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Power of two choices

Place n balls into n bins

Goal: Balance loads using minimal effort

� Applications in computer science

Which bin to choose for which ball?

Choose bin uniformly at random

Maximum load M(n) = Θ
(

log n
log log n

)
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Power of two choices

Place n balls into n bins
Goal: Balance loads using minimal effort
� Applications in computer science

Which bin to choose for which ball?

Choose two bins uniformly at random
Deterministically place ball into bin with fewer balls
Maximum load M(n) = Θ(log log n) Azar, Broder, Karlin, and Upfal (1999)

Exponential decrease of maximum load
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Erdős-Rényi random graph process

Empty graph G0 = ([n], ∅)

Sequentially add edges chosen uniformly at random

� em is chosen uniformly at random from
(
[n]
2

)
\ {e1, . . . , em−1}

� Gm = ([n], {e1, . . . , em})

∼ G(n,m) = random graph on n vertices
with m edges
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Erdős-Rényi random graph process

Empty graph G0 = ([n], ∅)

Sequentially add edges chosen uniformly at random

� em is chosen uniformly at random from
(
[n]
2

)
\ {e1, . . . , em−1}

� Gm = ([n], {e1, . . . , em})

∼ G(n,m) = random graph on n vertices
with m edges

Dominik Schmid Building spanning graphs in the semirandom tree process 5
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Phase transition in Gm

Emergence of the Giant component Erdős and Rényi, 1960

m = (1−ϵ)n
2 : Trees of order O(log n)

m = (1+ϵ)n
2 : Unique component of order Θ(n)

Delaying/accelerating the phase transition: The achlioptas process

Each step, sample two edges uniformly at random

� Pick one of those edges according to some rule

There exists a rule, s.t. whp Bohman and Frieze, 2001

GA
m has no Giant for m = 0.535n

There exists a rule, s.t. whp Bohman and Kravitz, 2006

GA
m has a Giant when m = 0.385n
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Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

In round t, a vertex v ∈ [n] is chosen uniformly at random

Builder picks any edge et incident to v

� Gt = ([n],Et) with Et = Et−1 ∪ et
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Semirandom star process

Question: How fast can Builder construct graphs with certain
properties?

Given graph property P and strategy σ

τ(P, σ) := min
t
{Gt ∈ P}

There exist strategies σ1, σ2, σ3 such that

τ(PC, σ1) = n − 1

Whp. τ(PPM, σ2) ≤ 1.206n Gao, MacRury, and Prałat (2022)

Whp. τ(PHC, σ3) ≤ 1.817n Frieze, Gao, MacRury, Prałat, and Sorkin (2023)
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Semirandom star process

Set G0 = ([n],E0) with E0 = ∅.

In round t, a vertex v ∈ [n] is chosen uniformly at random

Builder picks any edge et incident to v

� Gt = ([n],Et) with Et = Et−1 ∪ et

Dominik Schmid Building spanning graphs in the semirandom tree process 9
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Set G0 = ([n],E0) with E0 = ∅.

Sample random spanning star St uniformly at random

Builder picks any edge et ∈ E(St)
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Semirandom tree process

Set G0 = ([n],E0) with E0 = ∅.

Sample random spanning tree Tt uniformly at random

Builder picks any edge et ∈ E(Tt)

� Gt = ([n],Et) with Et = Et−1 ∪ et
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Connectedness in semirandom tree process

� There exists σ, such that τ(PC, σ) = n − 1
� Connectedness can be achieved deterministically in optimal time
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Previous results

There exist strategies σ1, σ2, σ3, such that whp

τ(PPM, σ1) ≤ n
2 + o

(
n4/5

)
Burova and Lichev (2022)

τ(PHC, σ2) ≤ n + o
(
n4/5

)
τ(Pmin,k, σ3) ≤ kn

2 + o
(
n1/2

)
Results are asymptotically optimal
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Building spanning graphs

H : (vertex-)spanning graph with maximum degree ∆ ≥ 3

PH : Containment of H

Erdős-Rényi graph process Gm :

τ(PH) ∼ n2− 1
∆

Semirandom star process:

∃σ : τ(PH, σ) ≤ 3∆n
2 (1 + o∆(1))

Ben-Eliezer, Gishboliner, Hefetz and Krivelevich (2020)

� H can have as many as ∆n
2 edges

� Need at least ∆n
2 rounds
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Main result

Theorem
[Anastos, Collares, Erde, Kang, S., Sorkin, 2024+]

