Explosive appearance of cores and bootstrap percolation on lattices

Lyuben Lichev, IST Austria

Lyuben Lichev Explosive appearance of cores and bootstrap percolation on lattices Brno, 16.11.2024 1 / 1

Easy to construct: iteratively delete vertices of smaller degree.

For $k \ge 3$, Łuczak showed in 1991 that the appearance of a k-core in the random graphs process undergoes a discontinuous phase transition.

Easy to construct: iteratively delete vertices of smaller degree.

For $k \ge 3$, Łuczak showed in 1991 that the appearance of a k-core in the random graphs process undergoes a discontinuous phase transition.

Easy to construct: iteratively delete vertices of smaller degree.

For $k \ge 3$, Łuczak showed in 1991 that the appearance of a k-core in the random graphs process undergoes a discontinuous phase transition.

Easy to construct: iteratively delete vertices of smaller degree.

For $k \ge 3$, Łuczak showed in 1991 that the appearance of a k-core in the random graphs process undergoes a discontinuous phase transition.

Ambient space: $n \times n$ torus in

Dynamic random initial condition: vertices arrive consecutively in a random order.

Object of interest: *k*-core of the graph induced by the present vertices.

A b

Ambient space: $n \times n$ torus in

Dynamic random initial condition: vertices arrive consecutively in a random order.

Object of interest: k-core of the graph induced by the present vertices.

< 6 k

.∃ ▶ ∢

Ambient space: $n \times n$ torus in

Dynamic random initial condition: vertices arrive consecutively in a random order.

Object of interest: *k*-core of the graph induced by the present vertices.

< 6 b

On the square lattice:

- the 2-core emerges as a union of (possibly intersecting) short cycles,
- the 4-core emerges when all vertices appeared.

What about the 3-core?

Theorem (Bollobás, Duminil-Copin, Morris, Smith, 2014)

For large C > 0 and small c > 0, w.h.p.

- at time $n^2 Cn^2 / \log n$, the 3-core is empty.
- at time $n^2 cn^2 / \log n$, the 3-core contains $n^2 o(n^2)$ vertices.

Theorem (Hartarsky, L., 2024++)

W.h.p. the size of the 3*-core jumps from 0 to* $n^2 - o(n^2)$ *in a single step.*

On the square lattice:

- the 2-core emerges as a union of (possibly intersecting) short cycles,
- the 4-core emerges when all vertices appeared.

What about the 3-core?

Theorem (Bollobás, Duminil-Copin, Morris, Smith, 2014)

For large C > 0 and small c > 0, w.h.p.

- at time $n^2 Cn^2 / \log n$, the 3-core is empty.
- at time $n^2 cn^2 / \log n$, the 3-core contains $n^2 o(n^2)$ vertices.

Theorem (Hartarsky, L., 2024++)

W.h.p. the size of the 3*-core jumps from 0 to* $n^2 - o(n^2)$ *in a single step.*

On the square lattice:

- the 2-core emerges as a union of (possibly intersecting) short cycles,
- the 4-core emerges when all vertices appeared.

What about the 3-core?

Theorem (Bollobás, Duminil-Copin, Morris, Smith, 2014)

For large C > 0 and small c > 0, w.h.p.

- at time $n^2 Cn^2 / \log n$, the 3-core is empty.
- at time $n^2 cn^2 / \log n$, the 3-core contains $n^2 o(n^2)$ vertices.

Theorem (Hartarsky, L., 2024++)

W.h.p. the size of the 3*-core jumps from 0 to* $n^2 - o(n^2)$ *in a single step.*

On the square lattice:

- the 2-core emerges as a union of (possibly intersecting) short cycles,
- the 4-core emerges when all vertices appeared.

What about the 3-core?

Theorem (Bollobás, Duminil-Copin, Morris, Smith, 2014)

For large C > 0 and small c > 0, w.h.p.

- at time $n^2 Cn^2 / \log n$, the 3-core is empty.
- at time $n^2 cn^2 / \log n$, the 3-core contains $n^2 o(n^2)$ vertices.

Theorem (Hartarsky, L., 2024++)

W.h.p. the size of the 3*-core jumps from 0 to* $n^2 - o(n^2)$ *in a single step.*

On the square lattice:

- the 2-core emerges as a union of (possibly intersecting) short cycles,
- the 4-core emerges when all vertices appeared.

What about the 3-core?

