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Counting Perfect Matchings in Dirac Graphs

Counting perfect matchings in Dirac graphs

A graph G on n vertices is called Dirac if δ(G) ≥ n/2.
By Dirac’s theorem, there is at least one Hamiltonian cycle in G.
When n ∈ 2N, there are at least two perfect matchings.

In fact, there are exponentially many perfect matchings:

Theorem (Sárközy, Selkow and Szemerédi [SSS03])
Let G be a Dirac graph on n ∈ 2N vertices and Φ(G) be the number of
perfect matchings in G. Then Φ(G) ≥ Cn/2(n − 1)!! for some absolute
constant C > 0.

This is tight up to exp(O(n)) by comparing to Φ(Kn).

Cuckler and Kahn shows what C should be by establishing the connection
with a parameter called “graph entropy”.
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Counting Perfect Matchings in Dirac Graphs

Graph entropy

Definition (Fractional perfect matching(FPM))
Let x : E(G) → [0, 1] be a weighting on edges. We call x a fractional
perfect matching if

∑
e:e∋v x[e] = 1 for all vertices v ∈ V.

Definition (Graph entropy)
Given a FPM x in a graph G, the entropy of x is defined as
h(x) =

∑
e∈E(G) x[e] log2(1/x[e]). The graph entropy h(G) := sup h(x)

where the supremum is taken over all FPMs.

Note that h(G) is efficiently computable because it is the solution of a
convex optimization problem.
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Counting Perfect Matchings in Dirac Graphs

Counting using entropy

Theorem (Cuckler and Kahn [CK09b, CK09a])
Let G be a Dirac graph on n ∈ 2N vertices. Then,
Φ(G) = exp2(h(G)− (1/2) log2 e · n − o(n)).

Both a lower and an upper bound.
It is tight up to exp(o(n)) for all Dirac graphs.
Reduce counting perfect matchings to understanding h(G).

Theorem (Cuckler and Kahn [CK09b])
Let G be a Dirac graph on n ∈ 2N vertices and p := δ(G)/(n − 1). Then,
Φ(G) ≥ (1 − o(1))n/2 · Φ(Kn)pn/2.

This result is tight up to exp(o(n)) (for some Dirac graphs).
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Counting Perfect Matchings in Dirac hypergraphs

Hypergraph terminology

Let k ∈ N≥2 and 1 ≤ d ≤ k − 1.
k-uniform hypergraph G (k-graph)
minimum d-degree δd(G)
minimum codegree δk−1(G)
perfect matchings

In the rest of the talk, we always assume n ∈ kN.
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Counting Perfect Matchings in Dirac hypergraphs

Dirac hypergraphs

Definition (d-Dirac threshold)
Given 1 ≤ d ≤ k − 1, let md(k, n) is the smallest integer m such that
δd(G) ≥ m implies G contains a perfect matching. Define the d-Dirac
threshold as µd := limn→∞ md(k, n)/

(n−d
k−d

)
.

The limit exists for all d (Ferber and Kwan [FK22a]).
µd = 1/2 for 3k/8 ≤ d ≤ k − 1 (Pikhurko [Pik08], Frankl and
Kupavskii [FK22b]).
For 1 ≤ d ≤ k − 1, there is a precise conjecture on what the value
should be (Hàn, Person and Schacht [HPS09], Kühn and Osthus
[KO09]).

Definition (d-Dirac k-graph)
For any 1 ≤ d ≤ k − 1, we call G a d-Dirac k-graph if
δd(G) ≥ (µd + γ)

(n−d
k−d

)
for some constant γ > 0.
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Counting Perfect Matchings in Dirac hypergraphs

Counting perfect matchings in Dirac hypergraphs

By definition, there is at least one perfect matching in a d-Dirac k-graph
G. In fact, there are exponentially many perfect matchings:

Theorem (Glock, Gould, Joos, Kühn and Osthus [GGJ+21], Montgomery
and Pavez-Signé [MPS23], Kelly, Müyesser and Pokrovskiy [KMP23]
Kang, Kelly, Kühn, Osthus and Pfenninger [KKK+22], Pham, Sah,
Sawhney and Simkin [PSSS22])
Let k ∈ N and 1 ≤ d ≤ k − 1. Let G be a d-Dirac k-graph on n vertices.
Then,

Φ(G) ≥ exp2((1 − 1/k)n log2 n − Cn) ,

for some absolute constant C > 0.

This is tight up to exp(O(n)) by comparing to Φ(K(k)
n ).
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Counting Perfect Matchings in Dirac hypergraphs

Counting perfect matchings in Dirac hypergraphs (cont.)

Under the codegree condition, a more precise result is known:

Theorem (Ferber, Krivelevich and Sudakov [FKS14], Ferber, Hardiman and
Mond [FHM23])
Let k ∈ N and G be a (k − 1)-Dirac k-graph on n vertices. Then,

Φ(G) ≥ (1 − o(1))n/k · Φ(K(k)
n )pn/k ,

where p = δk−1(G)/
(n−k+1

1
)
.

This is tight up to exp(o(n))).
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Our Results

Results

Theorem (Kwan, Safavi, W. 24+)
Let k ∈ N≥2 and 1 ≤ d ≤ k − 1. Let G be a d-Dirac k-graph on n vertices.
Then, Φ(G) = exp2(h(G)− (1 − 1/k) log2 e · n − o(n)).

