Building spanning graphs in the semirandom tree process

Dominik Schmid

(Joint work with Michael Anastos, Maurício Collares, Joshua Erde, Mihyun Kang, and Gregory Sorkin)

DIMEA Combinatorial Potluck 2024 November 16, 2024

- Power of two choices
- Random graph processes

- Power of two choices
- Random graph processes
- Semirandom star process

- Power of two choices
- Random graph processes
- Semirandom star process
- Semirandom tree process

- Power of two choices
- Random graph processes
- Semirandom star process
- Semirandom tree process
 - Main result

- Power of two choices
- Random graph processes
- Semirandom star process
- Semirandom tree process
 - Main result
 - Proof outline

• Place *n* balls into *n* bins

- Place *n* balls into *n* bins
- Goal: Balance loads using minimal effort

- Place *n* balls into *n* bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

- Place *n* balls into *n* bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

Which bin to choose for which ball?

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

Which bin to choose for which ball?

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

Which bin to choose for which ball?

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

Which bin to choose for which ball?

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

Which bin to choose for which ball?

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

Which bin to choose for which ball?

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

Which bin to choose for which ball?

• Choose bin uniformly at random

• Maximum load $M(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$

- Place *n* balls into *n* bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

- Place *n* balls into *n* bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

Which bin to choose for which ball?

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

- Choose two bins uniformly at random
- Deterministically place ball into bin with fewer balls

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

- Choose two bins uniformly at random
- Deterministically place ball into bin with fewer balls

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

- Choose two bins uniformly at random
- Deterministically place ball into bin with fewer balls

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

- Choose two bins uniformly at random
- Deterministically place ball into bin with fewer balls

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

- Choose two bins uniformly at random
- Deterministically place ball into bin with fewer balls

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

- Choose two bins uniformly at random
- Deterministically place ball into bin with fewer balls

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

- Choose two bins uniformly at random
- Deterministically place ball into bin with fewer balls

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

- Choose two bins uniformly at random
- Deterministically place ball into bin with fewer balls

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

- Choose two bins uniformly at random
- Deterministically place ball into bin with fewer balls

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

- Choose two bins uniformly at random
- Deterministically place ball into bin with fewer balls

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

- Choose two bins uniformly at random
- Deterministically place ball into bin with fewer balls

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

- Choose two bins uniformly at random
- Deterministically place ball into bin with fewer balls
- Maximum load $M(n) = \Theta(\log \log n)$ Azar, Broder, Karlin, and Upfal (1999)

- Place n balls into n bins
- Goal: Balance loads using minimal effort
 - Applications in computer science

- Choose two bins uniformly at random
- Deterministically place ball into bin with fewer balls
- Maximum load $M(n) = \Theta(\log \log n)$ Azar, Broder, Karlin, and Upfal (1999)
- Exponential decrease of maximum load

• Empty graph $G_0 = ([n], \emptyset)$

- Empty graph $G_0 = ([n], \emptyset)$
- Sequentially add edges chosen uniformly at random
- Empty graph $G_0 = ([n], \emptyset)$
- Sequentially add edges chosen uniformly at random
 - e_m is chosen uniformly at random from $\binom{[n]}{2} \setminus \{e_1, \ldots, e_{m-1}\}$

- Empty graph $G_0 = ([n], \emptyset)$
- Sequentially add edges chosen uniformly at random
 - e_m is chosen uniformly at random from $\binom{[n]}{2} \setminus \{e_1, \ldots, e_{m-1}\}$

$$\blacktriangleright G_m = ([n], \{e_1, \ldots, e_m\})$$

- Empty graph $G_0 = ([n], \emptyset)$
- Sequentially add edges chosen uniformly at random
 - e_m is chosen uniformly at random from $\binom{[n]}{2} \setminus \{e_1, \ldots, e_{m-1}\}$
 - ► G_m = ([n], {e₁, ..., e_m}) ~ G(n, m) = random graph on n vertices with m edges

