
Parameterized algorithms for constraint satisfaction problems
Exercises

Marcin Pilipczuk

Day 1: simple and above guarantee parameterizations
1. Design a deterministic polynomial-time algorithms that, given a CNF formula ϕ, finds an assignment

that satisfies at least
∑

i≥1(1− 2−i)mi clauses, where mi is the number of clauses with i literals.

2. Prove that CNF MaxSAT is FPT when parameterized by the number of clauses.

Note: the difficulty here is that clauses have unbounded (in parameter) length.

3. In the Not-All-Equal MaxSAT, the input is a multiset of clauses, and a clause is satisfied if not
all literals in the clause evaluate to the same value (i.e., not all are true and not all are false). Prove
that Not-All-Equal MaxSAT is FPT when parameterized by the number of clauses.

4. Prove that CNF MaxSAT is FPT when we ask to satisfy at least m/2+k clauses and we parameterize
by k, where m is the number of clasues.

5. Consider now a MaxSAT problem, where the domain is {0, 1} and the only available constraint is a
binary inequality x ̸= y.

• Represent the MaxSAT problem as a graph problem. What do you obtain?

• Prove that there is always an assigment satisfying at least m/2 constraints, where m is the number
of constraints on input.

• Prove that MaxSAT is FPT when we ask to satisfy at least m/2 + k constraints and we param-
eterize by k.
Hint: consider a maximum matching in the graph problem you obtained. Prove that on one hand,
MaxSAT is FPT when parameterized by the size of the maximum matching, and on the other
hand the answer is always positive if the matching is large (compared to the parameter k).

6. Consider now a MaxSAT problem, where the domain is Q and the only available constraint is x < y.

• Represent the MaxSAT problem as a (directed) graph problem. What do you obtain?

• Prove that there is always an assigment satisfying at least m/2 constraints, where m is the number
of constraints on input.

• Prove that MaxSAT is FPT when we ask to satisfy at least m/2 + k constraints and we param-
eterize by k.

Day 2: parameterization by the number of unsatisfied constraints
1. At the lecture, we have discussed the Vertex Cover problem, parameterized by the excess above

the LP lower bound, i.e., by k := p − LP , where p is the budget and LP is the value of the linear
programming relaxation.

1

We used a result of Nemhauser and Trotter that asserts that (a) there exists an optimal value to the
LP relaxation that uses only values 0, 1, and 1/2; (b) for every optimal solution to the LP relaxation,
there exists a minimum-size vertex cover that contains all vertices assigned 1 and no vertices assigned
0. This allowed us to reduce to the case, where there an LP solution that assigns 1/2 to every vertex
is the unique optimal LP solution.

We argued that then a branching on an arbitrary vertex reduces k by at least 1/2 in every branch.
This have 4k · poly(n)-time algorithm. In this exercise we analyse further the branch where the pivot
v is not taken to the solution (and N(v) is taken to the solution).

• Prove that, if all-1/2 is the unique optimal solution to the LP relaxation, then the following is true:
for every independent set I ⊆ V (G), we have |N(I)| > |I| and, furthermore, for every u ∈ N(I),
there exists a matching of size |I| in the bipartite subgraph of G between I and N(I) \ {v}.

• Prove that, if in this branch the gap k decreased by only 1/2, then there exists an independent
set I ⊆ V (G) with |N(I)| = |I|+ 1.

• Design a reduction rule reducing (without branching) such an independent set as in the previous
point.

• Design an algorithm with running time bound ck · poly(n) for some c < 3.

2. Consider the following two problems:

• In the Odd Cycle Transversal problem, we are given an undirected graph G and an integer
k, and we ask for a set X ⊆ V (G) of size at most k such that G−X is bipartite.

• In the Split Vertex Deletion problem, we are given an undirected graph G and an integer
k, and we ask for a set X ⊆ V (G) of size at mot k such that G −X is a split graph. (A graph
H is a split graph if V (H) can be partitioned into K ⊎ I such that G[K] is complete and G[I] is
edgeless.)

