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Chapter 3: HILBERT SPACE BASICS

ABSTRACT

Hilbert space is a mathematical framework suitable for
describing concepts, principles, processes and laws of the
theory of quantum world called (for historical reasons)
quantum mechanics, in general; and quantum
information processing and communication (QIPC) in
particular.

In this chapter those basics of Hilbert space theory are
introduced and illustrated that play an important role in
QIPC.
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QUANTUM SYSTEM = HILBERT SPACE

Hilbert space Hn is n-dimensional complex vector space with

scalar product (dot product)

〈ψ|φ〉 =
n
∑

i=1
φiψ
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norm of vectors

||φ|| =
√

|〈φ|φ〉|
and the metric

dist(φ, ψ) = ||φ− ψ||.
This allows us to introduce on H a metric topology and such concepts as continuity.

All n-dimensional Hilbert spaces are isomorphic. Their vectors of norm 1 are called pure quantum

states¿ Their physical counterparts are n-level quantum systems.
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MORE ABOUT RELATIONS BETWEEN QUANTUM SYSTEMS AND HILBERT SPACES

Basic assumption With every quantum systems S there is associated a
Hilbert space HS , whose dimension depends on the nature of the
degree of freedom being considered for the system.

Example: If only spin orientation of electron (a spin-1/2 particle) is
considered, then the corresponding Hilbert space is two dimensional
Hilbert space H2.

However, if the position of an electron is of concern, which can be in
any point of some space, then the corresponding Hilbert space is
usually taken to be continuous and therefore infinite dimensional.
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BRA-KET NOTATION

Dirac introduced a very handy notation, so called bra-ket notation,
to deal with amplitudes, quantum states and linear functionals
f : H → C.

If ψ, φ ∈ H, then

〈ψ|φ〉 — scalar product of ψ and φ

(an amplitude of going from φ to ψ).

|φ〉 — ket-vector — an equivalent to φ

〈ψ| — bra-vector a linear functional on H (and a dual vector to |φ〉)
such that 〈ψ|(|φ〉) = 〈ψ|φ〉

Example For states φ = (φ1, . . . , φn) and ψ = (ψ1, . . . , ψn) we have

|φ〉 =

















φ1
. . .
φn

















, 〈φ| = (φ∗1, . . . , φ
∗
n); 〈φ|ψ〉 =

n
∑

i=1
φ∗iψi; |φ〉〈ψ| =

















φ1ψ
∗
1 . . . φ1ψ

∗
n

... . . . ...
φnψ

∗
1 . . . φnψ

∗
n
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GENERAL DEFINITION

Definition 0.1 An inner-product space H is a complex vector space, equipped with an inner product

〈·|·〉 : H ×H → C satisfying the following axioms for any vectors φ, ψ, φ1, φ2 ∈ H, and any c1, c2 ∈ C.

〈φ|ψ〉 = 〈ψ|φ〉∗,
〈ψ|ψ〉 ≥ 0 and 〈ψ|ψ〉 = 0 if and only if ψ = 0,

〈ψ|c1φ1 + c2φ2〉 = c1〈ψ|φ1〉 + c2〈ψ|φ2〉.1

The inner product introduces on H the norm (length)

||ψ|| =
√

〈ψ|ψ〉
and the metric (Euclidean distance)

dist(φ, ψ) = ||φ− ψ||.
This allows us to introduce on H a metric topology and such concepts as continuity.

Some basic properties of the norm:

• ||φ|| ≥ 0 for all φ ∈ H and ||φ|| = 0 if and only if φ = 0

• ||φ + ψ|| ≤ ||φ|| + ||ψ|| (triangle inequality);
• ||aφ|| = |a| ||φ||; (e) |〈φ, ψ〉| ≤ ||φ|| ||ψ|| (Schwarz inequality).
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COMPLETENESS, ISOMORPHISM and DUAL SPACE

Definition 0.2 An inner-product space H is called complete, if for any sequence

{φi}∞i=1,

with φi ∈ H, and with the property that

lim
i,j→∞

||φi − φj|| = 0,

there is a unique element φ ∈ H such that

lim
i→∞

||φ− φi|| = 0.

A complete inner-product space is called a Hilbert space.