Emergence of the Giant component

Erdős and Rényi, 1960

Emergence of the Giant component

Erdős and Rényi, 1960

•
$$m = \frac{(1-\epsilon)n}{2}$$
: Trees of order $O(\log n)$

Emergence of the Giant component

Erdős and Rényi, 1960

• $m = \frac{(1-\epsilon)n}{2}$: Trees of order $O(\log n)$

•
$$m = \frac{(1+\epsilon)n}{2}$$
: Unique component of order $\Theta(n)$

Emergence of the Giant component

Erdős and Rényi, 1960

•
$$m = \frac{(1-\epsilon)n}{2}$$
: Trees of order $O(\log n)$

•
$$m = \frac{(1+\epsilon)n}{2}$$
: Unique component of order $\Theta(n)$

Delaying/accelerating the phase transition: The achlioptas process

Emergence of the Giant component

Erdős and Rényi, 1960

•
$$m = \frac{(1-\epsilon)n}{2}$$
: Trees of order $O(\log n)$

•
$$m = \frac{(1+\epsilon)n}{2}$$
: Unique component of order $\Theta(n)$

Delaying/accelerating the phase transition: The achlioptas process

• Each step, sample two edges uniformly at random

Emergence of the Giant component

Erdős and Rényi, 1960

•
$$m = \frac{(1-\epsilon)n}{2}$$
: Trees of order $O(\log n)$

•
$$m = \frac{(1+\epsilon)n}{2}$$
: Unique component of order $\Theta(n)$

Delaying/accelerating the phase transition: The achlioptas process

- Each step, sample two edges uniformly at random
 - Pick one of those edges according to some rule

Emergence of the Giant component

Erdős and Rényi, 1960

•
$$m = \frac{(1-\epsilon)n}{2}$$
: Trees of order $O(\log n)$

•
$$m = \frac{(1+\epsilon)n}{2}$$
: Unique component of order $\Theta(n)$

Delaying/accelerating the phase transition: The achlioptas process

- Each step, sample two edges uniformly at random
 - Pick one of those edges according to some rule
- There exists a rule, s.t. whp G_m^A has no Giant for m = 0.535n

Bohman and Frieze, 2001

Emergence of the Giant component

Erdős and Rényi, 1960

•
$$m = \frac{(1-\epsilon)n}{2}$$
: Trees of order $O(\log n)$

•
$$m = \frac{(1+\epsilon)n}{2}$$
: Unique component of order $\Theta(n)$

Delaying/accelerating the phase transition: The achlioptas process

- Each step, sample two edges uniformly at random
 - Pick one of those edges according to some rule
- There exists a rule, s.t. whp G_m^A has no Giant for m = 0.535n

Bohman and Frieze, 2001

• There exists a rule, s.t. whp G_m^A has a Giant when m = 0.385n

Bohman and Kravitz, 2006

• Set $G_0 = ([n], E_0)$ with $E_0 = \emptyset$.

• Set $G_0 = ([n], E_0)$ with $E_0 = \emptyset$.

- Set $G_0 = ([n], E_0)$ with $E_0 = \emptyset$.
- In round *t*, a vertex $v \in [n]$ is chosen uniformly at random

- Set $G_0 = ([n], E_0)$ with $E_0 = \emptyset$.
- In round *t*, a vertex $v \in [n]$ is chosen uniformly at random

- Set $G_0 = ([n], E_0)$ with $E_0 = \emptyset$.
- In round *t*, a vertex $v \in [n]$ is chosen uniformly at random
- Builder picks any edge e_t incident to v

- Set $G_0 = ([n], E_0)$ with $E_0 = \emptyset$.
- In round *t*, a vertex $v \in [n]$ is chosen uniformly at random
- Builder picks any edge *e*_t incident to *v*

- Set $G_0 = ([n], E_0)$ with $E_0 = \emptyset$.
- In round *t*, a vertex $v \in [n]$ is chosen uniformly at random
- Builder picks any edge *e*_t incident to *v*

- Set $G_0 = ([n], E_0)$ with $E_0 = \emptyset$.
- In round *t*, a vertex $v \in [n]$ is chosen uniformly at random
- Builder picks any edge *e*_t incident to *v*
- $G_t = ([n], E_t)$ with $E_t = E_{t-1} \cup e_t$

- Set $G_0 = ([n], E_0)$ with $E_0 = \emptyset$.
- In round *t*, a vertex $v \in [n]$ is chosen uniformly at random
- Builder picks any edge e_t incident to v
- $G_t = ([n], E_t)$ with $E_t = E_{t-1} \cup e_t$

- Set $G_0 = ([n], E_0)$ with $E_0 = \emptyset$.
- In round *t*, a vertex $v \in [n]$ is chosen uniformly at random
- Builder picks any edge *e*_t incident to *v*
- $G_t = ([n], E_t)$ with $E_t = E_{t-1} \cup e_t$

- Set $G_0 = ([n], E_0)$ with $E_0 = \emptyset$.
- In round *t*, a vertex $v \in [n]$ is chosen uniformly at random
- Builder picks any edge *e*_t incident to *v*
- $G_t = ([n], E_t)$ with $E_t = E_{t-1} \cup e_t$

- Set $G_0 = ([n], E_0)$ with $E_0 = \emptyset$.
- In round *t*, a vertex $v \in [n]$ is chosen uniformly at random
- Builder picks any edge *e*_t incident to *v*
- $G_t = ([n], E_t)$ with $E_t = E_{t-1} \cup e_t$

