
Building spanning graphs in the semirandom
tree process

Dominik Schmid
(Joint work with Michael Anastos, Maurı́cio Collares, Joshua Erde, Mihyun

Kang, and Gregory Sorkin)

DIMEA Combinatorial Potluck 2024
November 16, 2024

Overview

Power of two choices

Random graph processes

Semirandom star process

Semirandom tree process

� Main result

� Proof outline

Dominik Schmid Building spanning graphs in the semirandom tree process 2

Overview

Power of two choices

Random graph processes

Semirandom star process

Semirandom tree process

� Main result

� Proof outline

Dominik Schmid Building spanning graphs in the semirandom tree process 2

Overview

Power of two choices

Random graph processes

Semirandom star process

Semirandom tree process

� Main result

� Proof outline

Dominik Schmid Building spanning graphs in the semirandom tree process 2

Overview

Power of two choices

Random graph processes

Semirandom star process

Semirandom tree process

� Main result

� Proof outline

Dominik Schmid Building spanning graphs in the semirandom tree process 2

Overview

Power of two choices

Random graph processes

Semirandom star process

Semirandom tree process

� Main result

� Proof outline

Dominik Schmid Building spanning graphs in the semirandom tree process 2

Overview

Power of two choices

Random graph processes

Semirandom star process

Semirandom tree process

� Main result

� Proof outline

Dominik Schmid Building spanning graphs in the semirandom tree process 2

Power of two choices

Place n balls into n bins

Goal: Balance loads using minimal effort

� Applications in computer science

Which bin to choose for which ball?

Choose bin uniformly at random

Maximum load M(n) = Θ
(

log n
log log n

)

1 2 3 4 5
1 2 3
4 5

1 23 4
5

Dominik Schmid Building spanning graphs in the semirandom tree process 3

Power of two choices

Place n balls into n bins

Goal: Balance loads using minimal effort

� Applications in computer science

Which bin to choose for which ball?

Choose bin uniformly at random

Maximum load M(n) = Θ
(

log n
log log n

)

1 2 3 4 5
1 2 3
4 5

1 23 4
5

Dominik Schmid Building spanning graphs in the semirandom tree process 3

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort

� Applications in computer science

Which bin to choose for which ball?

Choose bin uniformly at random

Maximum load M(n) = Θ
(

log n
log log n

)

1 2 3 4 5
1 2 3
4 5

1 23 4
5

Dominik Schmid Building spanning graphs in the semirandom tree process 3

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose bin uniformly at random

Maximum load M(n) = Θ
(

log n
log log n

)

1 2 3 4 5
1 2 3
4 5

1 23 4
5

Dominik Schmid Building spanning graphs in the semirandom tree process 3

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose bin uniformly at random

Maximum load M(n) = Θ
(

log n
log log n

)

1 2 3 4 5
1 2 3
4 5

1 23 4
5

Dominik Schmid Building spanning graphs in the semirandom tree process 3

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose bin uniformly at random

Maximum load M(n) = Θ
(

log n
log log n

)

1 2 3 4 5
1 2 3
4 5

1 23 4
5

Dominik Schmid Building spanning graphs in the semirandom tree process 3

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose bin uniformly at random

Maximum load M(n) = Θ
(

log n
log log n

)

1 2 3 4 5

1

2 3
4 5

1

23 4
5

Dominik Schmid Building spanning graphs in the semirandom tree process 3

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose bin uniformly at random

Maximum load M(n) = Θ
(

log n
log log n

)

1 2 3 4 5

1 2

3
4 5

1 2

3 4
5

Dominik Schmid Building spanning graphs in the semirandom tree process 3

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose bin uniformly at random

Maximum load M(n) = Θ
(

log n
log log n

)

1 2 3 4 5

1 2 3

4 5
1 23

4
5

Dominik Schmid Building spanning graphs in the semirandom tree process 3

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose bin uniformly at random

Maximum load M(n) = Θ
(

log n
log log n

)

1 2 3 4 5

1 2 3
4

5
1 23 4

5

Dominik Schmid Building spanning graphs in the semirandom tree process 3

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose bin uniformly at random

Maximum load M(n) = Θ
(

log n
log log n

)

1 2 3 4 5

1 2 3
4 5

1 23 4
5

Dominik Schmid Building spanning graphs in the semirandom tree process 3

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose bin uniformly at random

Maximum load M(n) = Θ
(

log n
log log n

)

1 2 3 4 5

1 2 3
4 5

1 23 4
5

Dominik Schmid Building spanning graphs in the semirandom tree process 3

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose two bins uniformly at random
Deterministically place ball into bin with fewer balls
Maximum load M(n) = Θ(log log n) Azar, Broder, Karlin, and Upfal (1999)

Exponential decrease of maximum load

1 2 3 4 5

1 23 45

1 2 3
4 5

Dominik Schmid Building spanning graphs in the semirandom tree process 4

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose two bins uniformly at random

Deterministically place ball into bin with fewer balls
Maximum load M(n) = Θ(log log n) Azar, Broder, Karlin, and Upfal (1999)

Exponential decrease of maximum load

1 2 3 4 5

1 23 45

1 2 3
4 5

Dominik Schmid Building spanning graphs in the semirandom tree process 4

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose two bins uniformly at random
Deterministically place ball into bin with fewer balls

Maximum load M(n) = Θ(log log n) Azar, Broder, Karlin, and Upfal (1999)

Exponential decrease of maximum load

1 2 3 4 5

1 23 45

1 2 3
4 5

Dominik Schmid Building spanning graphs in the semirandom tree process 4

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose two bins uniformly at random
Deterministically place ball into bin with fewer balls

Maximum load M(n) = Θ(log log n) Azar, Broder, Karlin, and Upfal (1999)

Exponential decrease of maximum load

1 2 3 4 5

1 23 45

1 2 3
4 5

Dominik Schmid Building spanning graphs in the semirandom tree process 4

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose two bins uniformly at random
Deterministically place ball into bin with fewer balls

Maximum load M(n) = Θ(log log n) Azar, Broder, Karlin, and Upfal (1999)

Exponential decrease of maximum load

1 2 3 4 5

1

23 45 1

2 3
4 5

Dominik Schmid Building spanning graphs in the semirandom tree process 4

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose two bins uniformly at random
Deterministically place ball into bin with fewer balls

Maximum load M(n) = Θ(log log n) Azar, Broder, Karlin, and Upfal (1999)

Exponential decrease of maximum load

1 2 3 4 5

1

23 45 1

2 3
4 5

Dominik Schmid Building spanning graphs in the semirandom tree process 4

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose two bins uniformly at random
Deterministically place ball into bin with fewer balls

Maximum load M(n) = Θ(log log n) Azar, Broder, Karlin, and Upfal (1999)

Exponential decrease of maximum load

1 2 3 4 5

1 2

3 45 1 2

3
4 5

Dominik Schmid Building spanning graphs in the semirandom tree process 4

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose two bins uniformly at random
Deterministically place ball into bin with fewer balls

Maximum load M(n) = Θ(log log n) Azar, Broder, Karlin, and Upfal (1999)

Exponential decrease of maximum load

1 2 3 4 5

1 2

3 45 1 2

3
4 5

Dominik Schmid Building spanning graphs in the semirandom tree process 4

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose two bins uniformly at random
Deterministically place ball into bin with fewer balls

Maximum load M(n) = Θ(log log n) Azar, Broder, Karlin, and Upfal (1999)

Exponential decrease of maximum load

1 2 3 4 5

1 23

45 1 2 3

4 5

Dominik Schmid Building spanning graphs in the semirandom tree process 4

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose two bins uniformly at random
Deterministically place ball into bin with fewer balls

Maximum load M(n) = Θ(log log n) Azar, Broder, Karlin, and Upfal (1999)

Exponential decrease of maximum load

1 2 3 4 5

1 23

45 1 2 3

4 5

Dominik Schmid Building spanning graphs in the semirandom tree process 4

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose two bins uniformly at random
Deterministically place ball into bin with fewer balls

Maximum load M(n) = Θ(log log n) Azar, Broder, Karlin, and Upfal (1999)

Exponential decrease of maximum load

1 2 3 4 5

1 23 4

5 1 2 3
4

5

Dominik Schmid Building spanning graphs in the semirandom tree process 4

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose two bins uniformly at random
Deterministically place ball into bin with fewer balls

Maximum load M(n) = Θ(log log n) Azar, Broder, Karlin, and Upfal (1999)

Exponential decrease of maximum load

1 2 3 4 5

1 23 4

5 1 2 3
4

5

Dominik Schmid Building spanning graphs in the semirandom tree process 4

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose two bins uniformly at random
Deterministically place ball into bin with fewer balls

Maximum load M(n) = Θ(log log n) Azar, Broder, Karlin, and Upfal (1999)

