

Proof. (inv) follows from invariance of li
√

and f
√

.
(mon) Suppose that A fli

√
U B and let A0 ⊆ A and B0 ⊆ B. Then

A li
√

U B and B f
√

U A and it follows that A0
li
√

U B0 and B0
f
√

U A0.
Hence, A0

fli
√

U B0.
(nor) Suppose that A fli

√
U B. Then A li

√
U B and B f

√
U A and it

follows that AU li
√

U BU and BU f
√

U AU . Hence, AU fli
√

U BU .
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f5. Theories without the array property

(fin) Suppose that A0
fli
√

U B, for all finite A0 ⊆ A. Then A0
li
√

U B
and B f

√
U A0, for all finite A0 ⊆ A. This implies that A li

√
U B and

B f
√

U A. Hence, A fli
√

U B. ◻

Corollary 2.14. The relation sli
√

satisfies (inv), (mon), (nor), (fin), and
(ext).

Proof. A closer look at the proof of Proposition f2.4.5 reveals that, to
establish the axioms (inv), (mon), (nor), (fin), and (ext) for the rela-
tion ∗√, we only need to assume that

√
satisfies (inv), (mon), (nor),

and (fin). ◻

The reasonwe are interested in the relation sli
√

is the following variant
of the Lemma of Kim for theories with the array property.

Lemma 2.15. Let T be a theory without the array property, φ(x̄; b̄) a
formula that divides over U , and (b̄n)n<ω a sequence such that

b̄n ≡U b̄ and b̄n
sli
√

U b̄[<n] , for all n < ω .

Then {φ(x̄; b̄n) ∣ n < ω } is inconsistent.

Proof. Applying a suitable automorphism, we may assume that b̄0 = b̄.
Since the formula φ(x̄; b̄) divides over U , there exists an indiscernible
sequence α = (ā i)i<ω such that ā0 = b̄ and {φ(x̄; ā i) ∣ i < ω } is k-
inconsistent, for some k < ω. By induction on n < ω, we construct a
family (α j) j<n of sequences α j = (ā

j
i)i<ω such that

◆ each α j is indiscernible over Uα[< j]b̄ j+1 . . . b̄n−1,

◆ α j ≡U α, and ā j
0 = b̄ j .

For n = 1, we can take the sequence α0 ∶= α. For the inductive step,
suppose we have already constructed a family (α′j) j<n of size n. Since

b̄n
sli
√

U b̄[<n] ,
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2. Forking and dividing

we can use (ext) to find a family (α′′i )i<n such that

α′′[<n] ≡U b̄[<n] α
′[<n] and b̄n

sli
√

U α′′[<n] .

Since b̄n ≡U b̄, there is some indiscernible sequence α′n ≡U α starting
with b̄n . Note that b̄n

sli
√

U α′′[<n] implies that α′′[<n] d
√

U b̄n . By
Lemma f3.1.3, we can therefore find a sequence α′′n ≡U b̄n

α′n such that
α′′n is indiscernible over α′′[<n]. We claim that the family (α′′i )i<n+1 has
the desired properties.

Let i < n. By construction the sequence α′′i is indiscernible over
Uα′′[<i]b̄ i+1 . . . b̄n−1. Furthermore, we have b̄n

li
√

U α′′[<n], which
implies that

b̄n
li
√

Uα′′[<i]b̄ i+1 . . .b̄n−1
α′′i .

By Proposition f4.2.18, it therefore follows that α′′i is also indiscernible
over Uα′′[<i]b̄ i+1 . . . b̄n−1 b̄n . Finally, the sequence α′′n is indiscernible
over Uα′′[<n] by construction.

Having constructed sequences (α j) j<n of length n, for every n < ω, it
follows by compactness that there also exists an infinite family (α j) j<ω
with the same properties.

To conclude the proof suppose, towards a contradiction, that the
set {φ(x̄; b̄n) ∣ n < ω } is consistent. For η ∶ ω → ω and n < ω, a
straightforward induction on i shows that

ā0η(0) . . . ān−1
η(n−1) ≡U ā0η(0) . . . ān−i−1

η(n−i−1) ā
n−i
0 . . . ān−1

0 .

This implies that

(ā i
η(i))i<ω ≡U (ā i

0)i<ω = (b̄ i)i<ω .

Consequently, {φ(x̄; ā i
η(i)) ∣ i < ω } is consistent, for every η ∶ ω → ω.

Furthermore, α j ≡U α implies that {φ(x̄; ā i
n) ∣ n < ω } is k-inconsistent,

for some k. Consequently, the family (ā j
i)i , j<ω forms a k-array for φ.

A contradiction. ◻
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We obtain our first result for forking equalling dividing over sli
√

-bases.

Proposition 2.16. Let T be a theory without the array property and U a
sli
√

-base. Then forking equals dividing over U.

Proof. Suppose that φ(x̄; ā) forks over U . Then there exist formulae
ψ i(x̄; b̄ i) that divide over U such that φ(x̄; ā) ⊧ ⋁i<n ψ i(x̄; b̄ i). Set
c̄ ∶= āb̄0 . . . b̄n−1 and let p ∶= tp(c̄/U). Since c̄ sli

√
U U there exists a

global type q extending p that is fli
√

-free over U . Let M be a model
containing U and let γ = (c̄ i)i<ω be a sequence generated by q over M.
Note that, by Proposition f4.2.20 (5), q is s

√
-free over M. Hence, it

follows by Lemma f2.4.14, that γ is a sli
√

-Morley sequence. Suppose
that c̄ i = ā i b̄ i

0 . . . b̄ i
n−1. We claim that the set {φ(x̄; ā i) ∣ i < ω } is

inconsistent. Since γ is indiscernible and ā i ≡U ā, this implies that
φ(x̄; ā) divides over U .

For a contradiction, suppose that there exists a tuple d̄ realising the
above set. Then there exists a function g ∶ ω → [n] such that

M ⊧ ψg(i)(d̄; b̄ i
g(i)) , for all i < ω .

Choose an infinite subset I ⊆ ω and an index k < n such that g(i) = k,
for all i ∈ I. It follows that {ψk(x̄; b̄ i

k) ∣ i < ω } is consistent. This
contradicts Lemma 2.15 ◻

It remains to prove that
√

-extension bases are also sli
√

-bases. We start
with a technical lemma.

Lemma 2.17. Let
√

be a forking relation and U a
√

-base such that forking
implies quasi-dividing over U.

(a) Every type p over U has a global extension q that is
√

-free over U
and such that

C f
√

U ā , for all C ⊆M and all ā realising q ↾UC .
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2. Forking and dividing

(b) Every type p over U has a global extension q that is f
√

-free over U
and such that

C
√

U ā , for all C ⊆M and all ā realising q ↾UC .

Proof. (a) Fix a tuple ā realising p and set

Φ(x̄) ∶= p(x̄) ∪ {¬φ(x̄; b̄) ∣ b̄ ⊆M , φ(ā; ȳ) f
√

-forks over U }

∪ {¬ψ(x̄; b̄) ∣ b̄ ⊆M , ψ(x̄; b̄)
√

-forks over U } .

By (def), every global type containing Φ has the desired properties.
Hence, it remains to show that Φ is satisfiable.

For a contradiction, suppose otherwise. Then there exist formulae
φ i(x̄; ȳ i), i < m, and ψ i(x̄; z̄ i), i < n, and corresponding parameters
b̄0 , . . . , b̄m−1 , b̄′0 , . . . , b̄′n−1 such that

p ⊧ ⋁
i<m

φ i(x̄; b̄ i) ∨⋁
i<n

ψ i(x̄; b̄′i) ,

each φ i(ā; ȳ) f
√

-forks over U , and each ψ i(x̄; b̄′i)
√

-forks over U . As
the disjunction ⋁i<m φ i(ā; ȳ i) also f

√
-forks over U , we may assume

that m = 1.
Since forking implies quasi-dividing over U , there are parameters

ā0 , . . . , āk−1 such that ā i ≡U ā and the set {φ0(ā i ; ȳ) ∣ i < k } is incon-
sistent. Set c̄ ∶= ā0 . . . āk−1 and r(x̄0 , . . . , x̄k−1) ∶= tp(c̄/U). Then

r ↾ x̄ j ⊧ φ0(x̄ j ; b̄0) ∨⋁
i<n

ψ i(x̄ j ; b̄′i) .

Hence,

r ⊧ ⋀
j<k
[φ0(x̄ j ; b̄0) ∨⋁

i<n
ψ i(x̄ j ; b̄′i)] .

Consequently,

r ⊧ ¬⋀
j<k

φ0(x̄ j ; b̄0) implies that r ⊧ ⋁
j<k
⋁
i<n

ψ i(x̄ j ; b̄′i) .
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Since U is a
√

-base, we have c̄
√

U U . Hence, there is some tuple
c̄′ ≡U c̄ such that c̄′

√
U b̄′0 . . . b̄′n−1. As c̄′ = c̄′0 . . . c̄′k−1 realises r, there

are indices j < k and i < n such that M ⊧ ψ i(c̄′j ; b̄
′
i). But this implies

that c̄′j ÒÒ
√

U b̄′i . A contradiction.
(b) The proof is similar to the one above. Fix a tuple ā realising p and

set

Φ(x̄) ∶= p(x̄)∪{¬φ(x̄; b̄) ∣ b̄ ⊆M , φ(x̄; b̄) f
√

-forks over U }

∪ {¬ψ(x̄; b̄) ∣ b̄ ⊆M , ψ(ā; ȳ)
√

-forks over U } .

Suppose that Φ is inconsistent. Then we can find formulae φ i(x̄; ȳ i),
i < m, and ψ i(x̄; z̄ i), i < n, and parameters b̄0 , . . . , b̄m−1 , b̄′0 , . . . , b̄′n−1
such that

p ⊧ ⋁
i<m

φ i(x̄; b̄ i) ∨⋁
i<n

ψ i(x̄; b̄′i) ,

each φ i(x̄; b̄ i)
f
√

-forks over U , and each ψ i(ā; z̄ i)
√

-forks over U . As
above, we may assume that m = 1.

Since forking implies quasi-dividing over U , there are parameters
c̄0 , . . . , c̄k−1 such that c̄ j ≡U b̄0 and the set {φ0(x̄; c̄ j) ∣ j < k } is incon-
sistent. Choose tuples d̄ ji such that

c̄ j d̄ j0 . . . d̄ j(n−1) ≡U b̄0 b̄′0 . . . b̄′n−1 , for j < k .

Since the type p is over U , it follows by invariance that

p ⊧ φ0(x̄; c̄ j) ∨⋁
i<n

ψ i(x̄; d̄ ji) , for all j < k .

As above, this implies that

p ⊧ ⋁
j<k
⋁
i<n

ψ i(x̄; d̄ ji) .

Set d̄ ∶= (d̄ ji) j<k , i<n . As U is a
√

-base, we have d̄
√

U U . Con-
sequently, there is some tuple d̄′ ≡U d̄ such that

d̄′
√

U ā .
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Since ā realises p, there are indices j < k and i < n such that

M ⊧ ψ i(ā; d̄′ji) .

But this implies that d̄′ji ÒÒ
√

U ā. A contradiction. ◻

Corollary 2.18. Let T be a theory without the array property and U a
li
√

-base such that forking implies quasi-dividing over U. Then U is a
sli
√

-base.

Proof. Fix a tuple ā ⊆ M. We can use Lemma 2.17 to find a global ex-
tension q of tp(ā/U) that is li

√
-free over U and such that C f

√
U ā′, for

all sets C ⊆ M and all tuples ā′ realising q ↾ UC. By Lemma 2.12, this
implies that ā sli

√
U U . ◻

Corollary 2.19. Let T be a theory without the array property and
√
⊆ li
√

a forking relation. Every
√

-extension base is a sli
√

-base.

Proof. Let U be a
√

-extension base. We have proved in Lemma 2.10 that
forking implies quasi-dividing over U . Furthermore, since

√
⊆ li
√

and
U is a

√
-base, it is also a li

√
-base. Consequently, the claim follows by

Corollary 2.18. ◻

Proposition 2.20. Let T be a theory without the array property. Then
forking equals dividing over every set that is a

√
-extension base, for some

forking relation
√
⊆ li
√

.

Proof. By Corollary 2.19, every
√

-extension base is a sli
√

-base. Hence,
the claim follows by Proposition 2.16. ◻

Corollary 2.21. Let T be a theory without the array property. Then forking
equals dividing over every model M.

Proof. We have seen in Lemma 2.3 (c) that everymodel is a u
√

-extension
base. Consequently, the claim follows by Proposition 2.20. ◻
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Combining the above results we obtain the following characterisation
of those sets over which forking equals dividing.

Theorem 2.22 (Chernikov, Kaplan). Let T be a theory without the array
property and U ⊆M be a set. The following statements are equivalent.

(1) Forking equals dividing over U.

(2) U is a f
√

-base.

(3) f
√

has left extension over U.

Proof. The implications (1)⇒ (2) and (1)⇒ (3) follow by Lemma 2.4.
Conversely, suppose that (2) or (3) holds. Let φ(x̄; b̄) be a formula that
forks over U . To show that φ(x̄; b̄) also divides over U ,we fix amodel M
containing U .

If (2) holds, we have M f
√

U U which, by (ext), implies that there is
some model M′ ≡U M with M′ f

√
U b̄.

If (3) holds, we have U f
√

U b̄ which, by (lext), implies that there is
some model M′ ≡U M with M′ f

√
U b̄.

Thus, in both cases we have found a model M′ such that M′ f
√

U b̄.
We claim that φ(x̄; b̄) also forks over M′. Since forking equals dividing
over models, it then follows that φ(x̄; b̄) divides over M′. In particular,
it divides over U .

To prove the claim suppose, for a contradiction, that φ(x̄; b̄) does
not fork over M′. Then we have ā f

√
M′ b̄, for every tuple ā satisfying

φ(x̄; b̄). By (ltr), this implies that āM′ f
√

U b̄, which contradicts the
fact that φ(x̄; b̄) forks over U . ◻

Corollary 2.23. Let T be a theory without the array property.

(a) A set U is a sli
√

-base if, and only if, it is a li
√

-base.

(b) Forking equals dividing over every li
√

-base.

Proof. (b) Let U be a li
√

-base. Since li
√
⊆ f
√
, it is also a f

√
-base. By

Theorem 2.22, it follows that forking equals dividing over U .
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(a) The implication (⇒) follows by the inclusion sli
√
⊆ li
√

. For (⇐),
let U be a li

√
-base. By (b), forking equals dividing over U . Since dividing

implies quasi-dividing, it follows that forking implies quasi-dividing
over U . By Corollary 2.18, it follows that U is a sli

√
-base. ◻

3. The Independence Theorem

The Independence Theorem contains a characterisation of simple theor-
ies in terms of a certain property of the forking relation.Aweaker version
of this property also holds for theories without the array property. In
this section we will present the weak version, use it to derive the strong
one, and show that the latter characterises simple theories.

The chain condition

Before turning to the Independence Theorem itself, we first consider a
closely related property called the chain condition.

Definition 3.1. A preforking relation
√

satisfies the chain condition over
a set U ⊆M if, for every indiscernible sequence (b̄ i)i∈I over U and every
set of formulae Φ(x̄; ȳ) such that, for some i0 ∈ I, the set Φ(x̄; b̄ i0) does
not
√

-fork over U , the union⋃i∈I Φ(x̄; b̄ i) also does not
√

-fork over U .

The chain condition can be characterised is several equivalent ways.
The following list is somewhat parallel to the characterisation of dividing
in Lemma f3.1.3.

Proposition 3.2. Let
√

be a forking relation and U ⊆M a set of paramet-
ers. The following statements are equivalent.

(1)
√

satisfies the chain condition over U.

(2) If a formula φ(x̄; b̄) does not
√

-fork over U and b̄ ≈ls
U b̄′, then

φ(x̄; b̄) ∧ φ(x̄; b̄′) also does not
√

-fork over U.
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(3) For every cardinal λ, there exists a cardinal κ such that, for every
partial type p over U and every family (qi)i<κ of partial types of
size ∣qi ∣ < λ such that no p ∪ qi

√
-forks over U , there are indices

i < j such that p ∪ qi ∪ q j does not
√

-fork over U.
(4) For every indiscernible sequence β = (b̄ i)i<ω over U and every

tuple ā
√

U b̄0, there exists a sequence β′ ≡U b̄0 β such that β′ is
indiscernible over U ā and ā

√
U β′.

Proof. (2)⇒ (3) By Corollary f4.2.9, there exists a cardinal κ such that,
for every sequence (b̄ i)i<κ of tuples of size ∣b̄ i ∣ < λ, there are indices
i < j such that b̄ i ≈

ls
U b̄ j . Increasing κ, if necessary, we may ensure that

κ is larger than the number of sets of formulae of size less than λ. We
claim that this cardinal κ has the desired properties.

Let p and (qi)i<κ be types as above. Then there exists a subset I ⊆ κ of
size ∣I∣ = κ, a set Φ(x̄; ȳ) of formulae (without parameters), and tuples
b̄ i ∈M<λ such that

qi(x̄) = Φ(x̄; b̄ i) , for all i ∈ I .

By choice of κ, we can find indices i < j in I such that b̄ i ≈
ls
U b̄ j . We

claim that the type

p ∪ qi ∪ q j = p(x̄) ∪ Φ(x̄; b̄ i) ∪ Φ(x̄; b̄ j)

does not
√

-fork over U .
For a contradiction, suppose otherwise. By compactness, we can then

find finite sets Ψ0 ⊆ p and Φ0 ⊆ Φ such that

Ψ0(x̄) ∪ Φ0(x̄; b̄ i) ∪ Φ0(x̄; b̄ j)
√

-forks over U .

Setting

φ(x̄; ȳ) ∶=⋀Ψ0(x̄) ∧⋀Φ0(x̄; ȳ) ,

it follows that the formula φ(x̄; b̄ i) ∧ φ(x̄; b̄ j)
√

-forks over U . On the
other hand, p ∪ qi ⊧ φ(x̄; b̄ i) implies that φ(x̄; b̄ i) does not

√
-fork

over U . As b̄ i ≈
ls
U b̄ j , this contradicts (2).
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(3) ⇒ (1) Let κ be the cardinal from (3) associated with λ ∶= ∣Φ∣+.
Extending the sequence (b̄ i)i∈I we may assume that ∣I∣ ≥ κ. For w ⊆ I,
set

Φw ∶= ⋃
i∈w

Φ(x̄; b̄ i) .

By compactness, it is sufficient to show that there is no finite subset
w ⊆ I such that Φw

√
-forks over U . We proceed by induction on ∣w∣. For

w = {i}, the claim holds since b̄ i ≡U b̄ i0 and Φ(x̄; b̄ i0) does not
√

-fork
over U . Hence, suppose that n ∶= ∣w∣ > 1. Let F ∶= [I]n−1. By inductive
hypothesis, no set Φs with s ∈ F

√
-forks over U . Hence, we can use (3)

to find indices s ≠ t ∈ F such that Φs ∪ Φt does not
√

-fork over U .
Choosing sets u, v ∈ F such that ord(uv) = ord(st) and w ⊆ u ∪ v, it
follows by indiscernibility that Φw ⊆ Φu ∪ Φv does not

√
-fork over U .

(1)⇒ (4) Set p(x̄ , x̄′) ∶= tp(āb̄0/U). We extend β to an indiscernible
sequence β = (b̄ i)i<γ over U of length γ ≥ ℶλ+ where λ ∶= 2∣T∣⊕∣U ∣⊕∣b̄0 ∣.
By the chain condition, the union⋃i<γ p(x̄ , b̄ i) does not

√
-fork over U .

Hence, there exists a tuple ā′ realising ⋃i<γ p(x̄ , b̄ i) such that ā′
√

U β.
Then ā′ ≡U b̄0 ā and we can find a sequence β′ = (b̄′i)i<γ such that
ā′β ≡U b̄0 āβ′. By Theorem e5.3.7 and choice of γ, there exists an in-
discernible sequence β′′ = (b̄′′n)n<ω over U āb̄0 such that, for every
ı̄ ∈ [ω]<ω , there is some ȷ̄ ∈ [γ]<ω with

b̄′′[ı̄] ≡U ā b̄0 b̄
′[ ȷ̄] .

By finite character, ā
√

U b̄0β′ implies that ā
√

U b̄0β′′. By choice of β′′
we can find, for every n < ω, some tuple ȷ̄ ∈ [γ]n such that

b̄0 b̄′′0 . . . b̄′′n−1 ≡U ā b̄0 b̄0 b̄
′[ ȷ̄] ≡U b̄0 b̄0 b̄[ ȷ̄] ≡U b̄0 b̄0 b̄1 . . . b̄n .

This implies that b̄0β′′ ≡U b̄0 β. Hence, the sequence β′′′ ∶= b̄0β′′ has the
desired properties.

(4) ⇒ (2) Suppose that (2) does not hold. Then we can find a for-
mula φ(x̄; ȳ) and an indiscernible sequence β = (b̄ i)i<ω over U such
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that the formula φ(x̄; b̄0) does not
√

-fork over U , but the conjunc-
tion φ(x̄; b̄0) ∧ φ(x̄; b̄1) does. We choose a tuple ā ∈ φ(x̄; b̄0)M with
ā
√

U b̄0. For every sequence β′ = (b̄′i)i<ω ≡U b̄0 β that is indiscerni-
ble over U ā, we then haveM ⊧ φ(ā; b̄′i), for all i. As the conjunction
φ(x̄; b̄′0) ∧ φ(x̄; b̄′1)

√
-forks over U , it follows that ā ÒÒ

√
U β′, for each

such sequence β′. Therefore, (4) fails as well. ◻

As several of the characterisations of the chain condition are similar
to characterisations of the dividing relation, we obtain the following
implication.

Lemma 3.3. If a preforking relation
√

satisfies the chain condition over a
set U then

ā
√

U b̄ implies ā d
√

U b̄ .

Proof. Suppose that ā
√

U b̄. To show that ā d
√

U b̄,we use condition (3)
from Lemma f3.1.3. Hence, let (b̄n)n<ω be an indiscernible sequence
over U with b̄0 = b̄. Setting Φ(x̄ , x̄′) ∶= tp(āb̄/U), it follows by the
chain condition that there exists a tuple ā′ realising⋃n<ω Φ(x̄ , b̄n) with
ā′
√

U b̄. In particular, we have

ā′ ≡U b̄ ā and b̄ i ≡U ā′ b̄k , for all i , k < ω . ◻

As a first application of the chain condition, let us show that array-
dividing equals dividing. Once we have shown that in theories without
the array property d

√
satisfies the chain condition, the following result

will generalise Corollary 1.14.

Proposition 3.4. Suppose that d
√

satisfies the chain condition over a set U.
A formula divides over U if, and only if, it array-divides over U.

Proof. (⇒) was already proved in Lemma 1.13. For (⇐), suppose that
φ(x̄; b̄) does not divide over U . To show that it also does not array-
divide over U , we consider a family β = (b̄ i j)i , j<ω that is biindiscernible

1250



3. The Independence Theorem

over U with b̄00 = b̄. We apply the chain condition to the sequence
β0 = (b̄ i0)i<ω to show that the set {φ(x̄; b̄ i0) ∣ i < ω } does not divide
over U . Applying the chain condition again, this time to the sequence
(β i)i<ω of rows, it follows that the set {φ(x̄; b̄ i j) ∣ i , j < ω } does not
divide over U . In particular, this set is consistent. ◻

Finally, we show that, in theories without the array property, f
√

satis-
fies the chain condition.We start by proving this implication over models
before generalising it to arbitrary f

√
-bases.

Lemma 3.5. Let T be a theory without the array property and let M be a
model of T. Then f

√
satisfies the chain condition over M.

Proof. We check condition (2) of Proposition 3.2. Let b̄ ≈ls
M b̄′ be tuples

and φ(x̄; ȳ) a formula such that the conjunction φ(x̄; b̄)∧φ(x̄; b̄′) forks
over M. We have to show that φ(x̄; b̄) also forks over M. Set κ ∶= ℶλ+

where λ ∶= 2∣T∣⊕∣M∣. Since b̄ ≈ls
U b̄′, there exists an indiscernible se-

quence β′ = (b̄′i)i<κ over M of length κ such that b̄′0 = b̄ and b̄′1 = b̄′.
We have seen in Lemma 2.3 that M is a u

√
-extension base. By Corol-

lary 2.19 this implies that M is a sli
√

-base. Furthermore, we have shown
in Corollary 2.14 that sli

√
satisfies the extension axiom. Hence, we have

β′ sli
√

M M and there exists a global type p ⊇ tp(β′/M) that is sli
√

-free
over M. Let β = (β i)i<ω be a sequence generated by p over M where
β i = (b̄ i j) j<ω . By indiscernibility of β0 and the fact that forking equals
dividing over M, it follows for all pairs j ≠ j′ of indices that the formula
φ(x̄; b̄0 j) ∧ φ(x̄; b̄0 j′) divides over M. By choice of β and Lemma 2.15,
this implies that the set

{φ(x̄; b̄ i j) ∧ φ(x̄; b̄ i j′) ∣ i < ω }

is inconsistent. We can use Theorem e5.3.7 to find an indiscernible se-
quence α = (α i)i<ω over M such that, for every ı̄ ∈ [ω]<ω , there is some
ȷ̄ ∈ [κ]<ω with α[ı̄] ≡M β[ ȷ̄]. It follows that the family α is biindiscern-
ible over M and the formula φ is inconsistent over α. Consequently,
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φ(x̄; b̄00) array-divides over M. According to Corollary 1.14 and The-
orem 2.22, this implies that φ(x̄; b̄00) also divides and forks over M. ◻

Theorem 3.6. In a theory without the array property, f
√

satisfies the chain
condition over every f

√
-base.

Proof. Let U be a f
√

-base, φ(x̄; ȳ) a formula, and β = (b̄ i)i<ω an in-
discernible sequence over U such that φ(x̄; b̄0) does not fork over U .
Fix a model M containing U . Then M f

√
U U and it follows by (ext)

that there exists a model M′ ≡U M such that M′ f
√

U β. According
to Theorem 2.22, we have M′ d

√
U β. By Lemma f2.2.4, it therefore

follows that a formula over β divides over U if, and only if, it divides
over M′. In particular, φ(x̄; b̄0) does not divide over M′. By Lemma 3.5,
the formula φ(x̄; b̄0) ∧ φ(x̄; b̄1) does not divide over M′. Hence, it also
does not divide over U . The claim follows since forking equals dividing
over U . ◻

Corollary 3.7. In a theory without the array property, d
√

satisfies the
chain condition over every f

√
-base.

Proof. Let U be a f
√

-base. According to Theorem 2.22, forking equals
dividing over U . Consequently, d

√
has the chain condition over U if, and

only if, f
√

does. Hence, the claim follows by the preceding theorem. ◻

The Independence Theorem

There are two versions of the Independence Theorem : a weak one that
holds in all theories without the array property, and a strong one that
characterises simple theories.

Definition 3.8. (a) A preforking relation
√

satisfies theWeak Independ-
ence Theorem over a set U ⊆M if it has the following property :
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(wind) If ā, b̄, b̄′ , c̄ ⊆M are tuples satisfying

c̄
√

U āb̄ , ā
√

U b̄b̄′ , and b̄ ≡ls
U b̄′ ,

then there exists a tuple c̄′ such that

c̄′
√

U āb̄′ , c̄′ ≡U ā c̄ , and b̄′ c̄′ ≡U b̄c̄ .

(b) A preforking relation
√

satisfies the Independence Theorem over a
set U ⊆M if it has the following property :
(ind) If ā, b̄,A, B ⊆M are tuples such that

ā ≡U b̄ , ā
√

U A , b̄
√

U B , and A
√

U B ,

then there exists a tuple c̄ such that

c̄ ≡UA ā , c̄ ≡UB b̄ , and c̄
√

U AB .

We say that
√

satisfies the Independence Theorem for a class C ⊆
℘(M), if it satisfies the theorem over every U ∈ C.

Remark. The statement of the second axiom becomes clearer when we
rephrase it in terms of types. Then it reads :

Let p, q, r be types over, respectively, U , U ∪ A, and U ∪ B.
If q and r are

√
-free extensions of p and A

√
U B, then q∪ r

is also a
√

-free extension of p.
We start by proving that the weak version holds in all theories without

the array property.

Theorem 3.9. For a forking relation
√
, the chain condition over a set U

implies theWeak Independence Theorem over U.

Proof. Suppose that
√

satisfies the chain condition over U and let

c̄
√

U āb̄ , ā
√

U b̄b̄′ , and b̄ ≡ls
U b̄′ .
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We first consider the case where b̄ ≈ls
U b̄′. By Lemma 3.3, we have

ā d
√

U b̄b̄′ and, hence, ā d
√

U b̄ b̄′. Therefore, we can use Lemma f4.2.12
to find a tuple ā′ such that āb̄ ≈ls

U ā′b̄′. Thus, there exists an indiscernible
sequence (ā i b̄ i)i<ω over U with ā0 b̄0 ā1 b̄1 = āb̄ā′b̄′. Since we have
c̄
√

U ā0 b̄0, it follows byProposition 3.2 (4) that there is a tuple c̄′ ≡U ā0 b̄0
c̄ such that c̄′

√
U ā[ω]b̄[ω] and (ā i b̄ i)i<ω is indiscernible over U c̄′.

