Spanning spheres in Dirac hypergraphs

Amedeo Sgueglia joint with Freddie Illingworth, Richard Lang, Alp Müyesser and Olaf Parczyk

DIMEA Combinatorial Potluck, Masaryk University, Brno

16 November 2024

$\textbf{Cycle}\ C\ \text{in}\ G\longleftrightarrow\textbf{1-dimensional sphere}$

Cycle C in $G \leftrightarrow 1$ -dimensional sphere, meaning that the simplicial complex induced by E(C) is homeomorphic to the 1-sphere.

Cycle C in $G \leftrightarrow 1$ -dimensional sphere, meaning that the simplicial complex induced by E(C) is homeomorphic to the 1-sphere.

Examples of 2-spheres in 3-graphs.

Cycle C in $G \leftrightarrow 1$ -dimensional sphere, meaning that the simplicial complex induced by E(C) is homeomorphic to the 1-sphere.

Examples of 2-spheres in 3-graphs.

Cycle C in $G \leftrightarrow 1$ -dimensional sphere, meaning that the simplicial complex induced by E(C) is homeomorphic to the 1-sphere.

Examples of 2-spheres in 3-graphs.

Cycle C in $G \leftrightarrow 1$ -dimensional sphere, meaning that the simplicial complex induced by E(C) is homeomorphic to the 1-sphere.

Examples of 2-spheres in 3-graphs.

Topological Dirac's Theorem

 $\delta(G) > n/2 \implies G$ contains a spanning 1-sphere.

Cycle C in $G \leftrightarrow 1$ -dimensional sphere, meaning that the simplicial complex induced by E(C) is homeomorphic to the 1-sphere.

Examples of 2-spheres in 3-graphs.

Topological Dirac's Theorem

 $\delta(G) > n/2 \implies G$ contains a spanning 1-sphere.

Question (Conlon and Gowers)

Which degree condition forces a 3-graph to contain a spanning 2-sphere?

$$\delta_2(G) = \min_{\substack{S \subseteq V(G):\\|S|=2}} \#\{e \in E(G) : e \supseteq S\}$$

A tight component is a maximal subset of edges such that for any pair of edges e and f, there is a walk from e to f.

A tight component is a maximal subset of edges such that for any pair of edges e and f, there is a walk from e to f.

Observation

The edges of a (spanning) 2-sphere must all belong to the same (spanning) tight component.

A tight component is a maximal subset of edges such that for any pair of edges e and f, there is a walk from e to f.

Observation

The edges of a (spanning) 2-sphere must all belong to the same (spanning) tight component.

• Edges not belonging to a spanning component are not of any use;

A tight component is a maximal subset of edges such that for any pair of edges e and f, there is a walk from e to f.

Observation

The edges of a (spanning) 2-sphere must all belong to the same (spanning) tight component.

- Edges not belonging to a spanning component are not of any use;
- δ₂(G) ≥ n/3 is needed: the graph does not have a spanning tight component.

Let G be a 3-graph with $\delta_2(G) \ge (1/3 + o(1))n$

 \implies G has a spanning 2-sphere.

Let G be a 3-graph with $\delta_2(G) \ge (1/3 + o(1))n$

 \implies G has a spanning 2-sphere.

• Still open for larger uniformity;

Let G be a 3-graph with $\delta_2(G) \ge (1/3 + o(1))n$

- \implies G has a spanning 2-sphere.
- Still open for larger uniformity;
- 1/3 is best possible, but the extremal construction is not unique;

Let G be a 3-graph with $\delta_2(G) \ge (1/3 + o(1))n$

- \implies G has a spanning 2-sphere.
- Still open for larger uniformity;
- 1/3 is best possible, but the extremal construction is not unique;
- 1/3 is the threshold for both a spanning tight component and a spanning 2-sphere.

Let G be a 3-graph with $\delta_2(G) \ge (1/3 + o(1))n$

- \implies G has a spanning 2-sphere.
- Still open for larger uniformity;
- 1/3 is best possible, but the extremal construction is not unique;
- 1/3 is the threshold for both a spanning tight component and a spanning 2-sphere.

Is the existence of a spanning component the main obstacle?