Exponential decrease of maximum load

1 2 3 4 5

1 23 45

1 2 3
4 5

Dominik Schmid Building spanning graphs in the semirandom tree process 4

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose two bins uniformly at random
Deterministically place ball into bin with fewer balls
Maximum load M(n) = Θ(log log n) Azar, Broder, Karlin, and Upfal (1999)

Exponential decrease of maximum load

1 2 3 4 5

1 23 45

1 2 3
4 5

Dominik Schmid Building spanning graphs in the semirandom tree process 4

Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose two bins uniformly at random
Deterministically place ball into bin with fewer balls
Maximum load M(n) = Θ(log log n) Azar, Broder, Karlin, and Upfal (1999)

Exponential decrease of maximum load

1 2 3 4 5

1 23 45

1 2 3
4 5

Dominik Schmid Building spanning graphs in the semirandom tree process 4

Erdős-Rényi random graph process

Empty graph G0 = ([n], ∅)

Sequentially add edges chosen uniformly at random

� em is chosen uniformly at random from
(
[n]
2

)
\ {e1, . . . , em−1}

� Gm = ([n], {e1, . . . , em})

∼ G(n,m) = random graph on n vertices
with m edges

Dominik Schmid Building spanning graphs in the semirandom tree process 5

Erdős-Rényi random graph process

Empty graph G0 = ([n], ∅)

Sequentially add edges chosen uniformly at random

� em is chosen uniformly at random from
(
[n]
2

)
\ {e1, . . . , em−1}

� Gm = ([n], {e1, . . . , em})

∼ G(n,m) = random graph on n vertices
with m edges

Dominik Schmid Building spanning graphs in the semirandom tree process 5

Erdős-Rényi random graph process

Empty graph G0 = ([n], ∅)

Sequentially add edges chosen uniformly at random

� em is chosen uniformly at random from
(
[n]
2

)
\ {e1, . . . , em−1}

� Gm = ([n], {e1, . . . , em})

∼ G(n,m) = random graph on n vertices
with m edges

Dominik Schmid Building spanning graphs in the semirandom tree process 5

Erdős-Rényi random graph process

Empty graph G0 = ([n], ∅)

Sequentially add edges chosen uniformly at random

� em is chosen uniformly at random from
(
[n]
2

)
\ {e1, . . . , em−1}

� Gm = ([n], {e1, . . . , em})

∼ G(n,m) = random graph on n vertices
with m edges

Dominik Schmid Building spanning graphs in the semirandom tree process 5

Erdős-Rényi random graph process

Empty graph G0 = ([n], ∅)

Sequentially add edges chosen uniformly at random

� em is chosen uniformly at random from
(
[n]
2

)
\ {e1, . . . , em−1}

� Gm = ([n], {e1, . . . , em}) ∼ G(n,m) = random graph on n vertices
with m edges

Dominik Schmid Building spanning graphs in the semirandom tree process 5

Phase transition in Gm

Emergence of the Giant component Erdős and Rényi, 1960

m = (1−ϵ)n
2 : Trees of order O(log n)

m = (1+ϵ)n
2 : Unique component of order Θ(n)

Delaying/accelerating the phase transition: The achlioptas process

Each step, sample two edges uniformly at random

� Pick one of those edges according to some rule

There exists a rule, s.t. whp Bohman and Frieze, 2001

GA
m has no Giant for m = 0.535n

There exists a rule, s.t. whp Bohman and Kravitz, 2006

GA
m has a Giant when m = 0.385n

Dominik Schmid Building spanning graphs in the semirandom tree process 6

Phase transition in Gm

Emergence of the Giant component Erdős and Rényi, 1960

m = (1−ϵ)n
2 : Trees of order O(log n)

m = (1+ϵ)n
2 : Unique component of order Θ(n)

Delaying/accelerating the phase transition: The achlioptas process

Each step, sample two edges uniformly at random

� Pick one of those edges according to some rule

There exists a rule, s.t. whp Bohman and Frieze, 2001

GA
m has no Giant for m = 0.535n

There exists a rule, s.t. whp Bohman and Kravitz, 2006

GA
m has a Giant when m = 0.385n

Dominik Schmid Building spanning graphs in the semirandom tree process 6

Phase transition in Gm

Emergence of the Giant component Erdős and Rényi, 1960

m = (1−ϵ)n
2 : Trees of order O(log n)

m = (1+ϵ)n
2 : Unique component of order Θ(n)

Delaying/accelerating the phase transition: The achlioptas process

Each step, sample two edges uniformly at random

� Pick one of those edges according to some rule

There exists a rule, s.t. whp Bohman and Frieze, 2001

GA
m has no Giant for m = 0.535n

There exists a rule, s.t. whp Bohman and Kravitz, 2006

GA
m has a Giant when m = 0.385n

Dominik Schmid Building spanning graphs in the semirandom tree process 6

Phase transition in Gm

Emergence of the Giant component Erdős and Rényi, 1960

m = (1−ϵ)n
2 : Trees of order O(log n)

m = (1+ϵ)n
2 : Unique component of order Θ(n)

Delaying/accelerating the phase transition: The achlioptas process

Each step, sample two edges uniformly at random

� Pick one of those edges according to some rule

There exists a rule, s.t. whp Bohman and Frieze, 2001

GA
m has no Giant for m = 0.535n

There exists a rule, s.t. whp Bohman and Kravitz, 2006

GA
m has a Giant when m = 0.385n

Dominik Schmid Building spanning graphs in the semirandom tree process 6

Phase transition in Gm

Emergence of the Giant component Erdős and Rényi, 1960

m = (1−ϵ)n
2 : Trees of order O(log n)

m = (1+ϵ)n
2 : Unique component of order Θ(n)

Delaying/accelerating the phase transition: The achlioptas process

Each step, sample two edges uniformly at random

� Pick one of those edges according to some rule

There exists a rule, s.t. whp Bohman and Frieze, 2001

GA
m has no Giant for m = 0.535n

There exists a rule, s.t. whp Bohman and Kravitz, 2006

GA
m has a Giant when m = 0.385n

Dominik Schmid Building spanning graphs in the semirandom tree process 6

Phase transition in Gm

Emergence of the Giant component Erdős and Rényi, 1960

m = (1−ϵ)n
2 : Trees of order O(log n)

m = (1+ϵ)n
2 : Unique component of order Θ(n)

Delaying/accelerating the phase transition: The achlioptas process

Each step, sample two edges uniformly at random

� Pick one of those edges according to some rule

There exists a rule, s.t. whp Bohman and Frieze, 2001

GA
m has no Giant for m = 0.535n

There exists a rule, s.t. whp Bohman and Kravitz, 2006

GA
m has a Giant when m = 0.385n

Dominik Schmid Building spanning graphs in the semirandom tree process 6

Phase transition in Gm

Emergence of the Giant component Erdős and Rényi, 1960

m = (1−ϵ)n
2 : Trees of order O(log n)

m = (1+ϵ)n
2 : Unique component of order Θ(n)

Delaying/accelerating the phase transition: The achlioptas process

Each step, sample two edges uniformly at random

� Pick one of those edges according to some rule

There exists a rule, s.t. whp Bohman and Frieze, 2001

GA
m has no Giant for m = 0.535n

There exists a rule, s.t. whp Bohman and Kravitz, 2006

GA
m has a Giant when m = 0.385n

Dominik Schmid Building spanning graphs in the semirandom tree process 6

Phase transition in Gm

Emergence of the Giant component Erdős and Rényi, 1960

m = (1−ϵ)n
2 : Trees of order O(log n)

m = (1+ϵ)n
2 : Unique component of order Θ(n)

Delaying/accelerating the phase transition: The achlioptas process

Each step, sample two edges uniformly at random

� Pick one of those edges according to some rule

There exists a rule, s.t. whp Bohman and Frieze, 2001

GA
m has no Giant for m = 0.535n

There exists a rule, s.t. whp Bohman and Kravitz, 2006

GA
m has a Giant when m = 0.385n

Dominik Schmid Building spanning graphs in the semirandom tree process 6

Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

In round t, a vertex v ∈ [n] is chosen uniformly at random

Builder picks any edge et incident to v

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 7

Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

In round t, a vertex v ∈ [n] is chosen uniformly at random

Builder picks any edge et incident to v

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 7

Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

In round t, a vertex v ∈ [n] is chosen uniformly at random

Builder picks any edge et incident to v

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 7

Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

In round t, a vertex v ∈ [n] is chosen uniformly at random

Builder picks any edge et incident to v

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 7

Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

In round t, a vertex v ∈ [n] is chosen uniformly at random

Builder picks any edge et incident to v

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 7

Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

In round t, a vertex v ∈ [n] is chosen uniformly at random

Builder picks any edge et incident to v

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 7

Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

In round t, a vertex v ∈ [n] is chosen uniformly at random

Builder picks any edge et incident to v

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 7

Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

In round t, a vertex v ∈ [n] is chosen uniformly at random

Builder picks any edge et incident to v

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 7

Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

In round t, a vertex v ∈ [n] is chosen uniformly at random

Builder picks any edge et incident to v

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 7

Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

In round t, a vertex v ∈ [n] is chosen uniformly at random

Builder picks any edge et incident to v

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 7

Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

In round t, a vertex v ∈ [n] is chosen uniformly at random

Builder picks any edge et incident to v

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 7

Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

In round t, a vertex v ∈ [n] is chosen uniformly at random

Builder picks any edge et incident to v

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 7

Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

In round t, a vertex v ∈ [n] is chosen uniformly at random

Builder picks any edge et incident to v

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 7

Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

In round t, a vertex v ∈ [n] is chosen uniformly at random

Builder picks any edge et incident to v

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 7

Semirandom star process

Question: How fast can Builder construct graphs with certain
properties?

