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Chapte 2. BASICS - BASIC CONCEPTS and RESULTS

In this chapter several basic concepts of quantum information
processing, as well as several very basic but very important
results and methods, are introduced.
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SUPERPOSITION PRINCIPLE

Perhaps the most important principle of quantum pure states is

superposition principle that says that any ”proper” superposition

of quantum states is again a quantum state.

Technically, this means that if |φi〉, 1 ≤ i ≤ n, are pure states and
∑n
i=1 |ai|2 = 1, then also

n
∑

i=1
ai|φi〉

is a quantum pure state.
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QUBITS

A quantum bit, or qubit, is a unit vector

α|0〉 + β|1〉
in a two dimensional vector (Hilbert) space for which a particular basis ,

denoted {|0〉, |1〉}, has been fixed.

EXAMPLE: Representation of qubits by

(a) electron in a Hydrogen atom (b) a spin-1
2

particle

n=1

Basis states

|0> |1>H H

Hamplitudes

(a) (b)

|0> = | > |1> = |

General state

=

amplitudes

α

β

α|0> + β|1>

|α| + |β| = 1

α + β

| > =  α| > + β| >

|α| +  |β| =  1

2

2 2

>

General state

2

n=1

n=2n=2

Basis states

Figure 1: Qubit representations by energy levels of an electron in a hydrogen atom and by a spin-1
2

particle. The condition |α|2 + |β|2 = 1 is a legal one if |α|2 and

|β|2 are to be the probabilities of being in one of two basis states (of electrons or photons).

Jozef Gruska October 5, 2016 3



Quantum Computing 2, Basics - Fall 2015

HILBERT SPACE H2

STANDARD (COMPUTATIONAL) BASIS DUAL BASIS

|0〉, |1〉 |0′〉, |1′〉








1
0

















0
1



















1√
2
1√
2





















1√
2

− 1√
2











Hadamard matrix (Hadamard operator in the standard basis)

H =
1√
2









1 1
1 −1









has properties

H|0〉 = |0′〉 H|0′〉 = |0〉
H|1〉 = |1′〉 H|1′〉 = |1〉

transforms one of the basis into another one.
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TO REMEMBER

Whenever we talk about qubits and quantum computation in

general, a choice of a fixed basis (usually computational) is

expected with respect to which all statements are made.
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UNIVERSAL SET of ONE-QUBIT GATES

Hadamard gate and the following phase shift gate

φ =









1 0
0 eiφ









with notation

|x>
φ

e ixφ|x>

form a universal set of gates for one-qubit circuits.

Two Hadamard gates and two phase shift gates can generate the most general

pure state of a single qubit

|0>
2θ π/2+φ

cos + eiφsinHH HH θ||0>> θ||1>>

General form of a unitary matrix of degree 2

U = eiγ








eiα 0
0 e−iα

















cos θ i sin θ
i sin θ cos θ

















eiβ 0
0 e−iβ








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GENERAL FORM of QUBITS

Qubit state

|φ〉 = α|0〉 + β|1〉
is pysically undistinguishable from the state obtained from|φ〉 by a global

phase factor eiφ:
eiφα|0〉 + eiφβ|1〉

but it is physically different from the state |φ〉 if relative phase factor is used

α|0〉 + eiφβ|1〉
The most general state of a single qubit is therefore

cos(
θ

2
)|0〉 + eiφ sin(

θ

2
)|1〉.

(θ
2

is used instead of θ in order to be consistent with Bloch sphere
representation of qubits as discussed in the following slide.)
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QUBIT REPRESENTATION

There are several ways to represent qubits as points on a unit sphere:
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One way to represent states of qubits is as points on the surface of a unit Riemann sphere,

where North and South poles correspond to the basis states (bits) (see Figure a).1

Qubits can be represented also by points on a Bloch sphere (called also Poincaré sphere),

and (see Figure b), using the spherical coordinate system.

This representation is based on the fact that any qubit can be represented as

cos θ
2
|0〉 + eiφ sin θ

2
|1〉.

A qubit unitary operation = rotation

Pauli gates σx, σy and σz correspond to rotations about x-, y- and z-axes of the Bloch

sphere.
1The Riemann sphere is a sphere of unit radius whose equatorial plane is the complex plane whose center is the origin of the plane. One qubit state |φ〉 = α|0〉 + β|1〉 can be represented by a point

on a Riemann sphere as follows.If β 6= 0 we mark in the complex plane the point P that represents the number α

β
and then we project P from the South Pole onto the sphere to get the point P ′ that then

represents |φ〉. If α = 0 one gets the North Pole this way; if β = 0 the South Pole is the limit (Penrose, 1994).
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REALISATION of ROTATION on SPIN-1/2 PARTICELS

• For states of standard and dual basis of spin-1/2 particles one often uses

the following notation:

|0〉 = | ↑〉, |1〉 = | ↓〉, | →〉 = 1√
2
(|0〉 + |1〉), | ←〉 = 1√

2
(|0〉 − |1〉)

• If such a particle, initially in state |0〉, is put into a magnetic field it starts (its

spin-orientation) to rotate.

Let t be time for a full rotation.

• After rotation time t/4 the particle will be in the state

| →〉 = 1√
2
(|0〉 + |1〉);

• After rotation time t/2 the particle will be in the state

|1〉 = | ↓〉;
Jozef Gruska October 5, 2016 9
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• After rotation time 3t/4 the particle will be in the state

| ←〉 = 1√
2
(|0〉 − |1〉);

• In all other times the particle will be in all other potential superpositions of

two basis states.
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QUBIT MEASUREMENT

A qubit state can “contain” unbounded large amount of clasical information.

However, a quantum state cannot be always fully identified.

By a measurement of the qubit state

α|0〉 + β|1〉
with respect to the basis

|0〉, |1〉
we can obtain only a binary classical information and a basis, state and only in

the following random way:

0 and |0〉 with probability |α|2

1 and |1〉 with probability |β|2
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Quantum
world

Classical
world

{|0’’’>,|1’’’>}
|ϕ>

|ϕ> = α |0> + β|1>
= α  |0  > + β  |1  >
= α   |0   >+β   |1   >
= α   |0   >+β   |1   >

’ ’ ’ ’
’’ ’’ ’’ ’’

’’’ ’’’ ’’’ ’’’

measurement wrt. {|0>,|1>}

measurement wrt. {|0’>,|1’>|measurement wrt.

measurement wrt. {|0’’>,|1’’>|
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EXAMPLE 1

If the state

|0〉
is measured with respect to the standard (called also Boolean or computational) basis {|0〉, |1〉},
then we get as the outcome

0

with probability 1 and the state collapses

to itself.