- Set $G_0 = ([n], E_0)$ with $E_0 = \emptyset$.
- In round *t*, a vertex $v \in [n]$ is chosen uniformly at random
- Builder picks any edge *e*_t incident to *v*
- $G_t = ([n], E_t)$ with $E_t = E_{t-1} \cup e_t$

- Set $G_0 = ([n], E_0)$ with $E_0 = \emptyset$.
- In round *t*, a vertex $v \in [n]$ is chosen uniformly at random
- Builder picks any edge *e*_t incident to *v*
- $G_t = ([n], E_t)$ with $E_t = E_{t-1} \cup e_t$

Given graph property ${\cal P}$ and strategy σ

•
$$\tau(\mathcal{P},\sigma) \coloneqq \min_{t} \{G_t \in \mathcal{P}\}$$

Given graph property \mathcal{P} and strategy σ

•
$$\tau(\mathcal{P},\sigma) \coloneqq \min\{G_t \in \mathcal{P}\}$$

There exist strategies $\sigma_1, \sigma_2, \sigma_3$ such that

Given graph property ${\cal P}$ and strategy σ

•
$$\tau(\mathcal{P},\sigma) \coloneqq \min_{t} \{G_t \in \mathcal{P}\}$$

There exist strategies $\sigma_1, \sigma_2, \sigma_3$ such that

•
$$\tau(\mathcal{P}_C, \sigma_1) = n - 1$$

Given graph property ${\cal P}$ and strategy σ

•
$$\tau(\mathcal{P},\sigma) \coloneqq \min_{t} \{G_t \in \mathcal{P}\}$$

There exist strategies $\sigma_1, \sigma_2, \sigma_3$ such that

•
$$\tau(\mathcal{P}_C, \sigma_1) = n - 1$$

• Whp. $\tau(\mathcal{P}_{PM}, \sigma_2) \le 1.206n$

Gao, MacRury, and Prałat (2022)

Given graph property ${\cal P}$ and strategy σ

•
$$\tau(\mathcal{P},\sigma) \coloneqq \min_{t} \{G_t \in \mathcal{P}\}$$

There exist strategies $\sigma_1, \sigma_2, \sigma_3$ such that

•
$$\tau(\mathcal{P}_C, \sigma_1) = n - 1$$

• Whp. $\tau(\mathcal{P}_{PM}, \sigma_2) \le 1.206n$

• Whp. $\tau(\mathcal{P}_{HC}, \sigma_3) \le 1.817n$

Gao, MacRury, and Prałat (2022)

Frieze, Gao, MacRury, Prałat, and Sorkin (2023)

- Set $G_0 = ([n], E_0)$ with $E_0 = \emptyset$.
- In round *t*, a vertex $v \in [n]$ is chosen uniformly at random
- Builder picks any edge e_t incident to v

•
$$G_t = ([n], E_t)$$
 with $E_t = E_{t-1} \cup e_t$

- Set $G_0 = ([n], E_0)$ with $E_0 = \emptyset$.
- Sample random spanning star S_t uniformly at random
- Builder picks any edge $e_t \in E(S_t)$

•
$$G_t = ([n], E_t)$$
 with $E_t = E_{t-1} \cup e_t$

- Set $G_0 = ([n], E_0)$ with $E_0 = \emptyset$.
- Sample random spanning tree T_t uniformly at random
- Builder picks any edge $e_t \in E(T_t)$

•
$$G_t = ([n], E_t)$$
 with $E_t = E_{t-1} \cup e_t$

Connectedness in semirandom tree process

Connectedness in semirandom tree process

▶ There exists σ , such that $\tau(\mathcal{P}_C, \sigma) = n - 1$

- ▶ There exists σ , such that $\tau(\mathcal{P}_C, \sigma) = n 1$
- Connectedness can be achieved deterministically in optimal time

• $\tau(\mathcal{P}_{PM}, \sigma_1) \leq \frac{n}{2} + o(n^{4/5})$

•
$$\tau(\mathcal{P}_{PM}, \sigma_1) \leq \frac{n}{2} + o(n^{4/5})$$

•
$$\tau(\mathcal{P}_{HC}, \sigma_2) \le n + o(n^{4/5})$$

•
$$\tau(\mathcal{P}_{PM},\sigma_1) \leq \frac{n}{2} + o(n^{4/5})$$

•
$$\tau(\mathcal{P}_{HC}, \sigma_2) \le n + o(n^{4/5})$$

•
$$\tau(\mathcal{P}_{\min,k},\sigma_3) \leq \frac{kn}{2} + o(n^{1/2})$$

•
$$\tau(\mathcal{P}_{PM},\sigma_1) \leq \frac{n}{2} + o(n^{4/5})$$

•
$$\tau(\mathcal{P}_{HC}, \sigma_2) \le n + o(n^{4/5})$$

•
$$\tau(\mathcal{P}_{\min,k},\sigma_3) \leq \frac{kn}{2} + o(n^{1/2})$$

Results are asymptotically optimal

Dominik Schmid

• H : (vertex-)spanning graph with maximum degree $\Delta \ge 3$

Building spanning graphs

- H : (vertex-)spanning graph with maximum degree $\Delta \ge 3$
- \mathcal{P}_H : Containment of *H*