Given graph property P and strategy σ

τ(P, σ) := min
t
{Gt ∈ P}

There exist strategies σ1, σ2, σ3 such that

τ(PC, σ1) = n − 1

Whp. τ(PPM, σ2) ≤ 1.206n Gao, MacRury, and Prałat (2022)

Whp. τ(PHC, σ3) ≤ 1.817n Frieze, Gao, MacRury, Prałat, and Sorkin (2023)

Dominik Schmid Building spanning graphs in the semirandom tree process 8

Semirandom star process

Question: How fast can Builder construct graphs with certain
properties?

Given graph property P and strategy σ

τ(P, σ) := min
t
{Gt ∈ P}

There exist strategies σ1, σ2, σ3 such that

τ(PC, σ1) = n − 1

Whp. τ(PPM, σ2) ≤ 1.206n Gao, MacRury, and Prałat (2022)

Whp. τ(PHC, σ3) ≤ 1.817n Frieze, Gao, MacRury, Prałat, and Sorkin (2023)

Dominik Schmid Building spanning graphs in the semirandom tree process 8

Semirandom star process

Question: How fast can Builder construct graphs with certain
properties?

Given graph property P and strategy σ

τ(P, σ) := min
t
{Gt ∈ P}

There exist strategies σ1, σ2, σ3 such that

τ(PC, σ1) = n − 1

Whp. τ(PPM, σ2) ≤ 1.206n Gao, MacRury, and Prałat (2022)

Whp. τ(PHC, σ3) ≤ 1.817n Frieze, Gao, MacRury, Prałat, and Sorkin (2023)

Dominik Schmid Building spanning graphs in the semirandom tree process 8

Semirandom star process

Question: How fast can Builder construct graphs with certain
properties?

Given graph property P and strategy σ

τ(P, σ) := min
t
{Gt ∈ P}

There exist strategies σ1, σ2, σ3 such that

τ(PC, σ1) = n − 1

Whp. τ(PPM, σ2) ≤ 1.206n Gao, MacRury, and Prałat (2022)

Whp. τ(PHC, σ3) ≤ 1.817n Frieze, Gao, MacRury, Prałat, and Sorkin (2023)

Dominik Schmid Building spanning graphs in the semirandom tree process 8

Semirandom star process

Question: How fast can Builder construct graphs with certain
properties?

Given graph property P and strategy σ

τ(P, σ) := min
t
{Gt ∈ P}

There exist strategies σ1, σ2, σ3 such that

τ(PC, σ1) = n − 1

Whp. τ(PPM, σ2) ≤ 1.206n Gao, MacRury, and Prałat (2022)

Whp. τ(PHC, σ3) ≤ 1.817n Frieze, Gao, MacRury, Prałat, and Sorkin (2023)

Dominik Schmid Building spanning graphs in the semirandom tree process 8

Semirandom star process

Question: How fast can Builder construct graphs with certain
properties?

Given graph property P and strategy σ

τ(P, σ) := min
t
{Gt ∈ P}

There exist strategies σ1, σ2, σ3 such that

τ(PC, σ1) = n − 1

Whp. τ(PPM, σ2) ≤ 1.206n Gao, MacRury, and Prałat (2022)

Whp. τ(PHC, σ3) ≤ 1.817n Frieze, Gao, MacRury, Prałat, and Sorkin (2023)

Dominik Schmid Building spanning graphs in the semirandom tree process 8

Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

In round t, a vertex v ∈ [n] is chosen uniformly at random

Builder picks any edge et incident to v

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 9

Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

Sample random spanning star St uniformly at random

Builder picks any edge et ∈ E(St)

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 10

Semirandom tree process

Set G0 = ([n],E0) with E0 = ∅.

Sample random spanning tree Tt uniformly at random

Builder picks any edge et ∈ E(Tt)

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 11

Connectedness in semirandom tree process

� There exists σ, such that τ(PC, σ) = n − 1
� Connectedness can be achieved deterministically in optimal time

Dominik Schmid Building spanning graphs in the semirandom tree process 12

Connectedness in semirandom tree process

� There exists σ, such that τ(PC, σ) = n − 1
� Connectedness can be achieved deterministically in optimal time

Dominik Schmid Building spanning graphs in the semirandom tree process 12

Connectedness in semirandom tree process

� There exists σ, such that τ(PC, σ) = n − 1
� Connectedness can be achieved deterministically in optimal time

Dominik Schmid Building spanning graphs in the semirandom tree process 12

Connectedness in semirandom tree process

� There exists σ, such that τ(PC, σ) = n − 1
� Connectedness can be achieved deterministically in optimal time

Dominik Schmid Building spanning graphs in the semirandom tree process 12

Connectedness in semirandom tree process

� There exists σ, such that τ(PC, σ) = n − 1
� Connectedness can be achieved deterministically in optimal time

Dominik Schmid Building spanning graphs in the semirandom tree process 12

Connectedness in semirandom tree process

� There exists σ, such that τ(PC, σ) = n − 1
� Connectedness can be achieved deterministically in optimal time

Dominik Schmid Building spanning graphs in the semirandom tree process 12

Connectedness in semirandom tree process

� There exists σ, such that τ(PC, σ) = n − 1
� Connectedness can be achieved deterministically in optimal time

Dominik Schmid Building spanning graphs in the semirandom tree process 12

Connectedness in semirandom tree process

� There exists σ, such that τ(PC, σ) = n − 1
� Connectedness can be achieved deterministically in optimal time

Dominik Schmid Building spanning graphs in the semirandom tree process 12

Connectedness in semirandom tree process

� There exists σ, such that τ(PC, σ) = n − 1
� Connectedness can be achieved deterministically in optimal time

Dominik Schmid Building spanning graphs in the semirandom tree process 12

Connectedness in semirandom tree process

� There exists σ, such that τ(PC, σ) = n − 1
� Connectedness can be achieved deterministically in optimal time

Dominik Schmid Building spanning graphs in the semirandom tree process 12

Connectedness in semirandom tree process

� There exists σ, such that τ(PC, σ) = n − 1
� Connectedness can be achieved deterministically in optimal time

Dominik Schmid Building spanning graphs in the semirandom tree process 12

Connectedness in semirandom tree process

� There exists σ, such that τ(PC, σ) = n − 1

� Connectedness can be achieved deterministically in optimal time

Dominik Schmid Building spanning graphs in the semirandom tree process 12

Connectedness in semirandom tree process

� There exists σ, such that τ(PC, σ) = n − 1
� Connectedness can be achieved deterministically in optimal time

Dominik Schmid Building spanning graphs in the semirandom tree process 12

Previous results

There exist strategies σ1, σ2, σ3, such that whp

τ(PPM, σ1) ≤ n
2 + o

(
n4/5

)
Burova and Lichev (2022)

τ(PHC, σ2) ≤ n + o
(
n4/5

)
τ(Pmin,k, σ3) ≤ kn

2 + o
(
n1/2

)
Results are asymptotically optimal

Dominik Schmid Building spanning graphs in the semirandom tree process 13

Previous results

There exist strategies σ1, σ2, σ3, such that whp

τ(PPM, σ1) ≤ n
2 + o

(
n4/5

)
Burova and Lichev (2022)

τ(PHC, σ2) ≤ n + o
(
n4/5

)
τ(Pmin,k, σ3) ≤ kn

2 + o
(
n1/2

)
Results are asymptotically optimal

Dominik Schmid Building spanning graphs in the semirandom tree process 13

Previous results

There exist strategies σ1, σ2, σ3, such that whp

τ(PPM, σ1) ≤ n
2 + o

(
n4/5

)
Burova and Lichev (2022)

τ(PHC, σ2) ≤ n + o
(
n4/5

)

τ(Pmin,k, σ3) ≤ kn
2 + o

(
n1/2

)
Results are asymptotically optimal

Dominik Schmid Building spanning graphs in the semirandom tree process 13

Previous results

There exist strategies σ1, σ2, σ3, such that whp

τ(PPM, σ1) ≤ n
2 + o

(
n4/5

)
Burova and Lichev (2022)