If the state

|0〉
is measured with respect to the dual basis {|0′〉, |1′〉}, then we get as the outcome

0 with probability 1

2
1 with probability 1

2

and the state collapses into the state

|0′〉 or |1′〉

because

|0〉 = 1√
2
(|0′〉 + |1′〉).
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EXAMPLE 2

If the qubit,

|φ〉 = α|0〉 + β|1〉
is measured with respect to the standard basis {|0〉, |1〉}, then we get

0 - |0〉 with probability |α|2 or 1 - |1〉 with probability |β|2

Let us now try to measure |φ〉 with respect to the dual basis {|0′〉, |1′〉}. Since

|0′〉 = 1√
2
(|0〉 + |1〉) |1′〉 = 1√

2
(|0〉 − |1〉)

and therefore

|0〉 = 1√
2
(|0′〉 + |1′〉) |1〉 = 1√

2
(|0′〉 − |1′〉)

we have

|φ〉 = 1√
2
((α + β)|0′〉 + (α− β)|1′〉)

what implies that measurement of |φ〉 with respect to the dual basis provides

0− |0′〉 with probability 1

2
|α + β|2

or

1− |1′〉 with probability 1

2
|α− β|2
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HEISSENBERG’s UNCERTAINTY PRINCIPLE

• Heissenberg’s uncertainty principle says that if the value of a physical

quantity is certain, then the value of a complementary quality is uncertain.

• Example. measurement with respect to standard basis of states |0〉 and |1〉
gives certain outcome and therefore measurement of the same states

according to the dual basis provides uncertain (random) outcomes.

• Another pair of complementary quantities are position and speed.
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WHAT ARE QUANTUM STATES?

• In the classical world we see a state as consisting of all

information needed to describe completely the system at an

instant of time.

• Due to Heissenberg’s principle of uncertainty, such an

approach is not possible in quantum world - for example, we

cannot describe exactly both position and velocity

(momentum).
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BEAM-SPLITTERS and MACH-ZEHNDER INTERFEROMETER

The following picture illustrate one-particle interference using so-called Mach-Zehnder

interferometer.

D

D

BS1
0

PS

M1

M2

BS2

PS

φ

φ1

|0>
|0>

|1>

0

1

P

P

0

1

Figure 2: Mach-Zehnder interferometer, BS - beam-splitters, M -mirrors, PS - phase-shifter, D - detectors

Action of a beam-splitter is as that of the Hadamard gate

|0〉 → 1√
2
(|0〉 + |1〉), |1〉 → 1√

2
(|0〉 − |1〉)
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D

D

BS1
0

PS

M1

M2

BS2

PS

φ

φ1

|0>
|0>

|1>

0

1

P

P

0

1

Figure 3: Mach-Zehnder interferometer, BS - beam-splitters, M -mirrors, PS - phase-shifter, D - det ectors

Action of Mach-Zehnder interferometer can be described as follows

|0〉 BS1→ 1√
2
(|0〉 + |1〉) PS→ 1√

2
(eiφ0|0〉 + eiθ1|1〉) (1)

= ei
θ0+θ1

2
1√
2
(ei

θ0−θ1
2 |0〉 + ei

−θ0+θ1
2 |1〉) (2)

BS2→ ei
θ0+θ1

2 (cos
1

2
(φ0 − φ1)|0〉 + i sin

1

2
(φ0 − φ1)|1〉) (3)

Two detectors detect a particle with probabilities

P0 = cos2
φ0 − φ1

2
and P1 = sin2

φ0 − φ1
2

and therefore if φ0 = φ1 only the detector D0 can detect a particle.
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BEAM-SPLITTERS MEASUREMENT STATISTICS

Detector

Detector

50%

50%

Photon source

Figure 4: One beam-splitter measurement statistics

Photon source

Detector

Detector

100 %

BS

BS

mirror

mirror

Figure 5: Two beam-splitters measurement statistics
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OBSERVATION on INTERFERENCE EXPERIMENTS

• Single particle experiments are not restricted to photons.

•One can repeat such an experiment with electrons, atoms or

even some molecules.

•When it comes to atoms both internal and external degrees of

freedom can be used
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REPRESENTATION of BEAM-SPLITTERS

In order to see particularities of the relation between physical reality and its

correpsonding mathematical representation, it is good to realise that a beam

splitter can be represented either by the Hadamard matrix

H =
1√
2









1 1
1 −1









but also by the following matrix

B =
1√
2









1 i
i 1









It holds

H2 =









1 0
0 1








, B2 =









0 i
i 0









And therefore

H2|0〉 = |0〉, B2|0〉 = i|1〉
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LIGHT GOING THROUGH FILTERS

In the first experiment, if the light goes through a filter A, polarized up, half of light does not

get through, half does.

If we add a filter C, with the opposite polarization, no light gets through the filter C.

If we add, between the filters A and C, another filter, with the diagonal polarization, some of

light gets over the filter C.

A

A

C

A
B C
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FILTERS as MEASURING DEVICES

In our previous experiment we can see the source as producing the state |0′〉 = 1√
2
(|0〉+ |1〉)

Filter A can be seen as producing measurement in the computational basis with horizontal

output corresponding to the state |1〉. Filter C does the same but has outputs with opposite

orientation.

Filter B should be seen as producing measurement in the dual basis.

|0’>
|0>

|1> |0>

|0’>

|1>

|0>

|1>

|0’>

|1’> |0>

|1>

A

A B

C

C

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2
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PAULI MATRICES

Very important one-qubit unary operators are the following Pauli operators, expressed in the

standard basis as follows;

σx =







0 1

1 0





 , σy =







0 −i
i 0





 , σz =







1 0

0 −1







An application of Pauli matrices to basis states can be expressed also as follows (for

b ∈ {0, 1}:
σx|b〉 = |b⊕ 1〉, σy|b〉 = i(−1)b|b⊕ 1〉 σz|b〉 = (−1)b|b〉.