This implies that

c̄′
√

U āb̄′ , c̄′ ≡U ā c̄ , and b̄′ c̄′ ≡U b̄c̄′ ≡U b̄c̄ .

It remains to prove the general case. Fix a sequence b̄0 ≈ls
U ⋯ ≈ls

U b̄n
such that b̄0 = b̄ and b̄n = b̄′. By (ext), there is a tuple ā′ ≡U b̄ b̄′ ā such
that ā′

√
U b̄0 . . . b̄n . Choosing tuples b̄′0 , . . . , b̄′n with

āb̄′0 . . . b̄′n ≡U b̄ b̄′ ā
′b̄0 . . . b̄n

it follows that b̄′0 = b̄, b̄′n = b̄′,

b̄′0 ≈
ls
U ⋯ ≈ls

U b̄′n and ā
√

U b̄′0 . . . b̄′n .

By the special case we have proved above, we can inductively find tuples
c̄0 , . . . , c̄n such that c̄0 = c̄,

c̄ i+1
√

U āb̄′i+1 , c̄ i+1 ≡U ā c̄ i , and b̄′i+1 c̄ i+1 ≡U b̄′i c̄ i .

The tuple c̄′ ∶= c̄n has the desired properties. ◻

By Theorem 3.6, we can conclude that, in theories without the array
property, f

√
satisfies the chain condition and, thus, theWeak Independ-

ence Theorem over f
√

-bases.

Corollary 3.10 (Weak Independence Theorem ; Ben Yaacov, Chernikov).
In a theory T without the array property, f

√
satisfies theWeak Independ-

ence Theorem over every f
√

-base.
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Let us turn to the strong version of the Independence Theorem. Our
goal is to show that it characterises ⫝f in simple theories : a symmetric
forking relation ⫝ satisfies the Independence Theorem if, and only if,
⫝ = ⫝f and the theory in question is simple. We start by proving that
forking satisfies (ind) in simple theories.

Theorem 3.11 (Independence Theorem). In a simple first-order theory
⫝f satisfies the Independence Theorem for the class of all models.

Proof. Let M be a model and suppose that

ā ≡M b̄ , ā ⫝fM A , b̄ ⫝fM B , and A ⫝fM B .

As in simple theories every set is a⫝f -base,wehave ā ⫝fMA MA. Therefore,
we can use Lemma f4.2.13 to find a tuple ā′ ≡MA ā such that ā′ ⫝fMA
Bā0 b̄. Then it follows by transitivity that

ā′ ⫝fMA Bb̄ and ā′ ⫝fM A implies ā′ ⫝fM ABb̄ ,

ā′ ⫝fM AB and B ⫝fM A implies Bā′ ⫝fM A ,

ā′ ⫝fM Bb̄ and b̄ ⫝fM B implies ā′b̄ ⫝fM B .

Furthermore, ā′ ≡M ā ≡M b̄, which implies that ā′ ≡ls
M b̄. Hence, we can

apply Corollary 3.10 to the statement A ⫝fM Bā′ to find a set A′ such that

A′ ⫝fM Bb̄ , A′ ≡MB A , and b̄A′ ≡M ā′A .

Let c̄ be a tuple such that A′Bb̄ ≡M ABc̄. Then

A ⫝fM c̄B and c̄ ⫝fM B implies AB ⫝fM c̄ .

Furthermore, we have

c̄A ≡M b̄A′ ≡M ā′A ≡M āA and c̄B ≡M b̄B . ◻

It remains to prove that forking is the only symmetric forking relations
satisfying the Independence Theorem.
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Definition 3.12. A class C ⊆ ℘(M) of small sets is invariant if

C ≡∅ C′ implies C ∈ C⇔ C′ ∈ C .

We call C dense if, for every set A ⊆M, there is some C ∈ C with A ⊆ C.

Example. Every class containing all models is dense. In particular, the
class of all u

√
-extension bases and the class of all f

√
-bases are invariant

and dense.

We start with a lemma constructing a Morley sequence. The proof
follows the lines of the proofs of Lemmas f2.4.13 and f2.4.15.

Lemma 3.13. Let ⫝ be a right local forking relation, let C ⊆ ℘(M) be
invariant and dense, and let (ān)n<ω be an indiscernible sequence over U.

There exists a set C ∈ C containing U and a type p ∈ S s̄(C) extend-
ing tp(ā0/U) such that (ān)n<ω is a ⫝-Morley sequence for p over C.

Proof. Let κ ∶= loc(⫝)+ ⊕ ∣ā0∣+. We can use Lemma e5.3.9 to extend
(ān)n<ω to an indiscernible sequence (āα)α≤κ over U . We construct an
increasing chain (Cα)α<κ of sets Cα ∈ C such that, for every α < κ,

U ∪ ā[<α] ⊆ Cα and (ā i)α<i≤κ is indiscernible over Cα .

For the inductive step, suppose that C i has already been defined for
all i < α. As C is dense, we can choose some set C′ ∈ C containing
Vα ∶= U∪ ā[<α]∪⋃i<α C i . Since the sequence (ā i)α<i<κ is indiscernible
over Vα , we can apply Lemma e5.3.11 to obtain a set Cα ≡Vα C′ such that
(ā i)α<i<κ is indiscernible over Vα ∪ Cα . By invariance, it follows that
Cα ∈ C.
After having constructed the sequence (Cα)α<κ , we can find a set

W ⊆ ⋃α<κ Cα of size ∣W ∣ < loc(⫝)⊕ ∣ā0∣+ ≤ κ such that

āκ ⫝W ⋃
α<κ

Cα .
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Since κ is regular, there exists an index γ < κ such that W ⊆ Cγ . By
(mon) and (bmon), it follows that

āκ ⫝Cγ ⋃
γ<i<κ

ā i .

By (inv), we therefore have

āα ⫝Cγ ⋃
γ<i<α

ā i , for all γ < α < κ .

Hence, (āα)γ<α<κ is a ⫝-Morley sequence for tp(āκ/Cγ) over Cγ . Fix
an automorphism π ∈ AutMU such that π[āγ+n+1] = ān , for all n < ω.
By invariance, it follows that (ān)n<ω is a ⫝-Morley sequence for p ∶=
tp(π[āκ]/π[Cγ]) over C ∶= π[Cγ]. ◻

The main argument is contained in a technical lemma which states
that the Independence Theorem implies the following weaker variant of
the chain condition.

Definition 3.14. A preforking relation
√

satisfies the chain condition
for Morley sequences over a set U ⊆M if, for every

√
-Morley sequence

(b̄ i)i∈I over U and every set of formulae Φ(x̄; ȳ) such that, for some
i0 ∈ I, the set Φ(x̄; b̄ i0) does not

√
-fork over U , the union⋃i∈I Φ(x̄; b̄ i)

also does not
√

-fork over U .

Lemma 3.15. Let
√

be a forking relation satisfying the Independence
Theorem over a set U. Then

√
satisfies the chain condition for Morley

sequence over U.

Proof. Let (b̄n)n<ω be a
√

-Morley sequence over U and let Φ(x̄; ȳ) be
a set such that Φ(x̄; b̄0) does not

√
-fork over U . We fix a tuple ā with

ā
√

U b̄0 and we set p(x̄ , x̄′) ∶= tp(āb̄0/U). We have to show that there
exists a tuple c̄ realising ⋃n<ω p(x̄ , b̄n) such that c̄

√
U b̄[<ω].

To do so, we construct a sequence (c̄n)n<ω such that

c̄n
√

U b̄[≤n] and c̄n realises ⋃
i≤n

p(x̄ , b̄ i) .
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We start with c̄0 ∶= ā. Then c̄0 realises p(x̄ , b̄0) and c̄0
√

U b̄0. For the
inductive step, suppose that c̄n has already been defined. Let ā′ be a
realisation of p(x̄ , b̄n+1). Then

ā′ ≡U c̄n , ā′
√

U b̄n+1 , c̄n
√

U b̄[≤n] ,

and b̄n+1
√

U b̄[≤n] ,

which, by the Independence Theorem, implies that there is a tuple c̄n+1
such that

c̄n+1 ≡U b̄n+1
ā′ , c̄n+1 ≡U b̄[≤n] c̄n , and c̄n+1

√
U b̄[≤n]b̄n+1 .

It follows that c̄n+1 realises the types tp(ā′/U b̄n+1) = p(x̄ , b̄n+1) and
tp(c̄n/U b̄[≤n]) ⊇ ⋃i≤n p(x̄ , b̄ i).

In particular, note that c̄n+1 ≡U b̄[≤n] c̄n . Hence, having constructed
the sequence (c̄n)n<ω , we can use the Compactness Theorem to find a
tuple c̄ such that

c̄ ≡U b̄[≤n] c̄n , for all n < ω .

Consequently, c̄ realises ⋃n<ω p(x̄ , b̄n). Furthermore, (inv) and (def)
implies that c̄

√
U b̄[<ω]. ◻

For symmetric forking relations, we can strengthen Lemma 3.3 as
follows.

Theorem 3.16. If a symmetric forking relation ⫝ satisfies the chain condi-
tion for Morley sequences for a class C that is invariant and dense, then
⫝ = d
√

.

Proof. We have shown in Theorem f3.1.9 that d
√
⊆ ⫝, for every sym-

metric forking relation. Conversely, suppose that ā ⫝U b̄. To show that
ā d
√

U b̄, set p(x̄ , x̄′) ∶= tp(āb̄/U) and let (b̄n)n<ω by an indiscernible
sequence over U with b̄0 = b̄. By Lemma f3.1.3 (3), it is sufficient to show
that there is a tuple realising ⋃n<ω p(x̄ , b̄n). As ⫝ is right local, we can
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use Lemma 3.13 to find a set C ∈ C containing U such that (b̄n)n<ω is a
⫝-Morley sequence over C. Since ā ⫝U b̄0, there is some ā′ ≡U b̄0 ā such
that ā′ ⫝U Cb̄0. Set p′(x̄ , x̄′) ∶= tp(ā′b̄0/C). By the chain condition for
Morley sequences, the union ⋃n<ω p′(x̄ , b̄n) does not ⫝-fork over C. In
particular, it is consistent. Hence, it follows that there is a tuple realising

⋃
n<ω

p(x̄ , b̄n) ⊆ ⋃
n<ω

p′(x̄ , b̄n) .
◻

We obtain the following characterisation of simple theories.

Theorem 3.17. Let T be a complete first-order theory. The following state-
ments are equivalent.

(1) T is simple.
(2) There exists a symmetric forking relation ⫝ satisfying the Independ-

ence Theorem for the class of all models.
(3) There exists a symmetric forking relation ⫝ satisfying the chain

condition for Morley sequences for the class of all models.
(4) There exists a symmetric forking relation ⫝ satisfying the chain

condition for the class of all models.

Proof. (4)⇒ (3) is trivial ; (3)⇒ (1) follows by Theorem 3.16; (1)⇒ (4) by
Lemma 3.5 ; (1)⇒ (2) was already proved in Theorem 3.11 ; and (2)⇒ (3)
follows by Lemma 3.15. ◻

As an application we consider the theory of the random graph.

Proposition 3.18. The theory of the random graph is simple.

Proof. By Theorem 3.16, it is sufficient to prove that the relation

A ⫝0U B : iff A∩ B ⊆ U

is a symmetric forking relation satisfying the Independence Theorem.
⫝0 obviously satisfies the axioms (inv), (mon), (nor), (lrf), (bmon),
and (sym).
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(ltr) Suppose that A2 ⫝
0
A1

B and A1 ⫝
0
A0

B where A0 ⊆ A1 ⊆ A2.
Then A2 ∩ B ⊆ A1 and A1 ∩ B ⊆ A0. Hence,

A2 ∩ B ⊆ A1 ∩ B ⊆ A0 ,

which implies that A2 ⫝
0
A0

B.
(def) Suppose that AÒ⫝ 0

U B. Then there is some element b ∈ A∩B∖U .
For every element a ∈ (x = b)M it follows that aÒ⫝ 0

U b.
(ext) Suppose that ā ⫝0U B0 and let B0 ⊆ B1. Using the extension

axioms, we can find a tuple ā′ such that

atp(ā′/UB0) = atp(ā/UB0) and (ā′ ∖U) ∩ B1 = ∅ .

By ultrahomogeneity, there exists an automorphism π ∈ AutMUB0 map-
ping ā to ā′. Hence, ā′ ≡UB0 ā and ā′ ⫝0U B1.

(ind) We prove that ⫝0 satisfies the Independence Theorem for the
class of all subsets of M. Suppose that

ā ≡U b̄ , ā ⫝0U A , b̄ ⫝0U B , and A ⫝0U B .

Replacing A and B by, respectively, A∖ U and B ∖ U , we may assume
that A∩U = ∅ and B ∩U = ∅. Let

d̄ ∶= ā ∩U , ā′ ∶= ā ∖U , and b̄′ ∶= b̄ ∖U .

Note that ā′ ∩ (U ∪ A) = ∅ and b̄′ ∩ (U ∪ B) = ∅. Since U ,A, B are
disjoint, we can use the extension axioms to find a tuple c̄′ disjoint from
U ∪ A∪ B such that

atp(c̄′/UA) = atp(ā′/UA) and atp(c̄′/UB) = atp(b̄′/UB) .

It follows that

c̄′d̄ ≡UA ā′d̄ , c̄′d̄ ≡UB b̄′d̄ , and c̄′d̄ ⫝0U AB . ◻
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g1. Stable theories

1. Definable types
A key property of stable theories is the definability of types. The rela-
tion df

√
will thus play a major role in this chapter. In the next section,

we will study its properties in the context of stable theories. But first, we
consider the relation df

√
in an arbitrary theory, where it is usually much

less well-behaved: if U and B are small enough it might happen that
tp(ā/UB) is definable over U just because some formula ‘accidentally’
is a φ-definition, although it ceases to be a definition for every extension
tp(ā/UB′) with B′ ⊇ B. Therefore, when investigating a statement of
the form A df

√
U B we usually assume that one of the sets B and U is

large. In particular, there is hope that the derived relation ∗(df
√
) is much

better behaved. We start with relating df
√

to the relation u
√

.

Lemma 1.1. Let A,A′ , B,U ⊆M.
(a) A df

√
U B and B u

√
U U implies B u

√
U A .

(b) A df
√

U B , B u
√

U A′ , and A ≡U A′ implies A ≡UB A′ .

Proof. (a) Let A df
√

U B and B u
√

U U . To show that B u
√

U A, suppose
that M ⊧ φ(ā; b̄), where ā ⊆ A, b̄ ⊆ B, and φ(x̄; ȳ) is a formula over U .
We have to find a tuple c̄ ⊆ U such that M ⊧ φ(ā; c̄). Since ā df

√
U b̄, the

type tp(ā/U b̄) has a φ-definition δ over U . Hence,

M ⊧ φ(ā; b̄) implies M ⊧ δ(b̄) .

Since b̄ u
√

U U , there is some c̄ ⊆ U with M ⊧ δ(c̄). Consequently,
M ⊧ φ(ā; c̄).

logic, algebra & geometry 2024-04-09 — ©achim blumensath 1263



g1. Stable theories

(b) Let ā be an enumeration of A and ā′ the corresponding enumera-
tion of A′. For every formula φ(x̄; ȳ) over U ,we fix a φ-definition δφ( ȳ)
of tp(ā/UB) over U . It is sufficient to prove that δφ is also a φ-definition
of tp(ā′/UB) since this implies that

M ⊧ φ(ā; b̄) iff M ⊧ δ(b̄) iff M ⊧ φ(ā′; b̄) ,

for all b̄ ⊆ U ∪ B.
For a contradiction, suppose that the formula δφ is not a φ-definition

of tp(ā′/UB). Then there exists a tuple b̄ ⊆ U ∪ B such that

M ⊧ ¬(φ(ā′; b̄)↔ δφ(b̄)) .

Since B u
√

U ā′, there is a tuple c̄ ⊆ U such that

M ⊧ ¬(φ(ā′; c̄)↔ δφ(c̄)) .

As ā ≡U ā′, this implies that

M ⊧ ¬(φ(ā; c̄)↔ δφ(c̄)) .

Consequently, δφ is no φ-definition of tp(ā/UB). A contradiction. ◻

The relation df
√

is particularly well-behaved if the base set is a model.

Lemma 1.2. Let T be a complete first-order theory, M a model of T , and
A ⊆M a set such that A df

√
M M.

(a) A ∗(df
√
)M M.

(b) For every set B ⊆M, there exists a set A′ ≡M A such that B u
√

M A′.

(c) If A′ , B ⊆M are sets such that

B u
√

M A , B u
√

M A′ and A ≡M A′ , then A ≡MB A′ .
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1. Definable types

Proof. (a) Suppose that ā df
√

M M. To show that ā ∗(df
√
)M M, consider

a set C ⊇ M. For every formula φ(x̄; ȳ) fix a φ-definition δφ( ȳ) of
tp(ā/M) over M and set

Φ(x̄) ∶= {φ(x̄; c̄) ∣ c̄ ⊆ C , M ⊧ δφ(c̄) } .

Note that tp(ā/M) ⊆ Φ. Hence, if ā′ is a tuple satisfying Φ, then ā′ ≡M ā
and ā′ df

√
M C since each formula δφ is a φ-definition of tp(ā′/C).

Thus, it remains to prove that Φ is satisfiable. Consider a finite subset
Φ0 = {φ0(x̄; c̄0), . . . , φn(x̄; c̄n)} ⊆ Φ. By definition of Φ we have

M ⊧ δφ0(c̄0) ∧ ⋅ ⋅ ⋅ ∧ δφn(c̄n) .

We have seen in Lemma f2.3.15 that C u
√

M M. Hence,we can find tuples
b̄0 , . . . , b̄n ⊆ M such that

M ⊧ δφ0(b̄0) ∧ ⋅ ⋅ ⋅ ∧ δφn(b̄n) .

This implies that

M ⊧ φ0(ā; b̄0) ∧ ⋅ ⋅ ⋅ ∧ φn(ā; b̄n) .

Consequently, the model M satisfies Φ0 if we interpret the variables x̄
by ā and the constants c̄ i by b̄ i .

(b) Given B ⊆ M, we can use (a) to find a set A′ ≡M A such that
A′ df
√

M B. Furthermore, we have B u
√

M M, by Lemma f2.3.15. Hence,
Lemma 1.1 (a) implies that B u

√
M A′.

(c) Let ā be an enumeration of A and let ā′ be the corresponding enu-
meration of A′. By (a), we can find a tuple ā′′ ≡M ā such that ā′′ df

√
M B.

By Lemma 1.1 (b), B u
√

M ā implies that ā′′ ≡MB ā. Since ā′′ ≡M ā′

and B u
√

M ā′, it follows in the same way that ā′′ ≡MB ā′. Hence,
ā ≡MB ā′′ ≡MB ā′. ◻

Lemma 1.3 (Harrington). Let M be an ℵ0-saturated model, p(x̄), q( ȳ) ∈
S<ω(M), and let φ(x̄; ȳ) be a formula over M that does not have the order
property. If δ( ȳ) is a φ-definition of p and ε(x̄) a φ-definition of q, then

ε(x̄) ∈ p(x̄) iff δ( ȳ) ∈ q( ȳ) .
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g1. Stable theories

Proof. Let c̄ ⊆ M be the parameters occurring in φ. By induction on n,
we construct two sequences (ān)n<ω and (b̄n)n<ω in M as follows. Sup-
pose that we have already defined ā0 , . . . , ān−1 and b̄0 , . . . , b̄n−1. As M is
ℵ0-saturated, we can choose a tuple b̄n ⊆ M realising q ↾ c̄ ā0 . . . ān−1
and a tuple ān ⊆ M realising p ↾ c̄b̄0 . . . b̄n .

Having constructed (ān)n<ω and (b̄n)n<ω it follows, for i < k, that

M ⊧ φ(ā i ; b̄k) iff φ(ā i ; ȳ) ∈ q ↾ c̄ ā0 . . . āk−1

iff M ⊧ ε(ā i)

iff ε(x̄) ∈ p ,

and, for i ≥ k,

M ⊧ φ(ā i ; b̄k) iff φ(x̄; b̄k) ∈ p ↾ c̄b̄0 . . . b̄ i

iff M ⊧ δ(b̄k)

iff δ(x̄) ∈ q .

Hence, if δ ∉ q and ε ∈ p, then

M ⊧ φ(ā i ; b̄k) iff i < k ,

and φ has the order property. A contradiction. In the sameway we obtain
a contradiction if we assume that δ ∈ q and ε ∉ p. ◻

We have already seen in Lemma f2.3.3 (a) that df
√
⊆ s
√

. The converse
holds only in special circumstances.

Lemma 1.4. Suppose that M is a κ-saturated and strongly κ-homogeneous
model and let U ⊆ M be a set of size ∣U ∣ < κ. If A ⊆M is a set such that
A df
√

M M, then

A df
√

U M iff A s
√

U M .

Proof. (⇒)We have seen in Lemma f2.3.3 (a) that df
√
⊆ s
√

.
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1. Definable types

(⇐) Let ā ⊆ A, let φ(x̄; ȳ) be a formula, and let δ( ȳ) be a φ-definition
of tp(ā/M) over M. It is sufficient to show that the relation δM is defin-
able over U . By definition of s

√
,

b̄ ≡U b̄′ implies b̄ ≡U ā b̄′ , for all b̄, b̄′ ⊆ M .

Hence, if b̄, b̄′ ⊆ M are tuples such that b̄ ≡U b̄′, then

M ⊧ δ(b̄) iff M ⊧ φ(ā; b̄)

iff M ⊧ φ(ā; b̄′) iff M ⊧ δ(b̄′) .

Consequently, we have

M ⊧ δ(b̄) iff M ⊧ δ(π(b̄)) , for all π ∈ Aut MU ,

and it follows by Lemma e2.1.10 that δM is definable over U . ◻

Another immediate consequence of the inclusion df
√
⊆ s
√

is the
corresponding inclusion between the starred relations.

Proposition 1.5. ∗(df
√
) ⊆ i
√

Proof. We have seen in Lemma f2.3.3 (a) that df
√
⊆ s
√

. This implies that
∗(df
√
) ⊆ ∗( s

√
) = i
√

. ◻

We conclude this section with a comparison of df
√

with d
√

.

Lemma 1.6. Let M be a κ-saturated model and let U ⊆ M be a set of size
∣U ∣ < κ. Then

A df
√

U M implies A d
√

U M , for all A ⊆M .

Proof. Suppose that ā df
√

U M. To show that ā d
√

U M it is sufficient, by
Lemma f3.1.3 and (def), to prove that, for every indiscernible sequence
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(b̄n)n<ω over U with b̄0 ⊆ M and ∣b̄0∣ < ℵ0, there exists a tuple ā′ ≡U b̄0 ā
such that

b̄m ≡U ā′ b̄n , for all m, n < ω .

Hence, let (b̄n)n<ω be such a sequence. As M is κ-saturated, we can find
tuples c̄n ⊆ M, n < ω, such that

(c̄n)n ≡U b̄0 (b̄n)n .

Note that, by Lemma f2.3.3 (a),

ā df
√

U M implies ā s
√

U M .

Consequently,

c̄m ≡U c̄n implies c̄m ≡U ā c̄n , for m, n < ω .

Fixing a tuple ā′ such that

ā(c̄n)n ≡U b̄0 ā
′(b̄n)n ,

it follows that

c̄m ≡U ā c̄n implies b̄m ≡U ā′ b̄n , for m, n < ω . ◻

2. Forking in stable theories
In this section we collect properties of preforking relations in stable
theories. First, note that we have seen in Corollary f3.2.19 that every
stable theory is simple. Hence, in stable theories there is no difference
between dividing and forking and both relations are symmetric.

Furthermore, in stable theories the relation df
√

is much better behaved
than usual. For instance, we have already seen in Theorem c3.5.17 that
df
√

is right reflexive.
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Theorem 2.1. Let T be a stable theory. Then

A df
√

U U , for all A,U ⊆M .

Let us consider the case where the base set is a model. In this case it
will turn out that most preforking relations coincide.

Lemma 2.2. Let T be a stable theory and M a model of T. Then

A ⫝dM B implies A u
√

M B , for all A, B ⊆M .

Proof. Suppose that ā ⫝dM b̄ andM ⊧ φ(ā; b̄). We have to find a tuple
ā′ ⊆ M such that M ⊧ φ(ā′; b̄).
By Lemma f2.3.15, we have ā u

√
M M. Hence, we can use Proposi-

tion f2.4.10 to construct a u
√

-Morley sequence (ān)n<ω for tp(ā/M)
over M. Since b̄ ⫝dM ā, it follows by Lemma f3.1.3 that there exists a tuple
b̄′ ≡M ā b̄ such that (ān)n<ω is indiscernible over M ∪ b̄′. Consequently,
M ⊧ φ(ān ; b̄′), for all n < ω. By Theorem 2.1, we have

b̄′ df
√

M∪⋃n<ω ān M ∪ ⋃
n<ω

ān .

Let δ( ȳ) be a φ-definition of tp(b̄′/M ∪ ⋃n ān) over M ∪ ⋃n ān and
choose n < ω such that δ is a formula over M ∪ ā0 . . . ān−1. Since

ān u
√

M M ā0 . . . ān−1 and M ⊧ δ(ān) ,

there exists a tuple ā′ ⊆ M such that M ⊧ δ(ā′). Hence,M ⊧ φ(ā′; b̄),
as desired. ◻

Corollary 2.3. Let T be a stable theory and M a model of T. Then

A ⫝dM B implies A df
√

M B , for all A, B ⊆M .

Proof. According to Theorem 2.1, we have A df
√

M M, which implies
that A ∗(df

√
)M M, by Lemma 1.2 (a). Hence, we can find a set A′ ≡M A
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with A′ df
√

M B. Furthermore, B ⫝dM A implies B u
√

M A, by Lemma 2.2.
Consequently, it follows by Lemma 1.1 (b) that A′ ≡MB A. Therefore,
A′ df
√

M B implies that A df
√

M B. ◻

The previous results imply that, in a stable theory, the relations u
√
, i
√
,

df
√
, ⫝d, and ⫝f are all equivalent, at least over models.

Theorem 2.4. Let T be a stable theory and M a model of T. Then

A u
√

M B iff A i
√

M B iff A df
√

M B

iff A ⫝fM B iff A ⫝dM B .

Proof. We have already seen in Proposition f3.1.12 that

A u
√

M B ⇒ A i
√

M B ⇒ A ⫝fM B ⇒ A ⫝dM B .

For stable theories, the implication A ⫝dM B⇒ A u
√

M B is provided by
Lemma 2.2. Furthermore, we can use Corollary 2.3 to show that

A ⫝dM B ⇒ A df
√

M B ,

while Lemma 1.1 (a) implies that

A df
√

M B ⇒ B u
√

M A .

Since we have already proved that, over models, u
√

is equivalent to ⫝d,
it follows by symmetry of ⫝d that

A df
√

M B ⇒ B u
√

M A ⇔ A u
√

M B . ◻

There is an even closer connection between i
√
, ∗(df
√
), and ⫝f .

Proposition 2.5. Let T be a stable theory.

(a) i
√
= ∗(df
√
).
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2. Forking in stable theories

(b) A ⫝fU B iff A i
√

acleq(U) B.

Proof. (a) (⊇) was already proved in Proposition 1.5. For (⊆), suppose
that ā i

√
U B. To show that ā ∗(df

√
)U B, we consider a set C ⊇ B. We

have to find a tuple ā′ ≡UB ā with ā′ df
√

U C. Let M be a ∣U ∣+-saturated
and strongly ∣U ∣+-homogeneous model of T that contains U ∪ C. Since
ā i
√

U B, there exists a tuple ā′ ≡UB ā with ā′ s
√

U M. Furthermore, we
have seen in Theorem 2.1 that ā′ df

√
M M. Consequently, it follows by

Lemma 1.4 that ā′ df
√

U M. In particular, ā′ df
√

U C.
(b) (⇐) According to Proposition f3.1.12, A i

√
acleq(U) B implies that

A ⫝facleq(U) B. Moreover, we have acleq(U) ⫝fU A, by Corollary f2.2.12
and Lemma f3.1.8. By symmetry and transitivity, it therefore follows that
A ⫝fU B.
(⇒) Suppose that ā ⫝fU B. Wewill prove that ā ∗(df

√
)acleq(U) B. Then

the claim follows by (a). Hence, consider a set C ⊇ acleq(U)∪B. We fix a
(∣T ∣⊕ ∣U ∣)+-saturated and strongly (∣T ∣⊕ ∣U ∣)+-homogeneous model N
containing C and a tuple ā′ ≡UB ā with ā′ ⫝fU N . We will prove that

Gb(tp(ā′/N)) ⊆ Meq , for every model M with U ⊆ M ⊆ N .

By Lemma e2.1.9, this implies that Gb(tp(ā′/N)) ⊆ acleq(U). Con-
sequently, we can use Lemma e2.3.10 to show that tp(ā′/N) is definable
over acleq(U). In particular, ā′ df

√
acleq(U) C.