- H : (vertex-)spanning graph with maximum degree $\Delta \ge 3$
- \mathcal{P}_H : Containment of H

- H : (vertex-)spanning graph with maximum degree $\Delta \ge 3$
- \mathcal{P}_H : Containment of *H*

• $\tau(\mathcal{P}_H) \sim n^{2-\frac{1}{\Delta}}$

- H : (vertex-)spanning graph with maximum degree $\Delta \ge 3$
- \mathcal{P}_H : Containment of *H*

• $\tau(\mathcal{P}_H) \sim n^{2-\frac{1}{\Delta}}$

Semirandom star process:

- H : (vertex-)spanning graph with maximum degree $\Delta \ge 3$
- \mathcal{P}_H : Containment of *H*

• $\tau(\mathcal{P}_H) \sim n^{2-\frac{1}{\Delta}}$

Semirandom star process:

•
$$\exists \sigma \colon \tau(\mathcal{P}_H, \sigma) \leq \frac{3\Delta n}{2} \left(1 + o_\Delta(1)\right)$$

Ben-Eliezer, Gishboliner, Hefetz and Krivelevich (2020)

- H : (vertex-)spanning graph with maximum degree $\Delta \ge 3$
- \mathcal{P}_H : Containment of *H*

• $\tau(\mathcal{P}_H) \sim n^{2-\frac{1}{\Delta}}$

Semirandom star process:

•
$$\exists \sigma \colon \tau(\mathcal{P}_H, \sigma) \leq \frac{3\Delta n}{2} \left(1 + o_\Delta(1)\right)$$

Ben-Eliezer, Gishboliner, Hefetz and Krivelevich (2020)

• *H* can have as many as $\frac{\Delta n}{2}$ edges

- H : (vertex-)spanning graph with maximum degree $\Delta \ge 3$
- \mathcal{P}_H : Containment of *H*

• $\tau(\mathcal{P}_H) \sim n^{2-\frac{1}{\Delta}}$

Semirandom star process:

•
$$\exists \sigma \colon \tau(\mathcal{P}_H, \sigma) \leq \frac{3\Delta n}{2} \left(1 + o_{\Delta}(1)\right)$$

Ben-Eliezer, Gishboliner, Hefetz and Krivelevich (2020)

• *H* can have as many as
$$\frac{\Delta n}{2}$$
 edges

• Need at least $\frac{\Delta n}{2}$ rounds

[Anastos, Collares, Erde, Kang, S., Sorkin, 2024⁺]

Let *H* be graph with maximum degree Δ . Then, in the semirandom **tree** process, there is a strategy σ such that whp

[Anastos, Collares, Erde, Kang, S., Sorkin, 2024⁺]

Let *H* be graph with maximum degree Δ . Then, in the semirandom **tree** process, there is a strategy σ such that whp

$$au(\mathcal{P}_H,\sigma) \leq rac{\Delta n}{2} \left(1 + o_\Delta(1)\right)$$

[Anastos, Collares, Erde, Kang, S., Sorkin, 2024⁺]

Let *H* be graph with maximum degree Δ . Then, in the semirandom **tree** process, there is a strategy σ such that whp

$$au(\mathcal{P}_H,\sigma) \leq rac{\Delta n}{2} \left(1 + o_\Delta(1)\right)$$

• $o_{\Delta}(1) \iff$ tending to 0 as $\Delta \to \infty$

[Anastos, Collares, Erde, Kang, S., Sorkin, 2024⁺]

Let *H* be graph with maximum degree Δ . Then, in the semirandom **tree** process, there is a strategy σ such that whp

$$au(\mathcal{P}_H,\sigma) \leq \frac{\Delta n}{2} \left(1 + o_\Delta(1)\right)$$

• $o_{\Delta}(1) \iff$ tending to 0 as $\Delta \to \infty$

• If Δ is a small constant, $\tau(\mathcal{P}_H, \sigma) = \Theta(n)$

[Anastos, Collares, Erde, Kang, S., Sorkin, 2024⁺]

Let *H* be graph with maximum degree Δ . Then, in the semirandom **tree** process, there is a strategy σ such that whp

$$au(\mathcal{P}_H,\sigma) \leq \frac{\Delta n}{2} \left(1 + o_\Delta(1)\right)$$