Observe that Pauli matrices transform a qubit state |φ〉 = α|0〉 + β|1〉 as follows

σx(α|0〉 + β|1〉) = β|0〉 + α|1〉 σz(α|0〉 + β|1〉) = α|0〉 − β|1〉

and for σ′y = σxσz we have

σ′y(|α|0〉 + β|1〉) = β|0〉 − α|1〉.
Operators σx, σz and σ′y represent therefore a bit error, a sign error and a bit-sign error.
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MIXED STATES - DENSITY MATRICES

A probability distribution {(pi, |φi〉0}ki=1 on pure states is called a mixed state

to which it is assigned a density operator

ρ =
k
∑

i=1

pi|φi〉〈φi|.

One interpretation of a mixed state {pi, |φi〉}ki=1 is that a source X produces

the state |φi〉 with probability pi.

Any matrix representing a density operator is called density matrix.

The same density matrix can correspond to two different mixed states and

two mixed states with the same density matrix are physically

undistinguishable.

If we have a mixedstate {(pi, |φi〉)}ki=1, we say that we have a mixture or
endemble of states {|φi〉}ki=1
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MAXIMALLY MIXED STATES

To the maximally mixed state

(
1

2
, |0〉), (1

2
, |1〉)

which represents a random bit corresponds the density matrix

1

2













1
0













(1, 0) +
1

2













0
1













(0, 1) =
1

2













1 0
0 1













=
1

2
I2

Surprisingly, many other mixed states have as their density
matrix that one of the maximally mixed state.
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QUANTUM ONE-TIME PAD CRYPTOSYSTEM

CLASSICAL ONE-TIME PAD cryptosystem

plaintext: an n-bit string p

shared key: an n-bit string k

cryptotext: an n-bit string c

encoding: c = p⊕ k
decoding: p = c⊕ k

QUANTUM ONE-TIME PAD cryptosystem:

plaintext: an n-qubit string |p〉 = |p1〉 . . . |pn〉
shared key: two n-bit strings k, k′

cryptotext: an n-qubit string |c〉 = |c1〉 . . . |cn〉
encoding: |ci〉 = σkix σ

k′i
z |pi〉

decoding: |pi〉 = σ
k′i
z σkix |ci〉 where |pi〉 =







ai
bi





 and |ci〉 =






di
ei





 are qubits and

σx = X =







0 1

1 0





 with σz = Z =







1 0

0 −1





 are Pauli matrices.
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UNCONDITIONAL SECURITY of QUANTUM ONE-TIME PAD

In the case of encryption of a qubit

|φ〉 = α|0〉 + β|1〉
by QUANTUM ONE-TIME PAD cryptosystem what is being

transmitted is the mixed state

(
1

4
, |φ〉), (1

4
, σx|φ〉).(

1

4
, σz|φ〉), (

1

4
, σxσz|φ〉)

whose density matrix is
1

2
I2.

This density matrix is identical to the density matrix

corresponding to that of a random bit, that is to the mixed state

(
1

2
, |0〉), (1

2
, |1〉)
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SHANNON’s THEOREMS

Shannon classical encryption theorem says that n bits are

necessary and sufficient to encrypt securely n bits.

Quantum version of Shannon encryption theorem says that 2n
classical bits are necessary and sufficient to encrypt securely n
qubits.
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COMPOSED QUANTUM SYSTEMS

Tensor product of vectors

(x1, . . . , xn)⊗ (y1, . . . , ym) = (x1y1, . . . , x1ym, x2y1, . . . , x2ym, . . . , xny1, . . . , xnym

Tensor product of matrices A⊗B =















a11B . . . a1nB
... ...

an1B . . . annB















where A =















a11 . . . a1n
. . . . . .

an1 . . . ann















Example







1 0

0 1





⊗






a11 a12
a21 a22





 =





















a11 a12 0 0

a21 a22 0 0

0 0 a11 a12
0 0 a21 a22



























a11 a12
a21 a22





⊗






1 0

0 1





 =





















a11 0 a12 0

0 a11 0 a12
a21 0 a22 0

0 a21 0 a22




















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Tensor product of Hilbert spaces H1 ⊗H2 is the complex vector space

spanned by tensor products of vectors from H1 and H2, that corresponds to

the quantum system composed of the quantum systems corresponding to

Hilbert spaces H1 and H2.

If a Hilbert space Hn has a basis {αi}ni=1 and Hilbert space Hm has a basis

{βj}mj=1,

then tensor product Hn ⊗Hm} has as one of the basis {αi ⊗ βj}ij
An important difference between classical and quantum systems

A state of a compound classical (quantum) system can be (cannot be)
always composed from the states of the subsystems.
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EXAMPLE

Hilbert space H4 can be seen as tensor product of two

one-qubit Hilbert spaces

H2 ⊗H2

and therefore one of its basis consists of the states

|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉
that are usually denoted shortly as the states

|00〉, |01〉, |10〉, |11〉
Similarly, the states of the standard/computational n-qubit

Hilbert space H2n are the states

|i1i2 . . . in〉 = |i1〉 ⊗ . . .⊗ |in〉
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CARTESIAN PRODUCT versus TENSOR PRODUCT

Individual state spaces of n classical particles combine through the

Cartesian product. For example, if V and W are two dimensional vector

spaces with bases {v1, v2} and {w1, w2}, respectively, then V ×W has as the

basis union of the basis of components, that is {v1, v2, w1.w2}
Individual state spaces of n quantum particles combine through the tensor

product.

V ⊗W has as the basis

{v1 ⊗ w1, v1 ⊗ w2, v2 ⊗ w1, v2 ⊗ w2}.
In case V and W have dimension 3, V ×W has dimension 6 and V ⊗W has
dimension 9.
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TWO QUBIT REGISTERS

A general state of a 2-qubit register is:

|φ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉

where

|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1

and |00〉, |01〉, |10〉, |11〉 are vectors of the “standard” basis of H4, i.e.

|00〉 =





















1

0

0

0





















|01〉 =





















0

1

0

0





















|10〉 =





















0

0

1

0





















|11〉 =





















0

0

0

1





















Jozef Gruska October 5, 2016 34



Quantum Computing 2, Basics - Fall 2015

Important unitary matrices of degree 4, to transform states of 2-qubit registers are C-NOT

(CNOT) or controlled not matrix:

CNOT = XOR =





















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





















for which it holds:

CNOT : |x, y〉 =⇒ |x, x⊕ y〉
and C-V, or control V , matrix

C − V =





















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i





















For the gates corresponding to the above matrices we use notation:

C−V

V

CNOTC−NOT

NOT

V =







1 0

0 i





 .
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QUANTUM CIRCUITS - EXAMPLES

Quantum circuits are defined in a similar way as classical circuits,

only its gates are either unitary operations or measurements.