Theorem (Bollobás, Duminil-Copin, Morris, Smith, 2014)

For large C > 0 and small c > 0, w.h.p.

- at time $n^2 Cn^2 / \log n$, the 3-core is empty.
- at time $n^2 cn^2 / \log n$, the 3-core contains $n^2 o(n^2)$ vertices.

Theorem (Hartarsky, L., 2024++)

W.h.p. the size of the 3-core jumps from 0 to $n^2 - o(n^2)$ in a single step.

State space: $\{\circ, \bullet\}^{n \times n}$ (\circ/\bullet =healthy/infected)

Vertex x in state \circ with at least 2 neighbours \bullet : becomes \bullet

• never becomes •

On the square lattice: 3-core process \iff 2-neighbour bootstrap percolation in the complement

▲ □ ▶ → □ ▶

State space: $\{\circ, \bullet\}^{n \times n}$ (\circ/\bullet =healthy/infected)

Vertex x in state o with at least 2 neighbours •: becomes •

• never becomes •

State space: $\{\circ, \bullet\}^{n \times n}$ (\circ/\bullet =healthy/infected)

Vertex x in state o with at least 2 neighbours •: becomes •

• never becomes \circ

State space: $\{\circ, \bullet\}^{n \times n}$ (\circ/\bullet =healthy/infected)

Vertex x in state o with at least 2 neighbours •: becomes •

 \bullet never becomes \circ

State space: $\{\circ, \bullet\}^{n \times n}$ (\circ/\bullet =healthy/infected)

Vertex x in state o with at least 2 neighbours •: becomes •

• never becomes \circ

On the square lattice: 3-core process \iff 2-neighbour bootstrap percolation in the complement

State space: $\{\circ, \bullet\}^{n \times n}$ (\circ/\bullet =healthy/infected)

Vertex x in state o with at least 2 neighbours •: becomes •

• never becomes \circ

State space: $\{\circ, \bullet\}^{n \times n}$ (\circ/\bullet =healthy/infected)

Vertex x in state o with at least 2 neighbours •: becomes •

• never becomes \circ

State space: $\{\circ, \bullet\}^{n \times n}$ (\circ/\bullet =healthy/infected)

Vertex x in state o with at least 2 neighbours •: becomes •

• never becomes \circ

On the square lattice: 3-core process \iff 2-neighbour bootstrap percolation in the complement

State space: $\{\circ, \bullet\}^{n \times n}$ (\circ/\bullet =healthy/infected)

Vertex x in state o with at least 2 neighbours •: becomes •

• never becomes \circ

On the square lattice: 3-core process \iff 2-neighbour bootstrap percolation in the complement

State space: $\{\circ, \bullet\}^{n \times n}$ (\circ/\bullet =healthy/infected)

Vertex x in state o with at least 2 neighbours •: becomes •

• never becomes \circ

On the square lattice: 3-core process \iff 2-neighbour bootstrap percolation in the complement

State space: $\{\circ, \bullet\}^{n \times n}$ (\circ/\bullet =healthy/infected)

Vertex x in state o with at least 2 neighbours •: becomes •

 \bullet never becomes \circ

On the square lattice: 3-core process \iff 2-neighbour bootstrap percolation in the complement

State space: $\{\circ, \bullet\}^{n \times n}$ (\circ/\bullet =healthy/infected)

Vertex x in state \circ with at least 2 neighbours \bullet : becomes \bullet

• never becomes \circ

On the square lattice: 3-core process \iff 2-neighbour bootstrap percolation in the complement

State space: $\{\circ, \bullet\}^{n \times n}$ (\circ/\bullet =healthy/infected)

Vertex x in state \circ with at least 2 neighbours \bullet : becomes \bullet

• never becomes \circ

On the square lattice: 3-core process \iff 2-neighbour bootstrap percolation in the complement

State space: $\{\circ, \bullet\}^{n \times n}$ (\circ/\bullet =healthy/infected)

Vertex x in state \circ with at least 2 neighbours \bullet : becomes \bullet

• never becomes \circ

On the square lattice: 3-core process \iff 2-neighbour bootstrap percolation in the complement

State space: $\{\circ, \bullet\}^{n \times n}$ (\circ/\bullet =healthy/infected)

Vertex x in state \circ with at least 2 neighbours \bullet : becomes \bullet

• never becomes \circ

On the square lattice: 3-core process \iff 2-neighbour bootstrap percolation in the complement

State space: $\{\circ, \bullet\}^{n \times n}$ (\circ/\bullet =healthy/infected)