- $o_{\Delta}(1) \iff$ tending to 0 as $\Delta \to \infty$
- If Δ is a small constant, $\tau(\mathcal{P}_H, \sigma) = \Theta(n)$
- Asymptotically optimal for $\Delta = \Delta(n) \rightarrow \infty$

H: target graph with maximum degree Δ

H: target graph with maximum degree Δ *G_t* = ([*n*], *E_t*): Builder's graph at time *t*

• Find copy of H in G_t

- Find copy of H in G_t
- Embedding $\Phi \colon V(H) \to [n]$

- Find copy of H in G_t
- Embedding $\Phi \colon V(H) \to [n]$
 - $\blacktriangleright \forall vw \in E(H) \colon \Phi(v)\Phi(w) \in E_t$

- Find copy of H in G_t
- Embedding $\Phi \colon V(H) \to [n]$
 - $\blacktriangleright \forall vw \in E(H) \colon \Phi(v)\Phi(w) \in E_t$

- Find copy of H in G_t
- Embedding $\Phi \colon V(H) \to [n]$
 - $\blacktriangleright \forall vw \in E(H) \colon \Phi(v)\Phi(w) \in E_t$

Notation

H: target graph with maximum degree Δ *G_t* = ([*n*], *E_t*): Builder's graph at time *t*

- Find copy of H in G_t
- Embedding $\Phi \colon V(H) \to [n]$
 - $\blacktriangleright \forall vw \in E(H) \colon \Phi(v)\Phi(w) \in E_t$

Notation

H: target graph with maximum degree Δ *G_t* = ([*n*], *E_t*): Builder's graph at time *t*

- Find copy of H in G_t
- Embedding $\Phi \colon V(H) \to [n]$
 - $\blacktriangleright \forall vw \in E(H) \colon \Phi(v)\Phi(w) \in E_t$

Notation

H: target graph with maximum degree Δ *G_t* = ([*n*], *E_t*): Builder's graph at time *t*

- Find copy of H in G_t
- Embedding $\Phi \colon V(H) \to [n]$
 - $\blacktriangleright \forall vw \in E(H) \colon \Phi(v)\Phi(w) \in E_t$

Outline of strategy

•
$$\frac{\Delta n}{2} (1 + o_{\Delta}(1))$$
 rounds to 'spend'

- $\frac{\Delta n}{2} (1 + o_{\Delta}(1))$ rounds to 'spend'
- Phase I: Greedy strategy

- $\frac{\Delta n}{2} (1 + o_{\Delta}(1))$ rounds to 'spend'
- Phase I: Greedy strategy

• $\frac{\Delta n}{2}$ rounds

- $\frac{\Delta n}{2} (1 + o_{\Delta}(1))$ rounds to 'spend'
- Phase I: Greedy strategy
 - ▶ $\frac{\Delta n}{2}$ rounds
 - Build 'almost complete' copy of H

- $\frac{\Delta n}{2}(1+o_{\Delta}(1))$ rounds to 'spend'
- Phase I: Greedy strategy
 - ▶ $\frac{\Delta n}{2}$ rounds
 - Build 'almost complete' copy of H
- Phase II: Replacement strategy

- $\frac{\Delta n}{2} \left(1 + o_{\Delta}(1)\right)$ rounds to 'spend'
- Phase I: Greedy strategy
 - ▶ $\frac{\Delta n}{2}$ rounds
 - Build 'almost complete' copy of H
- Phase II: Replacement strategy

•
$$\frac{\Delta n}{2} \cdot o_{\Delta}(1)$$
 rounds

- $\frac{\Delta n}{2} \left(1 + o_{\Delta}(1)\right)$ rounds to 'spend'
- Phase I: Greedy strategy
 - ▶ $\frac{\Delta n}{2}$ rounds
 - Build 'almost complete' copy of H
- Phase II: Replacement strategy
 - $\frac{\Delta n}{2} \cdot o_{\Delta}(1)$ rounds
 - Extend to a complete copy

 $\bullet\,$ Fix arbitrary embedding $\Phi\,$

- Fix arbitrary embedding Φ
- Claim edges corresponding to this embedding, whenever offered

- Fix arbitrary embedding Φ
- Claim edges corresponding to this embedding, whenever offered

 $\blacktriangleright \quad M(t) \coloneqq \{\Phi(v)\Phi(w) \mid vw \in E(H)\} \setminus E_t$

- Fix arbitrary embedding Φ
- Claim edges corresponding to this embedding, whenever offered

 $\blacktriangleright \quad M(t) \coloneqq \{\Phi(v)\Phi(w) \mid vw \in E(H)\} \setminus E_t$

How efficient is this strategy?