Hadamard gate and C-V gate form a universal set of unitary gates

- using these gates one can for any unitary operation U and ε > 0
design a quantum circuit CU that approximates U with precision

ε.

Two examples of quantum circuits for the CNOT gate and for

Toffoli gate:
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H HV V V V V

CNOT gate

Toffoli gate

H HV V
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A QUANTUM EVOLUTION STEP

A quantum evolution step consists formally of a quantum state (vector) multiplication by a

unitary operator. That is

A|φ〉 = |ψ〉
For example,





















a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44









































b1
b2
b3
b4





















=





















a11b1 + a12b2 + a13b3 + a14b4
a21b1 + a22b2 + a23b3 + a24b4
a31b1 + a32b2 + a33b3 + a34b4
a41b1 + a42b2 + a43b3 + a44b4





















.

A better insight into such a process can be obtained using different notation at which it is

assumed that all rows and columns are labeled by the states of the standard basis of H4.





















a00,00 a00,01 a00,10 a00,11
a01,01 a01,01 a01,10 a01,11
a10,00 a10,01 a10,10 a10,11
a11,00 a11,01 a11,10 a11,11









































b00
b01
b10
b11





















=





















a00,00b00 + a00,01b01 + a00,10b10 + a00,11b11
a01,00b00 + a01,01b01 + a01,10b10 + a01,11b11
a10,00b00 + a10,01b01 + a10,10b10 + a10,11b11
a11,00b00 + a11,01b01 + a11,10b10 + a11,11b11





















=





















d00
d01
d10
d11





















.
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NO-CLONING THEOREM

INFORMAL VERSION: Unknown quantum state cannot be cloned.

FORMAL VERSION: There is no unitary transformation U such that for any qubit state |ψ〉

U(|ψ〉|0〉) = |ψ〉|ψ〉

PROOF: Assume U exists and for two different states |α〉 and |β〉
U(|α〉|0〉) = |α〉|α〉 U(|β〉|0〉) = |β〉|β〉

Let

|γ〉 = 1√
2
(|α〉 + |β〉)

Then

U(|γ〉|0〉) = 1√
2
(|α〉|α〉 + |β〉|β〉) 6= |γ〉|γ〉 = 1

2
(|α〉|α〉 + |β〉|β〉 + |α〉|β〉 + |β〉|α〉)

However, CNOT can make copies of basis states |0〉, |1〉:

XOR(|x〉|0〉) = |x〉|x〉
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IMPLICATIONS FOR SECURE TRANSMISSION of QUANTUM STATES

Let us assume that an eavesdropper Eve knows that Alice is sending to Bob

one quantum state from a set {φ1, φ2, . . . , φn} of non-orthogonal quantum

states. What she can do?

• Eve cannot make copy of the transmitted state.

• There is no measurement Eve can find out reliably which state is being

transmitted.

• She can only measure the state being transmitted, but each such a

measurement will, with large probability, destroy the state being

transmitted.

Intuitive conclusion There is nothing an eavesdropper can do without having
large probability of being detected.
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BELL STATES and BASIS

States

|β00〉 = |Φ+〉 = 1√
2
(|00〉 + |11〉, |β10〉 = |Φ−〉 =

1√
2
(|00〉 − |11〉)

|β01〉 = |Ψ+〉 = 1√
2
(|01〉 + |10〉, |β11〉 = |Ψ−〉 =

1√
2
(|01〉 − |10〉)

form an orthogonal (Bell) basis in H4 and play an important role in quantum

computing.

Theoretically, there is an observable for this basis. However, no one has
been able to construct a measuring device for Bell measurement using
linear elements only.

Jozef Gruska October 5, 2016 42



Quantum Computing 2, Basics - Fall 2015

DESIGN of BELL STATES

Bell states can be defined concisely by formula

|βxy〉 =
|0y〉 + (−1)x|1ȳ〉√

2
.

and constructed easily by the circuit

|x>

|y>

|β  >
xy

H
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MAGIC BASIS

It is the basis of H4 with basis states

|ψ0〉 =
1√
2
(|00〉 + |11〉), |ψ1〉 =

i√
2
(|01〉 + |10〉)

|ψ2〉 =
1√
2
(|01〉 − |10〉), |ψ3〉 =

i√
2
(|00〉 − |11〉)

Transformation rule to change a unitary Us in the standard basis into Um in the magic basis

is through the rule

Um = Q†UsQ,

where

Q =
1√
2





















1 0 0 i

0 i 1 0

0 i −1 0

1 0 0 −i





















.

The matrix Q represents also an isomorphism between SU(2)⊗ SU(2) and SO(4).
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QUANTUM MEASUREMENT

of the states of 2-qubit registers

|φ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉
1. Measurement with respect to the basis {|00〉, |01〉, |10〉, |11〉} provides the

results:

00 and |00〉 with probability |α00|2

01 and |01〉 with probability |α01|2

10 and |10〉 with probability |α10|2

11 and |11〉 with probability |α11|2
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2. Measurement of particular qubits provides the results:

By measuring the first qubit we get

0 with probability |α00|2 + |α01|2

and |φ〉 is reduced to the vector
α00|00〉 + α01|01〉
√

|α00|2 + |α01|2

1 with probability |α10|2| + |α11|2

and |φ〉 is reduced to the vector
α10|10〉 + α11|11〉
√

|α10|2 + |α11|2
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MEASUREMENT — EXAMPLE

A photon with linear polarization along a direction θ to the vertical axis (to vector |1〉) is

represented by the state

|φ〉 = cos θ|1〉 + sin θ|0〉
A photon with orthogonal polarization has then the state

|φ⊥〉 = sin θ|1〉 − cos θ|0〉

From that it follows that:

|1〉 = cos θ|φ〉 + sin θ|φ⊥〉
|0〉 = sin θ|φ〉 − cos θ|φ⊥〉

If another photon is prepared with linear polarization φ, then

|ψ〉 = cos β|1〉 + sinβ|0〉 (4)

= cos β[cos θ|φ〉 + sin θ|φ⊥〉] + sinβ[sin θ|φ〉 − cos θ|φ⊥〉] (5)

= cos(θ − β)|φ〉 + sin(θ − β)|φ⊥〉 (6)

If the above state is measured with respect to the basis {φ〉, |φ⊥〉} (or using the calcite

crystal oriented with its axis at an angle φ), then the outcome is φ with probability

cos2(θ − β).
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QUANTUM MEASUREMENT - BORN RULE

If B = {|βi〉}ni=1 is an orthogonal basis of a Hilbert space Hn, then any state |φ〉 ∈ Hn can be

uniquely expressed as

|φ〉 =
n
∑

i=1

ai|βi〉

and (Max Born rule) states that if the state |φ〉 is measured with respect to B, then the

quantum (classical) outcome is the state |βi〉 (the integer i) with probability |ai|2.
This can be expressed as follows

M| > |Β
2

i

i>β i with probability | a |

measurement with respect to the basis Β

φ
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QUANTUM MEASUREMENT - COMMENTS

• In quantum computation ”measurement” means nothing more or less than applying and

reading the ”display” of an appropriate measurement gate , whose action is fully specified

by the Born rule, as described above.