It remains to prove the above claim. Consider a model M with U ⊆
M ⊆ N . Then ā′ ⫝fM N implies that ā′ df

√
M N , by Theorem 2.4. There-

fore, it follows by Lemma e2.3.8 that

Gb(tp(ā′/N)) ⊆ dcleq(M) = Meq . ◻

Corollary 2.6. In a stable theory,

A ⫝fU B implies A df
√

acleq(U) B .
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3. Stationary types

In this section we study types with a unique free extension over every
set of parameters. Such types are called stationary.

Definition 3.1. A type p over U is stationary if, for every set C ⊆M, p has
a unique free extension to a complete type over U ∪ C.

We start by proving that stationary types exist.

Proposition 3.2. In a stable theory, every type over a set of the form
acleq(U) is stationary.

Proof. Note that a type p(x̄) is stationary if, and only if, for every finite
tuple x̄′ ⊆ x̄ of variables, the restriction p ↾ x̄′ is stationary. Hence, it is
sufficient to consider types p ∈ S<ω(acleq(U)). Let C ⊇ acleq(U) be a
set and suppose that ā and ā′ are two realisations of p with

ā ⫝facleq(U) C and ā′ ⫝facleq(U) C .

We have to show that ā ≡C ā′. Hence, consider a formula φ(x̄; c̄) with
c̄ ⊆ C. We choose an ℵ0-saturated model M containing C ∪ āā′. There
are tuples ā∗ ≡C ā and ā′∗ ≡C ā′ with

ā∗ ⫝facleq(U) M and ā′∗ ⫝
f
acleq(U) M .

Since c̄ ⫝facleq(U) ā, there is a tuple c̄∗ ≡acleq(U)∪ā c̄ with

c̄∗ ⫝facleq(U) M .

By Corollary 2.6, the types

q ∶= tp(ā∗/M) , q′ ∶= tp(ā′∗/M) , and r ∶= tp(c̄∗/M)
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are definable over acleq(U). Let δ( ȳ), δ′( ȳ), and ε(x̄) be the corres-
ponding φ-definitions. By Lemma 1.3, it follows that

M ⊧ φ(ā; c̄) iff M ⊧ φ(ā∗; c̄)
iff M ⊧ δ(c̄)
iff M ⊧ δ(c̄∗)
iff δ( ȳ) ∈ r

iff ε( ȳ) ∈ q

iff ε( ȳ) ∈ q′

iff δ′( ȳ) ∈ r

iff M ⊧ δ′(c̄∗)
iff M ⊧ δ′(c̄)
iff M ⊧ φ(ā′∗; c̄) iff M ⊧ φ(ā′; c̄) . ◻

Corollary 3.3. In a stable theory types over models are stationary.

Proof. Note that every type over a model M has a unique extension to a
type over Meq = dcleq(M), which is an algebraically closed set. Hence,
the claim follows by Proposition 3.2. ◻

In Proposition 3.7 below we will present a characterisation of station-
ary types in terms of the relation i

√
. We start with two technical lemmas.

In the first one, we prove that all free extensions of a given type are
conjugate.

Lemma 3.4. Let T be a stable theory, κ > ∣T ∣ a cardinal, M a strongly
κ-homogeneous model of T , and U ⊆ M a set of size ∣U ∣ < κ. If

ā ≡U ā′ , ā ⫝fU M , and ā′ ⫝fU M ,

then there exists an automorphism π ∈ AutMU such that π(ā′) = ā and
π[M] = M.
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Proof. Since ā ≡U ā′, there exists an automorphism π ∈ AutMU with
π(ā′) = ā. By Corollary e2.1.7, we have

π[acleq(U)] = acleq(U) .

As M is strongly ∣acleq(U)∣+-homogeneous, we can find an automorph-
ism σ0 ∈ Aut M with

σ0 ↾ acleq(U) = π ↾ acleq(U) .

Let σ ∈ AutM be an extension of σ0. For every formula φ(x̄; c̄) with
parameters c̄ ⊆ acleq(U), it follows that

M ⊧ φ(σ(ā′); c̄) iff M ⊧ φ(ā′; σ−1(c̄))
iff M ⊧ φ(π(ā′); π(σ−1(c̄)))
iff M ⊧ φ(ā; c̄) .

Hence, σ(ā′) ≡acleq(U) ā. By invariance, we have

σ(ā′) ⫝facleq(U) M and ā ⫝facleq(U) M .

Moreover, tp(ā/ acleq(U)) is stationary according to Proposition 3.2.
Therefore, σ(ā′) ≡M ā and there exists an automorphism ρ ∈ AutMM
mapping σ(ā′) to ā. Since

ρ[σ[M]] = ρ[σ0[M]] = ρ[M] = M ,

the composition ρ ○ σ ∈ AutMU is the desired automorphism mapping
ā′ to ā. ◻

The second lemma characterises those free extensions that are unique.

Definition 3.5. We write

ā ⫝!U B : iff tp(ā/UB) is the unique free extension of
tp(ā/U) over U ∪ B .
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Lemma 3.6. Let T be a stable theory, κ > ∣T ∣ a cardinal, M a strongly
κ-homogeneous model of T , and U ⊆ M a set of size ∣U ∣ < κ. Then

ā ⫝!U M iff ā ⫝fU M and ā s
√

U M .

Proof. (⇐) As tp(ā/M) is a free extension of tp(ā/U), we only need to
prove uniqueness. If tp(ā/M) and tp(ā′/M) are two free extensions of
tp(ā/U), we can use Lemma 3.4 to find an automorphism π ∈ AutMU
with π(ā′) = ā and π[M] = M. Hence, for every formula φ(x̄; ȳ) over U
and every b̄ ⊆ M, ā s

√
U M implies that

M ⊧ φ(ā′; b̄) iff M ⊧ φ(ā; π(b̄)) iff M ⊧ φ(ā; b̄) .

Consequently, ā ≡M ā′.
(⇒) If āÒ⫝f

U M, the type tp(ā/M) is not a free extension of tp(ā/U)
and we are done. Hence, suppose that ā ⫝fU M and ā s

ÒÒ
√

U M. We claim
that tp(ā/U) has at least two free extensions over M. By assumption, we
can find finite tuples b̄, b̄′ ⊆ M with b̄ ≡U b̄′ and b̄ ≢U ā b̄′. Let φ(x̄; ȳ)
be a formula over U such that

M ⊧ φ(ā; b̄) ∧ ¬φ(ā; b̄′) .

Since b̄ ≡U b̄′ and M is strongly κ-homogeneous, there exists an auto-
morphism π0 ∈ Aut MU mapping b̄ to b̄′. Let π be an automorphism
of M extending π0. Then

M ⊧ φ(ā; b̄) implies M ⊧ φ(π(ā); b̄′) .

Hence, π(ā) ≢M ā. Furthermore,

ā ⫝fU M implies π(ā) ⫝fU π[M] .

Since π[M] = π0[M] = M, it follows that tp(ā/M) and tp(π(ā)/M)
are two different free extensions of tp(ā/U). ◻

Proposition 3.7. Let T be stable. Then

tp(ā/U) is stationary iff ā i
√

U U .
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Proof. (⇒) Suppose that p ∶= tp(ā/U) is stationary. Since i
√
= ∗( s
√
),

it is sufficient to show that ā ∗( s
√
)U U . Hence, consider a set B ⊇ U . We

fix a strongly (∣T ∣+ ⊕ ∣U ∣+)-homogeneous model M containing B. Let
q be the unique free extension of p to M and let ā′ be a realisation of q.
Then ā′ ≡U ā and it follows by Lemma 3.6 that ā′ s

√
U M. In particular,

we have ā′ s
√

U B.
(⇐) Suppose that ā i

√
U U . To show that p ∶= tp(ā/U) is stationary,

consider a set B ⊇ U . We fix a strongly (∣T ∣+ ⊕ ∣U ∣+)-homogeneous
model M containing B. Let ā′ ≡U ā be a tuple with ā′ i

√
U M. By

Proposition f3.1.12, it follows that ā′ ⫝fU M and ā′ s
√

U M. Therefore,
Lemma 3.6 implies that ā′ ⫝!U M. In particular, tp(ā′/B) is the unique
free extension of p over B. ◻

As an application of stationary types, we present the following topolo-
gical characterisation of the set of free extensions of a type.

Theorem 3.8 (Open Mapping Theorem). Let T be a stable theory, U ⊆ A
sets, and let F s̄(A/U) denote the subspace of Ss̄(A) consisting of all types
that do not fork over U.

(a) F s̄(A/U) is a closed subset of Ss̄(A).
(b) The restriction map ρ ∶ F s̄(A/U)→ Ss̄(U) ∶ p↦ p∣U is continuous,

closed, open, and surjective.

Proof. (a) We use (def) to fix, for every type p ∈ S s̄(A) ∖ F s̄(A/U), a
formula φp(x̄) ∈ p such that

M ⊧ φp(c̄) implies c̄Ò⫝f
U A .

Setting

Φ ∶= {¬φp ∣ p ∈ S s̄(A) ∖ F s̄(A/U) }

it follows that Φ ⊆ p, for every p ∈ F s̄(A/U), while ¬φp ∈ Φ∖ p, for every
p ∉ F s̄(A/U). Hence,

F s̄(A/U) = ⟨Φ⟩Ss̄(A) ,
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which is a closed set.
(b) We have seen in Corollary c3.2.22 that the restriction map

ρ+ ∶ Ss̄(A)→ Ss̄(U) ∶ p↦ p∣U

is continuous, closed, and surjective. By (a) it follows that the restriction

ρ = ρ+ ↾ F s̄(A/U) ∶ F s̄(A/U)→ Ss̄(U)

is also continuous and closed. Furthermore, it follows by (ext) that every
type over U has a free extension to a type over A. Hence, ρ is surjective
and it remains to prove that it is open.

First, we consider the case where A is a strongly ∣U ∣+-homogeneous
model. Every open set O ⊆ F s̄(A/U) is a union of basic open sets of the
form

⟨φ⟩F s̄(A/U) ∶= { p ∈ F s̄(A/U) ∣ φ ∈ p} .

Therefore it is sufficient to prove that the image of a basic open set is
open. Let φ(x̄; ȳ) be a formula over U , c̄ ⊆ A parameters, and let

⟨φ(x̄; c̄)⟩F s̄(A/U) ∶=⋃{ ⟨φ(x̄; π(c̄))⟩
F s̄(A/U) ∣ π ∈ Aut MU }

be the closure of ⟨φ(x̄; c̄)⟩F s̄(A/U) under conjugates. Being a union of
open sets, this set is also open. Furthermore,

ρ−1[ρ[⟨φ(x̄; c̄)⟩F s̄(A/U)]] = ⟨φ(x̄; c̄)⟩F s̄(A/U) ,

since, for types p, q ∈ F s̄(A/U) with p∣U = q∣U , we can use Lemma 3.4 to
find an automorphism π ∈ Aut MU with π(p) = q.

For a type p0 ∈ S s̄(U), it follows that

p0 ∉ ρ[⟨φ(x̄; c̄)⟩F s̄(A/U)]

iff ρ−1(p0) ∩ ⟨φ(x̄; c̄)⟩F s̄(A/U) = ∅

iff ρ−1(p0) ∩ ⟨φ(x̄; c̄)⟩F s̄(A/U) = ∅
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iff ρ−1(p0) ∖ ⟨φ(x̄; c̄)⟩F s̄(A/U) ≠ ∅

iff p0 ∈ ρ[F s̄(A/U) ∖ ⟨φ(x̄; c̄)⟩F s̄(A/U)] .

Hence, the complement of ρ[⟨φ(x̄; c̄)⟩F s̄(A/U)] is the image of a closed
set. As we have shown above that the map ρ is closed, it follows that the
complement is closed and the image ρ[⟨φ(x̄; c̄)⟩F s̄(A/U)] is open.

It remains to prove the general case. We fix a strongly ∣U ∣+-homoge-
neous model M containing A and let

ρ′ ∶ F s̄(M/U)→ F s̄(A/U)

be the corresponding restriction map. Consider a basic open set

⟨φ(x̄; c̄)⟩F s̄(A/U)

in F s̄(A/U). Then ⟨φ(x̄; c̄)⟩F s̄(M/U) is basic open in F s̄(M/U) and

⟨φ(x̄; c̄)⟩F s̄(M/U) = (ρ′)−1[⟨φ(x̄; c̄)⟩F s̄(A/U)] .

As ρ′ is surjective, we have

ρ[⟨φ(x̄; c̄)⟩F s̄(A/U)] = ρ[ρ′[(ρ′)−1[⟨φ(x̄; c̄)⟩F s̄(A/U)]]]

= (ρ ○ ρ′)[⟨φ(x̄; c̄)⟩F s̄(M/U)]

This set is open, since we have shown above that the composition ρ ○ ρ′
is an open map. ◻

4. The multiplicity of a type
Most types have several free extensions. In this section we study their
number. We will prove in Theorem 4.6 below that a theory is stable if,
and only if, the number of such extensions is bounded.

Definition 4.1. Let T be a theory and
√

a forking relation.
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(a) The
√

-multiplicity mult√(p) of a type p over A is the minimal
cardinal κ such that, for every set B ⊇ A, there are at most κ complete
types over B that are

√
-free extensions of p. If such a cardinal κ does

not exist, we set mult√(p) ∶=∞. For
√
= f
√
, we drop the subscript and

simply write mult(p).
(b) The multiplicity mult(

√
) of
√

is the maximal
√

-multiplicity of
some complete type (with finitely many variables). If there is no max-
imum, we set mult(

√
) ∶=∞.

We start by proving that, in a stable theory, every type has bounded
multiplicity.

Lemma 4.2. Let T be a stable theory.
(a) For every type p ∈ S s̄(A) with ∣s̄∣ < ω, there exists some model M

of T of size ∣M∣ ≤ ∣T ∣ such that

mult⫝f (p) ≤ ∣S
s̄(M)∣ .

(b) mult(⫝f) ≤ sup{ ∣S<ω(U)∣ ∣ ∣U ∣ ≤ ∣T ∣ } ≤ 2∣T∣

Proof. (a) For every type p ∈ S s̄(A), there exists a set U ⊆ A of size

∣U ∣ < loc0(⫝f) ≤ fc(⫝f) ≤ ∣T ∣+

such that p does not fork over U . Since ∣U ∣ ≤ ∣T ∣, we can find a model M
of size ∣M∣ = ∣T ∣ containing U . Since every type has at least one free
extension over any given set, it is sufficient to bound the number of
free extensions of p over sets B containing M. Hence, let q ∈ S s̄(B)
be an extension of p with B ⊇ M. We have seen in Corollary 3.3 that
types over models are stationary. Hence, q is the unique free extension
of q∣M . Consequently, if q, q′ ∈ S s̄(B) are distinct free extensions of p,
then q∣M ≠ q′∣M . Therefore, p has at most ∣S s̄(M)∣ free extensions.

(b) The first inequality follows immediately from (a). The second
one follows from the fact that there are at most 2∣T∣ types over a set of
size ∣T ∣. ◻
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A characterisation of stable theories

Recall that we write p t√ q if q is a
√

-free extension of p. This is a
definition of t√ in terms of a given preforking relation

√
. Conversely,

given an extension relation t we can recover a corresponding preforking
relation

√
. In the remainder of this section we present two characterisa-

tions of stable theories one in terms of the extension relation t and one
in terms of the parameter mult(⫝f).

Proposition 4.3. If ⫝ is a symmetric forking relation with mult(⫝) <∞,
then t⫝ satisfies the following conditions :

(inv) Invariance. p t q implies π(p) t π(q), for every automorphism
π ∈ Aut(M).

(lc) Local Character. There exists a cardinal κ such that, for every set U
and every type p ∈ S<ω(U), there exists a subset U0 ⊆ U of size
∣U0∣ < κ such that p ↾U0 t p.

(bnd) Boundedness. For every type p ∈ S<ω(U), there exists a cardinal µ
such that, for every set C ⊆ M, p has at most µ extensions q ∈
S<ω(U ∪ C) with p t q.

(ext) Extension. For every p ∈ S<ω(U) and every set C ⊆M, there exists
some type q ∈ S<ω(U ∪ C) with p t q.

(tr) Transitivity. p t q t r implies p t r.

(mon) Monotonicity. p t r implies p t q, for all p ⊆ q ⊆ r.

Proof. (bnd) holds since mult(⫝) <∞. The other axioms follow from
the fact that ⫝ is a symmetric forking relation : (inv) follows by invari-
ance ; (lc) follows by right locality ; (ext) follows by the extension axiom ;
(tr) follows by left transitivity and symmetry ; and (mon) follows by
monotonicity. ◻

For the converse statement, we need a technical lemma.
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Lemma 4.4. Let M be a κ+-saturated, strongly κ+-homogeneous model,
U ⊆ M a set of size ∣U ∣ < κ, and ā ∈M<ω . If ā d

ÒÒ
√

U M, then tp(ā/M) has
at least κ conjugates over U.

Proof. If ā d
ÒÒ
√

U M, there exists a finite tuple b̄ ⊆ M such that ā d
ÒÒ
√

U b̄. By
Lemma f3.1.3, we can find an indiscernible sequence (b̄n)n<ω over U
with b̄ = b̄0 such that, for each tuple ā′ ≡U b̄ ā, there are indices m, n < ω
with

b̄m ≢U ā′ b̄n .

Fix a formula φ(x̄; ȳ) over U such that

M ⊧ φ(ā; b̄m) ∧ ¬φ(ā; b̄n) , for some m, n < ω .

Replacing φ be its negation, if necessary, we may assume that there are
infinitely many indices n such that M ⊧ ¬φ(ā; b̄n). By compactness, it
follows that there exists a tuple ā′ ≡U ā and an indiscernible sequence
(b̄′α)α<κ of length κ such that

M ⊧ φ(ā′; b̄′α) iff α = 0 .

As M is κ+-saturated, we may choose the sequence (b̄′α)α<κ to be in M.
By strong κ+-homogeneity we can find, for every α < κ, an automorph-
ism σα ∈ Aut MU such that

σα(b̄′β) = b̄
′
α+β , for all β < κ .

Let πα ∈ AutM be an extension of σα and set

āα ∶= πα(ā′) , for α < κ .

Then

M ⊧ φ(āα ; b̄′α+β) iff M ⊧ φ(πα(ā′); πα(b̄′β))

iff M ⊧ φ(ā′; b̄′β)

iff β = 0 .

1281



g1. Stable theories

Consequently, tp(āα/M) ≠ tp(āβ/M), for α ≠ β. Since these types
are extensions of tp(ā/U) and they are conjugate over U , the claim
follows. ◻

Theorem 4.5. Let T be a complete first-order theory.
(a) T is stable if, and only if, there exists a relation t on complete types

satisfying (inv), (lc), and (bnd).
(b) If t is an extension relation satisfying (inv), (lc), (bnd), (ext),

(tr), and (mon), then t = t⫝f .

Proof. (a) (⇒) If T is stable, the relation t⫝f has the desired properties
by Proposition 4.3. For (⇐), suppose that t satisfies (inv), (lc), and
(bnd). Let κ be the cardinal from (lc) and fix a κ-saturated model M.
For U ⊆ M and p ∈ S<ω(U), we denote by µ(p; U) the cardinal from
(bnd). Set

µ ∶= sup{ µ(p; U) ∣ U ⊆ M with ∣U ∣ < κ and p ∈ S<ω(U) } .

Since, for every subset U ⊆M of size ∣U ∣ < κ, there is some automorph-
ism π ∈ AutM with π[U] ⊆ M, it follows by (inv) that, for all sets
U ,C ⊆ M with ∣U ∣ < κ and for every type p ∈ S<ω(U), there are at
most µ types q ∈ S<ω(U ∪ C) with p t q.

Fix a set U ⊆M and a finite tuple s̄ of sorts. For every type p ∈ S s̄(U),
we can fix, by (lc), a subset C(p) ⊆ U of size ∣C(p)∣ < κ such that
p∣C(p) t p. Let C ⊆ U be a set of size ∣C∣ < κ. Then

◆ ∣S s̄(C)∣ ≤ 2∣T∣⊕κ and,
◆ for every type q ∈ S s̄(C), there are at most µ types p ∈ S s̄(U) with

C(p) = C and p∣C = q.
Consequently, we have

∣S s̄(U)∣ ≤ ∣U ∣<κ ⊗ 2∣T∣⊕κ ⊗ µ .

Setting λ0 ∶= µ ⊕ 2∣T∣ and λ ∶= λκ
0, it follows that

∣S s̄(U)∣ ≤ λκ ⊗ λκ
0 ⊗ µ = λ , for every set U of size ∣U ∣ ≤ λ .
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Hence, T is λ-stable.
(b) Let q ∈ S s̄(B) be an extension of p ∈ S s̄(A). We have to show that

p t q if, and only if, q is a ⫝f -free extension of p.
(⇒) Suppose that p t q. By (bnd), there is a cardinal µ such that,

for every set C, p has at most µ t-free extensions over A ∪ C. Set κ ∶=
µ+ ⊕ ∣A∣+ and let M be a κ+-saturated and strongly κ+-homogeneous
model containing B. We use (ext) to find a type r u q over M. By (tr),
it follows that p t r. Hence, (inv) implies that r has at most µ conjugates
over A. By Lemma 4.4, it follows that r does not fork over A. In particular,
q does not fork over A.
(⇐) Suppose that q is a free extension of p. Fix a strongly (∣T ∣⊕ ∣A∣)+-

homogeneous model M containing B and let r be a free extension of q
over M. By (ext), there exists a type r′ u p over M. By the first part of
the proof, p t r′ implies that r′ is a free extension of p. Let ā and ā′ be
realisations of, respectively, r and r′. Then we can use Lemma 3.4 to find
an automorphism π ∈ AutMA such that π(ā′) = ā and π[M] = M. By
(inv),

p t q implies p t tp(π(ā′)/π[M]) = tp(ā/M) .

Hence, it follows by (mon) that p t tp(ā/B) = q. ◻

Translating this theorem into the language of forking relations, we
obtain the following characterisation of stable theories.

Theorem 4.6. Let T be a complete first-order theory. The following state-
ments are equivalent.

(1) T is stable.

(2) f
√

is symmetric and mult( f
√
) <∞.

(3) There exists a symmetric forking relation ⫝ with mult(⫝) <∞.

Proof. (1)⇒ (2) follows by Lemma 4.2 and the implication (2)⇒ (3)
is trivial. For (3)⇒ (1), suppose that ⫝ is a symmetric forking relation
with mult(⫝) < ∞. By Proposition 4.3, the corresponding extension
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relation t⫝ satisfies the three axioms from Theorem 4.5 (a). Hence, T is
stable. ◻

Proposition 4.7. If ⫝ is a symmetric forking relation with mult(⫝) <∞,
then ⫝ = ⫝f .

Proof. By Proposition 4.3, the extension relation t⫝ satisfies the six ax-
ioms from Theorem 4.5 (b). Consequently, t⫝ = t⫝f . For a finite tuple ā
and sets U , B ⊆M, it follows that

ā ⫝U B iff tp(ā/U) t⫝ tp(ā/B)

iff tp(ā/U) t⫝f tp(ā/B) iff ā ⫝fU B .

Hence, finite character implies that ⫝ = ⫝f . ◻

As a further application we derive a characterisation of forking in
totally transcendental theories by showing that the relation of being a
Morley-free extension (which was defined in Section f2.1) satisfies the
conditions of the above theorem.

Corollary 4.8. Let T be a totally transcendental theory.

(a) ā ⫝fU B iff rkM(ā/UB) = rkM(ā/U) , for all finite ā .

(b) mult⫝f (p) < ℵ0 .

Proof. (a) For types p ∈ S s̄(U) and q ∈ S s̄(V), we define

p tM q : iff q is a Morley-free extension of p .

It is sufficient to show that tM satisfies the conditions in Theorem 4.5 (b).
(inv) follows immediately from the definition. (bnd) and (ext) were

already shown in Lemma f2.1.9 (a) and (b), respectively, while (lc) was
proved in Lemma f2.1.6 (c).

For (tr), suppose that p tM q tM r. Then

rkM(p) = rkM(q) = rkM(r) ,
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which implies that p tM r.
(mon) Suppose that p tM r and p ⊆ q ⊆ r. By Lemma f2.1.6 (b), we

have

rkM(p) ≥ rkM(q) ≥ rkM(r) = rkM(p) .

Hence, p tM q.
(b) We have seen in Lemma f2.1.9 that every type has only finitely

many Morley-free extensions. Hence, the claim follows by (a). ◻

5. Morley sequences in stable theories
Let us collect several results on Morley sequences in stable theories.
Many of the proofs rely on the notion of a stationary type. We start with
a proof that we can drop the requirement of indiscernibility from the
definition of a Morley sequence if the type in question is stationary.

Lemma 5.1. Let T be a stable theory, p a stationary type over U , and let
(ā i)i∈I be a sequence of realisations of p. If

ā i ⫝
f
U ā[<i] , for all i ∈ I ,

then (ā i)i∈I is a ⫝f -Morley sequence for p over U.

Proof. We have to show that (ā i)i∈I is indiscernible over U .By induction
on n < ω, we prove that

ā[ı̄] ≡U ā[<l]ā[>m] ā[k̄] , for all ı̄ , k̄ ∈ [I]n with l < ı̄ , k̄ < m .

Hence, let ı̄ , k̄ ∈ [I]n and l < ı̄ , k̄ < m. By symmetry, we may assume
that in−1 < kn−1. According to Lemma f2.4.9, we have

ā in−1 ⫝
f
U ā[<in−1]ā[>m] and ākn−1 ⫝

f
U ā[<in−1]ā[>m] ,

Since p is stationary, it follows that

ā in−1 ≡U ā[<in−1]ā[>m] ākn−1 .
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By inductive hypothesis, we further have

ā in−2 . . . ā i0 ≡U ā[<l]ā[≥kn−1] ākn−2 . . . āk0 .

Consequently,

ā in−1 ā in−2 . . . ā i0 ≡U ā[<l]ā[>m] ākn−1 ā in−2 . . . ā i0

≡U ā[<l]ā[>m] ākn−1 ākn−2 . . . āk0 . ◻

Lemma 5.2. Let T be a stable theory, p a stationary type over U and q the
unique free extensions of p over U ∪ C.

(a) Every ⫝f -Morley sequences (ā i)i∈I for q over U ∪ C is also a ⫝f -
Morley sequence for p over U.

(b) Let (ā i)i∈I be a ⫝f -Morley sequence for p over U. If I0 ⊆ I and
C ⫝fU ā[I0] ā[I], then (ā i)i∈I∖I0 is a Morley sequence for q over
U ∪ C.

Proof. (a) As (ā i)i∈I is indiscernible over U ∪ C, it is trivially indiscern-
ible over U . Furthermore,

ā i ⫝
f
U C and ā i ⫝

f
UC ā[<i] implies ā i ⫝

f
U ā[<i] .

(b) Set A0 ∶= ā[I0]. We start by showing that

Cā[K] ⫝fUA0
ā[I ∖ K] , for all finite K ⊆ I ∖ I0 .

The proof is by induction on ∣K∣. If K = ∅, the claim holds by assumption.
Hence, suppose that K = K0 ∪ {k} and that we have already shown that

Cā[K0] ⫝
f
UA0

ā[I ∖ K0] .

Then

Cā[K0] ⫝
f
UA0 āk

ā[I ∖ K] .
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Furthermore, we have seen in Lemma f2.4.9 that

āk ⫝
f
U ā[I ∖ K] ,

which implies that

āk ⫝
f
UA0

ā[I ∖ K] .

Consequently, it follows by transitivity that

Cā[K0]āk ⫝
f
UA0

ā[I ∖ K] .

Having proved the claim, it follows by (fin) that

Cā[<i] ⫝fUA0
ā i , for all i ∈ I ,

which implies that

ā i ⫝
f
UCA0

ā[<i] , for all i ∈ I ∖ I0 .

Hence, it follows by Lemma 5.1 that (ā i)i∈I∖I0 is a ⫝f -Morley sequences
over U ∪ C ∪ A0. ◻

For stable theories, we can turn every indiscernible sequence into a
Morley sequence by increasing the domain of the type.

Proposition 5.3. Let T be a stable theory, κ an infinite cardinal, and let
(ā i)i∈I be an infinite indiscernible sequence over U such that ∣ā i ∣ < κ, for
all i ∈ I. There exist a set C of size ∣C∣ < κ ⊕ ℵ1 and a stationary type
p ∈ S<κ(U ∪C) such that (ā i)i∈I is a ⫝f -Morley sequence for p over U ∪C.

Proof. We have seen in Corollary e5.4.13 and Corollary e5.4.14 that, for
every formula φ(x̄; c̄) the set

⟦φ(ā i ; c̄)⟧i∈I = { i ∈ I ∣M ⊧ φ(ā i ; c̄) }
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is either finite or cofinite and that, for every set C ⊆M, the type

Av1((ā i)i/UC) = {φ(x̄) ∣ φ a formula over U ∪ C such that
⟦φ(ā i)⟧i∈I is cofinite}

is complete. According to Proposition e5.4.12, there exists, for every
formula φ(x̄; ȳ) over U , a finite constant k(φ) < ω such that, for all
c̄ ⊆M,

φ(x̄; c̄) ∈ Av1((ā i)i/UC) iff ∣I ∖ ⟦φ(ā i ; c̄)⟧i∈I ∣ ≤ k(φ) .