τ(PHC, σ2) ≤ n + o
(
n4/5

)
τ(Pmin,k, σ3) ≤ kn

2 + o
(
n1/2

)

Results are asymptotically optimal

Dominik Schmid Building spanning graphs in the semirandom tree process 13

Previous results

There exist strategies σ1, σ2, σ3, such that whp

τ(PPM, σ1) ≤ n
2 + o

(
n4/5

)
Burova and Lichev (2022)

τ(PHC, σ2) ≤ n + o
(
n4/5

)
τ(Pmin,k, σ3) ≤ kn

2 + o
(
n1/2

)
Results are asymptotically optimal

Dominik Schmid Building spanning graphs in the semirandom tree process 13

Building spanning graphs

H : (vertex-)spanning graph with maximum degree ∆ ≥ 3

PH : Containment of H

Erdős-Rényi graph process Gm :

τ(PH) ∼ n2− 1
∆

Semirandom star process:

∃σ : τ(PH, σ) ≤ 3∆n
2 (1 + o∆(1))

Ben-Eliezer, Gishboliner, Hefetz and Krivelevich (2020)

� H can have as many as ∆n
2 edges

� Need at least ∆n
2 rounds

Dominik Schmid Building spanning graphs in the semirandom tree process 14

Building spanning graphs

H : (vertex-)spanning graph with maximum degree ∆ ≥ 3

PH : Containment of H

Erdős-Rényi graph process Gm :

τ(PH) ∼ n2− 1
∆

Semirandom star process:

∃σ : τ(PH, σ) ≤ 3∆n
2 (1 + o∆(1))

Ben-Eliezer, Gishboliner, Hefetz and Krivelevich (2020)

� H can have as many as ∆n
2 edges

� Need at least ∆n
2 rounds

Dominik Schmid Building spanning graphs in the semirandom tree process 14

Building spanning graphs

H : (vertex-)spanning graph with maximum degree ∆ ≥ 3

PH : Containment of H

Erdős-Rényi graph process Gm :

τ(PH) ∼ n2− 1
∆

Semirandom star process:

∃σ : τ(PH, σ) ≤ 3∆n
2 (1 + o∆(1))

Ben-Eliezer, Gishboliner, Hefetz and Krivelevich (2020)

� H can have as many as ∆n
2 edges

� Need at least ∆n
2 rounds

Dominik Schmid Building spanning graphs in the semirandom tree process 14

Building spanning graphs

H : (vertex-)spanning graph with maximum degree ∆ ≥ 3

PH : Containment of H

Erdős-Rényi graph process Gm :

τ(PH) ∼ n2− 1
∆

Semirandom star process:

∃σ : τ(PH, σ) ≤ 3∆n
2 (1 + o∆(1))

Ben-Eliezer, Gishboliner, Hefetz and Krivelevich (2020)

� H can have as many as ∆n
2 edges

� Need at least ∆n
2 rounds

Dominik Schmid Building spanning graphs in the semirandom tree process 14

Building spanning graphs

H : (vertex-)spanning graph with maximum degree ∆ ≥ 3

PH : Containment of H

Erdős-Rényi graph process Gm :

τ(PH) ∼ n2− 1
∆

Semirandom star process:

∃σ : τ(PH, σ) ≤ 3∆n
2 (1 + o∆(1))

Ben-Eliezer, Gishboliner, Hefetz and Krivelevich (2020)

� H can have as many as ∆n
2 edges

� Need at least ∆n
2 rounds

Dominik Schmid Building spanning graphs in the semirandom tree process 14

Building spanning graphs

H : (vertex-)spanning graph with maximum degree ∆ ≥ 3

PH : Containment of H

Erdős-Rényi graph process Gm :

τ(PH) ∼ n2− 1
∆

Semirandom star process:

∃σ : τ(PH, σ) ≤ 3∆n
2 (1 + o∆(1))

Ben-Eliezer, Gishboliner, Hefetz and Krivelevich (2020)

� H can have as many as ∆n
2 edges

� Need at least ∆n
2 rounds

Dominik Schmid Building spanning graphs in the semirandom tree process 14

Building spanning graphs

H : (vertex-)spanning graph with maximum degree ∆ ≥ 3

PH : Containment of H

Erdős-Rényi graph process Gm :

τ(PH) ∼ n2− 1
∆

Semirandom star process:

∃σ : τ(PH, σ) ≤ 3∆n
2 (1 + o∆(1))

Ben-Eliezer, Gishboliner, Hefetz and Krivelevich (2020)

� H can have as many as ∆n
2 edges

� Need at least ∆n
2 rounds

Dominik Schmid Building spanning graphs in the semirandom tree process 14

Building spanning graphs

H : (vertex-)spanning graph with maximum degree ∆ ≥ 3

PH : Containment of H

Erdős-Rényi graph process Gm :

τ(PH) ∼ n2− 1
∆

Semirandom star process:

∃σ : τ(PH, σ) ≤ 3∆n
2 (1 + o∆(1))

Ben-Eliezer, Gishboliner, Hefetz and Krivelevich (2020)

� H can have as many as ∆n
2 edges

� Need at least ∆n
2 rounds

Dominik Schmid Building spanning graphs in the semirandom tree process 14

Main result

Theorem
[Anastos, Collares, Erde, Kang, S., Sorkin, 2024+]

Let H be graph with maximum degree ∆. Then, in the semirandom
tree process, there is a strategy σ such that whp

τ(PH, σ) ≤
∆n
2

(1 + o∆(1))

o∆(1) ⇐⇒ tending to 0 as ∆ → ∞

If ∆ is a small constant, τ(PH, σ) = Θ(n)

Asymptotically optimal for ∆ = ∆(n) → ∞

Dominik Schmid Building spanning graphs in the semirandom tree process 15

Main result

Theorem
[Anastos, Collares, Erde, Kang, S., Sorkin, 2024+]

Let H be graph with maximum degree ∆. Then, in the semirandom
tree process, there is a strategy σ such that whp

τ(PH, σ) ≤
∆n
2

(1 + o∆(1))

o∆(1) ⇐⇒ tending to 0 as ∆ → ∞

If ∆ is a small constant, τ(PH, σ) = Θ(n)

Asymptotically optimal for ∆ = ∆(n) → ∞

Dominik Schmid Building spanning graphs in the semirandom tree process 15

Main result

Theorem
[Anastos, Collares, Erde, Kang, S., Sorkin, 2024+]

Let H be graph with maximum degree ∆. Then, in the semirandom
tree process, there is a strategy σ such that whp

τ(PH, σ) ≤
∆n
2

(1 + o∆(1))

o∆(1) ⇐⇒ tending to 0 as ∆ → ∞

If ∆ is a small constant, τ(PH, σ) = Θ(n)

Asymptotically optimal for ∆ = ∆(n) → ∞

Dominik Schmid Building spanning graphs in the semirandom tree process 15

Main result

Theorem
[Anastos, Collares, Erde, Kang, S., Sorkin, 2024+]

Let H be graph with maximum degree ∆. Then, in the semirandom
tree process, there is a strategy σ such that whp

τ(PH, σ) ≤
∆n
2

(1 + o∆(1))

o∆(1) ⇐⇒ tending to 0 as ∆ → ∞

If ∆ is a small constant, τ(PH, σ) = Θ(n)

Asymptotically optimal for ∆ = ∆(n) → ∞

Dominik Schmid Building spanning graphs in the semirandom tree process 15

Main result

Theorem
[Anastos, Collares, Erde, Kang, S., Sorkin, 2024+]

Let H be graph with maximum degree ∆. Then, in the semirandom
tree process, there is a strategy σ such that whp

τ(PH, σ) ≤
∆n
2

(1 + o∆(1))

o∆(1) ⇐⇒ tending to 0 as ∆ → ∞

If ∆ is a small constant, τ(PH, σ) = Θ(n)

Asymptotically optimal for ∆ = ∆(n) → ∞

Dominik Schmid Building spanning graphs in the semirandom tree process 15

Notation

H : target graph with maximum degree ∆

Gt = ([n],Et) : Builder’s graph at time t

Find copy of H in Gt

Embedding Φ: V(H) → [n]
� ∀ vw ∈ E(H) : Φ(v)Φ(w) ∈ Et

v3

v4

v5

v1 v2
H

Φ

Gt

Φ(v3)

Φ(v4)

Φ(v5)

Φ(v1) Φ(v2)

Φ′

Φ(v3) Φ(v4)

Φ(v5)

Φ(v1)

Φ(v2)

Dominik Schmid Building spanning graphs in the semirandom tree process 16

Notation

H : target graph with maximum degree ∆
Gt = ([n],Et) : Builder’s graph at time t

Find copy of H in Gt

Embedding Φ: V(H) → [n]
� ∀ vw ∈ E(H) : Φ(v)Φ(w) ∈ Et

v3

v4

v5

v1 v2
H

Φ

Gt

Φ(v3)