Vertex x in state \circ with at least 2 neighbours \bullet : becomes \bullet

• never becomes \circ

On the square lattice: 3-core process \iff 2-neighbour bootstrap percolation in the complement

State space: $\{\circ, \bullet\}^{n \times n}$ (\circ/\bullet =healthy/infected)

Vertex x in state \circ with at least 2 neighbours \bullet : becomes \bullet

• never becomes \circ

On the square lattice: 3-core process \iff 2-neighbour bootstrap percolation in the complement

On the square lattice:

- a single does infect everyone in 1-neighbour bootstrap (supercritical).
- many finite sets of ∘ remain ∘ forever in 3-neighbour bootstrap (subcritical).

2-neighbour bootstrap interpolates between the two: a critical model.

Theorem (Bollobás, Duminil-Copin, Morris, Smith, 2014)

In 2-neighbour bootstrap, for large C > 0 and small c > 0, w.h.p.

- Cn²/log n vertices infect the entire torus.
- $cn^2/\log n$ vertices do not infect the entire torus.

Theorem (Hartarsky, L., 2024++)

W.h.p. the size of the infected set grows from $O(n^2/\log n)$ to n^2 in one step.

Lyuben Lichev

Explosive appearance of cores and bootstrap percolation on lattices

On the square lattice:

- a single does infect everyone in 1-neighbour bootstrap (supercritical).
- many finite sets of
 oremain
 orever in 3-neighbour bootstrap (subcritical).

2-neighbour bootstrap interpolates between the two: a critical model.

Theorem (Bollobás, Duminil-Copin, Morris, Smith, 2014)

In 2-neighbour bootstrap, for large C > 0 and small c > 0, w.h.p.

- Cn²/log n vertices infect the entire torus.
- $cn^2/\log n$ vertices do not infect the entire torus.

Theorem (Hartarsky, L., 2024++)

W.h.p. the size of the infected set grows from $O(n^2/\log n)$ to n^2 in one step.

Lyuben Lichev

Explosive appearance of cores and bootstrap percolation on lattices

Brno, 16.11.2024 6 / 11

On the square lattice:

- a single does infect everyone in 1-neighbour bootstrap (supercritical).
- many finite sets of
 oremain
 orever in 3-neighbour bootstrap (subcritical).

2-neighbour bootstrap interpolates between the two: a critical model.

Theorem (Bollobás, Duminil-Copin, Morris, Smith, 2014)

In 2-neighbour bootstrap, for large C > 0 and small c > 0, w.h.p.

- $Cn^2/\log n$ vertices infect the entire torus.
- $cn^2/\log n$ vertices do not infect the entire torus.

Theorem (Hartarsky, L., 2024++)

W.h.p. the size of the infected set grows from $O(n^2/\log n)$ to n^2 in one step.

Lyuben Lichev

Explosive appearance of cores and bootstrap percolation on lattices

On the square lattice:

- a single does infect everyone in 1-neighbour bootstrap (supercritical).
- many finite sets of
 oremain
 orever in 3-neighbour bootstrap (subcritical).

2-neighbour bootstrap interpolates between the two: a critical model.

Theorem (Bollobás, Duminil-Copin, Morris, Smith, 2014)

In 2-neighbour bootstrap, for large C > 0 and small c > 0, w.h.p.

- $Cn^2/\log n$ vertices infect the entire torus.
- $cn^2/\log n$ vertices do not infect the entire torus.

Theorem (Hartarsky, L., 2024++)

W.h.p. the size of the infected set grows from $O(n^2/\log n)$ to n^2 in one step.

Lyuben Lichev

Explosive appearance of cores and bootstrap percolation on lattices

A b

A b

6

$\tau = {\rm smallest}$ time when everyone becomes \bullet

Sharp threshold result: $\tau = \Theta(n^2 / \log n)$ w.h.p.

At time $\tau - 1$, a typical box Λ of size $D(\log n)^3 \times D(\log n)^3$ whose centre is \circ contains only small groups of \bullet -s far from each other.

Conclusion: it stays almost stationary without •-s helping from outside.

If its centre becomes • using •-s outside Λ , then a large infected rectangle is found. Such rectangle would spread and infect the entire torus, impossible at time $\tau - 1$.

$au = { m smallest}$ time when everyone becomes ullet

Sharp threshold result: $\tau = \Theta(n^2 / \log n)$ w.h.p.