Let G be a 3-graph with $\delta_2(G) \ge (1/3 + o(1))n$

- \implies G has a spanning 2-sphere.
- Still open for larger uniformity;
- 1/3 is best possible, but the extremal construction is not unique;
- 1/3 is the threshold for both a spanning tight component and a spanning 2-sphere.

Is the existence of a spanning component the main obstacle?

Can we relax the condition on $\delta_2(G)$ if we assume that G has a unique tight component and this component is spanning?

Define the supported minimum degree as

$$\delta_2^{\star}(G) = \min_{\substack{S:|S|=2 \text{ and} \\ S \text{ is contained} \\ \text{ in at least one edge}}} \#\{e \in E(G) : e \supseteq S\}.$$

Define the supported minimum degree as

$$\delta_2^{\star}(G) = \min_{\substack{S:|S|=2 \text{ and} \\ S \text{ is contained} \\ \text{ in at least one edge}}} \#\{e \in E(G): e \supseteq S\}.$$

Conjecture (Georgakopoulos, Haslegrave, Montgomery and Narayanan, 2022)

Let G be a **tightly connected** 3-graph with $\delta_2^{\star}(G) \ge n/2$

 \implies G has a spanning 2-sphere.

Define the supported minimum degree as

 $\delta_2^{\star}(G) = \min_{\substack{S:|S|=2 \text{ and} \\ S \text{ is contained} \\ \text{in at least one edge}}} \#\{e \in E(G) : e \supseteq S\}.$

Conjecture (Georgakopoulos, Haslegrave, Montgomery and Narayanan, 2022)

Let G be a **tightly connected** 3-graph with $\delta_2^{\star}(G) \ge n/2$

 \implies G has a spanning 2-sphere.

We prove their conjecture asymptotically.

Theorem (Illingworth, Lang, Müyesser, Parczyk and S., 2024+) Let G be a tightly connected 3-graph with $\delta_2^*(G) \ge (1/2 + o(1))n$ $\implies G$ has a spanning 2-sphere.

Define the supported minimum degree as

 $\delta_2^{\star}(G) = \min_{\substack{S:|S|=2 \text{ and} \\ S \text{ is contained} \\ \text{in at least one edge}}} \#\{e \in E(G) : e \supseteq S\}.$

Conjecture (Georgakopoulos, Haslegrave, Montgomery and Narayanan, 2022)

Let G be a **tightly connected** 3-graph with $\delta_2^{\star}(G) \ge n/2$

 \implies G has a spanning 2-sphere.

We prove their conjecture asymptotically.

Theorem (Illingworth, Lang, Müyesser, Parczyk and S., 2024+) Let G be a tightly connected 3-graph with $\delta_2^*(G) \ge (1/2 + o(1))n$ $\implies G$ has a spanning 2-sphere.

• Result holds for any uniformity, again with $\delta_{k-1}^{\star}(G) \ge (1/2 + o(1))n$;

Define the supported minimum degree as

$$\delta_2^{\star}(G) = \min_{\substack{S:|S|=2 \text{ and} \\ S \text{ is contained} \\ \text{ in at least one edge}}} \#\{e \in E(G): e \supseteq S\}.$$

Conjecture (Georgakopoulos, Haslegrave, Montgomery and Narayanan, 2022)

Let G be a **tightly connected** 3-graph with $\delta_2^{\star}(G) \ge n/2$

 \implies G has a spanning 2-sphere.

We prove their conjecture asymptotically.

Theorem (Illingworth, Lang, Müyesser, Parczyk and S., 2024+) Let G be a tightly connected 3-graph with $\delta_2^*(G) \ge (1/2 + o(1))n$ $\implies G$ has a spanning 2-sphere.

- Result holds for any uniformity, again with $\delta_{k-1}^{\star}(G) \ge (1/2 + o(1))n$;
- Our proof does not use neither the Absorption Method nor the Regularity Lemma.

Theorem (Illingworth, Lang, Müyesser, Parczyk and S., 2024+) Let G be a tightly connected 3-graph with $\delta_2^*(G) \ge (1/2 + o(1))n$ $\implies G$ has a spanning 2-sphere.

Part 1. (Special case of an upcoming general framework of Lang and Sanhueza-Matamala)

Theorem (Illingworth, Lang, Müyesser, Parczyk and S., 2024+) Let G be a tightly connected 3-graph with $\delta_2^*(G) \ge (1/2 + o(1))n$ $\implies G$ has a spanning 2-sphere.

