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Constraint Satisfaction Problems

• Variables x1, x2, . . . , xn, domain D, constraints.
• Each constraint has arity a, is applied to a tuple
(i1, . . . , ia) ∈ [n]a, and has relation R ⊆ Da.

• An assignment α : [n] → D satisfies a constraint if
(α(ij))a

j=1 ∈ R.
• Language: prescribed domain D and a set of pairs (a, R)

that one can use in relations.

Problems to solve:

• SATISFIABILITY
• Reasonable parameters: number of variables, number of

clauses, size of the domain, structural parameters of the
graph of constraints.

• MAX SAT
• Reasonable parameters: all of the above, number of

satisfied constraints, number of unsatisfied constraints,
above/below guarantee parameterizations.
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Parameter: number of variables

• Not interesting for small domains (constant size, bounded
in parameter size).

• Very interesting for domains given on input.
• Brute force: |D|k. Can you beat it?
• Focus on binary constraints.

• Positive results:
• FPT in k and the complexity of twin-width-IV-like

description of relations in constraints.
• |D|O(tw) natural dynamic programming algorithm.

• Negative results:
• ETH =⇒ no |D|o(k/ log k) algorithm if the constraint graph is

a cubic expander.
• ETH =⇒ no |D|o(tw/ log tw) algorithm.
• Fundament of many fine-grained parameterized

complexity results.
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Parameter: number of clauses

• For bounded arity of constraints: reduces to the previous
slide.

• Large arity examples: CNF SAT, Not-All-Equal SAT.
• Simple, rather uninteresting reduction to the previous slide.
• Rather exotic regime of parameters.

ALGOMANET: SUMMARY 4/8



Parameter: number of clauses

• For bounded arity of constraints: reduces to the previous
slide.

• Large arity examples: CNF SAT, Not-All-Equal SAT.
• Simple, rather uninteresting reduction to the previous slide.
• Rather exotic regime of parameters.

ALGOMANET: SUMMARY 4/8



Max SAT above guarantee

Discussed example: r-CNF SAT, CNF-SAT.
• Random assignment satisfies on average

∑
clause C

1 − 2−|C|

clauses.

• Ask to satisfy k more and parameterize by k.
• (Mahajan, Raman, 1999) If asking for m/2 + k, relatively

simple reduction rules give FPT.
• (Alon et al. 2010) All clauses of size r: FPT, interesting

anti-concentration statement.
• (Crowston et al. 2012) If clauses have different length,

parameterize above first-point lower bound:
para-NP-hard.

• (Gutin et al. 2010) More similar results for constraints
being linear equations, for permutation CSPs, etc.
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Min UnSAT

• Interesting parameterization: satisfy all but k constraints.

• Even very simple examples contain highly nontrivial
flow/cut problems.

• D = {0, 1}, Γ = {1 → x, x → 0, x → y} is DIRECTED
MINIMUM CUT.

• D = {0, 1}, Γ = {x ̸= y} is EDGE BIPARTIZATION.

• ALMOST 2-SAT is FPT via a reduction to VERTEX COVER
ABOVE LP.

• and VERTEX COVER ABOVE LP is FPT thanks to very strong
structural properties of the optimal LP solutions given by
Nemhauser-Trotter.
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Min UnSAT and flow-augmentation

• Flow-augmentation completes dichotomy for boolean
languages.

• ℓ-CHAIN SAT is FPT (x → y → p → q).
• COUPLED CUT is FPT ((x → y) ∧ (p → q) ∧ (¬x ∨ ¬p)).
• BUNDLED CUT with bundles of size 2 is W[1]-hard

((x → y) ∧ (p → q)).
• Borderline: 2K2-freeness.

• Tractability isle in ID2 and BUNDLED CUT WITH PAIRWISE
LINKED DELETABLE EDGES useful for algorithms.

• DIRECTED (SUBSET) FEEDBACK ARC SET
• MULTICUT

• Potential good target for next dichotomy: Temporal CSPs.
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Counting ones
• Omitted: D = {0, 1}, parameterize by the number of 1.

• MINONES: at most k ones.
• EXACTONES: exactly k ones.
• MAXONES: at least k ones.

• EXACTONES dichotomy by (Marx 2004); tractability
boundary is a property called weakly separable.

• (Künnemann and Marx 2020): fine-grained analysis of
exponents in the hard area: there are subexponential,
clique-like, and dominating-set-like regimes.

• MINONES
• Contains VERTEX COVER. The same branching for any

bound on maximum arity.
• (Kratsch, Wahlström 2010) Dichotomy for polynomial

kernelization.
• MAXONES

• Contains CLIQUE.
• (Kratsch, Marx, Wahlström 2010) Dichotomy for

polynomial kernelization.
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