At time $\tau - 1$, a typical box Λ of size $D(\log n)^3 \times D(\log n)^3$ whose centre is \circ contains only small groups of \bullet -s far from each other.

Conclusion: it stays almost stationary without •-s helping from outside.

If its centre becomes • using •-s outside Λ , then a large infected rectangle is found. Such rectangle would spread and infect the entire torus, impossible at time $\tau - 1$.

 $\tau = {\rm smallest}$ time when everyone becomes ${\scriptstyle \bullet}$

Sharp threshold result: $\tau = \Theta(n^2 / \log n)$ w.h.p.

At time $\tau - 1$, a typical box Λ of size $D(\log n)^3 \times D(\log n)^3$ whose centre is \circ contains only small groups of \bullet -s far from each other.

Conclusion: it stays almost stationary without --s helping from outside.

If its centre becomes • using •-s outside Λ , then a large infected rectangle is found. Such rectangle would spread and infect the entire torus, impossible at time $\tau - 1$.

不同 トイモトイモ

 $\tau = {\rm smallest}$ time when everyone becomes ${\scriptstyle \bullet}$

Sharp threshold result: $\tau = \Theta(n^2 / \log n)$ w.h.p.

At time $\tau - 1$, a typical box Λ of size $D(\log n)^3 \times D(\log n)^3$ whose centre is \circ contains only small groups of \bullet -s far from each other.

Conclusion: it stays almost stationary without •-s helping from outside.

If its centre becomes • using •-s outside Λ , then a large infected rectangle is found. Such rectangle would spread and infect the entire torus, impossible at time $\tau - 1$.

 $\tau = {\rm smallest}$ time when everyone becomes ${\scriptstyle \bullet}$

Sharp threshold result: $\tau = \Theta(n^2 / \log n)$ w.h.p.

At time $\tau - 1$, a typical box Λ of size $D(\log n)^3 \times D(\log n)^3$ whose centre is \circ contains only small groups of \bullet -s far from each other.

Conclusion: it stays almost stationary without •-s helping from outside.

If its centre becomes • using •-s outside Λ , then a large infected rectangle is found. Such rectangle would spread and infect the entire torus, impossible at time $\tau - 1$.

An extension

We manage to extend our hitting-time result to other critical models.

Fix $K \subseteq \mathbb{R}^2$ convex and invariant under $\pi/2$ -rotation, and $\mathcal{K}_s = \mathbb{Z}^2 \cap (sK)$. Choose

$$r = 1 + \min_{u \in \mathbb{R}^2 \setminus \{0\}} \left| \left\{ x \in \mathcal{K}_s : \langle x, u \rangle < 0 \right\} \right|.$$

Theorem (Hartarsky, L., 2024++)

In r-neighbour bootstrap with neighbourhood \mathcal{K}_s for large s, the size of the infected set grows from $O(n^2/\log n)$ to n^2 in one step.

An extension

We manage to extend our hitting-time result to other critical models.

Fix $K \subseteq \mathbb{R}^2$ convex and invariant under $\pi/2$ -rotation, and $\mathcal{K}_s = \mathbb{Z}^2 \cap (sK)$. Choose

$$r = 1 + \min_{u \in \mathbb{R}^2 \setminus \{0\}} \left| \left\{ x \in \mathcal{K}_s : \langle x, u \rangle < 0 \right\} \right|.$$

Theorem (Hartarsky, L., 2024++)

In r-neighbour bootstrap with neighbourhood \mathcal{K}_s for large s, the size of the infected set grows from $O(n^2/\log n)$ to n^2 in one step.

An extension

We manage to extend our hitting-time result to other critical models.

Fix $K \subseteq \mathbb{R}^2$ convex and invariant under $\pi/2$ -rotation, and $\mathcal{K}_s = \mathbb{Z}^2 \cap (sK)$. Choose

$$r = 1 + \min_{u \in \mathbb{R}^2 \setminus \{0\}} \left| \left\{ x \in \mathcal{K}_s : \langle x, u \rangle < 0 \right\} \right|.$$

Theorem (Hartarsky, L., 2024++)

In r-neighbour bootstrap with neighbourhood \mathcal{K}_s for large s, the size of the infected set grows from $O(n^2/\log n)$ to n^2 in one step.

Why is it harder?

No rectangle process for large neighbourhoods

(a)

3

Why is it harder?

No rectangle process for large neighbourhoods

Thank you for your attention!

< 17 ▶