Φ(v4)

Φ(v5)

Φ(v1) Φ(v2)

Φ′

Φ(v3) Φ(v4)

Φ(v5)

Φ(v1)

Φ(v2)

Dominik Schmid Building spanning graphs in the semirandom tree process 16

Notation

H : target graph with maximum degree ∆
Gt = ([n],Et) : Builder’s graph at time t

Find copy of H in Gt

Embedding Φ: V(H) → [n]
� ∀ vw ∈ E(H) : Φ(v)Φ(w) ∈ Et

v3

v4

v5

v1 v2
H

Φ

Gt

Φ(v3)

Φ(v4)

Φ(v5)

Φ(v1) Φ(v2)

Φ′

Φ(v3) Φ(v4)

Φ(v5)

Φ(v1)

Φ(v2)

Dominik Schmid Building spanning graphs in the semirandom tree process 16

Notation

H : target graph with maximum degree ∆
Gt = ([n],Et) : Builder’s graph at time t

Find copy of H in Gt

Embedding Φ: V(H) → [n]

� ∀ vw ∈ E(H) : Φ(v)Φ(w) ∈ Et

v3

v4

v5

v1 v2
H

Φ

Gt

Φ(v3)

Φ(v4)

Φ(v5)

Φ(v1) Φ(v2)

Φ′

Φ(v3) Φ(v4)

Φ(v5)

Φ(v1)

Φ(v2)

Dominik Schmid Building spanning graphs in the semirandom tree process 16

Notation

H : target graph with maximum degree ∆
Gt = ([n],Et) : Builder’s graph at time t

Find copy of H in Gt

Embedding Φ: V(H) → [n]
� ∀ vw ∈ E(H) : Φ(v)Φ(w) ∈ Et

v3

v4

v5

v1 v2
H

Φ

Gt

Φ(v3)

Φ(v4)

Φ(v5)

Φ(v1) Φ(v2)

Φ′

Φ(v3) Φ(v4)

Φ(v5)

Φ(v1)

Φ(v2)

Dominik Schmid Building spanning graphs in the semirandom tree process 16

Notation

H : target graph with maximum degree ∆
Gt = ([n],Et) : Builder’s graph at time t

Find copy of H in Gt

Embedding Φ: V(H) → [n]
� ∀ vw ∈ E(H) : Φ(v)Φ(w) ∈ Et

v3

v4

v5

v1 v2
H

Φ

Gt

Φ(v3)

Φ(v4)

Φ(v5)

Φ(v1) Φ(v2)

Φ′

Φ(v3) Φ(v4)

Φ(v5)

Φ(v1)

Φ(v2)

Dominik Schmid Building spanning graphs in the semirandom tree process 16

Notation

H : target graph with maximum degree ∆
Gt = ([n],Et) : Builder’s graph at time t

Find copy of H in Gt

Embedding Φ: V(H) → [n]
� ∀ vw ∈ E(H) : Φ(v)Φ(w) ∈ Et

v3

v4

v5

v1 v2
H

Φ

Gt

Φ(v3)

Φ(v4)

Φ(v5)

Φ(v1) Φ(v2)

Φ′

Φ(v3) Φ(v4)

Φ(v5)

Φ(v1)

Φ(v2)

Dominik Schmid Building spanning graphs in the semirandom tree process 16

Notation

H : target graph with maximum degree ∆
Gt = ([n],Et) : Builder’s graph at time t

Find copy of H in Gt

Embedding Φ: V(H) → [n]
� ∀ vw ∈ E(H) : Φ(v)Φ(w) ∈ Et

v3

v4

v5

v1 v2
H

Φ

Gt

Φ(v3)

Φ(v4)

Φ(v5)

Φ(v1) Φ(v2)

Φ′

Φ(v3) Φ(v4)

Φ(v5)

Φ(v1)

Φ(v2)

Dominik Schmid Building spanning graphs in the semirandom tree process 16

Notation

H : target graph with maximum degree ∆
Gt = ([n],Et) : Builder’s graph at time t

Find copy of H in Gt

Embedding Φ: V(H) → [n]
� ∀ vw ∈ E(H) : Φ(v)Φ(w) ∈ Et

v3

v4

v5

v1 v2
H

Φ

Gt

Φ(v3)

Φ(v4)

Φ(v5)

Φ(v1) Φ(v2)

Φ′

Φ(v3) Φ(v4)

Φ(v5)

Φ(v1)

Φ(v2)

Dominik Schmid Building spanning graphs in the semirandom tree process 16

Notation

H : target graph with maximum degree ∆
Gt = ([n],Et) : Builder’s graph at time t

Find copy of H in Gt

Embedding Φ: V(H) → [n]
� ∀ vw ∈ E(H) : Φ(v)Φ(w) ∈ Et

v3

v4

v5

v1 v2
H

Φ

Gt

Φ(v3)

Φ(v4)

Φ(v5)

Φ(v1) Φ(v2)

Φ′

Φ(v3) Φ(v4)

Φ(v5)

Φ(v1)

Φ(v2)

Dominik Schmid Building spanning graphs in the semirandom tree process 16

Outline of strategy

∆n
2 (1 + o∆(1)) rounds to ‘spend’

Phase I: Greedy strategy

� ∆n
2 rounds

� Build ‘almost complete’ copy of H

Phase II: Replacement strategy

� ∆n
2 · o∆(1) rounds

� Extend to a complete copy

Dominik Schmid Building spanning graphs in the semirandom tree process 17

Outline of strategy

∆n
2 (1 + o∆(1)) rounds to ‘spend’

Phase I: Greedy strategy

� ∆n
2 rounds

� Build ‘almost complete’ copy of H

Phase II: Replacement strategy

� ∆n
2 · o∆(1) rounds

� Extend to a complete copy

Dominik Schmid Building spanning graphs in the semirandom tree process 17

Outline of strategy

∆n
2 (1 + o∆(1)) rounds to ‘spend’

Phase I: Greedy strategy

� ∆n
2 rounds

� Build ‘almost complete’ copy of H

Phase II: Replacement strategy

� ∆n
2 · o∆(1) rounds

� Extend to a complete copy

Dominik Schmid Building spanning graphs in the semirandom tree process 17

Outline of strategy

∆n
2 (1 + o∆(1)) rounds to ‘spend’

Phase I: Greedy strategy

� ∆n
2 rounds

� Build ‘almost complete’ copy of H

Phase II: Replacement strategy

� ∆n
2 · o∆(1) rounds

� Extend to a complete copy

Dominik Schmid Building spanning graphs in the semirandom tree process 17

Outline of strategy

∆n
2 (1 + o∆(1)) rounds to ‘spend’

Phase I: Greedy strategy

� ∆n
2 rounds

� Build ‘almost complete’ copy of H

Phase II: Replacement strategy

� ∆n
2 · o∆(1) rounds

� Extend to a complete copy

Dominik Schmid Building spanning graphs in the semirandom tree process 17

Outline of strategy

∆n
2 (1 + o∆(1)) rounds to ‘spend’

Phase I: Greedy strategy

� ∆n
2 rounds

� Build ‘almost complete’ copy of H

Phase II: Replacement strategy

� ∆n
2 · o∆(1) rounds

� Extend to a complete copy

Dominik Schmid Building spanning graphs in the semirandom tree process 17

Outline of strategy

∆n
2 (1 + o∆(1)) rounds to ‘spend’

Phase I: Greedy strategy

� ∆n
2 rounds

� Build ‘almost complete’ copy of H

Phase II: Replacement strategy

� ∆n
2 · o∆(1) rounds

� Extend to a complete copy

Dominik Schmid Building spanning graphs in the semirandom tree process 17

Phase I: Greedy strategy

Fix arbitrary embedding Φ

Claim edges corresponding to this embedding, whenever offered

� M(t) := {Φ(v)Φ(w) | vw ∈ E(H)} \ Et

How efficient is this strategy?

P [E(Tt) ∩ M(t) ̸= ∅]

|M(t)| ≫ n : Claim edge almost every round

|M(t)| ≈ n : Claim edge with constant probability

|M(t)| ≪ n : Almost never claim edge

Dominik Schmid Building spanning graphs in the semirandom tree process 18

Phase I: Greedy strategy

Fix arbitrary embedding Φ

Claim edges corresponding to this embedding, whenever offered

� M(t) := {Φ(v)Φ(w) | vw ∈ E(H)} \ Et

How efficient is this strategy?

P [E(Tt) ∩ M(t) ̸= ∅]

|M(t)| ≫ n : Claim edge almost every round

|M(t)| ≈ n : Claim edge with constant probability

|M(t)| ≪ n : Almost never claim edge

Dominik Schmid Building spanning graphs in the semirandom tree process 18

Phase I: Greedy strategy

Fix arbitrary embedding Φ

Claim edges corresponding to this embedding, whenever offered

� M(t) := {Φ(v)Φ(w) | vw ∈ E(H)} \ Et

How efficient is this strategy?