Two Hilbert spaces H1 and H2 are said to be isomorphic, notation H1 ≃ H2, if the
underlying vector spaces are isomorphic and their isomorphism preserves the inner
product.
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BASIC EXAMPLES of HILBERT SPACES

Let us start with the two most important examples of Hilbert spaces.

Example 0.3 Hilbert spaces l2(D) For any countable set D, let l2(D) be the space of
all complex valued functions on D bounded by the so-called l2-norm, i.e.

l2(D) = {x | x : D → C,






∑

i∈D
x(i)x∗(i)







1/2

<∞}2.

We say that l2(D) is a Hilbert space with respect to the inner product
〈 · | · 〉 : l2(D)× l2(D) → C, defined by

〈x1|x2〉 = ∑

i∈D
x∗1(i)x2(i).

Elements of l2(D) are usually called vectors (to be indexed by elements of D). The
notation l2 = l2(N) is usually used in the case D = N.

2x∗ denotes the conjugate of the com x; i.e., x∗ = a− bi if x = a+ bi, where a, b are real.
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Example 0.4 Hilbert space L2
3 Let (a, b) be an interval, with finite or infinite bounds,

on the real axis. By L2((a, b)), or simply L2, we denote the set of all complex valued
functions such that

∫ b
a |f(x)|2 dx exists, equipped with the inner product

〈f |g〉 =
∫ b
af

∗(t)g(t) dt <∞.

If f and g are such that |f |2 and |g|2 are integrable functions (with respect to Lebesgue
measure) on (a, b), then so are functions cf and f + g, for any complex number c, and
therefore L2 is a linear space.4

Surprisingly, for two Hilbert spaces introduced in the last examples it holds

l2 ≃ L2

that is they are isomorphic (so-called Riesz-Fischer Theorem.)

The Hilbert space corresponding to a simple harmonic oscillator is L2 of all complex
valued functions, each of which is square integrable over the entire real line.

3Hilbert studied spaces l2 and L2, in his work on linear integral systems, and that is why von Neumann all spaces of such types named as Hilbert spaces.
4To be more precise L2 is to be the set of Lebesgue integrable functions on (a, b) and we do not consider as different a pair of functions that differ only on a set of measure zero.

In such a linear space the zero element is a function that is equal to zero almost everywhere on (a, b).
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DUAL HILBERT SPACE

The set of dual vectors of a Hilbert space H forms so called Dual Hilbert space H∗.
A dual vector 〈φ| to a vector |φ〉 is often denoted as |φ〉†.
If {|βi〉}ni=1 forms an orthogonal basis of a Hilbert space H, then {〈βi|}ni=1 forms an
orthogonal basis of H∗.

If H is a Hilbert space, then the set of linear operators on H forms again a Hilbert
space, denoted usually L(H) and all inner products of an orthogonal basis of H forms
an orthogonal basis of L(H). As a consequence if {βi〉}ni=1 form an orthogonal basis
on H, then every linear operator O on H can be expressed in the form

O =
∑

n

∑

m
tn,m|βn〉〈βm|

for some constants tn,m = 〈βn|O|βm〉
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ORTHOGONALITY of STATES

Two vectors |φ〉 and |ψ〉 are called orthogonal vectors if 〈φ|ψ〉 = 0.

Physically are fully distinguishable only orthogonal vectors (states).

By a basis B of Hn we will understand any set of n vectors
|b1〉, |b2〉, . . . , |bn〉 in Hn of the norm 1 which are mutually orthogonal.

Given a basis B, any vector |ψ〉 from Hn can be uniquely expressed
in the form

|ψ〉 = n
∑

i=1
αi|bi〉.

A set S of vectors is called orthonormal if all vectors of S have norm
1 and are mutually orthogonal.

DefinitionA subspace G of a Hilbert space H is a subset of H closed
under addition and scalar multiplication.

An important property of Hilbert spaces is their decomposability
into mutually orthogonal subspaces. It holds:
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Theorem For each closed subspace W of a Hilbert space H there
exists a unique subspace W⊥ such that 〈φ|ψ〉 = 0, whenever φ ∈ W
and ψ ∈ W⊥

and

each ψ ∈ H can be uniquely expressed in the form ψ = φ1 + φ2, with
φ1 ∈ W and φ2 ∈ W⊥. In such a case we write H = W ⊕W⊥ and we
say that W and W⊥ form an orthogonal decomposition of H.