• Amplitudes of the state being measured vanish during the measurement process. The

only role they play in the measurement is to determine probabilities of particular outputs.

• In contrast to the deterministic unitary gates, the outcome of measurement gates is only

statistically determined by the input state and type of measurement.

• In contrast to unitary gates, measurement gates are not reversible in general and not

linear.

• In contrast to classical measurements (output reading) gates that do not alter bits they

read, quantum measurement gates alter in general the state being measured.

• There is no way to find out (sometimes enormous) amount of information contained in

amplitudes of quantum states that was measured.

• In case that classical output of the measurement depicted in the figure on previous slide

is an integer i this provides a single information about the state being measured. Namely

that the amplitude ai 6= 0 and, likely, was not two small (in absolute value).

Jozef Gruska October 5, 2016 49



Quantum Computing 2, Basics - Fall 2015

MEASUREMENT of TWO PHOTONS

Let us assume that two photons in the state

|ψ〉 = α|10〉 − β|01〉

are much separated, see Figure, and then one is measured with respect to the polarization

θ and the other one with respect to the polarization φ.

-1
 1

-1
 1

crystal crystalsource

photon 1 photon 2

Figure 6: Two entangled photons are measured for orientations θ and φ

|ψ〉 = α|10〉 − β|01〉 (7)

= α[cos θ|θ〉 + sin θ|θ⊥〉][sinφ|φ〉 − cosφ|φ〉]− β[sin θ|θ〉 − cos θ|θ⊥〉][cosφ|φ〉 + sinφ|φ⊥〉] (8)

= [α cos θ sinφ− β sin θ cosφ]|θ〉|φ〉 + [α cos θ cos θ − β sin θ sinφ]|θ〉|φ⊥〉 (9)

+ [α sin θ sinφ + β cos θ cosφ]|θ⊥〉|φ〉 + [−α sin θ cosφ + β cos θ sinφ]|θ⊥〉|φ⊥〉 (10)

The probability that the state |ψ〉 collapses into the state |θ〉|φ⊥〉 is therefore

|α cos θ cosφ− β sin θ sinφ|2.
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QUANTUM ENTANGLEMENT I

The concept of entanglement is primarily concerned with states of

multipartite systems.

For a bipartite quantum system H = HA ⊗HB, we say that its state |Φ〉 is an

entangled state if it cannot be decomposed into a tensor product of a state

from HA and a state from HB.

For example, it is easy to verify that a two-qubit state

|φ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉,
is not entangled, that is

|φ〉 = (x1|0〉 + y1|1〉)⊗ (x2|0〉 + y2|1〉)
if and only if ab =

x2
y2

= c
d, that is if

ad− bc = 0.

Therefore, all Bell states are entangled, and they are important examples of
entangled states.
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QUANTUM ENTANGLEMENT - BASIC DEFINITIONS

The concept of entanglement is primarily concerned with the states of

multipartite systems.

For a bipartite quantum system H = HA ⊗HB, a pure state |Φ〉 is called

entangled if it cannot be decomposed into a tensor product of a state from

HA and a state from HB.

A mixed state (density matrix) ρ of H is called entangled if ρ cannot be

written in the form

ρ =
k
∑

i=1

piρA,i ⊗ ρB,i
where ρA,i (ρB,i) are density matrices in HA (in HB) and

∑k
i=1 pi = 1, pi > 0.
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Basic importance of entanglement comes from the following facts

demonstrating that entanglement implies the existence of non-local

correlations.

Let two particles originally in the EPR-state

1√
2
(|00〉 + |11〉)

move far from each other

MARSEARTH
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then measurement of any one of these particles makes the EPR-state to

collapse, randomly, either to one of the states |00〉 or |11〉. As the classical

outcomes both parties get at their measurements, no matter when they make

them, the same outcomes.

Einstein called this phenomenon “spooky action at a distance” because

measurement in one place seems to have an instantaneous (non-local) effect at

the other (very distant) place.
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DESIGN of ENTANGLED STATES

Entangled states can be seen as a gold mine for QIPC, but their design is

very difficult. This is natural because particles in an entangled states should

exhibit non-local correlations no matter how far they are.

Basic methods to create entangled states:

• Using special physical processes, for example parametric

down-conversion. (Nowadays one can create in one second million

maximally entangled states with 99% “precision” (fidelity)).

• Using “entangling” quantum operations. For example

CNOT((
1√
2
(|0〉 + |1〉))⊗ |0〉) = 1√

2
(|00〉 + |11〉)

• Using entanglement swapping.
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HOW TO CREATE ENTANGLED STATES?

CNOT((
1√
2
(|0〉 + |1〉)⊗ |0〉) = 1√

2
(|00〉 + |11〉)

1

2
(|00>+|11>)CNOT

(|0>+|1>)1
2

|0>
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ENTANGLEMENT SWAPPING

If particles P1 and P2 are in the EPR-state and so are particles

P3 and P4, then Bell measurement of particles P2 and P3,
makes particles P1 and P4, that have never interacted before, to

be in the maximally entangled EPR-state:

EPR−state EPR−state

BELL MEASUREMENT

EPR−state

EPR−state

P1 P2 P3 P4

P1 P2 P3 P4

Figure 7: Entanglement swapping
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QUANTUM NON-LOCALITY

• Physics was non-local since Newton’s time, with exception of

the period 1915-1925.

• Newton has fully realized counterintuitive consequences of

the non-locality his theory implied.

• Einstein has realized the non-locality quantum mechanics

imply, but it does not seem that he realized that entanglement

based non-locality does not violate no-signaling assumption.