For each of these problems, parameterized by k, design a parameterized reduction to the Vertex
Cover problem, parameterized as in the previous exercise. Your reduction should preserve the value
of the parameter k. Deduce that these problems admit a parameterized algorithm with running time
bound ck · poly(n) for some constant c < 3.

3. Design a parameterized reduction from Joker 2-SAT to Almost 2-SAT that keeps the parameter
unchanged.

Note that in the lecture we have used a reduction in the other direction.

4. In the Bundled Cut problem, we are given a directed graph G with distinguished vertices s, t ∈ V (G),
an integer k, and a family B of pairwise disjoint subsets of E(G) called bundles. The goal is to find an
st-cut Z ⊆

⋃
B (i.e., the edges not in a bundle are undeletable) that intersects at most k bundles.

Consider a restriction of Bundled Cut, where every bundle is a path of length at most ℓ.

• Prove that for ℓ = 2, the problem is equivalend to the Minimum Cut problem, and thus solvable
in polynomial time.

• For ℓ = 3, provide an example where every solution is not a minimum cut.
• Design an NP-hardness reduction for the case ℓ = 3.

Day 3: applications of flow-augmentation
1. In the Bicriteria MinCut problem, we are given a directed graph G, vertices s, t ∈ V (G), weights

w : E(G) → Z+, and integers k,W ∈ Z≥0; the goal is to find an st-cut Z ⊆ E(G) with |Z| ≤ k and
w(Z) ≤ W .

2

• Prove that Bicriteria MinCut is polynomial-time solvable in the special case when k is the
minimum possible cardinality of an st-cut.

• Prove that Bicriteria MinCut is FPT when parameterized by k.

2. Recall the Multicut problem: the input consists of an undirected graph G, integer k, and a set
T ⊆

(
V (G)

2

)
of terminal pairs; the goal is to find a set Z ⊆ E(G) of size at most k such that for every

st ∈ T , the vertices s and t are in different connected components of G− Z.

By a standard iterative compression trick, you can assume that you are also given on input a set
M ⊆ V (G) of size at most k + 1 such that for every st ∈ T , either s ∈ M , or t ∈ M , or s and t are in
different connected components of G−M .

Prove that Multicut is FPT by reducing it to the tractable case of MinUnSAT in ID2.

Hints: The first step should be a standard branching step, where you branch how M is split among the
connected components of G − Z; you can merge vertices that land in the same connected component
of Z, reducing to the case when every connected component of G − Z contains at most one vertex of
M . After this step, your MinUnSAT instance should have a variable x(v, p) for every v ∈ V (G) and
p ∈ M with the intended meaning “v is in the connected component of G− Z that contains p”.

3. Recall the Directed Subset Feedback Arc Set problem: the input consists of a directed graph G
with a set F ⊆ E(G) of red edges and an integer k; the goal is to find a set Z ⊆ E(G) of size at most
k such that in G− Z there every arc of F has endpoints in different strong components.

By a standard iterative compression trick, you can assume that you are also given on input a set
M ⊆ V (G) of size at most k + 1 such that G−M has no cycles containing red edges.

Prove that DSFAS is FPT by reducing it to Bundled Cut with Pairwise Linked Deletable
Edges.

Hints: The first step should be a standard branching step, where you branch how M is split among
the strong components of G − Z and how they ordered in a topological order of strong components of
G− Z; you can merge vertices that land in the same strong component of G− Z, reducing to the case
when every strong component of G − Z contains at most one vertex of M , and the topological order
of the vertices of M is known. After this step, you should follow as in the reduction for Directed
Feedback Arc Set in the lecture, but you will need 2|M | − 1 copies of G: one for each vertex of M
and one between each two consecutive vertices of M .

4. Consider a temporal CSP with a single relation R(x, y, z) = (x > y) ∨ (x > z) (which is equivalent to
x > min(y, z)). Prove that for this language, MinUnSAT is W[2]-hard.

Hint: reduce from Hitting Set. In this W[2]-hard problem, you are given a universe U , a family F
of subsets of U , and an integer k; the goal is to find X ⊆ U of size at most k such that X ∩A ̸= ∅ for
every A ∈ F .