- Fix arbitrary embedding Φ
- Claim edges corresponding to this embedding, whenever offered

 $\blacktriangleright \quad M(t) \coloneqq \{\Phi(v)\Phi(w) \mid vw \in E(H)\} \setminus E_t$

How efficient is this strategy?

• $\mathbb{P}[E(T_t) \cap M(t) \neq \emptyset]$

- Fix arbitrary embedding Φ
- Claim edges corresponding to this embedding, whenever offered

 $\blacktriangleright \quad M(t) \coloneqq \{\Phi(v)\Phi(w) \mid vw \in E(H)\} \setminus E_t$

How efficient is this strategy?

• $\mathbb{P}[E(T_t) \cap M(t) \neq \emptyset]$

• $|M(t)| \gg n$: Claim edge almost every round

- Fix arbitrary embedding Φ
- Claim edges corresponding to this embedding, whenever offered

 $\blacktriangleright \quad M(t) := \{\Phi(v)\Phi(w) \mid vw \in E(H)\} \setminus E_t$

How efficient is this strategy?

- $\mathbb{P}[E(T_t) \cap M(t) \neq \emptyset]$
- $|M(t)| \gg n$: Claim edge almost every round
- $|M(t)| \approx n$: Claim edge with constant probability

- Fix arbitrary embedding Φ
- Claim edges corresponding to this embedding, whenever offered

 $\blacktriangleright \quad M(t) := \{\Phi(v)\Phi(w) \mid vw \in E(H)\} \setminus E_t$

How efficient is this strategy?

- $\mathbb{P}[E(T_t) \cap M(t) \neq \emptyset]$
- $|M(t)| \gg n$: Claim edge almost every round
- $|M(t)| \approx n$: Claim edge with constant probability
- $|M(t)| \ll n$: Almost never claim edge

• Fix edge e

• Fix edge e

•
$$\mathbb{P}\left[e \cap E(T_t)\right] = \frac{n-1}{\binom{n}{2}} = \frac{2}{n}$$

• Fix edge e

•
$$\mathbb{P}\left[e \cap E(T_t)\right] = \frac{n-1}{\binom{n}{2}} = \frac{2}{n}$$

Coupon collector problem

• Fix edge e

•
$$\mathbb{P}\left[e \cap E(T_t)\right] = \frac{n-1}{\binom{n}{2}} = \frac{2}{n}$$

- Coupon collector problem
 - ▶ Need $\Theta(n \log n)$ rounds to claim 'last' *n* edges

• Fix edge e

•
$$\mathbb{P}\left[e \cap E(T_t)\right] = \frac{n-1}{\binom{n}{2}} = \frac{2}{n}$$

- Coupon collector problem
 - Need $\Theta(n \log n)$ rounds to claim 'last' *n* edges

• $F(t, \Phi) :=$ vertices with missing edges (failed vertices)

• Fix edge e

•
$$\mathbb{P}\left[e \cap E(T_t)\right] = \frac{n-1}{\binom{n}{2}} = \frac{2}{n}$$

- Coupon collector problem
 - Need $\Theta(n \log n)$ rounds to claim 'last' *n* edges

• $F(t, \Phi) :=$ vertices with missing edges (failed vertices)

Set $t_0 \coloneqq \frac{\Delta n}{2}$

• Fix edge e

•
$$\mathbb{P}\left[e \cap E(T_t)\right] = \frac{n-1}{\binom{n}{2}} = \frac{2}{n}$$

- Coupon collector problem
 - Need $\Theta(n \log n)$ rounds to claim 'last' *n* edges

• $F(t, \Phi) :=$ vertices with missing edges (failed vertices)

Set $t_0 \coloneqq \frac{\Delta n}{2}$

Lemma

Whp $|F(t_0, \Phi)| \leq \exp\left(-\Delta^{1-\epsilon}\right) n$

• $v \in F(t, \Phi)$

- $v \in F(t, \Phi)$
- Swap v with w

$$\Phi': \Phi'(v) = \Phi(w) \text{ and } \Phi'(w) = \Phi(v)$$

- $v \in F(t, \Phi)$
- Swap v with w $\Phi': \Phi'(v) = \Phi(w) \text{ and } \Phi'(w) = \Phi(v)$
- Swap only if $v, w \notin F(t, \Phi')$

- $v \in F(t, \Phi)$
- Swap v with w $\Phi': \Phi'(v) = \Phi(w) \text{ and } \Phi'(w) = \Phi(v)$
- Swap only if $v, w \notin F(t, \Phi')$
- $\Gamma(v, w)$: Set of edges required for successful swap