• Recently, attempts started to study stronger non-signaling

non-locality than the one quantum mechanics allows.
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NON-LOCALITY in NEWTON’s THEORY

Newton realized that his theory concerning gravity allows

non-local effect. Namely, that

if a stone is moved on the moon, then weight of all of us, here

on the earth, is immediately modified.
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NEWTON’s words

The consequences of current theory that implies that gravity

should be innate, inherent and essential to Matter, so that any

Body may act upon another at a Distance throw a Vacuum,

without the mediation of any thing else, by and through which

their Action and Force may be conveyed from one to another, is

to me so great an Absurdity, that I believe no Man who has in

philosophical Matters a competent Faculty of thinking, can ever

fall unto it.

Gravity must be caused by an Agent acting constantly
according certain Laws, but whether this Agent be material or
immaterial, I have left to the Consideration of my Readers.
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POWER of ENTANGLEMENT

After its discovery, entanglement and its non-locality impacts have been

seen as a peculiarity of the existing quantum theory that needs some

modification to get rid of them, as a source of all kind mysteries and

counterintuitive consequences.

Currently, after the discovery of quantum teleportation and of such powerful

quantum algorithms as Shor’s factorization algorithm, entanglement is seen

and explored as a new and powerful quantum resource that allows

• to perform tasks that are not possible otherwise;

• to speed-up much some computations and to economize (even

exponentially) some communications;

• to increase capacity of (quantum) communication channels;

• to implement perfectly secure information transmissions;

• to develop a new, better, information based, understanding of the key

quantum phenomena and by that, a deeper, information processing based,

understanding of Nature.
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DIFFERENCES between ONE and TWO-QUBIT states

It is just quantum entanglement which prevents realization of quantum

computation using just classical waves (that also exhibit superposition).

Indeed, all possible states of one qubit can be realized by the polarization states

of classical light beam – using one half-wave and two quarter-wave plates. As a

consequence a single qubit has a classical analogue.

On the other hand, the entangled states of two qubits have no classical
counterpart.

Jozef Gruska October 5, 2016 62



Quantum Computing 2, Basics - Fall 2015

RECENT DISCOVERY

Recently, in the Institute of Photonic Sciences in Barcelona, they were able

to entangle 500,000 of atoms.

It is said that they created the first macroscopic spin snglet - a ne state of

matter.

A spin singlet is a form of entaglement where the system has zero total
angular momentum.
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CLASSICAL TELEPORTATION

The so called No-teleportation theorem, one of the fundamental laws of

quantum mechanics, says that (classical) teleportation is impossible.

This means that there is no way to use classical channels to transmit

faithfully quantum information.2

In more technical terms, there is no possibility to measure, in general, a

single copy of quantum state in such a way that the classical outcomes of

the measurement would be sufficiently to reconstruct faithfully the state.

Indeed, the classical teleportation would imply that quantum cloning is

possible and this would imply that super-luminal communication is possible.

2I looked to several dictionaries for term teleportation. Webster ’s New World Dictionary of the American Language says Teleportation is theoretical transportation of matter through space by

converting it into energy and then converting it at the terminal point;
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QUANTUM TELEPORTATION

Quantum teleportation allows to transmit unknown quantum information to a very distant

place in spite of impossibility to measure or to broadcast information to be transmitted.

gets destroyed
by measurement

unidentified
quantum state

channel
EPR

Alice Bob

2 classical bits

|M> |M> |ψ>|ψ>

measu rement unitary transformation

EPR-pair

|ψ〉 = α|0〉 + β|1〉 |EPR− pair〉 = 1√
2
(|00〉 + |11〉)

Total state

|ψ〉|EPR− pair〉 = 1√
2
(α|000〉 + α|011〉 + β|100〉 + β|111〉

Measurement of the first two qubits is then done with respect to the “Bell basis”.
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BELL BASES

|Φ+〉 = 1√
2
(|00〉 + |11〉) |Φ−〉 = 1√

2
(|00〉 − |11〉)

|Ψ+〉 = 1√
2
(|01〉 + |10〉) |Ψ−〉 = 1√

2
(|01〉 − |10〉)
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QUANTUM TELEPORTATION I

Total state of three particles:

|ψ〉|EPR− state〉 = 1√
2
(α|000〉 + α|011〉 + β|100〉 + β|111〉)

can be expressed as follows:

|ψ〉|EPR− state〉 =
1

2
|Φ+〉(α|0〉 + β|1〉) + 1

2
|Ψ+〉(α|1〉 + β|0〉)

+
1

2
|Φ−〉(α|0〉 − β|1〉) + 1

2
|Ψ−〉(α|1〉 − β|0〉)

and therefore the measurement of the first two particles projects the state of the Bob’s

particle into a “small modification ” |ψ1〉 of the unknown state |ψ〉 = 1√
2
(α|0〉 + β|1〉).

The unknown state |ψ〉 can therefore be obtained from |ψ1〉 by applying one of the four

operations

σx, σxσz, σz, I

and the result of the Bell measurement provides two bits specifying which of the above four

operations should be applied.

These four bits Alice needs to send to Bob using a classical channel (by email, for example).
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QUANTUM TELEPORTATION II

If the first two particles of the state

|ψ〉|EPR− state〉 =
1

2
|Φ+〉(α|0〉 + β|1〉) + 1

2
|Ψ+〉(α|1〉 + β|0〉)

+
1

2
|Φ−〉(α|0〉 − β|1〉) + 1

2
|Ψ−〉(α|1〉 − β|0〉)

are measured with respect to the Bell basis then Bob’s particle gets into the mixed state

(
1

4
, α|0〉 + β|1〉)⊕ (

1

4
, α|0〉 − β|1〉)⊕ (

1

4
, β|0〉 + α|1〉)⊕ (

1

4
, β|0〉 − α|1〉)

to which corresponds the density matrix

1

4







α

β∗





 (α∗, β∗) +
1

4







α

−β





 (α∗,−β∗) + 1

4







β

α





 (β∗, α∗) +
1

4







β

−α





 (β∗,−α∗) = 1

2
.I

The resulting density matrix is identical to the density matrix for the mixed state

corresponding to the random bit:

(
1

2
, |0〉)⊕ (

1

2
, |1〉).