Choose an injective function µ ∶ ω → I and set I0 ∶= rng µ. It follows
that

φ(x̄; c̄) ∈ Av1((ā i)i/UC)

iff ∣⟦φ(āµ(n); c̄)⟧n<2k(φ)+1∣ > k(φ)

iff M ⊧⋁{⋀n∈K φ(āµ(n); c̄) ∣ K ⊆ [2k(φ) + 1] , ∣K∣ = k(φ) + 1} .

Consequently, the type Av1((ā i)i/UC) is definable over ā[I0], for every
C ⊆M. For C ⊆M, fix a tuple ā(C) realising Av1((ā i)i/UCā[I0]). For
every C, we have

ā(C) ≡U ā[I0] ā(∅) and ā(C) df
√

ā[I0] UC .

Consequently,

ā(∅) ∗(df
√
)ā[I0] U

By Propositions 3.7 and 2.5 it follows that the type

p ∶= tp(ā(∅)/U ā[I0]) = Av1((ā i)i/U ā[I0])

is stationary. Since the tuple ā i realises Av1((ā i)i/U ā[I0]ā[<i]), for
i ∈ I ∖ I0,

ā i
∗(df
√
)ā[I0] U ā[I0]ā[<i] implies ā i ⫝

f
ā[I0] U ā[I0]ā[<i] ,

by Propositions 1.5 and f3.1.12. Therefore, it follows by Lemma 5.1 that
(ā i)i∈I∖I0 is a ⫝f -Morley sequence for p over U ∪ ā[I0]. ◻
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As an application, it follows that every indiscernible sequence can
be turned into an indiscernible sequence over a larger set if we remove
some of its elements.

Lemma 5.4. Let T be a stable theory and (ā i)i∈I and indiscernible se-
quence over U with ∣ā i ∣ < ℵ0. For every set C ⊆ M there exists a set
I0 ⊆ I of size ∣I0∣ ≤ ∣C∣⊗ loc0(⫝f) such that (ā i)i∈I∖I0 is indiscernible over
U ∪ C ∪ ā[I0].

Proof. We have seen in Proposition 5.3 that there exist a set U ′ ⊇ U and
a stationary type p over U ′ such that (ā i)i∈I is a Morley sequence for p
over U ′. For every finite C0 ⊆ C, we can find a set J(C0) ⊆ I of size
∣J(C0)∣ < loc0(⫝f) such that

C0 ⫝
f
U ′ ā[J(C0)] ā[I] .

Setting I0 ∶= ⋃{ J(C0) ∣ C0 ⊆ C finite} it follows that

∣I0∣ ≤ ∣C∣⊗ loc0(⫝f) and C ⫝fU ′ ā[I0] ā[I] .

Consequently, we can use Lemma 5.2 to show that (ā i)i∈I∖I0 is a Morley
sequence over U ′Cā[I0]. In particular, it is indiscernible over UCā[I0].

◻

In totally transcendental theories, it is particularly simple to find
Morley sequences.

Definition 5.5. Let
√

be an abstract independence relation. A family
(A i)i∈I of sets is

√
-independent over U if

Ak
√

U ⋃
i≠k

A i , for all k ∈ I .

Lemma 5.6. Let T be a totally transcendental theory and p ∈ S<ω(U) a
type. Every set I ⊆ pM that is ⫝f -independent over U has a finite partition
I = I0 ∪ ⋅ ⋅ ⋅ ∪ In−1 such that each I i is totally indiscernible over U.
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g1. Stable theories

Proof. We have seen in Corollary 4.8 (b) that mult⫝f (p) < ℵ0. Thus,
p has only finitely many free extensions q0 , . . . , qn−1 over acleq(U). By
Lemma 5.1, each set I i ∶= I ∩ qMi forms a Morley sequence over U . In
particular, it is totally indiscernible. ◻

6. The stability spectrum
The stability spectrum of a theory T is the class of all cardinals κ such
that T is κ-stable. In this section, we will compute the stability spectrum
from two parameters : fc(⫝f) and st(T). Recall that fc(⫝f) is the least
cardinal κ such that there is no ⫝f -forking chain of length κ for a finite
set. The cardinal st(T) is defined as follows.

Definition 6.1. Let T be a complete theory. st(T) is the minimal infinite
cardinal κ such that T is κ-stable. If there is no such cardinal, we set
st(T) ∶=∞.

The following technical lemma contains the main ingredients to de-
termine the stability spectrum of a theory.

Lemma 6.2. Let T be a stable theory and κ a cardinal.

(a) If κ < κ<fc(⫝
f), then T is not κ-stable.

(b) fc(⫝f) ≤ ∣T ∣+ .
(c) ∣S<ω(U)∣ ≤ st(T) ≤ 2∣T∣ , for every set U of size ∣U ∣ ≤ st(T).
(d) fc(⫝f)⊕mult(⫝f) ≤ st(T) .

(e) If κ ≥ st(T) and κ = κ<fc(⫝
f), then T is κ-stable.

Proof. (a) Let µ be the least cardinal with κµ > κ. Then κ < κ<fc(⫝
f)

implies that µ < fc(⫝f). Hence, there exist a finite tuple ā and a⫝f -forking
chain (b̄α)α<µ for ā over ∅ of length µ. We construct a tree (c̄η)η∈κ≤µ as
follows. We start with c̄⟨⟩ ∶= b̄0. For the inductive step, suppose that c̄η is
already defined for all η ∈ κ<µ with ∣η∣ < α and set

Cα ∶=⋃{ c̄η ∣ η ∈ κ<α } .
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6. The stability spectrum

If α is a limit ordinal, we choose, for every η ∈ κα , a tuple c̄η with

c̄η c̄[≺η] ≡ b̄α b̄[<α] and c̄η ⫝
f
c̄[≺η] Cα .

For the successor step, suppose that α = β + 1. For each η ∈ κβ , we
choose

◆ a tuple d̄ such that d̄ c̄[⪯η] ≡ b̄α b̄[<α],
◆ a ⫝f -Morley sequence (c̄′i)i<κ for tp(d̄/c̄[⪯η]) over c̄[⪯η], and
◆ a sequence (c̄′′i )i<κ such that

c̄′′[<κ] ≡c̄[⪯η] c̄′[<κ] and c̄′′[<κ] ⫝fc̄[⪯η] Cα .

Then we set c̄ηα ∶= c̄′′α , for α < κ.
Having constructed the tree (c̄η)η∈κ<µ , we set U ∶= ⋃η∈κ<µ c̄η . Then

∣U ∣ = κ<µ = κ. For each ζ ∈ κµ , let āζ be a tuple such that

āζ c̄[≺ζ] ≡ āb̄[<µ] and āζ ⫝fc̄[≺ζ] U .

We claim that

āξ ≢U āζ , for ξ ≠ ζ .

This implies that ∣S<ω(U)∣ ≥ κµ > κ = ∣U ∣. Hence, T is not κ-stable.
It remains to prove the claim. Given ξ ≠ ζ , let η be the longest common

prefix of ξ and ζ and let α ≠ β be the indices such that ηα ≺ ξ and ηβ ≺ ζ .
We start by showing that

c̄[⪯ζ0] ⫝fc̄[⪯η] c̄ηα , for all ζ0 ≺ ζ .

The proof is by induction on ∣ζ0∣. Note that we have

c̄ηβ ⫝
f
c̄[⪯η] c̄ηα

by choice of c̄ηβ and c̄ηα . By (nor) this implies that

c̄[⪯ηβ] ⫝fc̄[⪯η] c̄ηα .
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Hence, the claim holds for ζ0 ⪯ ηβ. For the inductive step, let ζ0 ≻ ηβ.
Then

c̄ζ0 ⫝
f
c̄[≺ζ0] C∣ζ0 ∣ implies c̄ζ0 ⫝

f
c̄[≺ζ0] c̄ηα .

By inductive hypothesis, we furthermore have

c̄[≺ζ0] ⫝fc̄[⪯η] c̄ηα .

Hence, the claim follows by transitivity.
Having proved the claim, it follows by finite character that

c̄[≺ζ] ⫝fc̄[⪯η] c̄ηα .

Since āζ ⫝fc̄[≺ζ] c̄ηα this implies by transitivity that

āζ ⫝fc̄[⪯η] c̄ηα .

On the other hand,

āÒ⫝f
b̄[≤α] b̄α+1 implies āξÒ⫝f

c̄[⪯η] c̄ηα .

Consequently, āξ ≢c̄[⪯ηα] āζ .
(b) follows from Theorem f3.2.18.
(c) For the upper bound, it is sufficient to note that, according to

Theorem c3.5.17, (2∣T∣)∣T∣ = 2∣T∣ implies that T is 2∣T∣-stable.
For the lower bound, let U be a set of size ∣U ∣ ≤ st(T). Fixing some

set A ⊇ U of size ∣A∣ = st(T), it follows by st(T)-stability of T that

∣S<ω(U)∣ ≤ ∣S<ω(A)∣ = ∣A∣ = st(T) .

(d) We start by showing that fc(⫝f) ≤ st(T). Note that

κ < fc(⫝f) implies κ < κκ ≤ κ<fc(⫝
f) .

Therefore, it follows by (a) that T is not κ-stable for κ < fc(⫝f). Thus,
st(T) ≥ fc(⫝f).
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It therefore remains to prove that mult(⫝f) ≤ st(T). Let p ∈ S<ω(U).
By Proposition f2.3.24, there exists a set U0 ⊆ U of size ∣U0∣ < loc0(⫝f) ≤
fc(⫝f) such that p∣U0 t p. Since every free extension of p is also a free
extension of p∣U0 , it follows that mult(p∣U0) ≥ mult(p). As T is st(T)-
stable,

∣U0∣ < fc(⫝f) ≤ st(T) implies ∣S≤ω(U0)∣ ≤ st(T) .

Consequently, there exists a model M of size st(T) that contains U0. We
claim that ∣S<ω(M)∣ ≥ mult(p∣U0). As T is st(T)-stable, it then follows
that

mult(p) ≤ mult(p∣U0) ≤ ∣S
<ω(M)∣ ≤ st(T) .

To prove the claim, consider a set C ⊇ U0 and let (qα)α<λ be a se-
quence of distinct free extensions of p∣U0 over C. For each α < λ, choose
a free extension q+α u qα over C ∪ M and set rα ∶= q+α ∣M . If we can show
that rα ≠ rβ , for α ≠ β, it will follow that ∣S<ω(M)∣ ≥ λ, as desired.

Hence, suppose that rα = rβ . Since q+α and q+β are free extensions of
the stationary type rα = rβ , it follows that q+α = q+β . In particular, qα = qβ ,
which implies that α = β.

(e) Let κ ≥ st(T) be a cardinal such that κ<fc(⫝
f) = κ and let U be a

set of size ∣U ∣ ≤ κ. By Proposition f2.3.24, we can find, for every type
p ∈ S<ω(U), a set U0 ⊆ U of size ∣U0∣ < loc0(⫝f) ≤ fc(⫝f) such that
p∣U0 t p. As T is st(T)-stable,

∣U0∣ < fc(⫝f) ≤ st(T) implies ∣S≤ω(U0)∣ ≤ st(T) .

Consequently, it follows as in Theorem 4.5 that

∣S<ω(U)∣ ≤ ∣U ∣<fc(⫝
f) ⊗ st(T)⊗mult(⫝f)

≤ κ<fc(⫝
f) ⊗ st(T)⊗mult(⫝f) = κ ,

where the last equality follows by (c) and our choice of κ. ◻
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Combining statements (a) and (d) of Lemma 6.2 we obtain the follow-
ing description of the stability spectrum.

Theorem 6.3. A stable theory T is κ-stable if, and only if,

κ = st(T)⊕ κ<fc(⫝
f) .

Proof. (⇐) follows by Lemma 6.2 (d). For (⇒), suppose that T is κ-
stable. By definition, this implies that κ ≥ st(T). Furthermore, it fol-
lows by Lemma 6.2 (a) that κ ≥ κ<fc(⫝

f). Since the converse inequality
κ ≤ κ<fc(⫝

f) is trivial, the claim follows. ◻

Let us consider a subclass of stable theories where the stability spec-
trum is particularly simple.

Definition 6.4. A complete first-order theory T is called supersimple if
loc( f
√
) ≤ ℵ0. If T is supersimple and stable, we call it superstable.

Note that it follows by Theorem f2.4.17 that every supersimple theory
is simple.

Theorem 6.5. Let T be a complete first-order theory. The following condi-
tions are equivalent.

(1) T is supersimple.

(2) fc( f
√
) ≤ ℵ0

(3) loc0( f
√
) ≤ ℵ0

Proof. (2)⇔ (3) follows by Proposition f2.3.24 and (1)⇔ (3) follows by
Lemma f2.3.20. ◻

Theorem 6.6. Let T be a complete first-order theory. The following condi-
tions are equivalent.

(1) T is superstable.

(2) T is κ-stable if, and only if, κ ≥ st(T).

1294



6. The stability spectrum

(3) There is a cardinal λ such that T is κ-stable for all κ ≥ λ.

Proof. (2)⇒ (3) is trivial.
(1)⇒ (2) According to Theorem 6.3, T is κ-stable if, and only if,

κ ≥ st(T) and κ = κ<ℵ0 .

As the second condition is vacuously true, the claim follows.
(3)⇒ (1) Fix a cardinal κ ≥ λ with cf κ = ℵ0. As κ ≥ λ ≥ st(T), it

follows by Theorem 6.3 that κ = κ<fc(⫝
f). Since κℵ0 = κcf κ > κ, this

implies that fc(⫝f) ≤ ℵ0. Hence, the claim follows by Theorem 6.5. ◻

Corollary 6.7. Every ℵ0-stable theory is superstable.

Proof. If T is ℵ0-stable, then fc(⫝f) ≤ st(T) = ℵ0 and it follows by
Theorem 6.5 that T is supersimple. ◻

We conclude this section by noting that, for countable theories, the
characterisation in Theorem 6.3 leaves only four possibilities.

Theorem 6.8. Every countable complete theory T satisfies exactly one of
the following conditions :

(1) T is totally transcendental. Then

T is κ-stable iff κ ≥ ℵ0 .

(2) T is superstable, but not totally transcendental. Then

T is κ-stable iff κ ≥ 2ℵ0 .

(3) T is stable, but not superstable. Then

T is κ-stable iff κ = κℵ0 .

(4) T is unstable.
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Proof. Let T be a stable theory. If T is ℵ0-stable, we have seen in The-
orem c3.5.18 that T is totally transcendental and κ-stable for all infinite κ.

Hence, suppose that T is not ℵ0-stable. Then there exists a countable
set U ⊆M with ∣S<ω(U)∣ > ℵ0. According to Corollary b5.7.5, this im-
plies that ∣S<ω(U)∣ = 2ℵ0 . Consequently, st(T) ≥ 2ℵ0 . By Lemma 6.2 (c),
it follows that st(T) = 2ℵ0 .

Furthermore, we have fc(⫝f) ≤ ℵ1, according to Lemma 6.2 (b). If
fc(⫝f) = ℵ0, then T is superstable and it follows by Theorem 6.6 that

T is κ-stable iff κ ≥ st(T) = 2ℵ0 .

If fc(⫝f) = ℵ1, Theorem 6.3 implies that T is κ-stable if, and only if,
κ ≥ st(T) = 2ℵ0 and κ = κℵ0 . Note that κ = κℵ0 implies 2ℵ0 ≤ κℵ0 = κ.
Hence, the first condition is superfluous and

T is κ-stable iff κ = κℵ0 . ◻
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1. Isolation relations
In this chapter, we study the structure of models of a stable theory. Our
main tool will be a generalisation of the notion of a construction which
we introduced in Section e3.4. This generalisation is based on the notion
of a so-called isolation relation.

Definition 1.1. (a) A ternary relation
√

on small subsets of M is an
isolation relation if it is an abstract independence relation satisfying the
axioms (inv), (bmon), and
(rsh) Right Shift.

AC
√

U B and C
√

U AB implies A
√

U BC .

If ā
√

U B, we say that tp(ā/B) is
√

-isolated over U . For U = B, we
sometimes drop the subscript and abbreviate

A
√

U U by A
√

U .

(b) The left base-monotonicity cardinal lbm(
√
) of an isolation rela-

tion
√

is the least cardinal κ such that there are sets A, B,C ,U with

∣C∣ ≤ κ , AC
√

U B , and AÒÒ
√

UC B .

If such a cardinal does not exist, we set lbm(
√
) =∞.

Thus, the difference between an isolation relation and a preforking
relation is that we have dropped (def) whilewe have provided a converse
to Lemma f2.2.4 by (rsh).
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Lemma 1.2. Every symmetric preforking relation is an isolation relation
with lbm(⫝) =∞.

Proof. By symmetry and base monotonicity it follows that lbm(⫝) =∞.
Hence, we only have to prove (rsh). Let AC ⫝U B and C ⫝U A. Then
B ⫝U AC and Lemma f2.2.4 implies that BC ⫝U A. Hence, A ⫝U
BC. ◻

Our main example of an isolation relation will be the relation at
√

. To
illustrate the concept, we also introduce three variants.

Definition 1.3. Let κ be an infinite cardinal.

A at κ
√

U B : iff for every finite ā ⊆ A , there exists a set
Φ ⊆ tp(ā/U) of size ∣Φ∣ < κ such that
M ⊧ Φ(ā′) ⇒ ā′ ≡UB ā .

A ⫝wo
U B : iff A′ ≡U A ⇒ A′ ≡UB A .

A ⫝aU B : iff A′ ≡acleq(U) A ⇒ A′ ≡UB A .

Lemma 1.4. (a) at
√
⊆ at κ
√
⊆ ⫝wo ⊆ d

√

(b) at
√

is an isolation relation with lbm( at
√
) ≥ ℵ0.

(c) at κ
√

satisfies all axioms of an isolation relation except for (rsh).
For regular cardinals κ, we have lbm( at κ

√
) ≥ κ.

(d) ⫝wo is a symmetric isolation relation with lbm(⫝wo) =∞.

Proof. (a) The first two inclusions follow immediately from the defini-
tions. For the last one, suppose that ā ⫝wo

U b̄. To prove that ā d
√

U b̄, let
(b̄n)n<ω be an indiscernible sequence over U with b̄0 = b̄. According to
Lemma f3.1.3, it is sufficient to find a tuple ā′ ≡U b̄ ā such that

b̄m ≡U ā′ b̄n , for all m, n < ω .
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We will show in (d) that ⫝wo is symmetric. Hence, we also have b̄ ⫝wo
U ā

and

b̄n ≡U b̄ implies b̄n ≡U ā b̄ , for all n < ω .

Consequently, the tuple ā itself has the desired properties.
(b) We have already seen in Lemma f2.3.3 that at

√
is an abstract inde-

pendence relation satisfying (inv) and (bmon). The fact that lbm( at
√
) ≥

ℵ0 follows by (c) for κ = ℵ0. Hence, the only axiom that remains to be
verified is (rsh).

Suppose that AC at
√

U B and C at
√

U AB. To check that A at
√

U BC,
consider a finite tuple ā ⊆ A. Since AC at

√
U B, there is a formula φ(x̄)

over U isolating tp(ā/UB). We claim that φ also isolates tp(ā/UBC).
Let ā′ be a tuple satisfying φ. Then ā′ ≡UB ā and we have to show that
ā′ ≡UBC ā. Given a finite tuple c̄ ⊆ C, we fix some tuple c̄′ such that

ā′ c̄ ≡UB āc̄′ .

Since c̄ at
√

U AB, c̄′ ≡U c̄ implies that c̄′ ≡UBā c̄. Hence,

ā′ c̄ ≡UB āc̄′ ≡UB āc̄ .

We have shown that

ā′ ≡UBc̄ ā , for all finite c̄ ⊆ C .

Consequently, ā′ ≡UBC ā.
(c) (inv) and (fin) follow immediately from the definition.
(bmon) Suppose that ā at κ

√
U BC. By (fin) we may assume that ā is

finite. Hence, there exists a set Φ(x̄) ⊆ tp(ā/U) of size ∣Φ∣ < κ such that

M ⊧ Φ(ā′) implies ā′ ≡UBC ā .

Since Φ ⊆ tp(ā/UC), the same set shows that ā at κ
√

UC B.
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(mon) Suppose that āc̄ at κ
√

U BD. We claim that ā at κ
√

U B. Again
we may assume that ā and c̄ are finite. According to the definition, there
exists a set Φ(x̄ , ȳ) ⊆ tp(āc̄/U) of size ∣Φ∣ < κ such that

M ⊧ Φ(ā′ , c̄′) implies ā′ c̄′ ≡UBD āc̄ .

We claim that the set

Ψ(x̄) ∶= {∃ ȳ⋀Φ0 ∣ Φ0 ⊆ Φ finite}

is the desiredwitness for ā at κ
√

U B. Hence, suppose that M ⊧ Ψ(ā′). By
definition of Ψ it follows that, for every finite subset Φ0 ⊆ Φ,we can find
some tuple c̄′ with M ⊧ Φ0(ā′ , c̄′). By compactness, this implies that
there is some tuple c̄′ with M ⊧ Φ(ā′ , c̄′). Consequently, ā′ c̄′ ≡UBD āc̄.
In particular, we have ā′ ≡UB ā.

(nor) Suppose that A at κ
√

U B. To show that AU at κ
√

U BU , let ā ⊆ A
and c̄ = ⟨c0 , . . . , cn−1⟩ ⊆ U be finite. There exists a set Φ(x̄) ⊆ tp(ā/U)
of size ∣Φ∣ < κ such that

M ⊧ Φ(ā′) implies ā′ ≡UBC ā .

Setting

Ψ(x̄ , ȳ) ∶= Φ(x̄) ∪ {y0 = c0 , . . . , yn−1 = cn−1}

it follows that

M ⊧ Ψ(ā′ , c̄′) implies ā′ ≡UBC ā and c̄′ = c̄ .

In particular, we have ā′ c̄′ ≡UB āc̄.
(lrf) Let A, B ⊆M. To show that A at κ

√
A B, consider a finite tuple

ā = ⟨a0 , . . . , an−1⟩ ⊆ A. We set

Φ(x̄) ∶= {x0 = a0 , . . . , xn−1 = an−1} .

Then M ⊧ Φ(ā′) implies that ā′ = ā. In particular, we have ā′ ≡AB ā.
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(ltr) Suppose that A0A1A2
at κ
√

A0A1 B and A0A1
at κ
√

A0 B. By (nor)
it is sufficient to prove that A1A2

at κ
√

A0 B. Hence, let ā1 ⊆ A1 and ā2 ⊆
A2 be finite. By assumption, there are sets Φ(x̄1 , x̄2) ⊆ tp(ā1 ā2/A0A1)
and Ψ(x̄1) ⊆ tp(ā1/A0) of size ∣Φ∣, ∣Ψ ∣ < κ such that

M ⊧ Φ(ā′1 , ā
′
2) implies ā′1 ā

′
2 ≡BA0A1 ā1 ā2 ,

and M ⊧ Ψ(ā′1) implies ā′1 ≡BA0 ā1 .

Let U ⊆ A1 be the set of parameters from A1 that are used in Φ and let
Φ′ be the set of formulae obtained from Φ by replacing each parameter
c ∈ U by a variable yc . For every finite c̄ ⊆ U , there exists a set Γc̄( ȳ) ⊆
tp(c̄/A0) of size ∣Γc̄ ∣ < κ such that

M ⊧ Ψ(c̄′) implies c̄′ ≡BA0 c̄ .

Suppose that x̄1 = ⟨x01 , . . . , xn−1
1 ⟩ and ā1 = ⟨a01 , . . . , an−1

1 ⟩. We set

Ξ(x̄1 , x̄2 , (yc)c∈U) ∶= Φ′ ∪ Ψ ∪ ⋃
c̄⊆U

Γc̄

∪ {x01 = ya01 , . . . , xn−1
1 = yan−1

1
} .

Then

M ⊧ Ξ(ā′1 , ā
′
2 , c̄

′) implies ā′1 ≡BA0 ā1 and c̄′ ≡BA0 c̄ ,

where c̄ is an enumeration of U . Hence, there exists an automorphism
π ∈ AutMBA0 with π[c̄′] = c̄. By the equations added to Ξ, it follows
that π[ā′1] = ā1. Consequently,

M ⊧ Ξ(ā′1 , ā
′
2 , c̄

′) implies M ⊧ Ξ(π[ā′1], π[ā′2], π[c̄′]) .

Hence,M ⊧ Φ(ā1 , π[ā′2], c̄), which means that

π[ā′2] ≡BA0A1 ā2 .

Consequently,

ā′1 ā
′
2 ≡BA0 ā1π[ā′2] ≡BA0 ā1 ā2 .

1301



g2. Models of stable theories

To compute lbm( at κ
√
), suppose that κ is regular and AC at κ

√
U B for

∣C∣ < κ. We have to show that A at κ
√

UC B. Hence, let ā ⊆ A be finite. For
every finite tuple c̄ ⊆ C, there exists a set Φ c̄(x̄ , x̄′) ⊆ tp(āc̄/U) of size
∣Φ c̄ ∣ < κ such that

M ⊧ Φ c̄(ā′ , c̄′) implies ā′ c̄′ ≡UB āc̄ .

We set

Ψ(x̄) ∶=⋃{Φ c̄(x̄ , c̄) ∣ c̄ ⊆ C finite} .

Then ∣Ψ ∣ < κ since κ is regular. Furthermore,M ⊧ Ψ(ā′) implies

ā′ c̄ ≡UB āc̄ , for all finite c̄ ⊆ C .

Hence, ā′C ≡UB āC, which implies that ā′ ≡UBC ā.
(d) (inv) follows immediately form the definition.
(mon) Suppose that AC ⫝wo

U BD. To show that A ⫝wo
U B, consider a set

A′ ≡U A. Then there exists a setC′ such that A′C′ ≡U AC.By assumption,
this implies that A′C′ ≡UBD AC. In particular, we have A′ ≡UB A.

(bmon) Suppose that A ⫝wo
U BC. To show that A ⫝wo

UC B, consider a
set A′ ≡UC A. Then A′ ≡U A, which implies that A′ ≡UBC A′.

(nor) Suppose that A ⫝wo
U B. To show that AU ⫝wo

U BU , consider sets
A′U ′ ≡U AU . Then U ′ = U and A′ ≡U A. Hence, A′ ≡UB A, which
implies that A′U ′ ≡UB AU .

(lrf) Let A and B be sets. To show that A ⫝wo
A B, let A′ ≡A A. Then

A′ = A, which implies that A′ ≡AB A.
(sym) Suppose that A ⫝wo

U B. To show that B ⫝wo
U A, consider a set

B′ ≡U B. We fix a set A′ such that B′A ≡U BA′. Then A′ ≡U A, which
implies that A′ ≡UB A. Hence, B′A ≡U BA′ ≡U BA, that is, B′ ≡UA B.

(ltr) Since we have already proved symmetry, it is sufficient to show
that ⫝wo is right transitive. Hence, suppose that A ⫝wo

B0
B1 and A ⫝wo

B1
B2,

for B0 ⊆ B1 ⊆ B2. To show that A ⫝wo
B0

B2, consider a set A′ ≡B0 A. Then
A′ ≡B1 A, which implies that A′ ≡B2 A.
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1. Isolation relations

(fin) Suppose that A0 ⫝
wo
U B, for all finite A0 ⊆ A. To show that

A ⫝wo
U B, let A′ ≡U A. Fix an automorphism π ∈ AutMU with π[A′] = A

and consider a finite subset A′0 ⊆ A′. By assumption, A′0 ≡U π[A′0]
implies that A′0 ≡UB π[A′0]. Consequently, we have

A′0 ≡UB π[A′0] , for all finite A′0 ⊆ A
′ .

This implies that A′ ≡UB π[A′] = A.
(rsh) Suppose that AC ⫝wo

U B and C ⫝wo
U AB. By symmetry, it follows

that B ⫝wo
U AC. Hence, B ⫝wo

UC A,which implies that BC ⫝wo
UC A. Together

with C ⫝wo
U A it follows by left transitivity that BC ⫝wo

U A. Hence, A ⫝wo
U

BC.
Finally, the fact that lbm(⫝wo) = ∞ follows by symmetry and base

monotonicity. ◻

Exercise 1.1. Show that ⫝a satisfies all axioms of a symmetric isolation
relation except for (ltr) and (rsh). Furthermore, lbm(⫝a) =∞.

Remark. One can show that, if the theory in question is stable, the
relation ⫝a is also transitive and, thus, an isolation relation.

Recall that we write ā ⫝!U B if tp(ā/UB) is the unique free extension
of tp(ā/U) over U ∪ B. This relation will be used in Section 5 below.
It inherits some, but not all properties from ⫝f . In particular, it is a
symmetric isolation relation, but not necessarily a forking relation.