- $v \in F(t, \Phi)$
- Swap v with w $\Phi': \Phi'(v) = \Phi(w) \text{ and } \Phi'(w) = \Phi(v)$
- Swap only if $v, w \notin F(t, \Phi')$
- $\Gamma(v, w)$: Set of edges required for successful swap
 - Swap if $\Gamma(v, w) \in E_t$

- $v \in F(t, \Phi)$
- Swap v with w $\Phi': \Phi'(v) = \Phi(w) \text{ and } \Phi'(w) = \Phi(v)$

• Swap only if
$$v, w \notin F(t, \Phi')$$

- $\Gamma(v, w)$: Set of edges required for successful swap
 - Swap if $\Gamma(v, w) \in E_t$

However:

- $v \in F(t, \Phi)$
- Swap v with w $\Phi': \Phi'(v) = \Phi(w) \text{ and } \Phi'(w) = \Phi(v)$

• Swap only if
$$v, w \notin F(t, \Phi')$$

- $\Gamma(v, w)$: Set of edges required for successful swap
 - Swap if $\Gamma(v, w) \in E_t$

However:

Coupon collector argument

- $v \in F(t, \Phi)$
- Swap v with w $\Phi': \Phi'(v) = \Phi(w) \text{ and } \Phi'(w) = \Phi(v)$

• Swap only if
$$v, w \notin F(t, \Phi')$$

- $\Gamma(v, w)$: Set of edges required for successful swap
 - Swap if $\Gamma(v, w) \in E_t$

However:

Coupon collector argument

$$\blacktriangleright \mathbb{P}\left[\Gamma(v,w) \subseteq E_t\right] = o(1)$$

Phase II: Swapping simultaneously

• For each $v \in F(t, \Phi)$ define large set C(v) of candidate vertices

Phase II: Swapping simultaneously

• For each $v \in F(t, \Phi)$ define large set C(v) of candidate vertices

Phase II: Swapping simultaneously

- For each $v \in F(t, \Phi)$ define large set C(v) of candidate vertices
- **Simultaneously** try swapping failed vertices with candidate vertices

Phase II: Swapping simultaneously

- For each $v \in F(t, \Phi)$ define large set C(v) of candidate vertices
- **Simultaneously** try swapping failed vertices with candidate vertices
- $\mathbb{P}\left[\exists w \in C(v) \colon \Gamma(v, w) \subseteq E_t\right] = \epsilon > 0$

Phase II: Swapping simultaneously

- For each $v \in F(t, \Phi)$ define large set C(v) of candidate vertices
- **Simultaneously** try swapping failed vertices with candidate vertices
- $\mathbb{P}\left[\exists w \in C(v) \colon \Gamma(v, w) \subseteq E_t\right] = \epsilon > 0$

Update embedding by swapping all possible vertices

Proceed in batches of rounds

- Proceed in batches of rounds
- Swap constant fraction of failed vertices in each batch

- Proceed in batches of rounds
- Swap constant fraction of failed vertices in each batch
- Number of required rounds is proportional to number of failed vertices

- Proceed in batches of rounds
- Swap constant fraction of failed vertices in each batch
- Number of required rounds is proportional to number of failed vertices
 - Total number of rounds is dominated by first batch

- Proceed in batches of rounds
- Swap constant fraction of failed vertices in each batch
- Number of required rounds is proportional to number of failed vertices
 - Total number of rounds is dominated by first batch
 - ▶ Run strategy until $F = \emptyset$

- Proceed in batches of rounds
- Swap constant fraction of failed vertices in each batch
- Number of required rounds is proportional to number of failed vertices
 - Total number of rounds is dominated by first batch
 - ▶ Run strategy until $F = \emptyset$

Set $t_1 \coloneqq \frac{\Delta n}{2} \left(1 + o_{\Delta}(1)\right)$

- Proceed in batches of rounds
- Swap constant fraction of failed vertices in each batch
- Number of required rounds is proportional to number of failed vertices
 - Total number of rounds is dominated by first batch
 - ▶ Run strategy until $F = \emptyset$

Set
$$t_1 \coloneqq \frac{\Delta n}{2} (1 + o_\Delta(1))$$

Lemma

There exists an embedding Φ , s.t whp $F(t_1, \Phi) = \emptyset$

• $\tau(\mathcal{P}_H, \sigma) \leq \frac{\Delta n}{2} (1 + o_\Delta(1))$

•
$$\tau(\mathcal{P}_H, \sigma) \leq \frac{\Delta n}{2} (1 + o_\Delta(1))$$

•
$$\tau(\mathcal{P}_H, \sigma) \leq \frac{\Delta n}{2} \left(1 + o_\Delta(1)\right)$$