Part 1. (Special case of an upcoming general framework of Lang and Sanhueza-Matamala)

Cover V(G) with a family of graphs $R_1^*, \ldots, R_\ell^* \subseteq G$ such that

- R_i^* is a *nearly-regular* large blow-up of some small graph R_i , where R_i is tightly connected and inherits the degree condition from G;
- The family is vertex-disjoint except for R_i^* and R_{i+1}^* which intersect in exactly one edge, say e_i .

Theorem (Illingworth, Lang, Müyesser, Parczyk and S., 2024+) Let G be a tightly connected 3-graph with $\delta_2^*(G) \ge (1/2 + o(1))n$ $\implies G$ has a spanning 2-sphere.

Part 1. (Special case of an upcoming general framework of Lang and Sanhueza-Matamala)

Cover V(G) with a family of graphs $R_1^*, \ldots, R_\ell^* \subseteq G$ such that

- R_i^* is a *nearly-regular* large blow-up of some small graph R_i , where R_i is tightly connected and inherits the degree condition from G;
- The family is vertex-disjoint except for R_i^* and R_{i+1}^* which intersect in exactly one edge, say e_i .

Part 2.

Cover each R_i^* with a spanning 2-sphere having e_{i-1} and e_i as facets.

Theorem (Illingworth, Lang, Müyesser, Parczyk and S., 2024+) Let G be a tightly connected 3-graph with $\delta_2^*(G) \ge (1/2 + o(1))n$ $\implies G$ has a spanning 2-sphere.

Part 1. (Special case of an upcoming general framework of Lang and Sanhueza-Matamala)

Cover V(G) with a family of graphs $R_1^*, \ldots, R_\ell^* \subseteq G$ such that

- R_i^* is a *nearly-regular* large blow-up of some small graph R_i , where R_i is tightly connected and inherits the degree condition from G;
- The family is vertex-disjoint except for R_i^* and R_{i+1}^* which intersect in exactly one edge, say e_i .

Part 2.

Cover each R_i^* with a spanning 2-sphere having e_{i-1} and e_i as facets.

Part 3.

Glue all the spheres along the common facets.

If R^* is a blow-up of R, let $\phi: V(R^*) \to V(R)$ be the projection map.

If R^* is a blow-up of R, let $\phi: V(R^*) \to V(R)$ be the projection map.

- $\circ \ 1/m \ll 1/s;$
- Tightly connected 3-graph R with s vertices and $\delta^*(R) \ge (1/2 + o(1))s$;
- R^{\star} blow-up of R, with each part of size roughly m;
- $f_1, f_2 \in E(\mathbb{R}^*)$ such that $\phi(f_1)$ and $\phi(f_2)$ are disjoint.
- $\implies R^*$ has a spanning 2-sphere where f_1 and f_2 are facets.

If R^* is a blow-up of R, let $\phi: V(R^*) \to V(R)$ be the projection map.

- $\circ \ 1/m \ll 1/s;$
- Tightly connected 3-graph R with s vertices and $\delta^*(R) \ge (1/2 + o(1))s$;
- R^{\star} blow-up of R, with each part of size roughly m;
- $f_1, f_2 \in E(R^*)$ such that $\phi(f_1)$ and $\phi(f_2)$ are disjoint.
- $\implies R^*$ has a spanning 2-sphere where f_1 and f_2 are facets.
- 1. R^* contains a small 2-sphere S with two designated facets f_e, g_e for each $e \in E(R)$, where $f_e \neq g_e, \phi(f_e) = \phi(g_e) = e$, and each family $\{f_e : e \in E(R)\}, \{g_e : e \in E(R)\}$ is vertex-disjoint.

If R^* is a blow-up of R, let $\phi: V(R^*) \to V(R)$ be the projection map.