In a natural way we can make a generalization of an orthogonal
decomposition

H = W1 ⊕W2 ⊕ . . .⊕Wn,

of H into mutually orthogonal subspaces W1, . . . ,Wn such that each
ψ ∈ H has a unique representation as ψ = φ1 + φ2 + . . . + φn, with
φi ∈Wi, 1 ≤ i ≤ n.
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OPERATORS of HILBERT SPACES

A linear operator on a Hilbert space H is a linear mapping
A : H → H.

An application of a linear operator A to a vector |ψ〉 is denoted A|ψ〉.

A is also a linear operator of the dual Hilbert space H∗, mapping
each linear functional 〈φ| of the dual space to the linear functional,
denoted by 〈φ|A.
A linear operator A is called positive or semi-definite, notation
A ≥ 0, if 〈ψ|Aψ〉 ≥ 0 for every |ψ〉 ∈ H.

The norm ||A|| of a linear operator A is defined as

||A|| = sup
||φ||=1

||A|φ〉||.

A linear operator is called bounded if its norm is finite.
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Projections have a special role among linear operators.

If H = W1 ⊕W2 is an orthogonal decomposition of a Hilbert space H
into subspaces W1 and W2, then, as mentioned above, each ψ ∈ H has
a unique representation ψ = ψ1 + ψ2, where ψ1 ∈ W1 and ψ2 ∈ W2.

PW1
(ψ) = ψ1 and PW2

(ψ) = ψ2

are called projections onto the subspaces W1 and W2, respectively.

Example If φ ∈ H for ||φ|| = 1 and a Hilbert space H , then the
operator defined by |φ〉〈φ| and defined by

|φ〉〈φ|(|ψ〉) = 〈φ|ψ〉|φ〉
is a projection into the one-dimensional subspace spanned by the vector
|φ〉.
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REPRESENTATIONS

If β = {θi}ni=1 is an orthonormal basis of a Hilbert space H, then any
state |φ〉 has a unique representation

|φ〉 = n
∑

i=1
〈θi|φ〉|θi〉.

Each linear operator A of a countable Hilbert space H with a basis
B = {|θi〉| i ∈ I} can be represented by a matrix, in general infinitely
dimensional, whose rows and columns are labeled by elements of I
and with 〈θi|A|θj〉 = 〈θi|Aθj〉 in the i-th row and j-th column. Such a
matrix is said to be matrix representation of A relative to the basis
β.

Each operator A has also so-called outer-product representation:

A =
∑

ij
〈θi|A|θj〉|θi〉〈θj|.

(here we use for 〈θi|Aθj〉 Dirac’s notation 〈θi|A|θj〉).
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TRACE of OPERATORS

Definition 0.5 Let H be an n-dimensional Hilbert space and B be an orthogonal basis on H. The

trace (operator) of a linear mapping M : H → H is defined by

Tr(M) =
∑

φ∈B
〈φ|M |φ〉.

In addition, if A is the matrix representation of M in the basis B. Then

Tr(M) = Tr(A) =
n
∑

i=1
aii,

where aii is the element of the matrix A at the position (i, i).

Properties of the trace operator:

• Trace of a linear mapping does not depend on the basis chosen.

• Tr(A +B) = Tr(A) + Tr(B).

• Tr(AB) = Tr(BA); Tr(A⊗ B) = Tr(A)Tr(B).

• Tr(αA) = αTr(A).

• Tr(|ψ〉〈φ|) = 〈φ|ψ〉.
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SELF-ADJOINT OPERATORS

Of special importance are adjoint and self-adjoint operators.

The adjoint operator T ∗ to a bounded linear operator T is an
operator such that for any φ and ψ ∈ H,

〈ψ|Tφ〉 = 〈T ∗ψ|φ〉.
An operator T is self-adjoint if T = T ∗.

Instead of 〈ψ|Tφ〉 notation 〈ψ|T |φ〉 is used. Hence

〈T ∗ψ|φ〉 = 〈ψ|T |φ〉 = 〈ψ|Tφ〉.
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SELF-ADJOINT OPERATORS — HERMITIAN MATRICES

To self-adjoint operators correspond Hermitian matrices, i.e.,
matrices A such that A = A∗.