P [E(Tt) ∩ M(t) ̸= ∅]

|M(t)| ≫ n : Claim edge almost every round

|M(t)| ≈ n : Claim edge with constant probability

|M(t)| ≪ n : Almost never claim edge

Dominik Schmid Building spanning graphs in the semirandom tree process 18

Phase I: Greedy strategy

Fix arbitrary embedding Φ

Claim edges corresponding to this embedding, whenever offered

� M(t) := {Φ(v)Φ(w) | vw ∈ E(H)} \ Et

How efficient is this strategy?

P [E(Tt) ∩ M(t) ̸= ∅]

|M(t)| ≫ n : Claim edge almost every round

|M(t)| ≈ n : Claim edge with constant probability

|M(t)| ≪ n : Almost never claim edge

Dominik Schmid Building spanning graphs in the semirandom tree process 18

Phase I: Greedy strategy

Fix arbitrary embedding Φ

Claim edges corresponding to this embedding, whenever offered

� M(t) := {Φ(v)Φ(w) | vw ∈ E(H)} \ Et

How efficient is this strategy?

P [E(Tt) ∩ M(t) ̸= ∅]

|M(t)| ≫ n : Claim edge almost every round

|M(t)| ≈ n : Claim edge with constant probability

|M(t)| ≪ n : Almost never claim edge

Dominik Schmid Building spanning graphs in the semirandom tree process 18

Phase I: Greedy strategy

Fix arbitrary embedding Φ

Claim edges corresponding to this embedding, whenever offered

� M(t) := {Φ(v)Φ(w) | vw ∈ E(H)} \ Et

How efficient is this strategy?

P [E(Tt) ∩ M(t) ̸= ∅]

|M(t)| ≫ n : Claim edge almost every round

|M(t)| ≈ n : Claim edge with constant probability

|M(t)| ≪ n : Almost never claim edge

Dominik Schmid Building spanning graphs in the semirandom tree process 18

Phase I: Greedy strategy

Fix arbitrary embedding Φ

Claim edges corresponding to this embedding, whenever offered

� M(t) := {Φ(v)Φ(w) | vw ∈ E(H)} \ Et

How efficient is this strategy?

P [E(Tt) ∩ M(t) ̸= ∅]

|M(t)| ≫ n : Claim edge almost every round

|M(t)| ≈ n : Claim edge with constant probability

|M(t)| ≪ n : Almost never claim edge

Dominik Schmid Building spanning graphs in the semirandom tree process 18

Phase I: Greedy strategy

Fix arbitrary embedding Φ

Claim edges corresponding to this embedding, whenever offered

� M(t) := {Φ(v)Φ(w) | vw ∈ E(H)} \ Et

How efficient is this strategy?

P [E(Tt) ∩ M(t) ̸= ∅]

|M(t)| ≫ n : Claim edge almost every round

|M(t)| ≈ n : Claim edge with constant probability

|M(t)| ≪ n : Almost never claim edge

Dominik Schmid Building spanning graphs in the semirandom tree process 18

Limitations of the greedy strategy

Fix edge e

P [e ∩ E(Tt)] =
n−1
(n

2)
= 2

n

Coupon collector problem
� Need Θ(n log n) rounds to claim ‘last’ n edges

F(t,Φ) := vertices with missing edges (failed vertices)

Set t0 := ∆n
2

Lemma
Whp |F(t0,Φ)| ≤ exp

(
−∆1−ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 19

Limitations of the greedy strategy

Fix edge e

P [e ∩ E(Tt)] =
n−1
(n

2)
= 2

n

Coupon collector problem
� Need Θ(n log n) rounds to claim ‘last’ n edges

F(t,Φ) := vertices with missing edges (failed vertices)

Set t0 := ∆n
2

Lemma
Whp |F(t0,Φ)| ≤ exp

(
−∆1−ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 19

Limitations of the greedy strategy

Fix edge e

P [e ∩ E(Tt)] =
n−1
(n

2)
= 2

n

Coupon collector problem

� Need Θ(n log n) rounds to claim ‘last’ n edges

F(t,Φ) := vertices with missing edges (failed vertices)

Set t0 := ∆n
2

Lemma
Whp |F(t0,Φ)| ≤ exp

(
−∆1−ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 19

Limitations of the greedy strategy

Fix edge e

P [e ∩ E(Tt)] =
n−1
(n

2)
= 2

n

Coupon collector problem
� Need Θ(n log n) rounds to claim ‘last’ n edges

F(t,Φ) := vertices with missing edges (failed vertices)

Set t0 := ∆n
2

Lemma
Whp |F(t0,Φ)| ≤ exp

(
−∆1−ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 19

Limitations of the greedy strategy

Fix edge e

P [e ∩ E(Tt)] =
n−1
(n

2)
= 2

n

Coupon collector problem
� Need Θ(n log n) rounds to claim ‘last’ n edges

F(t,Φ) := vertices with missing edges (failed vertices)

Set t0 := ∆n
2

Lemma
Whp |F(t0,Φ)| ≤ exp

(
−∆1−ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 19

Limitations of the greedy strategy

Fix edge e

P [e ∩ E(Tt)] =
n−1
(n

2)
= 2

n

Coupon collector problem
� Need Θ(n log n) rounds to claim ‘last’ n edges

F(t,Φ) := vertices with missing edges (failed vertices)

Set t0 := ∆n
2

Lemma
Whp |F(t0,Φ)| ≤ exp

(
−∆1−ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 19

Limitations of the greedy strategy

Fix edge e

P [e ∩ E(Tt)] =
n−1
(n

2)
= 2

n

Coupon collector problem
� Need Θ(n log n) rounds to claim ‘last’ n edges

F(t,Φ) := vertices with missing edges (failed vertices)

Set t0 := ∆n
2

Lemma
Whp |F(t0,Φ)| ≤ exp

(
−∆1−ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 19

Phase II: Adapting the embedding Φ

v ∈ F(t,Φ)

� Swap v with w
Φ′ : Φ′(v) = Φ(w) and Φ′(w) = Φ(v)

Swap only if v,w /∈ F(t,Φ′)

Γ(v,w) : Set of edges required for successful swap

� Swap if Γ(v,w) ∈ Et

However:

Coupon collector argument

� P [Γ(v,w) ⊆ Et] = o(1)

Dominik Schmid Building spanning graphs in the semirandom tree process 20

Phase II: Adapting the embedding Φ

v ∈ F(t,Φ)

� Swap v with w
Φ′ : Φ′(v) = Φ(w) and Φ′(w) = Φ(v)

Swap only if v,w /∈ F(t,Φ′)

Γ(v,w) : Set of edges required for successful swap

� Swap if Γ(v,w) ∈ Et

However:

Coupon collector argument

� P [Γ(v,w) ⊆ Et] = o(1)

Dominik Schmid Building spanning graphs in the semirandom tree process 20

Phase II: Adapting the embedding Φ

v ∈ F(t,Φ)

� Swap v with w
Φ′ : Φ′(v) = Φ(w) and Φ′(w) = Φ(v)

Swap only if v,w /∈ F(t,Φ′)

Γ(v,w) : Set of edges required for successful swap

� Swap if Γ(v,w) ∈ Et

However:

Coupon collector argument

� P [Γ(v,w) ⊆ Et] = o(1)

Dominik Schmid Building spanning graphs in the semirandom tree process 20

Phase II: Adapting the embedding Φ

v ∈ F(t,Φ)

� Swap v with w
Φ′ : Φ′(v) = Φ(w) and Φ′(w) = Φ(v)

Swap only if v,w /∈ F(t,Φ′)

Γ(v,w) : Set of edges required for successful swap

� Swap if Γ(v,w) ∈ Et

However:

Coupon collector argument

� P [Γ(v,w) ⊆ Et] = o(1)

Dominik Schmid Building spanning graphs in the semirandom tree process 20

Phase II: Adapting the embedding Φ

v ∈ F(t,Φ)

� Swap v with w
Φ′ : Φ′(v) = Φ(w) and Φ′(w) = Φ(v)

Swap only if v,w /∈ F(t,Φ′)

Γ(v,w) : Set of edges required for successful swap

� Swap if Γ(v,w) ∈ Et

However:

Coupon collector argument

� P [Γ(v,w) ⊆ Et] = o(1)

Dominik Schmid Building spanning graphs in the semirandom tree process 20

Phase II: Adapting the embedding Φ

v ∈ F(t,Φ)

� Swap v with w
Φ′ : Φ′(v) = Φ(w) and Φ′(w) = Φ(v)

Swap only if v,w /∈ F(t,Φ′)