Lemma 1.5. Let T be a stable theory. The relation⫝! is a symmetric isolation
relation with ⫝wo ⊆ ⫝! ⊆ ⫝f .

Proof. The second inclusion follows immediately from the definition.
For the first one, suppose that ā ⫝wo

U B. By Lemma 1.4, it follows that
ā d
√

U B. As T is stable, this is equivalent to ā ⫝fU B. For uniqueness,
suppose that ā′ ≡U ā is another tuple with ā′ ⫝fU B. Then ā ⫝wo

U B
implies that ā′ ≡UB ā. Consequently, ā ⫝!U B.

It remains to prove that ⫝! is a symmetric isolation relation.
(inv) follows immediately from the definition.
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g2. Models of stable theories

(mon) Suppose that ā0 ā1 ⫝
!
U B and let B0 ⊆ B. If tp(ā0/UB) is the

unique free extension of tp(ā0/U) over U ∪ B, then tp(ā0/UB0) is its
unique free extension over U ∪ B0. Hence, it is sufficient show that
ā0 ā1 ⫝

!
U B implies ā0 ⫝!U B. By monotonicity of ⫝f , we only need to

prove uniqueness.
Consider a tuple ā′0 ≡U ā0 with ā′0 ⫝fU B. We have to show that

ā′0 ≡UB ā0. Choose ā′1 such that ā′0 ā′1 ≡U ā0 ā1, and let ā′′1 be a tuplewith

ā′′1 ≡U ā′0 ā
′
1 and ā′′1 ⫝

f
U ā′0 B .

Since ā′0 ⫝fU B, transitivity implies that

ā′0 ā
′′
1 ⫝

f
U B .

As ā′0 ā′′1 ≡U ā′0 ā′1 ≡U ā0 ā1, it follows that

ā0 ā1 ⫝
!
U B implies ā′0 ā

′′
1 ≡UB ā0 ā1 .

In particular, ā′0 ≡UB ā0.
(nor) Suppose that ā ⫝!U B. Then ā ⫝fU B implies U ā ⫝fU BU . Hence,

we only need to prove uniqueness. Let c̄ be an enumeration of U and
suppose that there are tuples ā′ c̄′ ≡U āc̄ such that ā′ c̄′ ⫝fU BU . Then
c̄′ = c̄, and ā′ ≡U ā implies that ā′ ≡UB ā. Hence, ā′ c̄′ = ā′ c̄ ≡UB āc̄.

(bmon) Suppose that ā ⫝!U BC. We claim that ā ⫝!UC B. Since ⫝f is
base monotone, we only need to prove uniqueness. Hence, consider a
tuple ā′ ≡UC ā with ā′ ⫝fUC B. Then

ā′ ≡U ā and ā ⫝!U BC implies ā′ ≡UBC ā .

(fin) If A ⫝!U B, then (mon) implies that A0 ⫝
!
U B, for every finite

A0 ⊆ A. Conversely, suppose that AÒ⫝!
U B. If AÒ⫝f

U B, there is a finite
subset A0 ⊆ A with A0 Ò⫝

f
U B and we are done. Hence, suppose that

A ⫝fU B. Then there is a set A′ ≡U A such that A′ ⫝fU B and A′ ≢UB A.
Let π ∈ AutMU be an automorphism with π[A] = A′. Since A′ ≢UB A,
we can find a finite tuple ā ⊆ A with π(ā) ≢UB ā. As π(ā) ≡U ā and
π(ā) ⫝fU B, it follows that āÒ⫝!

U B.
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1. Isolation relations

(sym) Let ā ⫝!U b̄. By symmetry of ⫝f ,we have b̄ ⫝fU ā. For uniqueness,
consider a tuple b̄′ ≡U b̄ with b̄′ ⫝fU ā. There exists an automorphism
π ∈ AutMU with π(b̄′) = b̄. Since ⫝f is invariant under automorphisms,

b̄′ ⫝fU ā implies b̄ ⫝fU π(ā) .

By symmetry, π(ā) ⫝fU b̄. Since π(ā) ≡U ā and ā ⫝!U b̄, it follows that

π(ā) ≡U∪b̄ ā .

For every formula φ(x̄ , ȳ) over U , we therefore have

M ⊧ φ(ā, b̄) iff M ⊧ φ(π(ā), b̄)

iff M ⊧ φ(ā, π−1(b̄)) iff M ⊧ φ(ā, b̄′) .

Consequently, b̄′ ≡U∪ā b̄.
(ltr) As we already have proved symmetry, it is sufficient to show

that, for sets B0 ⊆ B1 ⊆ B2,

ā ⫝!B0
B1 and ā ⫝!B1

B2 implies ā ⫝!B0
B2 .

By transitivity of ⫝f , we only need to prove uniqueness. Hence, consider
a tuple ā′ ≡B0 ā with ā′ ⫝fB0

B2. Then

ā ⫝!B0
B1 implies ā′ ≡B1 ā .

Hence,

ā ⫝!B1
B2 implies ā′ ≡B2 ā .

(rsh) Suppose that AC ⫝!U B and C ⫝!U AB. Then

B ⫝!U AC and C ⫝!U A ,

and it follows by Lemma f2.2.4 that BC ⫝!U A. Thus, A ⫝!U BC. ◻
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g2. Models of stable theories

2. Constructions

We can use isolation relations to stratify a structure such that every part
is isolated over the previous ones. This leads to a generalised notion of a
construction.

Throughout the chapter, we will use the following notation. Given a
sequence (Aα)α<γ of sets, an ordinal α ≤ γ, and a set I ⊆ γ, we will write

A[I] ∶=⋃
i∈I

A i , A[<α] ∶= ⋃
i<α

A i , and A[≤α] ∶= ⋃
i≤α

A i .

Definition 2.1. Let
√

be a ternary relation on small subsets of M and
A,U ⊆M.

(a) A
√

-stratification of Aover U is a sequence ζ = (Bα)α<γ of disjoint
sets Bα ⊆ A such that A = B[<γ] and

Bα
√

UB[<α] , for all α < γ .

(b) A
√

-stratification ζ is a
√

-construction if each set Bα is a singleton.
In this case, we identify ζ with the corresponding sequence (bα)α<γ of
elements bα ∈ Bα . We say that a set A is

√
-constructible over U if there

exists a
√

-construction of A over U .
(c) Let ζ = (Bα)α<γ be a

√
-stratification. The locality cardinal loc(ζ)

of ζ is the least cardinal κ such that, for every α < γ, there exists a set
Cα ⊆ U ∪ B[<α] of size ∣Cα ∣ < κ such that

Bα
√

Cα UB[<α] .

Remark. In this terminology, the kind of constructions introduced in
Section e3.4 are at

√
-constructions.

We will use
√

-stratifications to study the structure of
√

-construct-
ible models. To do so, we will frequently be interested in whether a
given subset of a

√
-constructible set is itself

√
-constructible. A simple

sufficient condition is given by the notion of a closed set.
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2. Constructions

Definition 2.2. Let ζ = (Bα)α<γ be a
√

-stratification of A. A subset
I ⊆ γ of indices is ζ-closed over U if

Bα
√

UB[I∩α] UB[<α] , for all α ∈ I .

Similarly, we call a set C ⊆ A ζ-closed if it is of the form C = B[I], for
some ζ-closed set I ⊆ γ.

Lemma 2.3. Let
√

be an isolation relation and ζ = (Bα)α<γ a
√

-stratific-
ation of A over U. If I ⊆ γ is ζ-closed over U , then (Bα)α∈I is a

√
-strati-

fication of B[I] over U.

Proof. Consider an index α ∈ I. As I is ζ-closed, we have

Bα
√

UB[I∩α] UB[<α] .

By (mon), this implies that

Bα
√

UB[I∩α] UB[I ∩ α] . ◻

In particular, ζ-closed subsets of a
√

-constructible set are themselves√
-constructible. Before proving further properties of ζ-closed sets, let

us present a lemma with several ways to construct such sets.

Lemma 2.4. Let
√

be a relation satisfying (bmon), ζ = (Bα)α<γ a
√

-
stratification of A over U , and let κ ≥ loc(ζ) be a regular cardinal.

(a) A union of ζ-closed sets is ζ-closed.

(b) If I ⊆ γ is ζ-closed over U , then so is I ∩ β for every β ≤ γ.

(c) Every index α < γ is contained in a ζ-closed set I ⊆ ⇓α over U of
size ∣I∣ < κ.

(d) For every set C ⊆ A of size ∣C∣ < κ, there is some ζ-closed set I ⊆ γ
over U of size ∣I∣ < κ with C ⊆ B[I].
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g2. Models of stable theories

Proof. (a) Let I be a set of ζ-closed sets. To show that K ∶= ⋃I is ζ-
closed, consider an index α ∈ K. Then α ∈ I, for some ζ-closed set I ∈ I ,
and

Bα
√

UB[I∩α] UB[<α] implies Bα
√

UB[K∩α] UB[<α]

by (bmon).
(b) Let I be ζ-closed and fix β ≤ γ. For α ∈ I ∩ β, we have I ∩ α =
(I ∩ β) ∩ α. Hence,

Bα
√

UB[I∩α] UB[<α] implies Bα
√

UB[(I∩β)∩α] UB[<α] .

(c) We prove the claim by induction on α. There exists a set Cα ⊆
U ∪ B[<α] of size ∣Cα ∣ < loc(ζ) ≤ κ such that

Bα
√

Cα UB[<α] .

Set J ∶= { β < α ∣ Cα ∩ Bβ ≠ ∅}. By inductive hypothesis, every index
β ∈ J is contained in some ζ-closed set Iβ ⊆ ⇓β of size ∣Iβ ∣ < κ. By (a),
the union I ∶= ⋃β∈J Iβ is also ζ-closed. Since

Cα ⊆ U ∪ B[J] ⊆ U ∪ B[I] = U ∪ B[I ∩ α] ,

it follows by (bmon) that

Bα
√

Cα UB[<α] implies Bα
√

UB[I∩α] UB[<α] .

Since I ⊆ α, this implies that I ∪ {α} is also ζ-closed. Furthermore,
∣I ∪ {α}∣ < κ, as κ is regular.

(d) Given C ⊆ A, set

J ∶= { α < γ ∣ C ∩ Bα ≠ ∅} .

By (c), every α ∈ J is contained in some ζ-closed set Kα ⊆ γ of size
∣Kα ∣ < κ. By (a), the union I ∶= ⋃α<γ Kα is ζ-closed. As κ is regular
and ∣J∣ ≤ ∣C∣ < κ, we have ∣I∣ < κ. Since C ⊆ B[J] ⊆ B[I], the claim
follows. ◻
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The next proposition collects several properties of ζ-closed sets. In
particular, we show that a

√
-stratification over U is also a

√
-stratifica-

tion over U ∪ C, for every ζ-closed set C.

Proposition 2.5. Let
√

be an isolation relation and ζ = (Bα)α<γ a
√

-
stratification of A over U.

(a) If I ⊆ γ is ζ-closed over U , then

B[I]
√

UB[I∩α] B[<α] , for all α ≤ γ .

(b) ζ is a
√

-stratification of A over U ∪ B[I], for every ζ-closed set
I ⊆ γ.

(c) If K ⊆ γ is a ζ-closed set over U of size ∣B[K]∣ < lbm(
√
), then every

set I ⊆ γ that is ζ-closed over U is also ζ-closed over U ∪ B[K].

Proof. (a) Fix α ≤ γ. We prove the statement by induction on the min-
imal ordinal β such that I ⊆ β. If I ⊆ α, then (lrf) and (nor) imply
that

B[I]
√

UB[I] B[<α] .

As I = I ∩ α, the claim follows.
For the successor step, suppose that I = {β} ∪ I0 where I0 ⊆ β and

β ≥ α. Since I is ζ-closed, we have

Bβ
√

UB[I∩β] B[<β]

which, by (mon), implies that

Bβ
√

UB[I0]B[I∩α] B[<α] .

Furthermore, the set I0 = I ∩ β is ζ-closed according to Lemma 2.4 (b).
Consequently, the inductive hypothesis yields

B[I0]
√

UB[I0∩α] B[<α] .
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Since I0 ∩ α = I ∩ α, it follows by (nor) and (ltr) that

BβB[I0]
√

UB[I∩α] B[<α] .

Finally, suppose that I has no maximal element. We have seen in
Lemma 2.4 (b) that I∩β is ζ-closed, for all β < γ. By inductive hypothesis,
it therefore follows that

B[I ∩ β]
√

UB[I∩α] B[<α] , for all β ∈ I .

Consequently, (fin) implies that

B[I]
√

UB[I∩α] B[<α] .

(b) We have to show that

Bα
√

UB[I]B[<α] , for all α < γ .

Hence, let α < γ. If α ∈ I, the claim follows by (nor). Thus, suppose that
α ∉ I. By (a), we have

B[I]
√

UB[I∩(α+1)] B[≤α] .

Since α ∉ I, this implies by (bmon) that

B[I]
√

UB[<α] B[<α]Bα .

Hence, (bmon) and (nor) yield

UB[I]Bα
√

UB[<α]Bα B[<α] .

As Bα
√

UB[<α] B[<α], it follows by (nor) and (ltr) that

B[I]Bα
√

UB[<α] B[<α] .
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Hence, B[I]
√

UB[<α] B[<α]Bα implies by (rsh) that

Bα
√

UB[<α] B[I]B[<α] .

Consequently, it follows by (bmon) and (nor) that

Bα
√

UB[I]B[<α] UB[I]B[<α] .

(c) Let I,K ⊆ γ be ζ-closed over U . Then I ∪K is also ζ-closed. Hence,
it follows by (a) that

B[I ∪ K]
√

UB[(I∪K)∩α] B[<α] .

For α ∈ I, this implies that

BαB[K]
√

UB[K∩α]B[I∩α] B[<α] .

Since ∣B[K]∣ < lbm(
√
), it follows that

Bα
√

UB[K]B[I∩α] B[<α] ,

as desired. ◻

Corollary 2.6. Let
√

be an isolation relation and ζ = (Bα)α<γ a
√

-strat-
ification of A over U. Then A

√
UB[<α], for all α ≤ γ.

Proof. Since the set I ∶= γ is ζ-closed, this follows immediately from
Proposition 2.5 (a). ◻

We conclude this section by presenting conditions for the existence
of a stratification or a construction.

Lemma 2.7. Let
√

be an isolation relation, ζ = (Bα)α<γ a
√

-stratifica-
tion of A over U , and let (Cα)α<δ be a sequence of subsets of A such that
each set Cα is ζ-closed over U ∪ C[<α].

(a) The union C[<δ] is ζ-closed over U.
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(b) (Cα ∖ C[<α])α<δ is a
√

-stratification of C[<δ] over U.

Proof. (a) For each β < δ, fix a set Iβ ⊆ γ such that Cβ = B[Iβ]. We prove
that I[<δ] is ζ-closed over U by induction on δ. Consider an index
α ∈ I[<δ]. Then α ∈ Iβ for some ordinal β < δ. By inductive hypothesis,
I[<β] is ζ-closed over U . Hence, it follows by Proposition 2.5 (a) that

C[<β]
√

UB[I[<β]∩α] B[<α] .

By (bmon), this implies that

C[<β]
√

UB[I[<β]∩α]B[Iβ∩α] B[<α] .

Furthermore, as Cβ is ζ-closed over U ∪ C[<β], we have

Bα
√

UC[<β]B[Iβ∩α] B[<α] .

Therefore, it follows by (ltr) that

BαC[<β]
√

UB[I[<β]∩α]B[Iβ∩α] B[<α] .

By (bmon), this implies that

Bα
√

UB[I[<δ]∩α] B[<α] .

(b) Let α < δ. By (a) and Proposition 2.5 (b), ζ is a
√

-stratification of A
over U ∪ C[<α]. As Cα is ζ-closed over U ∪ C[<α], it follows therefore
by Proposition 2.5 (a) that Cα

√
UC[<α]. ◻

Lemma 2.8. Let
√

be an isolation relation and (Bα)α<γ a sequence of
sets.

(a) If every Bα is
√

-constructible over U ∪B[<α], then B[<γ] is
√

-con-
structible over U.

(b) Let ζ be a
√

-construction of some set A ⊇ B[<γ] over U. If each Bα
is ζ-closed over U , then B[<γ] is

√
-constructible over U.
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Proof. (a) For each α < γ, fix a
√

-construction (bαi )i<η(α) of Bα over
U ∪ B[<α]. Set δ(α) ∶= ∑i<α η(i) and let (aβ)β<δ(γ) be the concatena-
tion of all sequences (bαi )i , for α < γ, that is,

aδ(α)+i ∶= bαi , for α < γ and i < η(α) .

To prove that (aβ)β<δ(γ) is a
√

-construction of B[<γ] over U , consider
an index β < δ(γ). Then β = δ(α)+ i, for some α < γ and i < η(α), and

bαi
√

UB[<α]bα[<i] implies aβ
√

Ua[<β] .

(b)According to Lemma 2.7 (a), Bα is
√

-constructible over U . Further-
more, Lemma 2.4 (a) implies that each set of the form B[<α] is ζ-closed
over U . Hence, it follows byProposition 2.5 (b) that Bα is

√
-constructible

over U ∪ B[<α]. Consequently, the claim follows by (a). ◻

Lemma 2.9. Let
√

be an isolation relation. A set A of size ∣A∣ ≤ lbm(
√
)

is
√

-constructible over a set U if, and only if, A
√

U.

Proof. (⇒) follows by Corollary 2.6. For (⇐), let A
√

U and let ζ =
(aα)α<κ be an enumeration of A of length κ ∶= ∣A∣. We claim that ζ is a√

-construction of A over U . For each α < κ,

A
√

U implies aαa[<α]
√

U .

Since ∣a[<α]∣ < κ ≤ lbm(
√
), it follows that aα

√
Ua[<α] U . ◻

Corollary 2.10. Let
√

be an isolation relation and let (Bα)α<γ be a
√

-
stratification of A over U where

∣Bα ∣ ≤ lbm(
√
) , for all α < γ .

Then A is
√

-constructible over U.

Proof. Since Bα
√

UB[<α], it follows by Lemma 2.9 that each Bα is√
-constructible over U ∪ B[<α]. Consequently, the claim follows by

Lemma 2.8 (a). ◻
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Clearly, if a set A has a
√

-construction of length γ, then ∣A∣ ≤ γ < ∣A∣+.
The next lemma can be used to obtain constructions of length exactly ∣A∣.

Lemma 2.11. Let ζ be a
√

-construction of A over U. If loc(ζ)reg ≤ ∣A∣,
then A has a

√
-construction over U of length ∣A∣.

Proof. Let (aα)α<κ be an enumeration of A of length κ ∶= ∣A∣. By induc-
tion on α < κ, we can use Lemma 2.4 to choose subsets Bα ⊆ A of size
∣Bα ∣ < loc(ζ)reg such that aα ∈ Bα and Bα is ζ-closed over U ∪ B[<α].
By Lemma 2.3, each set Bα ∖ B[<α] has a

√
-construction ξα = (bαi )i<γα

of length

γα < ∣Bα ∣
+ ≤ loc(ζ)reg ≤ κ .

We have seen in the proof of Lemma 2.8 (a) that the concetanation of
these

√
-constructions is a

√
-construction of B[<κ] = Aover U of length

∑α<κ γα = κ. ◻

3. Prime models
Using

√
-constructions we can generalise the results of Section e3.4 to

arbitrary isolation relations. One important property of the relation at
√

that is not captured by the notion of an isolation relation is the fact that
every model realises all isolated types. When generalising certain results
about at

√
-constructions we have to require this property separately. This

leads to the notion of
√

-saturation.

Definition 3.1. Let
√

be an isolation relation, κ a cardinal, and A,U ⊆M
sets.

(a) A is
√

-κ-saturated if, for all sets C ⊆ A of size ∣C∣ < κ and every
finite set B ⊆M with B

√
C, there is some set B′ ⊆ Awith B′ ≡C B.

(b) A is
√

-κ-prime over U if it is
√

-κ-saturated and, for every
√

-κ-
saturated set B ⊇ U , there exists an automorphism π ∈ AutMU with
π[A] ⊆ B.
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Our aim is to prove that
√

-prime models are unique, up to isomorph-
ism. We start by setting up the required back-and-forth machinery.

Lemma 3.2. Let A be
√

-κ-saturated and U ⊆ A a set of size ∣U ∣ < κ. For
every

√
-constructible set B over U of size ∣B∣ ≤ κ, there exists some set

B′ ⊆ Awith B′ ≡U B.

Proof. Let ζ = (bα)α<γ be a
√

-construction of B over U of length γ ≤ κ.
We inductively construct a sequence (b′α)α<γ in A such that

b′[<α] ≡U b[<α] , for all α ≤ γ .

Suppose that we have already defined b′α , for all α < β. Fix an element c
such that

bβb[<β] ≡U cb′[<β] .

Then

bβ
√

Ub[<β] implies c
√

Ub′[<β] .

Since A is
√

-κ-saturated and ∣U ∣ ⊕ ∣β∣ < κ, we can therefore find an
element b′β ∈ Awith b′β ≡Ub′[<β] c. It follows that

b′βb
′[<β] ≡U cb′[<β] ≡U bβb[<β] . ◻

Lemma 3.3. Let
√

be an isolation relation, κ ≥ lbm(
√
) an uncountable

cardinal, M , N ⊆M
√

-κ-saturated, U ⊆M a set of size ∣U ∣ < κ, and let
ξ and ζ be

√
-constructions of, respectively, M and N over U such that

loc(ξ)reg , loc(ζ)reg ≤ lbm(
√
). Then

H ∶ M ≅κ
iso N ,

where H is the set of all elementary maps f ∶ A→ B such that
◆ A ⊆ M is a ξ-closed set of size ∣A∣ < κ,
◆ B ⊆ N is a ζ-closed set of size ∣B∣ < κ, and
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g2. Models of stable theories

◆ f ↾U = idU .

Proof. Set λ ∶= loc(ξ)reg⊕loc(ζ)reg.By symmetry it is sufficient to check
the forth property.Consider amap f ∶ A→ B in H and an element c ∈ M.
We will construct an increasing chain of elementary maps gn ∶ Cn → Dn ,
for n < ω, such that

◆ f ⊆ g0 and c ∈ dom(g0),
◆ ∣Cn ∖ Cn−1∣, ∣Dn ∖ Dn−1∣ < λ (where C−1 ∶= A and D−1 ∶= B),
◆ Cn is

√
-constructible over U ∪ Cn−1,

◆ Dn is
√

-constructible over U ∪ Dn−1,
◆ Cn is ξ-closed over U , for even n < ω, and
◆ Dn is ζ-closed over U , for odd n < ω.

Then we can set g ∶= ⋃n<ω gn . By Lemma 2.4 (a),

dom(g) = ⋃
n<ω

Cn = ⋃
n<ω

C2n

is ξ-closed and rng(g) = ⋃n<ω D2n+1 is ζ-closed. Furthermore,

∣dom(g)∣ < ∣A∣+ ⊕ λ ⊕ ℵ1 ≤ κ .

Hence, g ∈ H.
It remains to construct (gn)n . By Lemma 2.4 (d), we can find a ξ-

closed set C′0 ⊆ M of size ∣C′0∣ < λ with c ∈ C′0. Choose a set D′
0 ⊆ M

with

AC′0 ≡U BD′
0 .

Note that it follows by Proposition 2.5 (b) that C′0 is
√

-constructible
over U ∪ A. Consequently, D′

0 is
√

-constructible over U ∪ B. Since N is√
-κ-saturated, we can therefore use Lemma 3.2 to find a set D′′

0 ⊆ N
with

D′′
0 ≡UB D′

0 .
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3. Prime models

Consequently, AC′0 ≡U BD′′
0 . Let g0 ∶ A ∪ C′0 → B ∪ D′′

0 be the corres-
ponding extension of f .

For the successor step, suppose thatwe have already defined gn ∶ Cn →
Dn . First, consider the case where n is even. As λ is regular, we can use
Lemma 2.4 (d) to find a ζ-closed set D′

n+1 ⊆ N of size ∣D′
n+1∣ < λ with

Dn ∖ Dn−1 ⊆ D′
n+1. Choose a set C′n+1 ⊆M with

CnC′n+1 ≡U DnD′
n+1 .

By Proposition 2.5 (b),D′
n+1 is

√
-constructible over U∪Dn−1.According

to Lemma 2.9 this implies that

D′
n+1

√
UDn−1 UDn−1 .

Since ∣Dn ∖ Dn−1∣ < λ ≤ lbm(
√
), it follows that

D′
n+1

√
UDn UDn .

Applying Lemma 2.9 again, we see that the set D′
n+1 is

√
-constructible

over U ∪ Dn . By invariance, it follows that C′n+1 is
√

-constructible over
U ∪ Cn . Hence, we can use Lemma 3.2 to find a set C′′n+1 ⊆ M with

C′′n+1 ≡UCn C
′
n+1 .

Consequently, CnC′′n+1 ≡U DnD′
n+1. Let gn+1 ∶ Cn ∪ C′′n+1 → Dn ∪ D′

n+1
be the corresponding extension of gn .

If n is odd, we proceed similarly by choosing a ξ-closed set Cn+1 ⊆ M
containing Cn ∖ Cn−1. ◻

With the back-and-forth machinery in place we can construct iso-
morphisms between

√
-κ-saturated sets.

Proposition 3.4. Let
√

be an isolation relation and A, B ⊆M
√

-κ-satur-
ated sets that are

√
-constructible over some set U ⊆ A of size ∣U ∣ < κ.

(a) If ∣A∣ ≤ κ, there exists an automorphism π ∶ AutMU such that
π[A] ⊆ B.
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(b) If ∣A∣, ∣B∣ ≤ κ, there exists an automorphism π ∶ AutMU such that
π[A] = B.

Proof. By Lemma 3.3, we have H ∶ A ≡κ
iso B. Consequently, we can use

Lemma c4.4.10 (a) or (b) to find an elementary embedding h ∶ A→ B
such that h ↾U = idU and, in case ∣B∣ ≤ κ, such that h is surjective. As
M is strongly κ+-homogeneous, we can extend h to the desired auto-
morphism π. ◻

Corollary 3.5. Let U be a set of size ∣U ∣ < κ. Up to isomorphism, there
is at most one

√
-κ-saturated set A of size ∣A∣ ≤ κ that is

√
-constructible

over U.

Proof. If A and B are
√

-κ-saturated sets of size at most κ that are
√

-con-
structible over U ,we can useProposition 3.4 (b) to find an automorphism
mapping A to B. ◻

Corollary 3.6. Let A be a
√

-κ-saturated set of size ∣A∣ ≤ κ that is
√

-
constructible over a set U ⊆ A of size ∣U ∣ < ∣A∣. Then A is

√
-κ-prime

over U.

Proof. If B ⊇ U is
√

-κ-saturated and
√

-constructible over U , we can
use Proposition 3.4 (a) to find the desired automorphism mapping A to
a subset of B. ◻

Having proved that
√

-κ-saturated sets are unique, it remains to show
that such sets exists. For the relation at

√
we will prove below that every

model is at
√

-κ-saturated. For isolation relations
√

that satisfy the exten-
sion axiom, we have the following lemma.

Lemma 3.7. Let
√

be an isolation relation satisfying (ext) such that
lbm(
√
) ≥ ℵ0, and let κ be an infinite cardinal. For every set U , there

exists some
√

-κ-saturated set A that is
√

-constructible over U.

Proof. We construct an increasing sequence (Aα)α<κ+ of sets Aα ⊆M
such that each Aα is

√
-constructible over U ∪ A[<α] and, for every
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α < κ+, every set C ⊆ A[<α] of size ∣C∣ < κ, and every finite set B ⊆M,
there is some set B′ ⊆ A[≤α] with B′ ≡C B.
We start with A0 ∶= U . For the inductive step, suppose that we have

already defined Aα , for all α < β. To find Aβ , we fix an enumeration
⟨Cα , pα⟩α<γ of all pairs ⟨C , p⟩ where C ⊆ A[<β] has size ∣C∣ < κ and
p ∈ S<ω(C) is a type such that ā

√
C, for every realisation ā of p. By

induction on α < γ, we choose finite tuples b̄α ∈ M<ω as follows. Let
b̄′α be a realisation of pα . Then b̄′α

√
C implies, by (ext), that there is

some tuple b̄α ≡C b̄′α with

b̄α
√

C A[<β]b̄[<α] .

We set Aβ ∶= A[<β] ∪ b̄[<γ]. Note that (b̄α ∖ b̄[<α])α<γ is a
√

-stratific-
ation of Aβ over A[<β]. Since lbm(

√
) ≥ ℵ0, it follows by Corollary 2.10

that Aβ is
√

-constructible over A[<β].
Having constructed (Aα)α<κ+ , we claim that the union A ∶= A[<κ+]

has the desired properties. Since every set Aα is
√

-constructible over
U ∪A[<α], it follows by Lemma 2.8 (a) that A is

√
-constructible over U .