Theorem 0.6 Hermitian matrices have the following properties.

1. All eigenvalues of a Hermitian matrix are real.

2. The eigenvectors of an Hermitian matrix corresponding to
distinct eigenvalues are orthogonal.

Proof of property 1: If Aφ = λφ, then

λ∗〈φ|φ〉 = 〈λφ|φ〉 = 〈Aφ|φ〉 = 〈φ|Aφ〉 = λ〈φ|φ〉.
hence λ∗ = λ.

Proof of property 2 Assume that λ 6= λ′, Aφ = λφ,Aφ′ = λ′φ′. Since
λ, λ′ are real, it holds

λ′〈φ′|φ〉 = 〈Aφ′|φ〉 = 〈φ′|Aφ〉 = λ〈φ′|φ〉
and therefore 〈φ′|φ〉 = 0.
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SPECTRAL REPRESENTATION of SELF-ADJOINT OPERATORS

A self-adjoint operator A of a finite dimensional Hilbert space H has the so-called
spectral representation. If λ1, . . . , λk are its distinct eigenvalues, then A can be
expressed in the form

A =
k
∑

j=1
λjPj,

where Pj is the projection operator into the subspace of H spanned by the
eigenvectors corresponding to λj.

In a special case when all eigenvalues are distinct and |φi〉 is the
eigenstate/eigenvector corresponding to the eigenvalue λi, then

A =
n
∑

i=1
λi|φi〉〈φi|

Since PiPj = 0 for two different projections, it holds for any polynomial p

p(A) =
k
∑

i=1
p(λi)Pi.

This is generalized to define for any function f : R → C by

f(A) =
k
∑

i=1
f(λi)Pi.
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Example Pauli matrix σx has eigenvalues 1 and −1 and corresponding eigenvectors
are |0′〉 = 1√

2
(|0〉 + |1〉) and |1′〉 = 1√

2
(|0〉 − |1〉). Since

|0′〉〈0′| =








1
2

1
2

1
2

1
2








|1′〉〈1′| =









1
2 −1

2
−1

2
1
2









and therefore

σx = 1









1
2

1
2

1
2

1
2








− 1









1
2
−1

2
−1

2
1
2









√
σx =

√
1









1
2

1
2

1
2

1
2








+
√
−1









1
2 −1

2
−1

2
1
2









that is

√
σx =









1+i
2

1−i
2

1−i
2

1+i
2








.
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SPECTRAL REPRESENTATION of UNITARY OPERATORS

Each self-adjoint operator A has spectral decomposition A = ∑n
j=1 λj|φj〉〈φj| and

therefore
eiA =

n
∑

j=1
eiλj|φj〉〈φj|

and therefore
(eiA)∗ =

n
∑

j=1
e−iλj |φj〉〈φj| = (eiA)−1

what implies that the matrix eiA is unitary.

We show now that each unitary matrix U = eiH for some self-adjoint operator H.
Indeed, if U is decomposed into a “real and imaginary” part U = A + iB, then A
and B are both self-adjoint and have spectral decompositions

A =
n
∑

i=1
λi|φi〉〈φi|

B =
n
∑

i=1
µi|φi〉〈φi|
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All eigenvalues of a unitary matrix have absolute value 1 and self-adjoint matrices
have eigenvalues real. Therefore, for each j an θj ∈ [0, 2π] has to exists such that
λj + iµj = eiθj . Hence for

H =
n
∑

j=1
θj|φj〉〈φj|

we have
U = eiH.

Example 1 Hadamard transform H = 1√
2









1 1
1 −1








has as eigenvalues 1 and −1 and

the corresponding eigenvectors are

φ1 =
1

√

4 + 2
√
2









1 +
√
2

1








φ−1 =

1
√

4− 2
√
2









1−
√
2

1









The spectral decomposition of H is then

H = 1 · |φ1〉〈φ1| + (−1)|φ−1〉〈φ−1|
and therefore H = eiA, where

A = 0 · |φ1〉〈φ1| + π|φ−1〉〈φ−1|
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Example 2 It holds

Rθ =









cos θ sin θ
sin θ cos θ








= eiAθ whereAθ =









0 iθ
−iθ 0








.
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QUANTUM TIME EVOLUTION

It is natural to assume that for a Hilbert space Hn there is a mapping Ut : Hn → Hn

that depends on time t that maps the initial state |φ0〉 into the state |φt〉 in time t,
that is that

|φt〉 = Ut|φ0〉.
It is also natural to put the following four requirements on Ut:

1. Ut should map states into states, that is it should preserve norm:

For each real t > 0 and each state |φ〉, ||Ut|φ〉|| = |||φ〉||.