Indeed, the density matrix for the last mixed state has the form:

1

2







1

0





 (1, 0) +
1

2







0

1





 (0, 1) =
1

2
I.
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QUANTUM TELEPORTATION — COMMENTS

• Alice can be seen as dividing information contained in |ψ〉 into

quantum information - transmitted through EPR channel

and

classical information - transmitted through a classical channel

• In a quantum teleportation an unknown quantum state |φ〉 can be

disassembled into, and later reconstructed from, two classical bit-states and

an maximally entangled pure quantum state.

• Using quantum teleportation an unknown quantum state can be teleported

from one place to another by a sender who does not need to know — for

teleportation itself — neither the state to be teleported nor the location of the

intended receiver.

• One can also see quantum teleportation as a protocol that allows one to

teleport all characteristics of an object, embedded in some matter and

energy, and localized at one place to another piece of energy and matter

located at a distance.

Jozef Gruska October 5, 2016 69



Quantum Computing 2, Basics - Fall 2015

• The teleportation procedure cannot be used to transmit information faster

than light

but

it can be argued that quantum information presented in unknown state is

transmitted instantaneously (except two random bits to be transmitted at the

speed of light at most).

• EPR channel is irreversibly destroyed during the teleportation process.

• One can also see quantum teleportation as a protocol that allows one to

teleport all characteristics of an object embedded in some matter and energy

localized at one place to another piece of energy and matter located at a

distance.
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QUANTUM TELEPORTATION - EXPERIMENTS

• The first experiment confirming quantum teleportation was done, arguably

by Anton Zeilinger group in Venna in 199?.

• Recently a group in Calgary announced experimentally performed

quantum teleportation, using optcal fiber for the distance 6.2 km.

• Recntly a group in Shanghai repported experimentally performed

teleportation for the distamce 14.3 km
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QUANTUM SUPER DENSE CODING

A process inverse to teleportation, in which one qubit is used to send two bits, is called

superdense quantum coding.

Assume again that Alice and Bob share two particles in the EPR-state: If now Alice wants to

send to Bob bits b1b2, she performs on her particle a Pauli operations according to the

columns 1 and 2 of the following table 8:

Alice’s Pauli’s Alice’s particle: → Bob’s XOR Bob’s bases Bob’s

bits rotations new state transformation D,B bits

00 I 1√
2
(|00〉 + |11〉) 1√

2
(|0〉 + |1〉)|0〉 00 00

01 σx
1√
2
(|10〉 + |01〉) 1√

2
(|0〉 + |1〉)|1〉 01 01

11 σ′
y

1√
2
(−|10〉 + |01〉) 1√

2
(|0〉 − |1〉)|1〉 11 11

10 σz
1√
2
(|00〉 − |11〉) 1√

2
(|0〉 − |1〉)|0〉 10 10

Figure 8: Superdense coding steps

The overall state of two particles is then depicted in column 3. If Alice sends then her

particle to Bob (we say that she sends one qubit) and Bob performs on his, now two,

particles the XOR operation, then his two particles get into the state shown in column 4. If

now Bob measures his old particle in the standard basis and the newly obtained particle in

the dual basis, he can determine, see columns 5 and 6, the two bits Alice tried to send him.

Observe, that in both examples it was the EPR state that allowed extraordinary powerful

transmission of quantum or classical information.
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QUANTUM PSEUDO-TELEPATHY

Using entangled states various effects can be produced that resemble telepathy.

Example - Stage telepathy

Two players, Alice and Bob, are on a stage, see Figure 9, very far from each other (so far

that they cannot communicate), and they are simultaneously, but independently and

randomly asked again and again, by a moderator, either a “food question” or a “color

question”.

• FOOD question: What is your favorite meal?

ANSWER has to be either carrot or peas.

• COLOR question: What is your favorite color?

ANSWER has to be either green or red.
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responses

no communication
Alice Bob

moderator

parallel
questions

responses

Figure 9: Setting for “colour-food” game

The audience observes that their answers satisfy the following conditions:

• If both players are asked color-questions then in about 9% of cases they answer green.

• If one of the players is asked the color-question and answers green and the other is asked

the food-question, then (s)he answers peas.

• If both are asked food-questions they never both answer peas.
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It is not difficult to show that within the classical physics there is no way that Alice and Bob

could invent a strategy for their answers, before they went to the stage, in such a way that

the above mentioned behavior of them would be observed. However, there is a quantum

solution, and actually quite a simple one.
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SOLUTION

Let |p〉 and |c〉 be two arbitrary orthogonal states in the two-dimensional Hilbert space H2,

and let

|r〉 = a|p〉 + b|c〉,
|g〉 = b|p〉 − a|c〉

be two new (orthogonal) states.

Let Alice and Bob, at the very beginning, before they go to the stage, create a large number

of pairs of particles in the state

|ψ〉 = N(|r〉|r〉 − a2|p〉|p〉),
where N is a normalization factor, and let later each of them takes his/her particle from

each pair with him/her to the stage.

If any of them is asked the color-question, then (s)he measures his/her particle with respect

to the {|r〉, |g〉}-basis and answers in accordance with the result of measurement.

If any of them is asked the food-question (s)he measures his/her particle with respect to the

{|p〉, |c〉}-basis and responds in accordance with the result of measurement.

It is a not difficult exercise to show that in this way Alice’s and Bob’s responses follow the

rules described above (9% comes from an optimization in one case).
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ANSWER YOUR QUESTION PUZZLE — SOLUTION—PROOF

Case 1. Both are asked colour question. By substitution we get.

|ψ〉 = N(|r〉|r〉 − a2(a|r〉 + b|g〉)(a|r〉 + b|g〉)

The coefficient at |g〉|g〉 is Na2b2 with maximum at about 9%.

Case 2. Alice is asked colour-question, Bob is asked food question.

|ψ〉 = N(|r〉(a|p〉 + b|c〉)− a2(a|r〉 + b|g〉)|p〉

There is no |g〉|c〉 term. This implies that probability that Alice answers green and Bob carrot

is 0.

Case 3. Alice is asked colour-question, Bob is asked food question.

Solution is as above, due to the symmetry of the cases.

Case4 4. Both are asked food questions. By substitution we get

|ψ〉 = N((a|p〉 + b|c〉0(a|p〉+ b|c〉)− a2|p〉|p〉)

Since |p〉|p〉 terms cancel the probability is 0 that both answers peas.
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QUANTUM ERROR CORRECTION I

In the quantum case, information processing evolutions are far more under

the negative impact of their environment, called in general decoherence,

than in the classical computing.

The impact of decoherence is actually in all known technologies so strong,

and grows exponentially in time, that till 1995 there have been strong doubts

whether a powerful quantum information processing is possible at all.