To show that it is also
√

-κ-saturated, let C ⊆ A be a set of size ∣C∣ < κ
and let b̄ ⊆M<ω be a tuple with b̄

√
C. As κ+ is regular, there is some

index α < κ+ such that C ⊆ A[<α]. Since the pair ⟨C , tp(b̄/C)⟩ appears
in the sequence used in the construction of Aα , it follows that there is
some b̄′ ⊆ Aα with b̄′ ≡C b̄. ◻

4. at
√

-constructible models

In this section we take a closer look at at
√

-constructible sets. We have
already seen in Section e3.4 that a model which is at

√
-constructible

over some set U is atomic over U , prime over U , and unique up to
isomorphisms over U . These facts also follow from the general results
we have have derived in the present chapter once we have shown that
models are always at

√
-saturated.
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g2. Models of stable theories

Proposition 4.1. Every model M ⊆M is at
√

-∣M∣+-saturated.

Proof. Suppose that ā at
√

U where ā ∈M<ω and U ⊆ M. Let φ(x̄) be a
formula over U isolating tp(ā/U). Then

M ⊧ φ(ā) implies M ⊧ ∃x̄φ(x̄) implies M ⊧ ∃x̄φ(x̄) .

Hence, there is some tuple ā′ ∈ M<ω with M ⊧ φ(ā′). By choice of φ
this implies that tp(ā′/U) = tp(ā/U). ◻

Example. Consider the theory T of the structure C ∶= ⟨2ω , (Pn)n<ω⟩
where

Pn ∶= { α ∈ 2ω ∣ α(n) = 1} .

For this theory, we have

A d
√

U B iff A∩ B ⊆ U ,
and A at

√
U B iff A ⊆ U .

Furthermore,

∣S<ω(U)∣ ≤ ∣U ∣⊕ ∣S<ω(∅)∣ = ∣U ∣⊕ 2ℵ0 ,

since

tp(ā/ā ∩U) ⊧ tp(ā/U) , for all ā,U ⊆M .

Consequently, the theory T is superstable with st(T) = 2ℵ0 , and a set
A is at

√
-constructible over U if, and only if, A ⊆ U . In particular, no

model of T is at
√

-constructible over ∅.

For stable theories one can show that subsets of at
√

-constructible sets
are again at

√
-constructible. We start with three technical lemmas.
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Lemma 4.2. Let ⫝ be a symmetric preforking relation. If A ⫝U B then, for
every set D ⊆M, there exists a set C ⊆ A of size ∣C∣ < loc(⫝)⊕ ∣D∣+ such
that

A ⫝UC BD .

Proof. By right locality, we can choose a set C ⊆ A of size

∣C∣ < loc(⫝)⊕ ∣D∣+ such that D ⫝UBC UBA .

It follows that D ⫝UBC A. Furthermore, A ⫝U B implies B ⫝UC A. By
transitivity it follows that BD ⫝UC A. ◻

Lemma 4.3. Let ⫝ be a symmetric preforking relation,
√

an isolation
relation, and let κ ≥ loc(⫝) a be regular cardinal. Let ζ be a

√
-construc-

tion of some set A over U with loc(ζ) ≤ κ and let C ⊆ A be a subset. For
every ζ-closed set B ⊆ Awith

B ⫝U(C∩B) C

and every set D ⊆ A of size ∣D∣ < κ, there exists a ζ-closed set B+ ⊇ B ∪ D
such that

∣B+ ∖ B∣ < κ and B+ ⫝U(C∩B+) C .

Proof. Let (dα)α<γ be an enumeration of D. Starting with B0 ∶= B, we
construct an increasing chain (Bα)α<γ of ζ-closed sets such that

dα ∈ Bα+1 , ∣Bα ∖ B∣ < κ , and Bα ⫝U(C∩Bα) C .

Then we can set B+ ∶= ⋃α<γ Bα .
For the successor step, suppose that we have already defined Bα . By

Lemma 2.4 (c), there exists a ζ-closed set Z ⊆ A of size ∣Z∣ < κ contain-
ing dα . We can choose a set W ⊆ U ∪ Bα ∪ C of size

∣W ∣ < loc(⫝)⊕ ∣Z∣+ ≤ κ such that Z ⫝W UBαC .
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It follows that Z ⫝UBα(W∩C) C. Furthermore,

Bα ⫝U(C∩Bα) C implies Bα ⫝U(C∩Bα)(C∩Z)(C∩W) C .

With transitivity it follows that

BαZ(W ∩ C) ⫝U(C∩Bα)(C∩Z)(C∩W) C .

Setting Bα+1 ∶= Bα ∪ Z ∪ (W ∩ C), we have

∣Bα+1 ∖ B∣ ≤ ∣Bα ∖ B∣⊕ ∣Z∣⊕ ∣W ∩ C∣ < κ ,

as desired.
For the limit step, let δ be a limit ordinal and suppose that Bα is already

defined for all α < δ. Then we set Bδ ∶= ⋃α<δ Bα . ◻

Lemma 4.4. Let T be a stable theory.

A at
√

UB and A ⫝fU B implies A at
√

U .

Proof. Let ā ⊆ A be finite. We have to show that tp(ā/U) is isolated.
Since ā at

√
UB, the type p ∶= tp(ā/UB) is isolated, that is, the set

{p} is open in Ss̄(UB). By assumption, p does not fork over U . Hence,
p ∈ F s̄(UB/U) in the notation of the Open Mapping Theorem. Accord-
ing to that theorem, the restriction map F s̄(UB/U)→ Ss̄(U) is open.
Consequently, the image {p∣U} is open in Ss̄(U) and p∣U is isolated. ◻

Using these lemmas, we can show that subsets of constructible sets
are again constructible.

Theorem 4.5. Let T be a stable theory with fc(⫝f) ≤ ℵ1 and let A be a
at
√

-constructible set over U. Every subset C ⊆ A is also at
√

-constructible
over U.

Proof. Let ζ be a at
√

-construction of A over U . Since

loc(ζ) ≤ loc0( at
√
) ≤ ℵ0
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and loc(⫝f) ≤ loc0(⫝!)reg = fc(⫝f)reg ≤ ℵ1 ,

we can use Lemma 4.3 to inductively construct an increasing sequence
(Bα)α<γ of sets Bα ⊆ A such that

◆ B0 = ∅ and B[<γ] = A,
◆ each Bα is ζ-closed over U ∪ B[<α],
◆ ∣Bα ∖ B[<α]∣ ≤ ℵ0,
◆ B[<α] ⫝fU(C∩B[<α]) C.

SetCα ∶= C∩(Bα∖B[<α]), for α < γ. Then ∣Cα ∣ ≤ ℵ0 = lbm( at
√
) and, by

Corollary 2.10, it is sufficient to prove that (Cα)α<γ is a at
√

-stratification
of C over U .

Hence, let α < γ. Since Bα is ζ-closed over U ∪ B[<α], it follows by
Lemma 2.8 (a) that (Bα)α<γ is a at

√
-stratification of A over U . Hence,

Bα
at
√

UB[<α] , which implies that Cα
at
√

UB[<α] .

Since Cα ⫝
f
UC[<α] B[<α], Lemma 4.4 implies that Cα

at
√

UC[<α], as
desired. ◻

Corollary 4.6. Let T be a stable theory with fc(⫝f) ≤ ℵ1 and let M be a
at
√

-constructible model over U. Then M is the unique prime model of T
over U.

Proof. By Corollary 3.6 M is prime over U . For uniqueness, let N be
another primemodel over U . Then there exists an elementary embedding
h ∶ N → M. By Theorem 4.5, N is at

√
-constructible over U . Hence, it

follows by Corollary 3.5 that N ≅M. ◻

Finally, let us take a look at at
√

-constructible sets in totally transcend-
ental theories. We will prove below that a model of such a theory is
prime if, and only if, it is at

√
-constructible. We also give a characterisa-

tion in terms of the length of indiscernible sequences. One direction is
contained in the following proposition.
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Proposition 4.7. Let T be totally transcendental and let A be at
√

-con-
structible over U. Every indiscernible sequence over U that is contained
in A is countable.

Proof. Let ζ = (aα)α<γ be a at
√

-construction of A over U and suppose
that A contains an uncountable indiscernible sequence (cα)α<ω1 over U .
Note that loc(ζ) ≤ loc0( at

√
) = ℵ0. Hence, we can use Lemma 2.4 (c) to

fix, for every α < ω1, a finite ζ-closed set Bα ⊆ A over U with cα ∈ Bα .
By Lemma e5.3.11 there exists, for every α < ω1, an ordinal δα < ω1 such
that (cβ)δα≤β<ω1 is indiscernible over U ∪ B[<α]. For α < ω1, set

γα
0 ∶= α , γα

n+1 ∶= δγα
n , and γα

∗ ∶= sup
n<ω

γα
n .

Note that γα
∗ < ω1, for all α < ω1. Since (cβ)β≥γα

∗
is indiscernible over

U ∪ B[<γα
n], for all n < ω, it follows that it is indiscernible over

⋃
n<ω
(U ∪ B[<γα

n]) = U ∪ B[<γα
∗] .

Set

D0 ∶= { γα
∗ ∣ α < ω1 } and D ∶= { sup I ∣ I ⊆ D0 , sup I < ω1 } .

The set D is closed by definition and it is unbounded since γα
∗ ≥ α, for

all α. By Lemma a4.6.8 (a) it follows in particular that D is stationary.
Furthermore, for every δ ∈ D, the suffix (cα)δ≤α<ω1 is indiscernible over
U ∪ B[<δ]. By Lemma 2.4 and Proposition 2.5, B[<δ] is ζ-closed and
ζ is a at

√
-construction over U ∪ B[<δ]. By Corollary 2.6, it follows that

A at
√

UB[<δ] , which implies that cδ at
√

UB[<δ] .

Since loc( at
√
) = ℵ0, we can fix, for every δ ∈ D, a finite set Wδ ⊆

U ∪ B[<δ] such that

cδ at
√

Wδ UB[<δ] .
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By the Theorem of Fodor, there exist an index δ0 ∈ D and a stationary
set E ⊆ D such that Wε ⊆ B[<δ0], for all ε ∈ E. Fix two ordinals ε < η
in E. By indiscernibility, we have cε ≡U∪B[<δ0] cη . But Wη ⊆ U ∪ B[<δ0]
implies that

tp(cη/UB[<δ0]) ⊧ tp(cη/UB[<δ0]cε) .

Hence, cη ≠ cε implies that cε ≠ cε . A contradiction. ◻

For the converse, we need several lemmas.

Definition 4.8. Let M be a model. A set A ⊆ M is invariant over U ⊆ M
if, for all finite tuples ā, b̄ ∈ M<ω ,

ā ≡U b̄ implies ā ⊆ A⇔ b̄ ⊆ A .

Lemma 4.9. Let T be a totally transcendental theory, M a model of T ,
and let U ⊆ M be a set such that M at

√
U. Then M at

√
UC for every set

C ⊆ M that is invariant over U.

Proof. Let ā ∈ M<ω . Then the type tp(ā/U) is isolated by some formula
φ(x̄) over U . We have seen in Lemma e3.4.12 that the isolated types in
S<ω(UC) are dense. Consequently, we can find some isolated type

p ∈ ⟨φ⟩S<ω(UC) .

Let ψ(x̄ , d̄) be a formula over U isolating p with d̄ ⊆ C and fix a tuple b̄
realising p. Then M ⊧ φ(b̄) implies that ā ≡U b̄. Consequently, we can
find some tuple c̄ with āc̄ ≡U b̄d̄. Then d̄ ⊆ C implies c̄ ⊆ C by invariance
of C over U . Furthermore,

M ⊧ ψ(b̄; d̄) implies M ⊧ ψ(ā; c̄) .

We claim that ψ(x̄; c̄) isolates tp(ā/UC). Let ϑ(x̄; c̄′) ∈ tp(ā/UC).
Fix some tuple d̄′ such that

āc̄c̄′ ≡U b̄d̄d̄′ .
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By invariance of C over U , it follows that d̄′ ⊆ U ∪ C. Since ψ(x̄; d̄)
isolates tp(b̄/UC) and M ⊧ ϑ(ā; c̄′) implies M ⊧ ϑ(b̄; d̄′), we have

T(U ∪ d̄d̄′) ⊧ ψ(x̄; d̄)→ ϑ(x̄; d̄′) .

Consequently,

T(U ∪ c̄ c̄′) ⊧ ψ(x̄; c̄)→ ϑ(x̄; c̄′) ,

as desired. ◻

Lemma 4.10. Let T be a totally transcendental theory, M,N models of T ,
p ∈ S1(U) a type over U ⊆ M, and U ⊆ C ⊆ M a set that is invariant
over U. If M at

√
U and M does not contain an uncountable indiscernible

sequence over U , then every elementary map f ∶ C → N can be extended
to an elementary map C ∪ pM → N .

Proof. We prove the claim by induction on α ∶= rkM(p). If α = 0, then
pM ⊆ acl(U) and the claim holds trivially.

For the inductive step, suppose that we have proved the statement
already for all types of Morley rank less than α. Let I ⊆ pM be a maximal
set such that

a ⫝fU I ∖ {a} , for all a ∈ I .

According to Lemma g1.5.6, we can partition I into finitely many totally
indiscernible sequences. By assumption, each of them is countable.
Hence, so is I. Let (an)n<ω be an enumeration of I and set

Cn ∶= C ∪ { c ∈ M ∣ rkM(c/Ua[<n]) < α } , for n < ω .

Then (Cn)n<ω forms an increasing chain starting with C0 = C. Further-
more, every element b ∈ pM ∖⋃n<ω Cn satisfies

rkM(b/U I) = rkM(b/U) .
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By Corollary g1.4.8 (a), this implies that b ⫝fU I. By maximality of I, it
therefore follows that

pM ⊆ ⋃
n<ω

Cn .

Note that M at
√

U implies M at
√

Ua[<n] since lbm( at
√
) ≥ ℵ0. As

Cn is invariant over U ∪ a[<n], it follows by Lemma 4.9 that M at
√

Cn .
We prove by induction on n, that f can be extended to Cn . For n = 0, we
have C0 = C and there is nothing to do. For the inductive step, suppose
that we have already extended f to Cn . We first extend f to Cn ∪ {an}.
Since M at

√
Cn , there exists some formula φ(x; c̄) with parameters

c̄ ⊆ Cn isolating tp(an/Cn). Then

M ⊧ ∃xφ(x; c̄) implies N ⊧ ∃xφ(x; f (c̄)) .

Hence, there exists some element b ∈ N such that we can extend f by
setting f (an) ∶= b. Having done so we obtain the desired extension of f
to Cn+1 by applying the inductive hypothesis on α to Cn (for U) and
Cn ∪ {an} (for C). ◻

We obtain the following characterisation of prime models of totally
transcendental theories.

Theorem 4.11. Let T be a totally transcendental theory and U a set of
parameters.

(a) T has a unique prime model over U.
(b) For a model M of T , the following statements are equivalent :

(1) M is prime over U
(2) M is at

√
-constructible over U.

(3) M is atomic over U and M does not contain an uncountable
indiscernible sequence over U.

Proof. (a) The existence and uniqueness of a prime model were already
proved in Theorem e3.4.14.
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(b) (2)⇒ (1) was shown in Proposition e3.4.3.
(1) ⇒ (3) Suppose that M is prime over U . By Proposition e3.4.13,

there exists a model A that is at
√

-constructible over U . As M is prime
over U , we can find an elementary embedding h ∶ M→ A fixing U . By
Corollary 2.6,we have A at

√
U . Since h[M] ⊆ A, it follows by invariance

that M at
√

U . Thus, M is atomic over U .
Furthermore, every indiscernible sequence in M is mapped by h to an

indiscernible sequence in A. We have seen in Proposition 4.7 that A only
contains countable indiscernible sequences over U . Hence, so does M.

(3)⇒ (2) Let N be an arbitrary model of T(U). To find the desired
elementary embedding MU → N, we choose a maximal elementary map
f ∶ C → N with a domain C ⊆ M that is invariant over U . We claim
that C = M. For a contradiction, suppose otherwise. Then there is some
element a ∈ M ∖ C. By Lemma 4.9, we have M at

√
C. Hence, setting

p ∶= tp(a/C) we can use Lemma 4.10 to extend f to an elementary map
C ∪ pM → N . This contradicts the maximality of f . ◻

5. Strongly independent stratifications

In contrast to at
√
, the isolation relation ⫝! admits arbitrarily large con-

structible sets. Consequently, the length of ⫝!-constructions is unboun-
ded. But we will show that there are ⫝!-stratifications of bounded length
such that every enumeration refining them is a ⫝!-construction.

Unique free extensions
As a preliminary step, we start with computing fc(⫝!). We employ the
following characterisation of ⫝! which is a variant of Lemma g1.3.6.

Definition 5.1. For sets A, B,U ⊆M, we define

A ⊥do
U B : iff every relation that is definable over both

A∪U and B ∪U is already definable over U .
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If A ⊥do
U B, we call A and B definably orthogonal over U .

Proposition 5.2. Let T be a stable theory. Then

A ⫝fU C and C ⊥do
U acleq(U) implies A ⫝!U C .

Proof. For a contradiction, suppose that C ⊥do
U acleq(U) and there are

tuples ā and b̄ such that

ā ⫝fU C , b̄ ⫝fU C , and ā ≡U b̄ ,

but p ∶= tp(ā/UC) and q ∶= tp(b̄/UC) are different. By Lemma ??, we
can find some χ ∈ FE(U) such that

p(x̄) ∪ q( ȳ) ⊧ ¬χ(x̄ , ȳ) .

Let E be the set of those equivalence classes [c̄]χ containing some tuple
c̄′ ∈ [c̄]χ realising p. Then E is finite and we can choose an enumeration
[c̄0]χ , . . . , [c̄m−1]χ of E where each representative c̄ i realises p. We set

φ(x) ∶= ⋁
i<m

χ(x̄ , c̄ i) .

Then M ⊧ φ(ā), while

p(x̄) ∪ q( ȳ) ⊧ ¬χ(x̄ , ȳ) implies M ⊧ ¬χ(c̄ i , b̄) ,

for all i < m. Hence,M ⊧ φ(ā) ∧ ¬φ(b̄) and it is sufficient to prove that
φ is equivalent to a formula over U .

Since φM ≡ ⋁i<m ιχ x̄ = [c̄ i]χ is definable over acleq(U) (recall that
the structureMeq is equipped with projection functions ιχ ∶Ms̄ →Mχ),
it is sufficient to show that it is also definable over C. By Theorem e2.1.11
we only have to check that π[φM] = φM, for all π ∈ AutMC . Hence,
consider an automorphism π ∈ AutMC . Then π can be extended to an
automorphism of Meq

C and, therefore, it induces a permutation on the
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equivalence classes of χ. Since π[pM] = pM it follows that π induces a
permutation of E. Hence, we have

π[φM] = ⋃
i<m

π[χ(x̄ , c̄ i)]
M = ⋃

i<m
χ(x̄ , π(c̄ i))

M

= ⋃
i<m

χ(x̄ , c̄ i)
M = φM ,

as desired. ◻

Proposition 5.3. Let T be a stable theory.
(a) fc(⫝f) ≤ fc(⫝!) ≤ ∣T ∣+.
(b) fc(⫝!) ≤ fc(⫝f)reg ⊕mult(⫝f)+.
(c) If T is ℵ0-stable, then fc(⫝!) ≤ ℵ0.

Proof. (a) For the lower bound, note that ⫝! ⊆ ⫝f implies that every ⫝f -
forking chain is also a ⫝!-forking chain. For the upper bound, we prove
that loc0(⫝!) ≤ ∣T ∣+. Since ∣T ∣+ is regular, it then follows by Proposi-
tion f2.3.24 that fc(⫝!) ≤ loc0(⫝!)reg ≤ ∣T ∣+.

Hence, consider a finite set A and an arbitrary set B. We construct an
increasing sequence (Un)n<ω of subsets Un ⊆ B of size ∣Un ∣ ≤ ∣T ∣ such
that the union U ∶= ⋃n<ω Un is a set of size ∣U ∣ ≤ ∣T ∣ with A ⫝!U B.
We start with some set U0 ⊆ B of size ∣U0∣ < fc(⫝f) ≤ ∣T ∣+ such that

A ⫝fU0
B. For the inductive step, suppose that Un is already defined. Note

that there are at most

∣Teq∣⊕ ∣acleq(Un)∣ ≤ ∣Teq∣⊕ ∣Un ∣ = ∣T ∣

formulae over acleq(Un) and, consequently, at most that many relations
that are definable over both B and acleq(Un). Consequently, we can
choose a set Cn ⊆ B of size ∣Cn ∣ ≤ ∣T ∣ such that every relation definable
over both B and acleq(Un) is definable over Cn . Setting Un+1 ∶= Un ∪Cn ,
it follows that

B ⊥do
Un+1

acleq(Un) and ∣Un+1∣ = ∣Un ∣⊕ ∣Cn ∣ ≤ ∣T ∣ .
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To see that U ∶= ⋃n<ω Un has the desired properties, first note that
every relation definable over acleq(U) = ⋃n<ω acleq(Un) is definable
over acleq(Un), for some n, and hence over Un+1 ⊆ U . Consequently,

B ⊥do
U acleq(U)

and it follows by Proposition 5.2 that A ⫝fU B implies A ⫝!U B.
(b), (c)We prove both bounds simultaneously. Let κ be the least regular

cardinal such that

mult⫝f (p) < κ , for all types p .

Then mult(⫝f) ≤ κ ≤ mult(⫝f)+. Furthermore, for an ℵ0-stable theory,
we have fc(⫝f)reg ≤ st(T)reg = ℵ0 and we have seen in Corollary g1.4.8
that κ ≤ ℵ0. Therefore, both (b) and (c) follow if we can prove that

fc(⫝!) ≤ fc(⫝f)reg ⊕ κ .

For a contradiction, suppose that we can find some ⫝!-forking chain
(Bα)α<γ for some finite tuple ā over ∅ whose length is γ ∶= fc(⫝f)reg ⊕ κ.
Let I ⊆ γ be the set of all indices α < γ such that āÒ⫝f

B[<α] Bα . Then
(Bα)α∈I is a ⫝f -forking chain for ā over ∅ since

AÒ⫝f
B[<α] Bα implies AÒ⫝f

B[I]∩B[<α] Bα , for all α ∈ I .

Hence, ∣I∣ < fc(⫝f) ≤ γ. As γ is regular, it follows that I ⊆ β0, for some
index β0 < γ. Note that β0 + γ = γ. Hence, replacing (Bα)α<γ by the
subsequence (Bα)β0≤α<γ and setting U ∶= B[<β0], we may assume that

āÒ⫝!
UB[<α] Bα and ā ⫝fUB[<α] Bα , for all α < γ .

We construct a sequence (c̄α)α<γ of tuples as follows. As

āÒ⫝!
UB[<α] Bα and ā ⫝fUB[<α] Bα ,
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there exists a tuple c̄′α such that

c̄′α ⫝
f
UB[<α] Bα , c̄′α ≡UB[<α] ā , and c̄′α ≢UB[<α]Bα ā .

We choose some tuple c̄α ≡UB[<α]Bα c̄
′
α such that

c̄α ⫝fUB[<α] B[<γ] .

By a straightforward induction on α, one can show that ā ⫝fU B[<α].
Consequently, we have c̄α ⫝fU B[<α] and it follows by transitivity that
c̄α ⫝fU B[<γ]. Since

c̄α ≢UB[<α+1] ā ≡UB[<α+1] cα′ , for all α < α′ < γ ,

the types tp(c̄α/UB[<γ]) are distinct ⫝f -free extensions of tp(ā/U). By
choice of κ, it follows that γ < κ. A contradiction. ◻

Strongly independent stratifications

Instead of working with single ⫝!-constructions, we will work with famil-
ies of them that are encoded by a stratification for the following relation.

Definition 5.4. Let M be the model of a stable theory. We define

A si
√

U B : iff a ⫝!U B ∪ (A∖ {a}) , for all a ∈ A .

A set A is strongly independent over U if A si
√

U .

Note that A si
√

U B implies that every enumeration of A is a ⫝!-con-
struction over U . It follows that every si

√
-stratification can be refined to

a whole family of ⫝!-constructions.

Lemma 5.5. If there exists a si
√

-stratification ζ of A over U , then A is
⫝!-constructible over U.
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Proof. Suppose that ζ = (Bβ)β<γ . By Lemma 2.8 (a), it is sufficient to
prove that each set Bβ is ⫝!-constructible over U ∪ B[<β]. Hence, let
(bα)α<δ be an arbitrary enumeration of Bβ . Then

Bβ
si
√

UB[<β] implies bα ⫝!UB[<β] b[<α] , for all α < δ.◻

Lemma 5.6. In a stable theory, the relation si
√

satisfies all axioms of an
isolation relation except for (ltr).

Proof. (inv) follows immediately form the definition.
(mon) Suppose that AC si

√
U BD. Then

a ⫝!U BD ∪ ((A∪ C) ∖ {a}) , for all a ∈ A∪ C ,

which implies that

a ⫝!U B ∪ (A∖ {a}) , for all a ∈ A .

Hence, A si
√

U B.
(bmon) Suppose that A si

√
U BC. Then

a ⫝!U BC ∪ (A∖ {a}) , for all a ∈ A ,

which implies that

a ⫝!UC B ∪ (A∖ {a}) , for all a ∈ A .

Hence, A si
√

UC B.
(nor) Suppose that A si

√
U B. Then

a ⫝!U B ∪ (A∖ {a}) , for all a ∈ A ,

which implies that

a ⫝!U UB ∪ (A∖ {a}) , for all a ∈ A .
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Since, by (nor),

c ⫝!U UB ∪ (A∖ {c}) , for all c ∈ U ,

it follows that AU si
√

U BU .
(lrf) Let A and B be sets. Since

a ⫝!A B ∪ (A∖ {a}) , for all a ∈ A ,

it follows that A si
√

A B.
(fin) Suppose that A0

si
√

U B, for all finite A0 ⊆ A. To show that
A si
√

U B, consider an element a ∈ A. For every finite A0 ⊆ A∖ {a},

A0a si
√

U B implies a ⫝!U BA0 .

Since ⫝! is a symmetric relation with finite character, it follows that

a ⫝!U B(A∖ {a}) .

(rsh) Suppose that AC si
√

U B and C si
√

U AB. In order to show that
A si
√

U BC, we consider an element a ∈ A. Then

AC si
√

U B implies a ⫝!U B ∪ ((A∪ C) ∖ {a}) .

If a ∉ C, then B∪ ((A∪C)∖{a}) = B∪C ∪ (A∖{a}) and we are done.
Hence, suppose that a ∈ C. Then

C si
√

U AB implies a ⫝!U AB ∪ (C ∖ {a}) .

As AB ∪ (C ∖ {a}) = BC ∪ (A∖ {a}), the claim follows. ◻

The next lemma is our main tool to construct si
√

-stratifications.

Lemma 5.7. Let T be a stable theory and c ∈M. Then

A si
√

U B and c ⫝!U AB implies Ac si
√

U B .
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Proof. Let a ∈ A and set A0 ∶= A∖ {a}. We have to show that

a ⫝!U BA0c .

By symmetry, c ⫝!UBA0
a implies a ⫝!UBA0

c. Since a ⫝!U BA0, it follows
by transitivity that a ⫝!U BA0c, as desired. ◻

We are finally able to prove that si
√

-stratifications always exist and
that their length can be bounded.

Theorem 5.8. Let T be a stable theory. Every set A ⊆M has a si
√

-stratific-
ation ζ = (Bα)α<γ over ∅ of length γ ≤ fc(⫝!).

Proof. Set κ ∶= fc(⫝!). By induction on α,we choose a sequence (Bα)α<κ
of disjoint subsets Bα ⊆ A as follows. Suppose that Bα has already been
defined for all α < β. Since the union of an increasing chain of strongly
independent sets is again strongly independent, we can use the Lemma
of Zorn to find a maximal subset Bβ ⊆ A∖ B[<β] such that

Bβ
si
√

B[<β] .

The sequence (Bα)α<κ defined in this way is a si
√

-stratification of B[<κ]
over ∅.

It remains to prove that B[<κ] = A. For a contradiction, suppose that
there is some element a ∈ A∖ B[<κ]. By definition of κ = fc(⫝!) there
exists some index α < κ such that a ⫝!B[<α] Bα . Since Bα

si
√

B[<α] B[<α],
it follows by Lemma 5.7 that

Bαa si
√

B[<α] B[<α] .

This contradicts the maximality of Bα . ◻

By the special nature of the relation si
√
, si
√

-stratifications can always
be refined.
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Definition 5.9. Let (Bα)α<γ and (Cα)α<δ be partitions of a set A.We call
(Bα)α<γ a refinement of (Cα)α<δ if there exists an increasing function
f ∶ γ → δ such that

Bα ⊆ C f (α) , for all α < γ .

Lemma 5.10. Let ζ = (Cα)α<δ be a si
√

-stratification of A over U. Every
refinement (Bα)α<γ of ζ is also a si

√
-stratification of A over U.

Proof. Let f ∶ γ → δ be the function such that Bα ⊆ C f (α). To show that
Bα

si
√

B[<α], we consider an element a ∈ Bα . Since

C[< f (α)] ⊆ B[<α] and B[≤α] ⊆ C[≤ f (α)] ,

it follows by monotonicity of ⫝! that

a ⫝!UC[< f (α)] C[≤ f (α)] ∖ {a}

implies a ⫝!UB[<α] B[≤α] ∖ {a}. ◻

When considering si
√

-stratifications as families of ⫝!-constructions,
we need to modify the notion of a closed set as follows.