2. Ut should be linear - what means that each basis state should develop
independently. Namely: for each basis {βi}ni=1,

Ut(
n
∑

i=1
ai|βi〉) =

n
∑

i=1
aiUt(|βi〉)

.

3. Ut should be decomposable. Namely, for all t1 > 0, t2 > 0

Ut1+t2 = Ut1Ut2.
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4. Evolution should be smooth. Namely, for each real t0

lim
t→t0

Ut|φ0〉 = lim
t→t0

|φt〉 = |φt0〉.

Theorem If time evolution Ut satisfies the above four conditions, then Ut has to be
unitary and Ut = e−iH for some self-adjoint operator H. Hence

∂φt
∂t

= −iHe−itHφ0 = −iHφt
what is known as the abstract Schrödinger equation.
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ANOTHER VIEW OF QUANTUM DYNAMICS

The time evolution of any state of a closed quantum system is unitary; i.e. the state
|φ(t1)〉 of the system at time t1 is related to the state |φ(t2)〉 of the system at a later
time t2 by a unitary operator Ut1,t2 which depends on t1 and t2:

|φ(t2)〉 = Ut1,t2|φ(t1).
moreover such an evolution is linear, i.e.

Ut1,t2
∑

t
αi|φi〉 = ∑

i
αiUt1,t2|φi〉.

Jozef Gruska October 9, 2016 25
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QUANTUM (PROJECTION) MEASUREMENT - OBSERVABLES

Informally, a quantum state |ψ〉 is observed (measured) with respect to an observable — a

Hermitian matrix A which specifies a decomposition of the Hilbert space into orthogonal subspaces

(such that each vector can be uniquely represented as a sum of vectors of these subspaces) that are

subspaces generated by eigenvectors corresponding to different eigenvalues of the operator A.

There are two outcomes of a projection measurement of a state |φ〉:
1. Information into which subspace projection of |φ〉 took place.

2. Resulting projection (a new quantum state) |φ′〉.
The subspace into which projection is made is chosen randomly and the corresponding probability is

uniquely determined by the amplitudes at the representation of |φ〉 at the basis states of the subspace.
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Namely, if

A =
k
∑

i=1
λiPi

for a self-adjoint operator A, where Pi are projections into mutually
orthogonal subspaces, then by measuring (observing) a state |φ〉 with
respect to A, this state collapses into the state

Pi|φ〉
√

〈φ|Pi|φ〉
with probability

〈φ|Piφ〉
and we also say that with the same probability the value λi is observed
in the classical world.

Jozef Gruska October 9, 2016 27
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PROJECTION MEASUREMENT - OTHER VIEW

For any decomposition of a unitary operator

I =
∑

i
Pi

into orthogonal projectors Pi there exists a projective
measurement that outputs, if a state |φ〉 is measured, as
the outcome an i with probability

Pr(i) = 〈φ|Pi|φ〉
and leaves the system in the state

Pi|φ〉
√

Pr(i)

Jozef Gruska October 9, 2016 28
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EXAMPLE

Observable σx =













0 1
1 0













has eigenvalues {1,−1} and

eigenvectors {|0′〉, |1′〉}.
A measurement with respect to the observable σx is
therefore measurement with respect to the dual basis.

Observable σz =













1 0
0 −1













has eigenvalues {1,−1} and

eigenvectors {|0〉, |1〉}.
A measurement with respect to the observable σx is
therefore measurement with respect to the standard
(computational) basis.
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PROBABILITIES

To the key outcomes of quantum mechanics belong rules for
determining probabilities of the outcomes of quantum
measurements.