- $\circ \ 1/m \ll 1/s;$
- Tightly connected 3-graph R with s vertices and $\delta^*(R) \ge (1/2 + o(1))s$;
- R^* blow-up of R, with each part of size roughly m;
- $f_1, f_2 \in E(\mathbb{R}^*)$ such that $\phi(f_1)$ and $\phi(f_2)$ are disjoint.
- $\implies R^*$ has a spanning 2-sphere where f_1 and f_2 are facets.
- R^{*} contains a small 2-sphere S with two designated facets f_e, g_e for each e ∈ E(R), where f_e ≠ g_e, φ(f_e) = φ(g_e) = e, and each family {f_e : e ∈ E(R)}, {g_e : e ∈ E(R)} is vertex-disjoint. Moreover we can assume f_i = f_{φ(fi}) for i = 1, 2.

If R^* is a blow-up of R, let $\phi: V(R^*) \to V(R)$ be the projection map.

- $\circ \ 1/m \ll 1/s;$
- Tightly connected 3-graph R with s vertices and $\delta^*(R) \ge (1/2 + o(1))s$;
- R^* blow-up of R, with each part of size roughly m;
- $f_1, f_2 \in E(\mathbb{R}^*)$ such that $\phi(f_1)$ and $\phi(f_2)$ are disjoint.
- $\implies R^*$ has a spanning 2-sphere where f_1 and f_2 are facets.
- 1. R^* contains a small 2-sphere S with two designated facets f_e, g_e for each $e \in E(R)$, where $f_e \neq g_e$, $\phi(f_e) = \phi(g_e) = e$, and each family $\{f_e : e \in E(R)\}, \{g_e : e \in E(R)\}$ is vertex-disjoint. Moreover we can assume $f_i = f_{\phi(f_i)}$ for i = 1, 2.
- 2. Cover $\left(V(R^*) \setminus V(S)\right) \cup \bigcup_{e \in E(R)} V(g_e)$ with vertex-disjoint 2-spheres $\{S_e : e \in E(R)\}$ where g_e is a facet of S_e .

If R^* is a blow-up of R, let $\phi: V(R^*) \to V(R)$ be the projection map.

- $\circ \ 1/m \ll 1/s;$
- Tightly connected 3-graph R with s vertices and $\delta^*(R) \ge (1/2 + o(1))s$;
- R^* blow-up of R, with each part of size roughly m;
- $f_1, f_2 \in E(\mathbb{R}^*)$ such that $\phi(f_1)$ and $\phi(f_2)$ are disjoint.
- $\implies R^*$ has a spanning 2-sphere where f_1 and f_2 are facets.
- 1. R^* contains a small 2-sphere S with two designated facets f_e, g_e for each $e \in E(R)$, where $f_e \neq g_e$, $\phi(f_e) = \phi(g_e) = e$, and each family $\{f_e : e \in E(R)\}, \{g_e : e \in E(R)\}$ is vertex-disjoint. Moreover we can assume $f_i = f_{\phi(f_i)}$ for i = 1, 2.
- 2. Cover $\left(V(R^*) \setminus V(S)\right) \cup \bigcup_{e \in E(R)} V(g_e)$ with vertex-disjoint 2-spheres $\{S_e : e \in E(R)\}$ where g_e is a facet of S_e .
- 3. Glue each sphere S_e with S along g_e .

For each $p \in \partial_2(R)$, assign an edge $e_p \in E(R)$ such that $p \subseteq e_p$ and the e_p are pairwise distinct.

For each $p \in \partial_2(R)$, assign an edge $e_p \in E(R)$ such that $p \subseteq e_p$ and the e_p are pairwise distinct.

For each $e = u_1 u_2 u_3 \in E(R)$, define A_e such that $g_e \subseteq A_e$, A_e has exactly two vertices in each $\phi^{-1}(u_i)$, and the A_e are pairwise disjoint.

For each $p \in \partial_2(R)$, assign an edge $e_p \in E(R)$ such that $p \subseteq e_p$ and the e_p are pairwise distinct.

For each $e = u_1 u_2 u_3 \in E(R)$, define A_e such that $g_e \subseteq A_e$, A_e has exactly two vertices in each $\phi^{-1}(u_i)$, and the A_e are pairwise disjoint.

Claim 1

 $\delta_2(R^* \setminus \bigcup_{e \in E(R)} A_e)$ has a perfect matching M.

For each $p \in \partial_2(R)$, assign an edge $e_p \in E(R)$ such that $p \subseteq e_p$ and the e_p are pairwise distinct.