•
$$\tau(\mathcal{P}_H, \sigma) \leq \frac{\Delta n}{2} \left(1 + o_\Delta(1)\right)$$

$$|F| \le \exp\left(-\Delta^{1-\epsilon}\right) n$$

$$F = [n] \qquad |F| \le \exp(-\Delta^{1-\epsilon}) n \qquad F = \emptyset$$

$$t = 0 \mid \frac{\Delta n}{2} \text{ rounds} \qquad t = \frac{\Delta n}{2} (1 + o_{\Delta}(1))$$

•
$$\tau(\mathcal{P}_H, \sigma) \leq \frac{\Delta n}{2} \left(1 + o_\Delta(1)\right)$$

• Use 'almost all' rounds in greedy phase

$$|F| \le \exp\left(-\Delta^{1-\epsilon}\right) n$$

• Swap remaining vertices in batches

•
$$\tau(\mathcal{P}_H, \sigma) \leq \frac{\Delta n}{2} \left(1 + o_\Delta(1)\right)$$

$$|F| \le \exp\left(-\Delta^{1-\epsilon}\right) n$$

- Swap remaining vertices in batches
 - Required time t* dominated by first batch

•
$$\tau(\mathcal{P}_H, \sigma) \leq \frac{\Delta n}{2} \left(1 + o_\Delta(1)\right)$$

$$|F| \le \exp\left(-\Delta^{1-\epsilon}\right) n$$

- Swap remaining vertices in batches
 - Required time t* dominated by first batch

•
$$t^* \leq \frac{\Delta n}{2} \cdot o_{\Delta}(1)$$

•
$$\tau(\mathcal{P}_H, \sigma) \leq \frac{\Delta n}{2} \left(1 + o_\Delta(1)\right)$$

$$|F| \le \exp\left(-\Delta^{1-\epsilon}\right) n$$

- Swap remaining vertices in batches
 - Required time t* dominated by first batch

►
$$t^* \le \frac{\Delta n}{2} \cdot o_{\Delta}(1) \iff |F| \le \exp\left(-\Delta^{1+\epsilon}\right) n$$

•
$$\tau(\mathcal{P}_H, \sigma) \leq \frac{\Delta n}{2} \left(1 + o_\Delta(1)\right)$$

$$|F| \le \exp\left(-\Delta^{1-\epsilon}\right) n$$

- Swap remaining vertices in batches
 - Required time t* dominated by first batch

►
$$t^* \le \frac{\Delta n}{2} \cdot o_{\Delta}(1) \iff |F| \le \exp\left(-\Delta^{1+\epsilon}\right) n$$

•
$$\tau(\mathcal{P}_H, \sigma) \leq \frac{\Delta n}{2} \left(1 + o_\Delta(1)\right)$$

$$|F| \le \exp\left(-\Delta^{1-\epsilon}\right) n$$

- Swap remaining vertices in batches
 - Required time t* dominated by first batch

►
$$t^* \le \frac{\Delta n}{2} \cdot o_{\Delta}(1) \iff |F| \le \exp\left(-\Delta^{1+\epsilon}\right) n$$

•
$$\tau(\mathcal{P}_H, \sigma) \leq \frac{\Delta n}{2} \left(1 + o_\Delta(1)\right)$$

Use 'almost all' rounds in greedy phase

$$|F| \le \exp\left(-\Delta^{1-\epsilon}\right) n$$

- Swap remaining vertices in batches
 - Required time t* dominated by first batch

•
$$t^* \leq \frac{\Delta n}{2} \cdot o_{\Delta}(1) \iff |F| \leq \exp\left(-\Delta^{1+\epsilon}\right) n$$

Gap between two phases - requires more involved analysis

• Improve $\tau(\mathcal{P}_H, \sigma)$ in the semirandom star process

• Improve $\tau(\mathcal{P}_H, \sigma)$ in the semirandom star process

Consider other models:

• Improve $\tau(\mathcal{P}_H, \sigma)$ in the semirandom star process

Consider other models:
 Each round, Builder is offered edges of

• Improve $\tau(\mathcal{P}_H, \sigma)$ in the semirandom star process

Consider other models:

Each round, Builder is offered edges of

Random hamilton cycle

• Improve $\tau(\mathcal{P}_H, \sigma)$ in the semirandom star process

Consider other models:

Each round, Builder is offered edges of

- Random hamilton cycle
- Random perfect matching

• Improve $\tau(\mathcal{P}_H, \sigma)$ in the semirandom star process

Consider other models:

Each round, Builder is offered edges of

- Random hamilton cycle
- Random perfect matching
- k random edges

• Improve $\tau(\mathcal{P}_H, \sigma)$ in the semirandom star process

Consider other models:

Each round, Builder is offered edges of

- Random hamilton cycle
- Random perfect matching
- k random edges

• Are there properties, for which semirandom **star** process is more efficient than semirandom **tree** process?