Γ(v,w) : Set of edges required for successful swap

� Swap if Γ(v,w) ∈ Et

However:

Coupon collector argument

� P [Γ(v,w) ⊆ Et] = o(1)

Dominik Schmid Building spanning graphs in the semirandom tree process 20

Phase II: Adapting the embedding Φ

v ∈ F(t,Φ)

� Swap v with w
Φ′ : Φ′(v) = Φ(w) and Φ′(w) = Φ(v)

Swap only if v,w /∈ F(t,Φ′)

Γ(v,w) : Set of edges required for successful swap

� Swap if Γ(v,w) ∈ Et

However:

Coupon collector argument

� P [Γ(v,w) ⊆ Et] = o(1)

Dominik Schmid Building spanning graphs in the semirandom tree process 20

Phase II: Adapting the embedding Φ

v ∈ F(t,Φ)

� Swap v with w
Φ′ : Φ′(v) = Φ(w) and Φ′(w) = Φ(v)

Swap only if v,w /∈ F(t,Φ′)

Γ(v,w) : Set of edges required for successful swap

� Swap if Γ(v,w) ∈ Et

However:

Coupon collector argument

� P [Γ(v,w) ⊆ Et] = o(1)

Dominik Schmid Building spanning graphs in the semirandom tree process 20

Phase II: Swapping simultaneously

For each v ∈ F(t,Φ) define large set C(v) of candidate vertices

Simultaneously try swapping failed vertices with candidate
vertices
P [∃w ∈ C(v) : Γ(v,w) ⊆ Et] = ϵ > 0

F(t,Φ)

v1

v2

v3

V \ F(t,Φ)

C(v1)

C(v2)

C(v3)

Update embedding by swapping all possible vertices

Dominik Schmid Building spanning graphs in the semirandom tree process 21

Phase II: Swapping simultaneously

For each v ∈ F(t,Φ) define large set C(v) of candidate vertices

Simultaneously try swapping failed vertices with candidate
vertices
P [∃w ∈ C(v) : Γ(v,w) ⊆ Et] = ϵ > 0

F(t,Φ)

v1

v2

v3

V \ F(t,Φ)

C(v1)

C(v2)

C(v3)

Update embedding by swapping all possible vertices

Dominik Schmid Building spanning graphs in the semirandom tree process 21

Phase II: Swapping simultaneously

For each v ∈ F(t,Φ) define large set C(v) of candidate vertices
Simultaneously try swapping failed vertices with candidate
vertices

P [∃w ∈ C(v) : Γ(v,w) ⊆ Et] = ϵ > 0

F(t,Φ)

v1

v2

v3

V \ F(t,Φ)

C(v1)

C(v2)

C(v3)

Update embedding by swapping all possible vertices

Dominik Schmid Building spanning graphs in the semirandom tree process 21

Phase II: Swapping simultaneously

For each v ∈ F(t,Φ) define large set C(v) of candidate vertices
Simultaneously try swapping failed vertices with candidate
vertices
P [∃w ∈ C(v) : Γ(v,w) ⊆ Et] = ϵ > 0

F(t,Φ)

v1

v2

v3

V \ F(t,Φ)

C(v1)

C(v2)

C(v3)

Update embedding by swapping all possible vertices

Dominik Schmid Building spanning graphs in the semirandom tree process 21

Phase II: Swapping simultaneously

For each v ∈ F(t,Φ) define large set C(v) of candidate vertices
Simultaneously try swapping failed vertices with candidate
vertices
P [∃w ∈ C(v) : Γ(v,w) ⊆ Et] = ϵ > 0

F(t,Φ)

v1

v2

v3

V \ F(t,Φ)

C(v1)

C(v2)

C(v3)

Update embedding by swapping all possible vertices

Dominik Schmid Building spanning graphs in the semirandom tree process 21

Phase II: Swapping in batches

Proceed in batches of rounds

Swap constant fraction of failed vertices in each batch

Number of required rounds is proportional to number of failed
vertices

� Total number of rounds is dominated by first batch

� Run strategy until F = ∅

Set t1 := ∆n
2 (1 + o∆(1))

Lemma
There exists an embedding Φ, s.t whp F(t1,Φ) = ∅

Dominik Schmid Building spanning graphs in the semirandom tree process 22

Phase II: Swapping in batches

Proceed in batches of rounds

Swap constant fraction of failed vertices in each batch

Number of required rounds is proportional to number of failed
vertices

� Total number of rounds is dominated by first batch

� Run strategy until F = ∅

Set t1 := ∆n
2 (1 + o∆(1))

Lemma
There exists an embedding Φ, s.t whp F(t1,Φ) = ∅

Dominik Schmid Building spanning graphs in the semirandom tree process 22

Phase II: Swapping in batches

Proceed in batches of rounds

Swap constant fraction of failed vertices in each batch

Number of required rounds is proportional to number of failed
vertices

� Total number of rounds is dominated by first batch

� Run strategy until F = ∅

Set t1 := ∆n
2 (1 + o∆(1))

Lemma
There exists an embedding Φ, s.t whp F(t1,Φ) = ∅

Dominik Schmid Building spanning graphs in the semirandom tree process 22

Phase II: Swapping in batches

Proceed in batches of rounds

Swap constant fraction of failed vertices in each batch

Number of required rounds is proportional to number of failed
vertices

� Total number of rounds is dominated by first batch

� Run strategy until F = ∅

Set t1 := ∆n
2 (1 + o∆(1))

Lemma
There exists an embedding Φ, s.t whp F(t1,Φ) = ∅

Dominik Schmid Building spanning graphs in the semirandom tree process 22

Phase II: Swapping in batches

Proceed in batches of rounds

Swap constant fraction of failed vertices in each batch

Number of required rounds is proportional to number of failed
vertices

� Total number of rounds is dominated by first batch

� Run strategy until F = ∅

Set t1 := ∆n
2 (1 + o∆(1))

Lemma
There exists an embedding Φ, s.t whp F(t1,Φ) = ∅

Dominik Schmid Building spanning graphs in the semirandom tree process 22

Phase II: Swapping in batches

Proceed in batches of rounds

Swap constant fraction of failed vertices in each batch

Number of required rounds is proportional to number of failed
vertices

� Total number of rounds is dominated by first batch

� Run strategy until F = ∅

Set t1 := ∆n
2 (1 + o∆(1))

Lemma
There exists an embedding Φ, s.t whp F(t1,Φ) = ∅

Dominik Schmid Building spanning graphs in the semirandom tree process 22

Phase II: Swapping in batches

Proceed in batches of rounds

Swap constant fraction of failed vertices in each batch

Number of required rounds is proportional to number of failed
vertices

� Total number of rounds is dominated by first batch

� Run strategy until F = ∅

Set t1 := ∆n
2 (1 + o∆(1))

Lemma
There exists an embedding Φ, s.t whp F(t1,Φ) = ∅

Dominik Schmid Building spanning graphs in the semirandom tree process 22

Recap

τ(PH, σ) ≤ ∆n
2 (1 + o∆(1))

Use ‘almost all’ rounds in greedy phase

� |F| ≤ exp
(
−∆1−ϵ

)
n

Swap remaining vertices in batches

� Required time t∗ dominated by first batch
� t∗ ≤ ∆n

2 · o∆(1)

⇐⇒ |F| ≤ exp
(
−∆1+ϵ

)
n

� Gap between two phases - requires more involved analysis

F = [n]

t = 0

F = ∅

t = ∆n
2 (1 + o∆(1))

Greedy Phase
∆n
2 rounds

|F| ≤ exp
(
−∆1−ϵ

)
n

Phase II
∆n
2 · o∆(1) rounds

|F| ≤ exp
(
−∆1+ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 23

Recap

τ(PH, σ) ≤ ∆n
2 (1 + o∆(1))

Use ‘almost all’ rounds in greedy phase

� |F| ≤ exp
(
−∆1−ϵ

)
n

Swap remaining vertices in batches

� Required time t∗ dominated by first batch
� t∗ ≤ ∆n

2 · o∆(1)

⇐⇒ |F| ≤ exp
(
−∆1+ϵ

)
n

� Gap between two phases - requires more involved analysis

F = [n]

t = 0

F = ∅

t = ∆n
2 (1 + o∆(1))

Greedy Phase
∆n
2 rounds

|F| ≤ exp
(
−∆1−ϵ

)
n

Phase II
∆n
2 · o∆(1) rounds

|F| ≤ exp
(
−∆1+ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 23

Recap

τ(PH, σ) ≤ ∆n
2 (1 + o∆(1))

Use ‘almost all’ rounds in greedy phase

� |F| ≤ exp
(
−∆1−ϵ

)
n

Swap remaining vertices in batches

� Required time t∗ dominated by first batch
� t∗ ≤ ∆n

2 · o∆(1)

