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Topological Dirac

Cycle C in G ←→ 1-dimensional sphere

, meaning that the simplicial

complex induced by E(C) is homeomorphic to the 1-sphere.

Examples of 2-spheres in 3-graphs.

←→

Topological Dirac’s Theorem

δ(G) > n/2 =⇒ G contains a spanning 1-sphere.

Question (Conlon and Gowers)

Which degree condition forces a 3-graph to contain a spanning 2-sphere?

δ2(G) = minS⊆V (G):
|S|=2

#{e ∈ E(G) : e ⊇ S}
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2-spheres in 3-graphs - 1/2

A tight walk in a 3-graph is a sequence of vertices such that each set of 3

consecutive vertices induces an edge.

A tight component is a maximal subset of edges such that for any pair of

edges e and f , there is a walk from e to f .

Observation

The edges of a (spanning) 2-sphere must all belong to the same

(spanning) tight component.

� Edges not belonging to a

spanning component are not of

any use;

� δ2(G) ≥ n/3 is needed: the

graph does not have a spanning

tight component.
n/3

n/3n/3
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2-spheres in 3-graphs - 2/2

Theorem (Georgakopoulos, Haslegrave, Montgomery and

Narayanan, 2022)

Let G be a 3-graph with δ2(G) ≥ (1/3 + o(1))n

=⇒ G has a spanning 2-sphere.

� Still open for larger uniformity;

� 1/3 is best possible, but the extremal construction is not unique;

� 1/3 is the threshold for both a spanning tight component and a

spanning 2-sphere.

Is the existence of a spanning component the main obstacle?

Can we relax the condition on δ2(G) if we assume that G has a unique tight

component and this component is spanning?

3/8
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Our result

Define the supported minimum degree as

δ⋆2(G) = min
S:|S|=2 and
S is contained

in at least one edge

#{e ∈ E(G) : e ⊇ S} .

Conjecture (Georgakopoulos, Haslegrave, Montgomery and

Narayanan, 2022)

Let G be a tightly connected 3-graph with δ⋆2(G) ≥ n/2

=⇒ G has a spanning 2-sphere.

We prove their conjecture asymptotically.

Theorem (Illingworth, Lang, Müyesser, Parczyk and S., 2024+)

Let G be a tightly connected 3-graph with δ⋆2(G) ≥ (1/2 + o(1))n

=⇒ G has a spanning 2-sphere.

� Result holds for any uniformity, again with δ⋆k−1(G) ≥ (1/2 + o(1))n;

� Our proof does not use neither the Absorption Method nor the

Regularity Lemma.
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Theorem (Illingworth, Lang, Müyesser, Parczyk and S., 2024+)

Let G be a tightly connected 3-graph with δ⋆2(G) ≥ (1/2 + o(1))n

=⇒ G has a spanning 2-sphere.

� Result holds for any uniformity, again with δ⋆k−1(G) ≥ (1/2 + o(1))n;

� Our proof does not use neither the Absorption Method nor the

Regularity Lemma.

4/8



Our result

Define the supported minimum degree as

δ⋆2(G) = min
S:|S|=2 and
S is contained

in at least one edge

#{e ∈ E(G) : e ⊇ S} .

Conjecture (Georgakopoulos, Haslegrave, Montgomery and

Narayanan, 2022)

Let G be a tightly connected 3-graph with δ⋆2(G) ≥ n/2

=⇒ G has a spanning 2-sphere.

We prove their conjecture asymptotically.

Theorem (Illingworth, Lang, Müyesser, Parczyk and S., 2024+)
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Sketch - 1/3

Theorem (Illingworth, Lang, Müyesser, Parczyk and S., 2024+)

Let G be a tightly connected 3-graph with δ⋆2(G) ≥ (1/2 + o(1))n

=⇒ G has a spanning 2-sphere.