The classical outcome of a measurement of a state |ψ〉 with respect
to an observable A is one of the eigenvalues of A and quantum
impact of such a measurement is a “collapse” of |ψ〉 into a state |ψ′〉.
In the measurement the eigenvalue λi is obtained with probability

Pr(λi) = ||Pi|ψ〉||2 = 〈ψ|Pi|ψ〉,
and the new state |ψ′〉, into which |ψ〉 collapses, has the form

|ψ′〉 = Pi|ψ〉
√

〈ψ|Pi|ψ〉
.
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ANOTHER VIEW of MEASUREMENT

Quantum measurement is described by a finite set {Pm} of
projectors acting on the state space of the system being measured
and such that ∑

m Pm = I - the index m refers to the potential classical
outcomes of a measurement.

If a state |φ〉 is measured with respect to {Pm}, then the result m
occurs with probability

Pr(m) = 〈φ|Pm|φ〉
and if such a result occurs the state of the system immediately after
measurement is

Pm|φ〉
√

〈φ|Pm|φ〉
=

Pm|φ〉
√

Pr(m)
.

If α is a real number, we say that states |φ〉 and eiα|φ〉 are equivalent,
or equal up to a phase factor. Two such states give the same
measurement statics, what follows from the relations

〈eiαφ|Pm|eiαφ〉 = e−iαeiα〈φ|Pm|φ〉 = 〈φ|Pm|φ〉.
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IMPORTANT OBSERVATION

Quantum mechanics is a probabilistic mathematical
theory for describing the physical world.
However, probability involved is not probability of some
dynamic variables having a particular value in some
state.

Rather, it represents the probability of finding a
particular value of a dynamical variable if that
dynamical variable is measured.

Quantum mechanics says nothing about values of
dynamical variables when the system is not subjected to
any measurement.
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EXPECTATION VALUE

Let A be self-adjoint operator of a Hilbert space H , with spectral decomposition

A =
k
∑

i=1
λiPλi.

The expectation value of A in the state ψ is defined by

expψ(A) =
k
∑

i=1
λiprobψ(λi)

=
k
∑

i=1
λi〈Pλiψ|Pλiψ〉

=
k
∑

i=1
λi〈ψ|Pλiψ〉

= 〈ψ| k
∑

i=1
λiPλi|ψ〉

= 〈ψ|Aψ〉
= 〈ψ|APψψ〉 = Tr(APψ) = Tr(PψA).
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MIXED STATES — DENSITY MATRICES

Pure states are fundamental objects for quantum mechanics in the sense that the
evolution of any closed quantum system can be seen as a unitary evolution of pure
states.

However, to deal with unisolated and composed quantum systems the concept of
mixed states is of importance.

A probability distribution {(pi, φi) | 1 ≤ i ≤ k} on pure states {φi}ki=1, with
probabilities 0 < pi ≤ 1, ∑k

i=1 pi = 1 is called a mixed state or mixture, and
denoted by [ψ〉 = {(pi, φi) | 1 ≤ i ≤ k}. For example, a mixed state is created if a

source produces pure state |φi〉 with probability pi and
∑k
i=1 pi = 1.

To each mixed state [ψ〉 = {(pi, φi) | 1 ≤ i ≤ k} corresponds a density operator

ρ[ψ〉 =
k
∑

i=1
pi|φi〉〈φi|.

Key observation Two mixed states with the same density matrix are
physically undistinguishable.
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EXAMPLES

The density matrix corresponding to the mixed state

(
1

2
, |0〉)⊕ (

1

2
, |1〉)

has the form
1

2







1

0





 (0, 1) +
1

2







0

1





 (0, 1) =
1

2
I.

For any pure one qubit state α|0〉 + β|1〉, to the mixed state

(
1

4
, α|0〉 + β|1〉)⊕ (

1

4
, α|0〉 − β|1〉)⊕ (

1

4
, β|0〉 + α|1〉)⊕ (

1

4
, β|0〉 − α|1〉)

corresponds the density matrix

1

4







α

β





 (α∗, β∗) +
1

4







α

−β





 (α∗,−β∗)

+
1

4







β

α





 (β∗, α∗) +
1

4







β

−α





 (β∗,−α∗) =
1

2
I
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REPRESENTATION of MIXED STATES

If ρ is a density matrix and in a basis {βi}ni=1
ρ = {ρi,j}ni,j=1,

then
ρ =

n
∑

i,j=1
ρi,j|βi〉〈βj|.