⇐⇒ |F| ≤ exp
(
−∆1+ϵ

)
n

� Gap between two phases - requires more involved analysis

F = [n]

t = 0

F = ∅

t = ∆n
2 (1 + o∆(1))

Greedy Phase
∆n
2 rounds

|F| ≤ exp
(
−∆1−ϵ

)
n

Phase II
∆n
2 · o∆(1) rounds

|F| ≤ exp
(
−∆1+ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 23

Recap

τ(PH, σ) ≤ ∆n
2 (1 + o∆(1))

Use ‘almost all’ rounds in greedy phase
� |F| ≤ exp

(
−∆1−ϵ

)
n

Swap remaining vertices in batches

� Required time t∗ dominated by first batch
� t∗ ≤ ∆n

2 · o∆(1)

⇐⇒ |F| ≤ exp
(
−∆1+ϵ

)
n

� Gap between two phases - requires more involved analysis

F = [n]

t = 0

F = ∅

t = ∆n
2 (1 + o∆(1))

Greedy Phase
∆n
2 rounds

|F| ≤ exp
(
−∆1−ϵ

)
n

Phase II
∆n
2 · o∆(1) rounds

|F| ≤ exp
(
−∆1+ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 23

Recap

τ(PH, σ) ≤ ∆n
2 (1 + o∆(1))

Use ‘almost all’ rounds in greedy phase
� |F| ≤ exp

(
−∆1−ϵ

)
n

Swap remaining vertices in batches

� Required time t∗ dominated by first batch
� t∗ ≤ ∆n

2 · o∆(1)

⇐⇒ |F| ≤ exp
(
−∆1+ϵ

)
n

� Gap between two phases - requires more involved analysis

F = [n]

t = 0

F = ∅

t = ∆n
2 (1 + o∆(1))

Greedy Phase
∆n
2 rounds

|F| ≤ exp
(
−∆1−ϵ

)
n

Phase II
∆n
2 · o∆(1) rounds

|F| ≤ exp
(
−∆1+ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 23

Recap

τ(PH, σ) ≤ ∆n
2 (1 + o∆(1))

Use ‘almost all’ rounds in greedy phase
� |F| ≤ exp

(
−∆1−ϵ

)
n

Swap remaining vertices in batches
� Required time t∗ dominated by first batch

� t∗ ≤ ∆n
2 · o∆(1)

⇐⇒ |F| ≤ exp
(
−∆1+ϵ

)
n

� Gap between two phases - requires more involved analysis

F = [n]

t = 0

F = ∅

t = ∆n
2 (1 + o∆(1))

Greedy Phase
∆n
2 rounds

|F| ≤ exp
(
−∆1−ϵ

)
n

Phase II
∆n
2 · o∆(1) rounds

|F| ≤ exp
(
−∆1+ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 23

Recap

τ(PH, σ) ≤ ∆n
2 (1 + o∆(1))

Use ‘almost all’ rounds in greedy phase
� |F| ≤ exp

(
−∆1−ϵ

)
n

Swap remaining vertices in batches
� Required time t∗ dominated by first batch
� t∗ ≤ ∆n

2 · o∆(1)

⇐⇒ |F| ≤ exp
(
−∆1+ϵ

)
n

� Gap between two phases - requires more involved analysis

F = [n]

t = 0

F = ∅

t = ∆n
2 (1 + o∆(1))

Greedy Phase
∆n
2 rounds

|F| ≤ exp
(
−∆1−ϵ

)
n

Phase II
∆n
2 · o∆(1) rounds

|F| ≤ exp
(
−∆1+ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 23

Recap

τ(PH, σ) ≤ ∆n
2 (1 + o∆(1))

Use ‘almost all’ rounds in greedy phase
� |F| ≤ exp

(
−∆1−ϵ

)
n

Swap remaining vertices in batches
� Required time t∗ dominated by first batch
� t∗ ≤ ∆n

2 · o∆(1) ⇐⇒ |F| ≤ exp
(
−∆1+ϵ

)
n

� Gap between two phases - requires more involved analysis

F = [n]

t = 0

F = ∅

t = ∆n
2 (1 + o∆(1))

Greedy Phase
∆n
2 rounds

|F| ≤ exp
(
−∆1−ϵ

)
n

Phase II
∆n
2 · o∆(1) rounds

|F| ≤ exp
(
−∆1+ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 23

Recap

τ(PH, σ) ≤ ∆n
2 (1 + o∆(1))

Use ‘almost all’ rounds in greedy phase
� |F| ≤ exp

(
−∆1−ϵ

)
n

Swap remaining vertices in batches
� Required time t∗ dominated by first batch
� t∗ ≤ ∆n

2 · o∆(1) ⇐⇒ |F| ≤ exp
(
−∆1+ϵ

)
n

� Gap between two phases - requires more involved analysis

F = [n]

t = 0

F = ∅

t = ∆n
2 (1 + o∆(1))

Greedy Phase
∆n
2 rounds

|F| ≤ exp
(
−∆1−ϵ

)
n

Phase II
∆n
2 · o∆(1) rounds

|F| ≤ exp
(
−∆1+ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 23

Recap

τ(PH, σ) ≤ ∆n
2 (1 + o∆(1))

Use ‘almost all’ rounds in greedy phase
� |F| ≤ exp

(
−∆1−ϵ

)
n

Swap remaining vertices in batches
� Required time t∗ dominated by first batch
� t∗ ≤ ∆n

2 · o∆(1) ⇐⇒ |F| ≤ exp
(
−∆1+ϵ

)
n

� Gap between two phases - requires more involved analysis

F = [n]

t = 0

F = ∅

t = ∆n
2 (1 + o∆(1))

Greedy Phase
∆n
2 rounds

|F| ≤ exp
(
−∆1−ϵ

)
n

Phase II
∆n
2 · o∆(1) rounds

|F| ≤ exp
(
−∆1+ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 23

Recap

τ(PH, σ) ≤ ∆n
2 (1 + o∆(1))

Use ‘almost all’ rounds in greedy phase
� |F| ≤ exp

(
−∆1−ϵ

)
n

Swap remaining vertices in batches
� Required time t∗ dominated by first batch
� t∗ ≤ ∆n

2 · o∆(1) ⇐⇒ |F| ≤ exp
(
−∆1+ϵ

)
n

� Gap between two phases - requires more involved analysis

F = [n]

t = 0

F = ∅

t = ∆n
2 (1 + o∆(1))

Greedy Phase
∆n
2 rounds

|F| ≤ exp
(
−∆1−ϵ

)
n

Phase II
∆n
2 · o∆(1) rounds

|F| ≤ exp
(
−∆1+ϵ

)
n

Dominik Schmid Building spanning graphs in the semirandom tree process 23

Open problems

Improve τ(PH, σ) in the semirandom star process

Consider other models:

Each round, Builder is offered edges of
� Random hamilton cycle

� Random perfect matching

� k random edges

Are there properties, for which semirandom star process is more
efficient than semirandom tree process?

Dominik Schmid Building spanning graphs in the semirandom tree process 24

Open problems

Improve τ(PH, σ) in the semirandom star process

Consider other models:

Each round, Builder is offered edges of
� Random hamilton cycle

� Random perfect matching

� k random edges

Are there properties, for which semirandom star process is more
efficient than semirandom tree process?

Dominik Schmid Building spanning graphs in the semirandom tree process 24

Open problems

Improve τ(PH, σ) in the semirandom star process

Consider other models:

Each round, Builder is offered edges of

� Random hamilton cycle

� Random perfect matching

� k random edges

Are there properties, for which semirandom star process is more
efficient than semirandom tree process?

Dominik Schmid Building spanning graphs in the semirandom tree process 24

Open problems

Improve τ(PH, σ) in the semirandom star process

Consider other models:

Each round, Builder is offered edges of
� Random hamilton cycle

� Random perfect matching

� k random edges

Are there properties, for which semirandom star process is more
efficient than semirandom tree process?

Dominik Schmid Building spanning graphs in the semirandom tree process 24

Open problems

Improve τ(PH, σ) in the semirandom star process

Consider other models:

Each round, Builder is offered edges of
� Random hamilton cycle

� Random perfect matching

� k random edges

Are there properties, for which semirandom star process is more
efficient than semirandom tree process?

Dominik Schmid Building spanning graphs in the semirandom tree process 24

Open problems

Improve τ(PH, σ) in the semirandom star process

Consider other models:

Each round, Builder is offered edges of
� Random hamilton cycle

� Random perfect matching

� k random edges

Are there properties, for which semirandom star process is more
efficient than semirandom tree process?

Dominik Schmid Building spanning graphs in the semirandom tree process 24

Open problems

Improve τ(PH, σ) in the semirandom star process

Consider other models:

Each round, Builder is offered edges of
� Random hamilton cycle

� Random perfect matching

� k random edges

Are there properties, for which semirandom star process is more
efficient than semirandom tree process?

Dominik Schmid Building spanning graphs in the semirandom tree process 24