Part 1. (Special case of an upcoming general framework of Lang and

Sanhueza-Matamala)

Cover V (G) with a family of graphs R⋆
1, . . . , R

⋆
ℓ ⊆ G such that

� R⋆
i is a nearly-regular large blow-up of some small graph Ri, where Ri

is tightly connected and inherits the degree condition from G;

� The family is vertex-disjoint except for R⋆
i and R⋆

i+1 which intersect in

exactly one edge, say ei.

Part 2.

Cover each R⋆
i with a spanning 2-sphere having ei−1 and ei as facets.

Part 3.

Glue all the spheres along the common facets.

5/8
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Theorem (Illingworth, Lang, Müyesser, Parczyk and S., 2024+)

Let G be a tightly connected 3-graph with δ⋆2(G) ≥ (1/2 + o(1))n

=⇒ G has a spanning 2-sphere.

Part 1. (Special case of an upcoming general framework of Lang and

Sanhueza-Matamala)

Cover V (G) with a family of graphs R⋆
1, . . . , R

⋆
ℓ ⊆ G such that

� R⋆
i is a nearly-regular large blow-up of some small graph Ri, where Ri

is tightly connected and inherits the degree condition from G;

� The family is vertex-disjoint except for R⋆
i and R⋆

i+1 which intersect in

exactly one edge, say ei.

Part 2.

Cover each R⋆
i with a spanning 2-sphere having ei−1 and ei as facets.

Part 3.

Glue all the spheres along the common facets.

5/8



Sketch - 2/3

If R⋆ is a blow-up of R, let ϕ : V (R⋆)→ V (R) be the projection map.

Lemma (Illingworth, Lang, Müyesser, Parczyk and S., 2024+)

◦ 1/m≪ 1/s;

◦ Tightly connected 3-graph R with s vertices and δ⋆(R) ≥ (1/2+ o(1))s;

◦ R⋆ blow-up of R, with each part of size roughly m;

◦ f1, f2 ∈ E(R⋆) such that ϕ(f1) and ϕ(f2) are disjoint.

=⇒ R⋆ has a spanning 2-sphere where f1 and f2 are facets.

1. R⋆ contains a small 2-sphere S with two designated facets fe, ge for

each e ∈ E(R), where fe ̸= ge, ϕ(fe) = ϕ(ge) = e, and each family

{fe : e ∈ E(R)}, {ge : e ∈ E(R)} is vertex-disjoint.
Moreover we can assume fi = fϕ(fi) for i = 1, 2.

2. Cover

(
V (R⋆) \ V (S)

)
∪
⋃

e∈E(R) V (ge) with vertex-disjoint 2-spheres

{Se : e ∈ E(R)} where ge is a facet of Se.

3. Glue each sphere Se with S along ge.

6/8
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Sketch - 3/3

2. Cover R⋆ with pairwise vertex-disjoint 2-spheres {Se : e ∈ E(R)} where
ge is a facet of Se.

For each p ∈ ∂2(R), assign an edge ep ∈ E(R) such that p ⊆ ep and the ep

are pairwise distinct.

For each e = u1u2u3 ∈ E(R), define Ae such that ge ⊆ Ae, Ae has exactly

two vertices in each ϕ−1(ui), and the Ae are pairwise disjoint.

Claim 1

δ2(R
⋆ \

⋃
e∈E(R) Ae) has a perfect matching M .

For p = ab ∈ ∂2(R), let Mp be the set of the edges of M that go between

ϕ−1(a) and ϕ−1(b).

For e ∈ E(R), if e = ep define Be := Aep ∪ V (Mp); otherwise define

Be := Ae.

Claim 2

� {Be : e ∈ E(R)} is a partition of V (R⋆);

� R∗[Be] has a spanning 2-sphere Se such that ge is a facet.

7/8
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Conclusion

a) Random graphs

b) Other degrees

c) Exact bounds

d) Larger uniformity

Conjecture (Georgakopoulos, Haslegrave, Montgomery and

Narayanan, 2022)

Let G be a k-graph with δk−1(G) ≥ n/k =⇒ G has a spanning

(k − 1)-sphere.

Can we at least show that there is a spanning tight component?

Thank you!
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