For each $e = u_1 u_2 u_3 \in E(R)$, define A_e such that $g_e \subseteq A_e$, A_e has exactly two vertices in each $\phi^{-1}(u_i)$, and the A_e are pairwise disjoint.

Claim 1

 $\delta_2(R^* \setminus \bigcup_{e \in E(R)} A_e)$ has a perfect matching M.

For $p = ab \in \partial_2(R)$, let M_p be the set of the edges of M that go between $\phi^{-1}(a)$ and $\phi^{-1}(b)$.

For each $p \in \partial_2(R)$, assign an edge $e_p \in E(R)$ such that $p \subseteq e_p$ and the e_p are pairwise distinct.

For each $e = u_1 u_2 u_3 \in E(R)$, define A_e such that $g_e \subseteq A_e$, A_e has exactly two vertices in each $\phi^{-1}(u_i)$, and the A_e are pairwise disjoint.

Claim 1

 $\delta_2(R^* \setminus \bigcup_{e \in E(R)} A_e)$ has a perfect matching M.

For $p = ab \in \partial_2(R)$, let M_p be the set of the edges of M that go between $\phi^{-1}(a)$ and $\phi^{-1}(b)$.

For $e \in E(R)$, if $e = e_p$ define $B_e := A_{e_p} \cup V(M_p)$; otherwise define $B_e := A_e$.

For each $p \in \partial_2(R)$, assign an edge $e_p \in E(R)$ such that $p \subseteq e_p$ and the e_p are pairwise distinct.

For each $e = u_1 u_2 u_3 \in E(R)$, define A_e such that $g_e \subseteq A_e$, A_e has exactly two vertices in each $\phi^{-1}(u_i)$, and the A_e are pairwise disjoint.

Claim 1

 $\delta_2(R^* \setminus \bigcup_{e \in E(R)} A_e)$ has a perfect matching M.

For $p = ab \in \partial_2(R)$, let M_p be the set of the edges of M that go between $\phi^{-1}(a)$ and $\phi^{-1}(b)$.

For $e \in E(R)$, if $e = e_p$ define $B_e := A_{e_p} \cup V(M_p)$; otherwise define $B_e := A_e$.

Claim 2

• $\{B_e : e \in E(R)\}$ is a partition of $V(R^*)$;

For each $p \in \partial_2(R)$, assign an edge $e_p \in E(R)$ such that $p \subseteq e_p$ and the e_p are pairwise distinct.

For each $e = u_1 u_2 u_3 \in E(R)$, define A_e such that $g_e \subseteq A_e$, A_e has exactly two vertices in each $\phi^{-1}(u_i)$, and the A_e are pairwise disjoint.

Claim 1

 $\delta_2(R^* \setminus \bigcup_{e \in E(R)} A_e)$ has a perfect matching M.

For $p = ab \in \partial_2(R)$, let M_p be the set of the edges of M that go between $\phi^{-1}(a)$ and $\phi^{-1}(b)$.

For $e \in E(R)$, if $e = e_p$ define $B_e := A_{e_p} \cup V(M_p)$; otherwise define $B_e := A_e$.

Claim 2

- $\{B_e : e \in E(R)\}$ is a partition of $V(R^*)$;
- $R^*[B_e]$ has a spanning 2-sphere S_e such that g_e is a facet.

a) Random graphs

- a) Random graphs
- b) Other degrees
- c) **Exact bounds**

- a) Random graphs
- b) Other degrees
- c) Exact bounds
- d) Larger uniformity

Let G be a k-graph with $\delta_{k-1}(G) \ge n/k \implies G$ has a spanning (k-1)-sphere.

- a) Random graphs
- b) Other degrees
- c) Exact bounds
- d) Larger uniformity

Conjecture (Georgakopoulos, Haslegrave, Montgomery and Narayanan, 2022) Let G be a k-graph with $\delta_{k-1}(G) \ge n/k \implies G$ has a spanning (k-1)-sphere.

Can we at least show that there is a spanning tight component?

- a) Random graphs
- b) Other degrees
- c) Exact bounds
- d) Larger uniformity

Conjecture (Georgakopoulos, Haslegrave, Montgomery and Narayanan, 2022) Let G be a k-graph with $\delta_{k-1}(G) \ge n/k \implies G$ has a spanning (k-1)-sphere.

Can we at least show that there is a spanning tight component?

Thank you!