Definition 5.11. Let ζ = (Bα)α<γ be a si
√

-stratification of A over U .
(a) For every α < γ and every element a ∈ Bα , let W(a) ⊆ U ∪ B[<α].

We call the family (W(a))a∈A a system of bases for ζ if

a ⫝!W(a) U ∪ (B[≤α] ∖ {a}) , for all α < γ and all a ∈ Bα .

(b) Let (W(a))a∈A be a system of bases for ζ . A set C ⊆ A is W-closed
if W(a) ⊆ U ∪ C, for all a ∈ C.

Lemma 5.12. Let T be a stable theory and let ζ = (Bα)α<γ be a si
√

-strat-
ification of a A over U. There exists a system of bases (W(a))a∈A for ζ
such that ∣W(a)∣ < loc0(⫝!), for all a ∈ A.
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Proof. For every a ∈ Bα , we choose a set W(a) ⊆ U ∪ B[<α] of size
∣W(a)∣ < loc0(⫝!) such that

a ⫝!W(a) UB[<α] .

Since a ⫝!UB[<α] U ∪ (B[≤α] ∖ {a}), it follows by transitivity that

a ⫝!W(a) U ∪ (B[≤α] ∖ {a}) . ◻

Lemma 5.13. Let (Bα)α<γ be a si
√

-stratification of A over U with system
of bases (W(a))a∈A. If C ⊆ A is W-closed, then (Bα ∩C)α<γ is a si

√
-strat-

ification of C over U.

Proof. Set Cα ∶= Bα ∩C, for α < γ. Consider an element a ∈ Cα . We have
to show that a ⫝!UC[<α] C[≤α]∖{a}. Note that W(a) ⊆ U ∪C[<α] and

a ⫝!W(a) U ∪ (B[≤α] ∖ {a}) ,

by choice of W(a). By monotonicity, it follows that

a ⫝!UC[<α] U ∪ (C[≤α] ∖ {a}) ,

as desired. ◻

6. Representations
We have introduced indiscernible systems at the end of Section e5.3.
Intuitively, if a ∶ I → M in an indiscernible system over J, the structureM
is at least as complicated as J. If a ∶ I → M is surjective, the converse is
also true to some extend. In this section, we will characterise theories T
by classes C of structures such that, every model M of T has a bijective
indiscernible system a ∶ I → M with J ∈ C.

Definition 6.1. Let C be a class of structures.
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(a) A representation of a structure M in C is a bijective indiscernible
system r ∶ I → M, for some J ∈ C. If the system r ∶ I → M is only
QF-indiscernible, i.e., if

atp(ı̄) = atp(k̄) implies atp(r[ı̄]) = atp(r[k̄]) ,

we call r a quantifier-free representation.
(b) We say that a theory T has C-representations if everymodel M of T

has a representation in C. Similarly, we say that a classK has quantifier-
free C-representations if every structure M ∈ K has a quantifier-free
representation in C.

First, let us note that representations are closed under composition.

Lemma 6.2. If T has K-representations and K has quantifier-free C-rep-
resentations, then T has C-representations.

Lemma 6.3. If C ⊆ K, then C has quantifier-free K-representations.

In this section we will characterise stable theories in terms of repres-
entations in the following classes.

Definition 6.4. Let κ and λ be cardinals.
(a) Υκλ is the signature consisting of unary predicates Pα , for α < κ,

and unary function symbols fα , for α < λ.
(b) We denote the class of all Υκλ-structures by Un(κ, λ) and the

subclass consisting of all structures that are locally finite by Lf(κ, λ).
Finally,Wf(κ, λ) ⊆ Un(κ, λ) is the subclass of all structures such that
the inverse R−1 of the relation R ∶= ⋃α<λ fα is well-founded.

First, let us give some simple relationships between these classes.

Lemma 6.5. Let κ and λ be infinite cardinals.

(a) Wf(κ, λ) has quantifier-free Un(κ, λ)-representations.

(b) If n < ℵ0,Wf(κ, n) has quantifier-free Lf(κ, n)-representations.
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(c) If κ0 ≤ κ and λ0 ≤ λ, Un(κ0 , λ0) has quantifier-free Un(κ, λ)-rep-
resentations.

(d) Un(κ, λ) has quantifier-free Un(0, λ ⊕ κ)-representations.

(e) Wf(κ, λ) has quantifier-freeWf(0, λ ⊕ κ)-representations.

Proof. (a) follows by Lemma 6.3.
(b) If n is finite, every structure in Wf(κ, n) is locally finite. Therefore

Wf(κ, n) ⊆ Lf(κ, n) and the claim follows again by Lemma 6.3.
(c) For M ∈ Un(κ0 , λ0), we construct a quantifier-free representation

r ∶ I → M where I ∈ Un(κ, λ) is the expansion of M by the following
functions and relations :

Rα ∶= ∅ , for κ0 ≤ α < κ ,
fα ∶= id , for λ0 ≤ α < λ .

It follows that the identity function id ∶ M → M is a quantifier-free
indiscernible system over I.

(d) Consider a structureM ∈ Un(κ, λ). If ∣M∣ ≤ 1, let I ∈ Un(0, λ⊕κ)
be the unique structure of size ∣I∣ = ∣M∣ and let r ∶ I → M be the
corresponding bijection. Then r ∶ I → M is a quantifier-free indiscernible
system.

If ∣M∣ > 1, we proceed as follows. Choosing distinct elements 0, 1 ∈ M
we construct the structure I with universe I ∶= M and functions

f I
α (a) ∶= f M

α (a) , for α < λ ,

gI
β(a) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0 if a ∉ Pβ ,
1 if a ∈ Pβ ,

for β < κ ,

hI(a) ∶= 0 .

Note that I has κ⊕ λ⊕ 1 functions. Hence, after renaming the functions
we obtain a structure in Un(0, λ ⊕ κ). The identity id ∶ I → M is a
quantifier-free indiscernible system.
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(e) Let M ∈Wf(κ, λ). If ∣M∣ ≤ 1, we proceed as in (d). If ∣M∣ ≥ 2, we
modify the construction in (d) as follows. Since M ∈Wf(κ, λ), we can
choose 0, 1 ∈ M such that f M

α (0) = 0 and f M
α (1) ∈ {0, 1}, for all α. Let

I be the structure with universe M and functions

f I
α (a) ∶= f M

α (a) , for α < λ ,

gI
β(a) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0 if a ∉ Pβ or a = 0 ,
1 if a ∈ Pβ and a ≠ 0 ,

for β < κ ,

hI(a) ∶= 0 .

After a suitable renaming of the functions, we obtain a structure I ∈
Wf(0, λ ⊕ κ). Again id ∶ I → M is the desired quantifier-free indiscerni-
ble system. ◻

Representable theories are stable
We start by showing that theories represented in one of the above classes
are stable. The key argument is contained in the following two Ramsey
results.

Lemma 6.6. Let M ∈ Un(κ, λ), for infinite cardinals κ and λ, and let
n < ω. For every sequence (āα)α<µ where āα ∈ Mn and µ ∶= (2κ⊕λ)+,
there exists an infinite subset I ⊆ µ such that the subsequence (āα)α∈I is
totally QF-indiscernible.

Proof. Every finitely generated substructure of M has size at most λ. By
Lemma b1.1.5, there are, up to isomorphism, at most 2κ⊕λ such substruc-
tures. Since µ > 2κ⊕λ , there exists a subset I0 ⊆ µ of size ∣I0∣ = µ such
that

⟨⟪āα⟫M , āα⟩ ≅ ⟨⟪āβ⟫M , āβ⟩ , for all α, β ∈ I0 .

For each α ∈ I0,we fix an enumeration b̄α = (bαi )i<γ ,without repetitions,
of ⟪āα⟫M such that, for all α, β ∈ I0, the map bαi ↦ bβi , i < γ, induces an
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isomorphism

⟨⟪āα⟫M , āα⟩→ ⟨⟪āβ⟫M , āβ⟩ .

For every ν < µ, we have ν<λ+ = νλ ≤ (2κ⊕λ)λ = 2κ⊕λ < µ. Hence, we
can use Lemma a4.6.11 to find a subset U ⊆ M and a subset I1 ⊆ I0 of
size ∣I1∣ = µ such that

b̄α ∩ b̄β = U , for all α ≠ β in I1 .

Since µ > 2λ , there exists a subset I2 ⊆ I1 of size ∣I2∣ = µ and a set
K ⊆ λ such that, for all α ∈ I2,

K = { i < γ ∣ bαi ∈ U } .

We claim that the sequence (ā i)i∈I2 is totally QF-indiscernible. Let
φ(x̄) be an atomic formula. We have to show that

M ⊧ φ(ā[ᾱ])↔ φ(ā[β̄]) , for all ᾱ, β̄ ⊆ I2 .

First, we consider the case where φ = (s = t) is an equation. Then
there are indices ξ0 , . . . , ξm−1 , η0 , . . . , ηn−1 < λ and variables x , y such
that

s(x) = fξm−1⋯ fξ0x and t(y) = fηn−1⋯ fη0 y .

For each component i < n of āα , there are indices i′ and i′′ such that bαi′ =
s(aαi ) and bαi′′ = t(aαi ). Since we have chosen b̄α without repetitions, it
follows that

M ⊧ s(aαi ) = t(aβk) iff bαi′ = b
β
k′′

iff i′ = k′′ and (α = β or i′ ∈ K) .

The latter condition is invariant under permutations of I2.
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It remains to consider the case where φ = Pζ t for t = fξm−1⋯ fξ0x.
Again we can find, for every component i of āα an index i′ such that
bαi′ = t(aαi ). Therefore,

M ⊧ Pζ(t(aαi )) iff bαi′ ∈ Pζ .

The latter condition does not depend on α, since the substructures in-
duced by the tuples b̄α are isomorphic. ◻

Lemma 6.7. Let M ∈ Lf(κ, λ), let µ > κ, λ be an uncountable cardinal,
and n < ω. For every sequence (āα)α<µ of n-tuples āα ∈ Mn of length µ
and every set U ⊆ M of size ∣U ∣ < µ, there exists a subset I ⊆ µ of size
∣I∣ = µ such that

atp(āα/U) = atp(āβ/U) , for all α, β ∈ I .

Proof. Since each substructure ⟪āα⟫M is finite and there are at most
κ ⊕ λ ⊕ ℵ0 < µ finite substructures, there is a subset I0 ⊆ µ of size
∣I0∣ = µ such that

⟨⟪āα⟫M , āα⟩ ≅ ⟨⟪āβ⟫M , āβ⟩ , for all α, β ∈ I0 .

Let V ∶= ⟪U⟫M. Since there are at most ∣V ∣<ω = ∣V ∣ ⊕ ℵ0 < µ finite
subsets of V , we can find a subset I1 ⊆ I0 of size ∣I1∣ = µ and a finite set
W ⊆ V such that

⟪āα⟫M ∩ V =W , for all α ∈ I1 .

Let c̄ be an enumeration ofW . There exists a subset I2 ⊆ I1 of size ∣I2∣ = µ
such that

⟨⟪āα⟫M , āα , c̄⟩ ≅ ⟨⟪āβ⟫M , āβ , c̄⟩ , for all α, β ∈ I2 .

It follows that

atp(āα/V) = atp(āβ/V) , for all α, β ∈ I2 . ◻
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Using these two lemmas we can show that theories with representa-
tions in one of the above classes are stable.

Proposition 6.8. Let T be a complete first-order theory.

(a) If T has Un(κ, λ)-representations, for some cardinals κ, λ, it is
stable.

(b) If T has Lf(κ, κ)-representations, it is λ-stable, for all λ ≥ κ ⊕ ℵ0.

(c) If T has Lf(κ, λ)-representations, it is superstable with st(T) ≤
κ ⊕ λ ⊕ ℵ0.

Proof. (a) With out loss of generality, we may assume that κ and λ are
infinite. For a contradiction, assume that T is unstable. Then we can use
Theorem e5.3.13 to find a model M containing an infinite indiscernible
sequence (ā i)i∈I that is not totally indiscernible. By Lemma e5.3.9, we
can find such a sequencewhere I = µ, for µ ∶= (2κ⊕λ)+. Let r ∶ J→M be
a representation of M in Un(κ, λ) and set b̄ i ∶= r−1(ā i). By Lemma 6.6,
there exists an infinite subset I0 ⊆ I such that the subsequence (b̄ i)i∈I0 is
totallyQF-indiscernible. It follows that (ā i)i∈I0 is totally indiscernible.As
Av(ā i)i∈I0 = Av(ā i)i∈I , the sequence (ā i)i∈I is also totally indiscernible.
A contradiction.

(b) For a contradiction, suppose that ∣S s̄(U)∣ > λ, for some finite
tuple s̄ of sorts and some set U of parameters of size ∣U ∣ = λ ≥ κ ⊕ ℵ0.
Fix a sequence (āα)α<λ+ such that

tp(āα/U) ≠ tp(āβ/U) , for all α ≠ β .

Let r ∶ I→M be a representation of M in Lf(κ, κ). We set

V ∶= ⟪r−1[U]⟫J and b̄α ∶= r−1(āα) , for α < λ+ .

By Lemma 6.7, there exists a subset I ⊆ λ+ of size ∣I∣ = λ+ such that

atp(b̄α/V) = atp(b̄β/V) , for all α, β ∈ I .
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Since r is a representation, it follows that

tp(āα/U) = tp(āβ/U) , for all α, β ∈ I ,

in contradiction to our choice of (āα)α .
(c) According to Theorem g1.6.6, a theory T is superstable if, and

only if, there exists some cardinal λ such that T is κ-stable, for all κ ≥ λ.
Consequently, the claim follows from (b). ◻

Stable theories have representations

For the converse statements,we employ si
√

-stratifications. The following
two technical lemmas contain the key argument.

Lemma 6.9. Let T be stable, ζ = (Bα)α<γ a si
√

-stratification of some
set M over ∅ such that ∣B0∣ = ∣B1∣ = 1, and let (W(a))a∈M be a system of
bases for ζ.

Suppose that p ∶ C → D is a bijective function with C ,D ⊆ M satisfying
the following conditions :

◆ p[Bα] ⊆ Bα , for all α < γ.
◆ C is W-closed.
◆ p[W(a)] =W(p(a)), for all a ∈ C.
◆ p[tp(a/W(a))] = tp(p(a)/W(p(a))), for all a ∈ C.

Then p is an elementary map.

Proof. Set Cα ∶= C ∩Bα and Dα ∶= D∩Bα . By assumption, p[Cα] = Dα .
We will show by induction on α < γ that

p[tp(ā/C[<α])] = tp(p(ā)/D[<α]) , for all finite ā ⊆ Cα .

For α < 2, the claim holds trivially since ∣Bα ∣ = 1. For α ≥ 2, we prove
the statement by induction on ∣ā∣. Hence, suppose that ā = bc̄ and that
we have already shown that

p[tp(c̄/C[<α])] = tp(p(c̄)/D[<α]) .
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By assumption, we have

W(p(b)) = p[W(b)] ,
and tp(p(b) /W(p(b))) = p(tp(b/W(b))) .

Since b ⫝!W(b) B[≤α] ∖ {b}, the type p ∶= tp(b/C[<α]c̄) is the unique
free extension of tp(b/W(b)). As we have already shown that the map
p ↾ C[<α]c̄ is elementary, it follows that the image p(p) does not fork
over p[W(b)] =W(p(b)). Since

tp(p(b)/W(p(b))) = tp(p(b)/p[W(b)]) = p(tp(b/W(b)))

and p(b) ⫝!W(p(b)) D[<α]p(c̄), it follows that

p(p) = tp(p(b) / D[<α]p(c̄)) .

Consequently,

p(tp(bc̄/C[<α])) = tp(p(bc̄)/D[<α]) . ◻

Lemma 6.10. Let M be a structure, ζ = (Bα)α<γ a si
√

-stratification of M
over ∅ such that ∣B0∣ = ∣B1∣ = 1, and let (W(a))a∈M be a system of bases
for ζ. If

I ∶= ⟨M , ( fα)α<κ , (Pα)α<λ , (Qα)α<µ⟩

is a structure such that
◆ { fα(a) ∣ α < κ } = {a} ∪W(a) , for all a ∈ M ,
◆ a ∈ Pβ ⇔ b ∈ Pβ , for all β < λ, implies that a ∈ Bα ⇔ b ∈ Bα , for

all α < γ ,
◆ a ∈ Qβ ⇔ b ∈ Qβ , for all β < µ, implies that

a( fα(a))α<κ ≡ b( fα(b))α<κ ,

then the identity map id ∶ M → M is a representation of M in I.
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Proof. Let ā, b̄ ⊆ M be finite tuples such that

⟨⟪ā⟫I , ā⟩ ≅ ⟨⟪b̄⟫I , b̄⟩ .

We have to show that ā ≡ b̄ in M. Let p ∶ ⟪ā⟫I → ⟪b̄⟫I be an isomorph-
ism with p(ā) = b̄. It is sufficient to prove that p satisfies the conditions
of Lemma 6.9.
By assumption on the predicates Pβ we have

p(c) ∈ Bα iff c ∈ Bα .

Hence, p[Bα] ⊆ Bα . Furthermore, if c ∈ dom(p) = ⟪ā⟫I, then

{c} ∪W(c) = { fα(c) ∣ α < κ } ⊆ ⟪ā⟫I = dom(p) ,

and p[W(c)] = { p( fα(c)) ∣ α < κ, fα(c) ≠ c }
= { fα(p(c)) ∣ α < κ, fα(p(c)) ≠ p(c) }
=W(p(c)) .

Hence, dom(p) is W-closed and p[W(c)] =W(p(c)).
Finally, for c ∈ dom(p), it follows by assumption on the predicates Qα

that

cd̄ ≡ p(cd̄) ,

where d̄ is an enumeration of W(c). Hence,

p[tp(c/W(c))] = tp(p(c)/W(p(c))) . ◻

Using these two lemmas we can construct representations for stable
theories.

Proposition 6.11. Let T be a stable theory and set κ ∶= min{st(T), ∣T ∣}
and λ ∶= min{fc(⫝!), ∣T ∣}.

(a) T has Wf(κ, λ)-representations.
(b) If fc(⫝!) ≤ ℵ0, T has Lf(κ,ℵ0)-representations.

1346



6. Representations

Proof. Let M be a model of T . By Theorem 5.8, there exists a i
√

-strati-
fication ζ = (Bn)n<γ of M over ∅ of length γ ≤ fc(⫝!). Since

fc(⫝!) ≤ fc(⫝f)⊕mult(⫝f)+ ≤ st(T)+ and fc(⫝!) ≤ ∣T ∣+ ,

it follows that γ ≤ κ+. Taking a suitable refinement of ζ we may assume
by Lemma 5.10 that ∣B0∣ = ∣B1∣ = 1. By Lemma 5.12, there exists a system
of bases (W(a))a∈M with

∣W(a)∣ < loc0(⫝!) ≤ fc(⫝!) ≤ ∣T ∣+ .

Consequently, ∣W(a)∣ ≤ λ.
We define I ∶= ⟨M , ( fα)α<λ , (Pα)α<κ , (Qα)α<κ⟩ as follows. We

choose the functions ( fα)α<λ such that, for every a ∈ M, ( fα(a))α<λ is
an enumeration of {a} ∪W(a). Fixing an injective function h ∶ 2κ →
℘(κ), we define

Pα ∶=⋃{Bβ ∣ α ∈ h(β) } .

(Note that γ ≤ κ+ ≤ 2κ .) As there are at most st(T)many types over the
empty set and there are only ∣T ∣ formulae, we can fix an enumeration
(φα(x))α<κ of all formulae (up to logical equivalence) of the form

φ(x; fβ0x , . . . , fβn−1x) ,

where φ is a formula over the signature of T , n < ω, and β0 , . . . , βn−1 < κ.
We set

Qα ∶= { a ∈ M ∣ ⟨M, ( fα)α⟩ ⊧ φα(a) } .

It is straightforward to check that the structure I satisfies the con-
ditions of Lemma 6.10. Hence, the identity function id ∶ M → M is a
representation of M in I.

Finally, note that I ∈Wf(κ, λ) since,

a ∈ Bα implies fβ(a) ∈ {a} ∪ B[<α] .

If fc(⫝!) ≤ ℵ0, the sets { fα(a) ∣ α < κ } =W(a) ∪ {a} are finite, for all
a ∈ M. By the Lemma of Kőnig, it follows that I ∈ Lf(κ,ℵ0). ◻
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The following two theorems summarise the results of this section.

Theorem 6.12 (Cohen, Shelah). Let T be a complete first-order theory.
The following conditions are equivalent :

(1) T is stable.

(2) T has Un(κ, λ)-representations, for some cardinals κ and λ.

(3) T has Wf(0, ∣T ∣)-representations.

(4) T has Wf(∣T ∣, ∣T ∣)-representations.

Proof. (2)⇒ (1) has been shown in Proposition 6.8 (a), the implications
(4)⇒ (3)⇒ (2) follow from Lemmas 6.5 and 6.2, and (1)⇒ (4) follows
by Proposition 6.11. ◻

Theorem 6.13 (Cohen, Shelah). Let T be a complete first-order theory.
The following conditions are equivalent :

(1) T is ℵ0-stable.

(2) T has Lf(ℵ0 ,ℵ0)-representations.

Proof. (2)⇒ (1) follows by Proposition 6.8 (b) and (1)⇒ (2) follows by
Proposition 6.11. ◻
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G ā orbit of ā, 390
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∃+κℵ0 positive existential

formulae, 494
⪯∆ ∆-extension, 498
⪯ elementary extension, 498
Φ⊧∆ ∆-consequences of Φ, 521
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≤∆ preservation of ∆-formulae,
521

Chapter c3

S(L) set of types, 527
⟨Φ⟩ types containing Φ, 527
tpL(ā/M)L-type of ā, 528
S s̄

L(T) type space for a theory, 528
S s̄

L(U) type space over U , 528
S(L) type space, 533
f (p) conjugate of p, 543
S∆(L) S(L∣∆) with topology

induced from S(L), 557
⟨Φ⟩∆ closed set in S∆(L), 557
p∣∆ restriction to ∆, 560
tp∆(ā/U) ∆-type of ā, 560

Chapter c4

≡α α-equivalence, 577
≡∞ ∞-equivalence, 577
pIsoκ(A,B) partial isomorphisms,

578
ā ↦ b̄ map a i ↦ b i , 578
∅ the empty function, 578
Iα(A,B) back-and-forth system, 579
I∞(A,B) limit of the system, 581
≅α α-isomorphic, 581
≅∞ ∞-isomorphic, 581
m =k n equality up to k, 583
φα

A, ā Hintikka formula, 586
EFα(A, ā,B, b̄)

Ehrenfeucht-Fraïssé

game, 589
EFκ
∞(A, ā,B, b̄)

Ehrenfeucht-Fraïssé
game, 589

Iκ
FO(A,B)partial FO-maps of size κ,

598
⊑κ

iso ∞κ-simulation, 599
≅κ

iso ∞κ-isomorphic, 599
A ⊑κ

0 B Iκ
0(A,B) ∶ A ⊑κ

iso B, 599
A ≡κ

0 B Iκ
0(A,B) ∶ A ≡κ

iso B, 599
A ⊑κ

FO B Iκ
FO(A,B) ∶ A ⊑κ

iso B, 599
A ≡κ

FO B Iκ
FO(A,B) ∶ A ≡κ

iso B, 599
A ⊑κ

∞ B Iκ
∞(A,B) ∶ A ⊑κ

iso B, 599
A ≡κ

∞ B Iκ
∞(A,B) ∶ A ≡κ

iso B, 599
G(A) Gaifman graph, 605

Chapter c5

L ≤ L′ L′ is as expressive as L, 613
(a) algebraic, 614
(b) boolean closed, 614
(b+) positive boolean closed, 614
(c) compactness, 614
(cc) countable compactness, 614
(fop) finite occurrence property,

614
(kp) Karp property, 614
(lsp) Löwenheim-Skolem

property, 614
(rel) closed under relativisations,

614
(sub) closed under substitutions,

614
(tup) Tarski union property, 614
hnκ(L) Hanf number, 618
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lnκ(L) Löwenheim number, 618
wnκ(L) well-ordering number, 618
occ(L) occurrence number, 618
prΓ(K) Γ-projection, 636
PCκ(L, Σ)projective L-classes, 636
L0 ≤κ

pc L1 projective reduction, 637
RPCκ(L, Σ) relativised projective

L-classes, 641
L0 ≤κ

rpc L1 relativised projective
reduction, 641

∆(L) interpolation closure, 648
ifp f inductive fixed point, 658
lim inf f least partial fixed point, 658
lim sup f greatest partial fixed point,

658
fφ function defined by φ, 664
FOκℵ0(LFP) least fixed-point logic,

664
FOκℵ0(IFP) inflationary fixed-point

logic, 664
FOκℵ0(PFP) partial fixed-point

logic, 664
⊲φ stage comparison, 675

Chapter d1

tor(G) torsion subgroup, 704
a/n divisor, 705
DAG theory of divisible

torsion-free abelian
groups, 706

ODAG theory of ordered divisible
abelian groups, 706

div(G) divisible closure, 706
F field axioms, 710

ACF theory of algebraically
closed fields, 710

RCF theory of real closed fields,
710

Chapter d2

(<µ)λ ⋃κ<µ κλ , 721
HO∞[Σ, X] infinitary Horn

formulae, 735
SH∞[Σ, X] infinitary strict Horn

formulae, 735
H∀∞[Σ, X] infinitary universal

Horn formulae, 735
SH∀∞[Σ, X] infinitary universal

strict Horn formulae, 735
HO[Σ, X] first-order Horn formulae,

735
SH[Σ, X] first-order strict Horn

formulae, 735
H∀[Σ, X] first-order universal Horn

formulae, 735
SH∀[Σ, X] first-order universal

strict Horn formulae, 735
⟨C; Φ⟩ presentation, 739
Prod(K) products, 744
Sub(K) substructures, 744
Iso(K) isomorphic copies, 744
Hom(K) weak homomorphic

images, 744
ERP(K) embeddings into reduced

products, 744
QV(K) quasivariety, 744
Var(K) variety, 744
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( f , g) open cell between f and g,
757

[ f , g] closed cell between f and g,
757

B(ā, b̄) box, 758
Cn(D) continuous functions, 772
dimC dimension, 773

Chapter e2

dclL(U) L-definitional closure, 815
aclL(U) L-algebraic closure, 815
dclAut(U)Aut-definitional closure,

817
aclAut(U) Aut-algebraic closure, 817
M the monster model, 825
A ≡U B having the same type

over U , 826
Meq extension by imaginary

elements, 827
dcleq(U) definable closure in Meq ,

827
acleq(U) algebraic closure in Meq ,

827
T eq theory of Meq , 829
Gb(p) Galois base, 837

Chapter e3

Icl(A,B) elementary maps with
closed domain and range,
873

Chapter e4

pMorK(a, b) category of partial
morphisms, 894

a ⊑K b forth property for objects
inK, 895

a ⊑κ
pres b forth property for

κ-presentable objects,
895

a ≡κ
pres b back-and-forth equivalence

for κ-presentable objects,
895

Subκ(a) κ-presentable subobjects,
906

atp(ā) atomic type, 917
ηpq extension axiom, 918
T[K] extension axioms forK, 918
Tran[Σ] random theory, 918
κn(φ) number of models, 920
Prn

M[M ⊧ φ] density of models, 920

Chapter e5

[I]κ increasing κ-tuples, 925
κ → (µ)νλ partition theorem, 925
pf(η, ζ) prefix of ζ of length ∣η∣, 930
T∗(κ<α) index tree with small

signature, 930
Tn(κ<α) index tree with large

signature, 930
⟪X⟫n substructure generated in

Tn(κ<α), 930
Lvl(η̄) levels of η̄, 931
≈∗ equal atomic types in T∗,

931
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≈n equal atomic types in Tn ,
931

≈n ,k refinement of ≈n , 932
≈ω ,k union of ≈n ,k , 932
ā[ı̄] ā i0 . . . ā in−1 , 941
tp∆(ā/U) ∆-type, 941
Av((ā i)i/U) average type, 943
⟦φ(ā i)⟧ indices satisfying φ, 952
Av1((ā i)i/C) unary average type,

962

Chapter e6

Emb(K) embeddings between
structures inK, 965

pF image of a partial
isomorphism under F,
968

ThL(F) theory of a functor, 971
Aα inverse reduct, 975
R(M) relational variant of M, 977
Av(F) average type, 986

Chapter e7

ln(K) Löwenheim number, 995
A ⪯K B K-substructure, 996
hn(K) Hanf number, 1003
Kκ structures of size κ, 1004
Iκ
K(A,B) K-embeddings, 1008