This result answers if the entropy approach can be extended to
hypergraphs asked by Glock, Gould, Joos, Kühn and Osthus [GGJ+21].

Theorem (Kwan, Safavi, W. 24+)

Let d ≥ k/2. Then, Φ(G) ≥ (1 − o(1))n/k · Φ(K(k)
n )pn/k, where

p := δd(G)/
(n−d

k−d
)
.

This results extends the more precise counting result from d = k − 1 to
d ≥ k/2.
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Proof Sketch

Proof overview

Theorem (Kwan, Safavi, W. 24+)
Let k ∈ N≥2 and 1 ≤ d ≤ k − 1. Let G be a d-Dirac k-graph on n vertices.
Then, Φ(G) = exp2(h(G)− (1 − 1/k) log2 e · n − o(n)).

The upper bound: “entropy method”. This part can be deduced from
Kahn’s work on Sharmir’s problem [Kah23].
The lower bound: “random greedy matching process” with a “good”
starting point.

Theorem (Kwan, Safavi, W. 24+)

Let d ≥ k/2. Then, Φ(G) ≥ (1 − o(1))n/k · Φ(K(k)
n )pn/k, where

p := δd(G)/
(n−d

k−d
)
.

Construct a large entropy FPM by reducing to the graph case.
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Proof Sketch

Random greedy matching process

Let G be a d-Dirac k-graph and x⋆ be the entropy-maximizing FPM in G.
Consider the following random process:

Repeat for (1 − o(1))n/k rounds: remove an edge e with probability
proportional to x⋆[e] and V(e).
Find a perfect matching in the remaining hypergraph.

Question: Isolated vertex? No perfect matching in the remained graph?

Definition (Well-distributed FPM)
Given a k-graph G, a FPM x in G and a D ≥ 1, we say x is
D-well-distributed if 1/(Dnk−1) ≤ x[e] ≤ D/nk−1.

If x⋆ is C-well-distributed, then we can keep track of the degree of all
subsets of size at most k − 1, which implies that at the end, the remained
graph is still d-Dirac (thanks to the γ-slack in δd(G)).
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Proof Sketch

Random greedy matching process (cont.)

Question: How to estimate Φ(G) via this process?

The process defines a distribution over (ordered) perfect matchings in G.
We can analyze the entropy of this random variable and use it to lower
bound the number of perfect matchings:

Fact (Entropy basics)
Let X be a random perfect matching in G and H(X) be the binary entropy.

H(X) ≤ log Φ(G) and the equality holds if and only if X is a uniform
distribution over perfect matchings.
H(X) = H(X1) + H(X2 | X1) + · · ·+ H(Xn/k | X1, . . . ,Xn/k−1).

If x⋆ is C-well-distributed, we can keep track of
∑

e∈E(i) x⋆[e] and∑
e∈E(i) x⋆[e] log(1/x⋆[e]) then we can lower bound H(Xi | X1, . . . ,Xi−1).
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Proof Sketch

Find a well-distributed FPM

We do not know if x⋆ is C-well-distributed (this is the major difference
with the graph case). However, we can find an approximately good one so
that the above reasonings still hold approximately.

Lemma (Existence of approximately well-distributed FPM)
Let G be a d-Dirac k-graph and ε > 0. There exists a
O(ε−3k)-well-distributed FPM x satisfying h(x⋆)− h(x) ≤ εn.

Step 1: Find a C-well-distributed FPM x̂.
This can be deduced from the existence of spread measure with a
simple random adjustment.
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Proof Sketch

Find a well-distributed FPM (cont.)

Step 2: Define x = (1 − ε/C) · x⋆ + (ε/C) · x̂.
By construction, h(x⋆)− h(x) ≤ εn and x[e] ≥ ε−3k/nk−1.

Step 3: Perform shifting operations on (weighted) shifting structures
iteratively (Hàn, Person and Schacht [HPS09]).

f1

f2

f3

e1 e2 e3

x[e1] · x[e2] · x[e3] > x[f1] · x[f2] · x[f3]

(x[e1]−∆) · (x[e2]−∆) · (x[e3]−∆) =
(x[f1] + ∆) · (x[f2] + ∆) · (x[f3] + ∆)
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Proof Sketch

Lower bound on entropy when d ≥ k/2

To give a lower bound on h(G) for a d-Dirac k-graph G for d ≥ k/2, we
construct a FPM witnessing it.

Lemma ([CK09b])
Let G be a bipartite graph on n + n vertices with δ(G) ≥ n/2. Then,
h(G) ≥ n log(δ(G)).

Consider the following auxiliary bipartite graph G ′:
One side contains all size-d subsets, each duplicated

( n
k−d

)
times and

another all size-(k − d) subsets, each duplicated
(n

d
)

times.
Put an edge whenever the corresponding d-set and (k − d)-set forms
an edge.
Apply lemma in G′ to get a FPM and translate it back to G.
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Future Directions

Future Directions

1 We have reduced the problem of counting perfect matchings to
understanding the hypergraph entropy. Can we prove a lower bound
tight up to exp(o(n)) when d < k/2?

2 Our counting results are asymptotic because of the γ slack in the
d-degree condition. Can we make them precise by removing the slack?

3 Can we generalize the entropy approach to counting Hamiltonian
cycles or other structures?
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Future Directions

The end

Thank You for listening! Any
question?
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