Day 4: parameterization by the number of variables
1. For every n ≥ k ≥ 1, show that there is an embedding of an n-vertex clique into a k × k grid of

congestion 2⌈n/k⌉.
Note: the CSP problem, obtained via this reduction, is often called Grid Tiling and it is a common
intermediate problem for proving hardness of problems in planar graphs.

2. Consider the following problem: given a graph G embedded on a torus and integers r, k, check if G
contains a set X of k vertices such that pairwise distance between the vertices of X is more than r.
Prove that, assuming the Exponential Time Hypothesis, this problem does not admit an algorithm
with running time |V (G)|o(

√
k).

3

3. In the Odd Set problem, we are given a universe U , a family F of subsets of U , and an integer k; the
goal is to find a set X ⊆ U of size at most k such that for every A ∈ F , |A ∩X| is odd. Prove that
this problem, parameterized by k, is W[1]-hard.

4. In the Strongly Connected Steiner Subgraph problem, we are given a directed graph G, an
integer k, and a set T ⊆ V (G); the goal is to find a strongly connected subgraph H of G that contains
T and contains at most k vertices. Prove that this problem, parameterized by k, is W[1]-hard.

5. Show that if H is a k-vertex cubic graph, then the average distance between two vertices of H is
Ω(log k).

Day 5: exploring temporal CSPs
In all problems, the domain is D = Q.

1. Consider a language Γ = {x < y}. Prove, that MaxSAT can be solved in time 2n · poly(n), where n
is the number of variables.

2. Consider a language Γ = {x < y ∧ y < z}. Prove, that MaxSAT can be solved in time cn · poly(n) for
some constant c, where n is the number of variables.

3. For an integer a ≥ 1, let Ra be a constraint of arity 2a defined as

Ra(x1, y1, . . . , xa, ya) =

a∨
i=1

(xi < yi).

Prove that, unless ETH fails, Satisfiability for the language {R4} cannot be solved in time 2o(n logn),
where n is the number of variables.

Hint: Reduce from k × k Clique. In k × k Clique, we are given a graph G with V (G) = [k] × [k]
and we ask for a function β : [k] → [k] so that {(i, β(i)) | 1 ≤ i ≤ k} induces a clique. It follows from
our reductions discussed on Thursday that, unless ETH fails, this problem does not admit an algorithm
with running time bound 2o(k log k).

Remark: The existence of an algorithm with running time bound 2o(n logn) for Satisfiability is open
for languages {R2} and {R3}. Note that {R1} is the language discussed in Problem 1.

4. Consider a temporal CSP with a single relation R(x, y, z) = (x > y) ∨ (x > z) (which is equivalent to
x > min(y, z)). Prove that for this language, MinUnSAT is W[2]-hard.

Hint: reduce from Hitting Set. In this W[2]-hard problem, you are given a universe U , a family F
of subsets of U , and an integer k; the goal is to find X ⊆ U of size at most k such that X ∩A ̸= ∅ for
every A ∈ F .

5. Consider a temporal CSP with a relation x = y and a relation R(x, y, p, q) = (x = y) → (p < q). Prove
that for this language MinUnSAT is W[1]-hard.

6. Consider a temporal CSP with a relation x = y and a relation R(x, y, z) = (x = y) → (x < z). Prove
that for this language MinUnSAT is W[1]-hard.

7. Consider a temporal CSP with a single relation R(x, y, p, q) = (x < y) ∧ (p < q) ∧ (x < q) ∧ (p < y).
Prove that for this language MinUnSAT is FPT.

Hint: reduce the problem to Directed Feedback Arc Set.

4

8. Consider a temporal CSP with a single relation R(x, y, p, q) = (x < y)∧ (p < q)∧ (x ≤ q)∧ (p ≤ y). Is
MinUnSAT FPT or W[1]-hard?

Note: I don’t know the answer to the last problem. To the best of my knowledge, this is the smallest
open case in the FPT vs W[1]-hard dichotomy for temporal CSPs, within the tractable fragment of the
P vs NP-hard dichotomy of languages preserved by the “minimum” polymorphism.

5