Let H be graph with maximum degree ∆. Then, in the semirandom
tree process, there is a strategy σ such that whp

τ(PH, σ) ≤
∆n
2

(1 + o∆(1))

o∆(1) ⇐⇒ tending to 0 as ∆ → ∞

If ∆ is a small constant, τ(PH, σ) = Θ(n)

Asymptotically optimal for ∆ = ∆(n) → ∞
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Notation

H : target graph with maximum degree ∆

Gt = ([n],Et) : Builder’s graph at time t

Find copy of H in Gt

Embedding Φ: V(H) → [n]
� ∀ vw ∈ E(H) : Φ(v)Φ(w) ∈ Et

v3

v4

v5

v1 v2
H

Φ

Gt

Φ(v3)

Φ(v4)

Φ(v5)

Φ(v1) Φ(v2)

Φ′

Φ(v3) Φ(v4)

Φ(v5)

Φ(v1)

Φ(v2)
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Outline of strategy

∆n
2 (1 + o∆(1)) rounds to ‘spend’

Phase I: Greedy strategy

� ∆n
2 rounds

� Build ‘almost complete’ copy of H

Phase II: Replacement strategy

� ∆n
2 · o∆(1) rounds

� Extend to a complete copy
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Phase I: Greedy strategy

Fix arbitrary embedding Φ

Claim edges corresponding to this embedding, whenever offered

� M(t) := {Φ(v)Φ(w) | vw ∈ E(H)} \ Et

How efficient is this strategy?

P [E(Tt) ∩ M(t) ̸= ∅]

|M(t)| ≫ n : Claim edge almost every round

|M(t)| ≈ n : Claim edge with constant probability

|M(t)| ≪ n : Almost never claim edge
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Limitations of the greedy strategy

Fix edge e

P [e ∩ E(Tt)] =
n−1
(n

2)
= 2

n

Coupon collector problem
� Need Θ(n log n) rounds to claim ‘last’ n edges

F(t,Φ) := vertices with missing edges (failed vertices)

Set t0 := ∆n
2

Lemma
Whp |F(t0,Φ)| ≤ exp

(
−∆1−ϵ

)
n
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Phase II: Adapting the embedding Φ

v ∈ F(t,Φ)

� Swap v with w
Φ′ : Φ′(v) = Φ(w) and Φ′(w) = Φ(v)

Swap only if v,w /∈ F(t,Φ′)

Γ(v,w) : Set of edges required for successful swap

� Swap if Γ(v,w) ∈ Et

However:

Coupon collector argument

� P [Γ(v,w) ⊆ Et] = o(1)
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Phase II: Swapping simultaneously

For each v ∈ F(t,Φ) define large set C(v) of candidate vertices

Simultaneously try swapping failed vertices with candidate
vertices
P [∃w ∈ C(v) : Γ(v,w) ⊆ Et] = ϵ > 0

F(t,Φ)

v1

v2

v3

V \ F(t,Φ)

C(v1)

C(v2)

C(v3)

Update embedding by swapping all possible vertices
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Phase II: Swapping in batches

Proceed in batches of rounds

Swap constant fraction of failed vertices in each batch

Number of required rounds is proportional to number of failed
vertices

� Total number of rounds is dominated by first batch

� Run strategy until F = ∅

Set t1 := ∆n
2 (1 + o∆(1))

Lemma
There exists an embedding Φ, s.t whp F(t1,Φ) = ∅
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Recap

τ(PH, σ) ≤ ∆n
2 (1 + o∆(1))

Use ‘almost all’ rounds in greedy phase

� |F| ≤ exp
(
−∆1−ϵ

)
n

Swap remaining vertices in batches

� Required time t∗ dominated by first batch
� t∗ ≤ ∆n

2 · o∆(1)

⇐⇒ |F| ≤ exp
(
−∆1+ϵ

)
n

� Gap between two phases - requires more involved analysis

F = [n]

t = 0

F = ∅

t = ∆n
2 (1 + o∆(1))

Greedy Phase
∆n
2 rounds

|F| ≤ exp
(
−∆1−ϵ

)
n

Phase II
∆n
2 · o∆(1) rounds

|F| ≤ exp
(
−∆1+ϵ

)
n
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Open problems

Improve τ(PH, σ) in the semirandom star process

Consider other models:

Each round, Builder is offered edges of
� Random hamilton cycle

� Random perfect matching

� k random edges

Are there properties, for which semirandom star process is more
efficient than semirandom tree process?
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