A ⊑κ
K B Iκ

K(A,B) ∶ A ⊑κ
iso B, 1008

A ≡κ
K B Iκ

K(A,B) ∶ A ≡κ
iso B, 1008

Chapter f1

⟪X⟫D span of X, 1031
dimcl(X) dimension, 1037
dimcl(X/U) dimension over U ,

1037

Chapter f2

rk∆(φ) ∆-rank, 1073
rks̄

M(φ) Morley rank, 1073
degs̄

M(φ) Morley degree of φ, 1075
(mon) Monotonicity, 1084
(nor) Normality, 1084
(lrf) Left Reflexivity, 1084
(ltr) Left Transitivity, 1084
(fin) Finite Character, 1084
(sym) Symmetry, 1084
(bmon) Base Monotonicity, 1084
(srb) Strong Right Boundedness,

1085
cl√ closure operation

associated with
√
, 1090

(inv) Invariance, 1097
(def) Definability, 1097
(ext) Extension, 1097
A df
√

U B definable over, 1098
A at
√

U B isolated over, 1098
A s
√

U B non-splitting over, 1098
p t√ q √

-free extension, 1103
A u
√

U B finitely satisfiable, 1104
Av(u/B) average type of u, 1105
(lloc) Left Locality, 1109
(rloc) Right Locality, 1109
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loc(
√
) right locality cardinal of

√
,

1109
loc0(
√
) finitary right locality

cardinal of
√
, 1109

κreg regular cardinal above κ,
1110

fc(
√
) length of

√
-forking chains,

1111
(sfin) Strong Finite Character, 1111
∗
√

forking relation to
√
, 1113

Chapter f3

A d
√

U B non-dividing, 1125

A f
√

U B non-forking, 1125

A i
√

U B globally invariant over, 1134

Chapter f4

altφ(ā i)i∈I φ-alternation number,
1153

rkalt(φ) alternation rank, 1153
in(∼) intersection number, 1164
ā ≈ls

U b̄ indiscernible sequence
starting with ā, b̄, . . . ,
1167

ā ≡ls
U b̄ Lascar strong type

equivalence, 1168
CF((ā i)i∈I) cofinal type, 1194
Ev((ā i)i∈I) eventual type, 1199
rkdp(ā/U) dp-rank, 1211

Chapter f5

(lext) Left Extension, 1228
A fli
√

U B combination of li
√

and f
√
,

1239
A sli
√

U B strict Lascar invariance,
1239

(wind) Weak Independence
Theorem, 1253

(ind) Independence Theorem,
1253

Chapter g1

ā ⫝!U B unique free extension, 1274
mult√(p)√-multiplicity of p, 1279
mult(

√
) multiplicity of

√
, 1279

st(T) minimal cardinal T is
stable in, 1290

Chapter g2

(rsh) Right Shift, 1297
lbm(
√
) left base-monotonicity

cardinal, 1297
A[I] ⋃i∈I A i , 1306
A[<α] ⋃i<α A i , 1306
A[≤α] ⋃i≤α A i , 1306
A ⊥do

U B definable orthogonality,
1328

A si
√

U B strong independence, 1332
Υκλ unary signature, 1338
Un(κ, λ) class of unary structures,

1338
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Lf(κ, λ) class of locally finite unary structures, 1338
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abelian group, 385
abstract elementary class, 995
abstract independence relation, 1084
κ-accessible category, 329
accumulation, 12
accumulation point, 364
action, 390
acyclic, 519
addition of cardinals, 116
addition of ordinals, 89
adjoint functors, 234
affine geometry, 1037
aleph, 115
algebraic, 149, 815
algebraic class, 996
algebraic closure, 815
algebraic closure operator, 51
algebraic diagram, 499
algebraic elements, 418
algebraic field extensions, 418
algebraic logic, 487
algebraic prime model, 694
algebraically closed, 815
algebraically closed field, 418, 710
algebraically independent, 418
almost strongly minimal theory, 1056
alternating path in a category, 271

alternating-path equivalence, 272
φ-alternation number, 1153
alternation rank of a formula, 1153
amalgamation class, 1005
amalgamation property, 910, 1004
amalgamation square, 652
Amalgamation Theorem, 521
antisymmetric, 40
arity, 28, 29, 149
array, 1221
array property, 1221
array-dividing, 1227
associative, 31
asynchronous product, 752
atom, 445
atom of a lattice, 215
atomic, 215
atomic diagram, 499
atomic structure, 855
atomic type, 917
atomless, 215
automorphism, 156
automorphism group, 386
average type, 943
average type of an

Ehrenfeucht-Mostowski
functor, 986
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average type of an indiscernible
system, 949

average type of an ultrafilter, 1105
Axiom of Choice, 109, 458
Axiom of Creation, 19, 458
Axiom of Extensionality, 5, 458
Axiom of Infinity, 24, 458
Axiom of Replacement, 132, 458
Axiom of Separation, 10, 458
axiom system, 454
axiomatisable, 454
axiomatise, 454

back-and-forth property, 578, 893
back-and-forth system, 578
Baire, property of —, 363
ball, 342√

-base, 1228
base monotonicity, 1084
base of a partial morphism, 894
base projection, 894
base, closed —, 344
base, open —, 344
bases for a stratification, 1336
basic Horn formula, 735
basis, 110, 1034, 1037
beth, 126
Beth property, 648, 822
bidefinable, 885
biindiscernible family, 1219
biinterpretable, 891
bijective, 31
boolean algebra, 198, 455, 490
boolean closed, 490
boolean lattice, 198
boolean logic, 444, 462
bound variable, 450

boundary, 343, 758
κ-bounded, 598
bounded equivalence relation, 1172
bounded lattice, 195
bounded linear order, 583
bounded logic, 618
box, 758
branch, 189
branching degree, 191

canonical base, 834
canonical definition, 831

weak —, 847
canonical diagram, 337
canonical parameter, 831

weak —, 846
canonical projection from the

P-completion, 309
Cantor discontinuum, 351, 534
Cantor normal form, 100
Cantor-Bendixson rank, 365, 377
cardinal, 113
cardinal addition, 116
cardinal exponentiation, 116, 126
cardinal multiplication, 116
cardinality, 113, 329
cardinality quantifier, 482
cartesian product, 27
categorical, 877, 909
category, 162
δ̄-cell, 773
cell decomposition, 775
Cell Decomposition Theorem, 776
chain, 42
L-chain, 501
chain condition, 1247
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chain condition for Morley sequences,
1257

chain in a category, 267
chain topology, 350
chain-bounded formula, 1168
Chang’s reduction, 532
character, 105
characteristic, 710
characteristic of a field, 413
choice function, 106
Choice, Axiom of —, 109, 458
class, 9, 54
clopen set, 341
=-closed, 512
closed base, 344
closed function, 346
closed interval, 757
closed set, 51, 53, 341
closed subbase, 344
closed subset of a construction, 871,

1307
closed unbounded set, 135
closed under relativisations, 614
closed under substitutions, 614
closure operator, 51, 110
closure ordinal, 81
closure space, 53
closure under reverse ultrapowers, 734
closure, topological —, 343
co-chain-bounded relation, 1172
cocone, 253
cocone functor, 258
codomain of a partial morphism, 894
codomain projection, 894
coefficient, 398
cofinal, 123
cofinality, 123

Coincidence Lemma, 231
colimit, 253
comma category, 170
commutative, 385
commutative ring, 397
commuting diagram, 164
comorphism of logics, 478
compact, 352, 613
compact, countably —, 613
Compactness Theorem, 515, 531
compactness theorem, 718
compatible, 473
complement, 198
complete, 462
κ-complete, 598
complete partial order, 43, 50, 53
complete type, 527
completion of a diagram, 306
(λ, κ)-completion of a diagram, 307
(λ, κ)-completion of a partial order,

300
composition, 30
composition of links, 275
concatenation, 187
condition of filters, 721
cone, 257
confluence property, 1197
confluent family of sequences, 1197
congruence relation, 176
conjugacy class, 391
conjugate, 817
conjugation, 391
conjunction, 445, 490
conjunctive normal form, 467
connected category, 271
connected, definably —, 761
consequence, 460, 488, 521
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consistence of filters with conditions,
721

consistency over a family, 1221
consistent, 454
constant, 29, 149
constructible set, 869√

-constructible set, 1306
construction, 869√

-construction, 1306
continuous, 46, 133, 346
contradictory formulae, 627
contravariant, 168
convex equivalence relation, 1164
coset, 386
countable, 110, 115
countably compact, 613
covariant, 167
cover, 352
Creation, Axiom of —, 19, 458
cumulative hierarchy, 18
cut, 22

deciding a condition, 721
definability of independence relations,

1097
definable, 815
definable expansion, 473
definable orthogonality, 1329
definable Skolem function, 842
definable structure, 885
definable type, 570, 1098
definable with parameters, 759
definably connected, 761
defining a set, 447
definition of a type, 570
definitional closed, 815
definitional closure, 815

degree of a polynomial, 399
dense class, 1256
dense linear order, 600
κ-dense linear order, 600
dense order, 454
dense set, 361
dense sets in directed orders, 246
dense subcategory, 281
dependence relation, 1031
dependent, 1031
dependent set, 110
derivation, 398
diagonal functor, 253
diagonal intersection, 137
diagram, 251, 256
L-diagram, 499
Diagram Lemma, 499, 634
difference, 11
dimension, 1037
dimension function, 1038
dimension of a cell, 773
dimension of a vector space, 409
direct limit, 252
direct power, 405
direct product, 239
direct sum of modules, 405
directed, 246
directed colimit, 251
directed diagram, 251
κ-directed diagram, 251
directed limit, 256
discontinuum, 351
discrete linear order, 583
discrete topology, 342
disintegrated matroid, 1044
disjoint union, 38
disjunction, 445, 490

1366



Index

disjunctive normal form, 467
distributive, 198
dividing, 1125
dividing chain, 1136
dividing κ-tree, 1144
divisible closure, 706
divisible group, 705
domain, 28, 151
domain of a partial morphism, 894
domain projection, 894
dp-rank, 1211
dual categories, 172

Ehrenfeucht-Fraïssé game, 589, 592
Ehrenfeucht-Mostowski functor, 986,

1002
Ehrenfeucht-Mostowski model, 986
element of a set, 5
elementary diagram, 499
elementary embedding, 493, 498
elementary extension, 498
elementary map, 493
elementary substructure, 498
elimination

uniform — of imaginaries, 840
elimination of finite imaginaries, 853
elimination of imaginaries, 841
elimination set, 690
embedding, 44, 156, 494
∆-embedding, 493
K-embedding, 995
elementary —, 493
embedding of a tree into a lattice, 222
embedding of logics, 478
embedding of permutation groups,

886
embedding, elementary —, 498

endomorphism ring, 404
entailment, 460, 488
epimorphism, 165
equivalence class, 54
equivalence formula, 826
equivalence of categories, 172
equivalence relation, 54, 455
L-equivalent, 462
α-equivalent, 577, 592
equivalent categories, 172
equivalent formulae, 460
Erdős-Rado theorem, 928
Euklidean norm, 341
even, 922
exchange property, 110
existential, 494
existential closure, 699
existential quantifier, 445
existentially closed, 699
expansion, 155, 998
expansion, definable —, 473
explicit definition, 648
exponentiation of cardinals, 116, 126
exponentiation of ordinals, 89
extension, 152, 1097
∆-extension, 498
extension axiom, 918√

-extension base, 1228
extension of fields, 414
extension, elementary —, 498
Extensionality, Axiom of —, 5, 458

factorisation, 180
Factorisation Lemma, 158
factorising through a cocone, 317
faithful functor, 167
family, 37

1367



Index

field, 397, 457, 498, 710
field extension, 414
field of a relation, 29
field of fractions, 411
field, real —, 426
field, real closed —, 429
filter, 203, 207, 530
κ-filtered category, 285
κ-filtered colimit, 285
κ-filtered diagram, 285
final segment, 41
κ-finitary set of partial isomorphisms,

598
finite, 115
finite character, 51, 105, 1084

strong —, 1111
finite equivalence relation, 1164
finite intersection property, 211
finite occurrence property, 613
finite, being — over a set, 775
finitely axiomatisable, 454
finitely branching, 191
finitely generated, 154
finitely presentable, 317
finitely satisfiable type, 1104
first-order interpretation, 446, 475
first-order logic, 445
fixed point, 48, 81, 133, 657
fixed-point induction, 77
fixed-point rank, 675
Fodor

Theorem of —, 139
follow, 460
forcing, 721
forgetful functor, 168, 234
forking chain, 1136√

-forking chain, 1110

√
-forking formula, 1103

forking relation, 1097√
-forking type, 1103

formal power series, 398
formula, 444
forth property for partial morphisms,

895
foundation rank, 192
founded, 13
Fraïssé limit, 912
free algebra, 232
free extension of a type, 1103√

-free extension of a type, 1103
free model, 739
free structures, 749√

-free type, 1103
free variables, 231, 450
full functor, 167
full subcategory, 169
function, 29
functional, 29, 149
functor, 167

Gaifman graph, 605
Gaifman, Theorem of —, 611
Galois base, 834
Galois saturated structure, 1011
Galois stable, 1011
Galois type, 997
game, 79
generalised product, 751
κ-generated, 255, 965
generated substructure, 153
generated, finitely —, 154
generating, 41
generating a sequence by a type, 1158
generating an ideal, 400
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generator, 154, 739
geometric dimension function, 1038
geometric independence relation, 1084
geometry, 1036
global type, 1114
graduated theory, 698, 783
graph, 39
greatest element, 42
greatest fixed point, 657
greatest lower bound, 42
greatest partial fixed point, 658
group, 34, 385, 456
group action, 390
group, ordered —, 705
guard, 447

Hanf number, 618, 637, 1003
Hanf ’s Theorem, 606
Hausdorff space, 351
having κ-directed colimits, 253
height, 190
height in a lattice, 215
Henkin property, 858
Henkin set, 858
Herbrand model, 511, 858
hereditary, 12
κ-hereditary, 910, 965
hereditary finite, 7
Hintikka formula, 586, 587
Hintikka set, 513, 858, 859
history, 15
hom-functor, 258
homeomorphism, 346
homogeneous, 787, 925
≈-homogeneous, 931
κ-homogeneous, 604, 787
homogeneous matroid, 1044

homomorphic image, 156, 744
homomorphism, 156, 494
Homomorphism Theorem, 183
homotopic interpretations, 890
honest definition, 1157
Horn formula, 735

ideal, 203, 207, 400
idempotent link, 313
idempotent morphism, 313
identity, 163
image, 31
imaginaries

uniform elimination of —, 840
imaginaries, elimination of —, 841
imaginary elements, 826
implication, 447
implicit definition, 647
inclusion functor, 169
inclusion link, 276
inclusion morphism, 491
inconsistent, 454
k-inconsistent, 1125
increasing, 44
independence property, 952
independence relation, 1084
independence relation of a matroid,

1083
Independence Theorem, 1253
independent, 1031√

-independent family, 1289
independent set, 110, 1037
index map of a link, 275
index of a subgroup, 386
indiscernible sequence, 941
indiscernible system, 949, 1337
induced substructure, 152
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inductive, 77
inductive completion, 291
inductive completion of a category,

280
inductive fixed point, 81, 657, 658
inductively ordered, 81, 105
infimum, 42, 195
infinitary first-order logic, 445
infinitary second-order logic, 483
infinite, 115
Infinity, Axiom of —, 24, 458
inflationary, 81
inflationary fixed-point logic, 664
initial object, 166
initial segment, 41
injective, 31
κ-injective structure, 1008
inner vertex, 189
insertion, 39
inspired by, 950
integral domain, 411, 713
interior, 343, 758
interpolant, 653
interpolation closure, 648
interpolation property, 646
∆-interpolation property, 646
interpretation, 444, 446, 475
intersection, 11
intersection number, 1164
interval, 757
invariance, 1097
invariant class, 1256
invariant over a subset, 1325
U-invariant relation, 1172
invariant type, 1098
inverse, 30, 165
inverse diagram, 256

inverse limit, 256
inverse reduct, 975
irreducible polynomial, 416
irreflexive, 40√

-isolated, 1297
isolated point, 364
isolated type, 855, 1098
isolation relation, 1297
isomorphic, 44
α-isomorphic, 581, 592
isomorphic copy, 744
isomorphism, 44, 156, 165, 172, 494
isomorphism, partial —, 577

joint embedding property, 1005
κ-joint embedding property, 910
Jónsson class, 1005

Karp property, 613
kernel, 157
kernel of a ring homomorphism, 402

label, 227
large subsets, 825
Lascar invariant type, 1178
Lascar strong type, 1168
lattice, 195, 455, 490
leaf, 189
least element, 42
least fixed point, 657
least fixed-point logic, 664
least partial fixed point, 658
least upper bound, 42
left extension, 1228
left ideal, 400
left local, 1109
left reflexivity, 1084
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left restriction, 31
left transitivity, 1084
left-narrow, 57
length, 187
level, 190
level embedding function, 931
levels of a tuple, 931
lexicographic order, 187, 1024
lifting functions, 655
limit, 59, 257
limit stage, 19
limiting cocone, 253
limiting cone, 257
Lindenbaum algebra, 489
Lindenbaum functor, 488
Lindström quantifier, 482
linear independence, 406
linear matroid, 1037
linear order, 40
linear representation, 687
link between diagrams, 275
literal, 445
local, 608
local character, 1109
local enumeration, 772
κ-local functor, 965
local independence relation, 1109
localisation morphism, 491
localisation of a logic, 491
locality, 1109
locality cardinal, 1306
locally compact, 352
locally finite matroid, 1044
locally modular matroid, 1044
logic, 444
logical system, 485
Łoś’ theorem, 715

Łoś-Tarski Theorem, 686
Löwenheim number, 618, 637, 641, 995
Löwenheim-Skolem property, 613
Löwenheim-Skolem-Tarski Theorem,

520
lower bound, 42
lower fixed-point induction, 658

map, 29
∆-map, 493
map, elementary —, 493
mapping, 29
matroid, 1036
maximal element, 42
maximal ideal, 411
maximal ideal/filter, 203
maximally φ-alternating sequence,

1153
meagre, 362
membership relation, 5
minimal, 13, 57
minimal element, 42
minimal polynomial, 419
minimal rank and degree, 224
minimal set, 1049
model, 444
model companion, 699
model of a presentation, 739
model-complete, 699
κ-model-homogeneous structure,

1008
modular, 198
modular lattice, 216
modular law, 218
modular matroid, 1044
modularity, 1094
module, 403
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monadic second-order logic, 483
monoid, 31, 189, 385
monomorphism, 165
monotone, 758
monotonicity, 1084
monster model, 825
Morley degree, 1075
Morley rank, 1073
Morley sequence, 1118
Morley-free extension of a type, 1076
morphism, 162
morphism of logics, 478
morphism of matroids, 1044
morphism of partial morphisms, 894
morphism of permutation groups, 885
multiplication of cardinals, 116
multiplication of ordinals, 89
multiplicity of a type, 1279
mutually indiscernible sequences,

1206

natural isomorphism, 172
natural transformation, 172
negation, 445, 489
negation normal form, 469
negative occurrence, 664
neighbourhood, 341
neutral element, 31
node, 189
normal subgroup, 387
normality, 1084
nowhere dense, 362

o-minimal, 760, 956
object, 162
occurrence number, 618
oligomorphic, 390, 877

omitting a type, 528
omitting types, 532
open base, 344
open cover, 352
open dense order, 455
open interval, 757
Open Mapping Theorem, 1276
open set, 341
open subbase, 345
opposite category, 166
opposite functor, 168
opposite lattice, 204
opposite order, 40
orbit, 390
order, 454
order property, 567
order topology, 349, 758
order type, 64, 941
orderable ring, 426
ordered group, 705
ordered pair, 27
ordered ring, 425
ordinal, 64
ordinal addition, 89
ordinal exponentiation, 89
ordinal multiplication, 89
ordinal, von Neumann —, 69

pair, 27
parameter equivalence, 831
parameter-definable, 759
partial fixed point, 658
partial fixed-point logic, 664
partial function, 29
partial isomorphism, 577
partial isomorphism modulo a filter,

727
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partial morphism, 894
partial order, 40, 454
partial order, strict —, 40
partition, 55, 220
partition degree, 224
partition rank, 220
partitioning a relation, 775
path, 189
path, alternating — in a category, 271
Peano Axioms, 484
pinning down, 618
point, 341
polynomial, 399
polynomial function, 416
polynomial ring, 399
positive existential, 494
positive occurrence, 664
positive primitive, 735
power set, 21
predicate, 28
predicate logic, 444
prefix, 187
prefix order, 187
preforking relation, 1097
prelattice, 207
prenex normal form, 469
preorder, 206, 488
κ-presentable, 317
presentation, 739
preservation by a function, 493
preservation in products, 734
preservation in substructures, 496
preservation in unions of chains, 497
preserving a property, 168, 262
preserving fixed points, 655√

-κ-prime, 1314
prime field, 413

prime ideal, 207, 402
prime model, 868
prime model, algebraic, 694
primitive formula, 699
principal ideal/filter, 203
Principle of Transfinite Recursion, 75,

133
product, 27, 37, 744
product of categories, 170
product of linear orders, 86
product topology, 357
product, direct —, 239
product, generalised —, 751
product, reduced —, 242
product, subdirect —, 240
projection, 37, 636
projection along a functor, 260
projection along a link, 276
projection functor, 170
projective class, 636
projective geometry, 1043
projectively reducible, 637
projectively κ-saturated, 804
proper, 203
property of Baire, 363
pseudo-elementary, 636
pseudo-saturated, 807

quantifier elimination, 690, 711
quantifier rank, 452
quantifier-free, 453
quantifier-free formula, 494
quantifier-free representation, 1338
quasi-dividing, 1231
quasivariety, 743
quotient, 179
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Rado graph, 918
Ramsey’s theorem, 926
random graph, 918
random theory, 918
range, 29
rank, 73, 192
∆-rank, 1073
rank, foundation –, 192
real closed field, 429, 710
real closure of a field, 429
real field, 426
realising a type, 528
reduced product, 242, 744
reduct, 155
µ-reduct, 237
refinement of a partition, 1336
reflecting a property, 168, 262
reflexive, 40
regular, 125
regular filter, 717
regular logic, 614
relation, 28
relational, 149
relational variant of a structure, 976
relativisation, 474, 614
relativised projective class, 640
relativised projectively reducible, 641
relativised quantifiers, 447
relativised reduct, 640
Replacement, Axiom of —, 132, 458
replica functor, 979
representation, 1338
restriction, 30
restriction of a filter, 242
restriction of a Galois type, 1015
restriction of a logic, 491
restriction of a type, 560

retract of a logic, 547
retraction, 165
retraction of logics, 546
reverse ultrapower, 734
right local, 1109
right shift, 1297
ring, 397, 457
ring, orderable —, 426
ring, ordered —, 425
root, 189
root of a polynomial, 416
Ryll-Nardzewski Theorem, 877

satisfaction, 444
satisfaction relation, 444, 446
satisfiable, 454
saturated, 793
κ-saturated, 667, 793√

-κ-saturated, 1314
κ-saturated, projectively —, 804
Scott height, 587
Scott sentence, 587
second-order logic, 483
section, 165
segment, 41
semantics functor, 485
semantics of first-order logic, 446
semi-strict homomorphism, 156
semilattice, 195
sentence, 450
separated formulae, 627
Separation, Axiom of —, 10, 458
sequence, 37
shifting a diagram, 313
signature, 149, 151, 235, 236
simple structure, 412
simple theory, 1135
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simply closed, 694
singular, 125
size of a diagram, 251
skeleton of a category, 265
skew embedding, 938
skew field, 397
Skolem axiom, 505
Skolem expansion, 999
Skolem function, 505
definable —, 842
Skolem theory, 505
Skolemisation, 505
small subsets, 825
sort, 151
spanning, 1034
special model, 807
specification of a dividing chain, 1137
specification of a dividing κ-tree, 1144
specification of a forking chain, 1137
spectrum, 370, 531, 534
spectrum of a ring, 402
spine, 981
splitting type, 1098
stabiliser, 391
stability spectrum, 1290
κ-stable formula, 564
κ-stable theory, 573
stably embedded set, 1156
stage, 15, 77
stage comparison relation, 675
stationary set, 138
stationary type, 1272
Stone space, 374, 531, 534√

-stratification, 1306
strict homomorphism, 156
strict Horn formula, 735
strict ∆-map, 493

strict order property, 958
strict partial order, 40
strictly increasing, 44
strictly monotone, 758
strong γ-chain, 1017
strong γ-limit, 1017
strong finite character, 1111
strong limit cardinal, 808
strong right boundedness, 1085
strongly homogeneous, 787
strongly κ-homogeneous, 787
strongly independent, 1332
strongly local functor, 981
strongly minimal set, 1049
strongly minimal theory, 1056, 1149
structure, 149, 151, 237
subbase, closed —, 344
subbase, open —, 345
subcategory, 169
subcover, 352
subdirect product, 240
subdirectly irreducible, 240
subfield, 413
subformula, 450
subset, 5
subspace topology, 346
subspace, closure —, 346
substitution, 234, 465, 614
substructure, 152, 744, 965
∆-substructure, 498
K-substructure, 996
substructure, elementary —, 498
substructure, generated —, 153
substructure, induced —, 152
subterm, 228
subtree, 190
successor, 59, 189
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successor stage, 19
sum of linear orders, 85
superset, 5
supersimple theory, 1294
superstable theory, 1294
supremum, 42, 195
surjective, 31
symbol, 149
symmetric, 40
symmetric group, 389
symmetric independence relation,

1084
syntax functor, 485
system of bases for a stratification,

1336

T0-space, 534
Tarski union property, 614
tautology, 454
term, 227
term algebra, 232
term domain, 227
term, value of a —, 231
term-reduced, 466
terminal object, 166
L-theory, 461
theory of a functor, 971
topological closure, 343, 758
topological closure operator, 51, 343
topological group, 394
topological space, 341
topology, 341
topology of the type space, 533
torsion element, 704
torsion-free, 705
total order, 40
totally disconnected, 351

totally indiscernible sequence, 942
totally transcendental theory, 574
transcendence basis, 418
transcendence degree, 418
transcendental elements, 418
transcendental field extensions, 418
transfinite recursion, 75, 133
transitive, 12, 40
transitive action, 390
transitive closure, 55
transitive dependence relation, 1031
transitivity, left —, 1084
translation by a functor, 260
tree, 189
φ-tree, 568
tree property, 1143
tree property of the second kind, 1221
tree-indiscernible, 950
trivial filter, 203
trivial ideal, 203
trivial topology, 342
tuple, 28
Tychonoff, Theorem of —, 359
type, 560
L-type, 527
Ξ-type, 804
α-type, 528
s̄-type, 528
type of a function, 151
type of a relation, 151
type space, 533
type topology, 533
type, average —, 943
type, average — of an indiscernible

system, 949
type, complete —, 527
type, Lascar strong —, 1168
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types of dense linear orders, 529

ultrafilter, 207, 530
κ-ultrahomogeneous, 906
ultrapower, 243
ultraproduct, 243, 797
unbounded class, 1003
uncountable, 115
uniform dividing chain, 1137
uniform dividing κ-tree, 1144
uniform elimination of imaginaries,

840
uniform forking chain, 1137
uniformly finite, being — over a set,

776
union, 21
union of a chain, 501, 688
union of a cocone, 293
union of a diagram, 292
unit of a ring, 411
universal, 494
κ-universal, 793
universal quantifier, 445
universal structure, 1008
universe, 149, 151
unsatisfiable, 454
unstable, 564, 574
upper bound, 42
upper fixed-point induction, 658

valid, 454
value of a term, 231
variable, 236

variable symbols, 445
variables, free —, 231, 450
variety, 743
Vaughtian pair, 1057
vector space, 403
vertex, 189
von Neumann ordinal, 69

weak γ-chain, 1017
weak γ-limit, 1017
weak canonical definition, 847
weak canonical parameter, 846
weak elimination of imaginaries, 847
weak homomorphic image, 156, 744
Weak Independence Theorem, 1252
weakly bounded independence

relation, 1189
weakly regular logic, 614
well-founded, 13, 57, 81, 109
well-order, 57, 109, 132, 598
well-ordering number, 618, 637
well-ordering quantifier, 482, 483
winning strategy, 590
word construction, 972, 977

Zariski logic, 443
Zariski topology, 342
zero-dimensional, 351
zero-divisor, 411
Zero-One Law, 922
ZFC, 457
Zorn’s Lemma, 110

1377



The Roman and Fraktur alphabets

A a A a N n N n
B b B b O o O o
C c C $ P p P p
D d D d Q q Q q
E e E e R r R r
F f F f S s S s +
G g G g T t T t
H h H h U u U u
I i I i V v V v
J j J j W w W w
K k K k X x X x
L l L l Y y Y y
M m M m Z z Z z

The Greek alphabet

A α alpha N ν nu
B β beta Ξ ξ xi
Γ γ gamma O o omicron
∆ δ delta Π π pi
E ε epsilon P ρ rho
Z ζ zeta Σ σ sigma
H η eta T τ tau
Θ ϑ theta Υ υ upsilon
I ι iota Φ ϕ phi
K κ kappa X χ chi
Λ λ lambda Ψ ψ psi
M µ mu Ω ω omega
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