A strong reason for pessimism was a belief (understanding) that in the

quantum case one cannot use some quantum modification of so powerful

classical error-correcting code approach.

There were several physical reasons for such a pessimism.

One of them was that in order to determine an error, we would need to
measure the erroneous state, but that would irreversibly modify/destroy the
erroneous state and we would have nothing to correct. Fortunately, it has
turned out that there is a way out and quantum error correction can work
well. The example presented in this section demonstrates the basic steps
how such an error correction process can work, in principle.
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STORY of QUBITS

The world is a dangereous place,

particularly,

if you are a qubit.
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QECC — EXAMPLE

Example of a qubit communication process through a noisy channel using a 3-qubit bit-error

correction code.

Alice: encoding. Alice encodes the qubit |φ〉 = α|0〉 + β|1〉 by a network of two XOR gates

and two additional qubits in the ancilla state |00〉 into the entangled state α|000〉 + β|111〉,
see Figure.

Noisy channel. A bit error is assumed to occur with probability

p < 1

2
on any qubit and results in one of the states shown bellow:

resulting state its probability

α|000〉 + β|111〉 (1− p)3
α|100〉 + β|011〉 p(1− p)2
α|010〉 + β|101〉 p(1− p)2
α|001〉 + β|110〉 p(1− p)2
α|110〉 + β|001〉 p2(1− p)
α|101〉 + β|010〉 p2(1− p)
α|011〉 + β|100〉 p2(1− p)
α|111〉 + β|000〉 p3
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BOB: Syndrome computation process: By using two additional ancilla qubits in state |00〉 and

four XOR operations syndromes of errors can be computed as shown in the following table

resulting state its probability

(α|000〉 + β|111〉)|00〉 (1− p)3
(α|100〉 + β|011〉)|11〉 p(1− p)2
(α|010〉 + β|101〉)|10〉 p(1− p)2
(α|001〉 + β|110〉)|01〉 p(1− p)2
(α|110〉 + β|001〉)|01〉 p2(1− p)
(α|101〉 + β|010〉)|10〉 p2(1− p)
(α|011〉 + β|100〉)|11〉 p2(1− p)
(α|111〉 + β|000〉)|00〉 p3

Error correction. Bob does nothing if syndrome is 00 and performs σx operation

on third qubit if syndrome is 01

on second qubit if syndrome is 10

on first qubit if syndrome is 11

Resulting state is either α|000〉 + β|111〉 or β|000〉 + α|111〉.
Final decoding provides either the state α|0〉 + β|1〉 or the state β|0〉 + |1〉.
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error
correction

|0>
|0>

|φ>

encoding

channel

noise
|0>
|0> measurement

syndrome computation decoding

|φ>
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BELL THEOREM

de Broglie (1927) and Bohm (1952) developed a hidden variable interpretation (theory)3 of

quantum mechanics. Einstein rejected it because it was inherently non-local.

Bell theorem, proved by Bell,says that each hidden variable theory of quantum mechanics

has to be non-local.

Bell proved his theorem using a Gedanken experiment at which locally separated particles

were measured and has shown that the average values of certain variables have then to

satisfy certain inequalities, called in general Bell inequalities, provided a non-local theory of

hidden variables holds and that these inequalities should be violated in case quantum

mechanics with non-local effects hold.

As discussed later, various experiments confirmed violations of various Bell inequalities.

This will be dealt with in more details in some of other chapters.

3Such a theory is often described as a theory in which individual quantum systems are described by classical parameters and they are responsible for randomness that appears in quantum experiments.
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BELL THEOREM without BELL INEQUALITIES

there is a way to prove Bell theorem, one of the main outcome of quantum mechanics, also

without Bell inequalities.

Let us assume that three photons are created in the state

1

2
(|000〉 − |011〉 − |101〉 − |110〉)

and photons move in three different directions where they are measured with respect to the

standard (B) or the dual basis (D).

If we take results of the measurement as being 1 for |0〉 or |0′〉 and −1 for |1〉 or |1′〉 and

A(., λ), B(., λ) and C(., λ) denotes the results of the measurement of the first, second and

third photon in the appropriate basis submitted for the first parameter (with λ standing again

for hidden variables), then it is easy to see that the product of the values of A,, B and C at

different measurements have the following values

A(B, λ)B(B, λ)C(B, λ) = +1

A(B, λ)B(D, λ)C(D, λ) = −1
A(D, λ)B(B, λ)C(D, λ) = −1
A(D, λ)B(D, λ)C(B, λ) = −1
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In the case there are no nonlocal influences the result of one measurement cannot

influence the other two and therefore we can assume that values of variables A,B and C

appearing in different equations for the same basis are the same. We can then multiply the

left and the right sides of all four equalities. However, the product of the left sides gives the

value 1 because each value appears there twice and the product of the right sides gives the

value −1. A contradiction.
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IS THE WORLD CLASSICAL?

The notion of the classical world includes mainly two ingredients: (a)

realism; (b) determinism.

By realism we mean that any quantity that can be measured is well defined

even if we do not measure it in practice.

By determinism we mean that that the result of a measurement is

determined in a definite way by the state of the system and by the

measurement setup.

Quantum world does not satisfy the above two requirements.

A particle in the state |0′〉 has no definite value with respect to measurement

with respect to the standard basis - realism does not take place.

Measurement of a particle in state 0′〉 with respect to the standard basis
provides with the same probability results 0 and 1 - determinism does not
take place.
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SPECIFICATION of UNITARY GATES through OUTER PRODUCTS

A convenient way of specifying transformations on quantum states is in terms of what

happened to the basis vectors - using sums of outter products.

• Transformation that exchanges |0〉 and |1〉.
|0〉〈1| + |1〉〈0|

• For two arbitrary unitary transformations U1 and U2 the following “conditional transforma

tion” is also unitary:

|0〉〈0| ⊗ U1 + |1〉〈1| ⊗ U2

• CNOT gate has the form

|0〉〈0| ⊗ I + |1〉〈1| ⊗ NOT

• Toffoli gate has the form

|0〉〈0| ⊗ I ⊗ I + |1〉〈1| ⊗ CNOT

• The SWAP gate has specification

|00〉〈00|+ |01〉〈10| + |10〉〈01|+ |11〉〈11|

• Fredkin gate has the form

|0〉〈0| ⊗ I ⊗ I + |1〉〈1| ⊗ SWAP.
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