As a consequence, for any k, l,

〈βk|ρ|βl〉 = ρk,l.
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PROPERTIES of DENSITY MATRICES

1. Any density matrix ρ is Hermitian, nonnegative, has
only nonnegative eigenvalues and Tr(ρ) = 1.

2. If ρ1, ρ2 are density matrices on a Hilbert space H,
then pρ1 + (1− p)ρ2, 0 ≤ p ≤ 1 is a density matrix on H.

3. If ρ is a density matrix, then so is the matrix ρT .

4. If ρ1 is a density matrix on a Hilbert space H1 and ρ2
is a density matrix on a Hilbert space H2, then ρ1 ⊗ ρ2
is density matrix on the Hilbert space H1 ⊗H2.

5. A matrix ρ is a density matrix if it is Hermitian,
nonnegative and Trρ = 1.

6. If ρ2 = ρ for a density matrix ρ, then ρ is a pure state,
i.e. ρ = |φ〉〈φ| for a pure state |φ〉.
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DENSITY OPERATORS as STATES

We had a description of quantum (pure) states in terms of vectors of
the norm one of a Hilbert space.

An alternative description is in terms of density operators which is very
useful in describing states of subsystems of a composite quantum
systems.

Quantum states are therefore often (mostly) associated with density
operators (positive trace 1 operators).
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BLOCH VECTORS REPRESENTATION of MIXED QUBIT STATES

For qubits, any density operator ρ (matrix) can be written uniquely in
the form

ρ =
1

2
[I + axσx + ayσy + azσz]

where ai are real numbers such that for i ∈ {x, y, z}, ∑

i |ai|2 ≤ 1
(because the set of matrices {I, σx, σy, σz} form a basis) .

In short, ρ can be written as

ρ =
1

2
[I + a · σ]

where a s a vector with components ai and the notation r · σ means
∑

i aiσi.

Therefore there is one-to-one correspondence between density operators
for qubits and points of the Bloch/Poincare sphere.
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Example Totally mixed state {(12, |0〉), (12, |1〉)‖ that is identical with

{(12, |0〉〈0|), (12, |1〉〈1|)‖ corresponds to the centre of the Bloch sphere.
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EVOLUTION of MIXED STATES and DENSITY MATRICES

If a unitary matrix U is applied to a mixed state

{(p1, |φi〉), . . . , (pk, φk)}
with the density matrix

ρ =
k
∑

i=1
pi|φi〉〈φi|

then the resulting mixed state is

{(p1, |Uφi〉), . . . , (pk, Uφk)}
and the corresponding density matrix is

k
∑

i=1
piU |φi〉〈φi|U† = U(

k
∑

i=1
pi|φi〉〈φi|)U† = UρU†
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TRACING OUT OPERATION

One of the profound differences between the quantum and classical
systems lies in the relation between a system and its subsystems.

As discussed below a state of a Hilbert space H = HA⊗HB cannot be
always decomposed into states of its subspaces HA and HB. We also
cannot define any natural mapping from the space of linear
operators on H into the space of linear operators on HA (or HB).

However, density operators are much more robust and that is also
one reason for their importance. A density operator ρ on H can be
“projected” into HA by the operation of tracing out HB, to give the
density operator (for finite dimensional Hilbert spaces):

ρHA = TrHB(ρ) =
∑

|φ〉,|φ′〉∈BHA
|φ〉











∑

|ψ〉∈BHB
〈φ, ψ|ρ|φ′, ψ〉











〈φ′|,

where BHA (BHB) is an orthonormal basis of the Hilbert space HA

(HB).
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MEANING of TRACING OUT OPERATIONS

If dim(HA) = n, dim(HB) = m, then ρ is an nm× nm matrix which can
be seen as an n× n matrix consisting of m×m blocks ρij as follows:

ρ =

































ρ11 . . . ρ1n

... . . .

ρn1 . . . ρnn

































and in such a case

ρHA =

































Tr(ρ11) . . . Tr(ρ1n)

... . . . ...

Tr(ρn1) . . . tr(ρnn)
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WHY SUCH a TRACING OUT OPERATION?

The following fact is the main mathematical justification that
strangely looking tracing out operation has the proper physical
meaning:

If H = HA ⊗HB and ρ is a density matrix of H, then ρA = TrB(ρ) is
the unique density matrix of HA such that

Tr (ρA ·O) = Tr(ρ · (O ⊗ I))

for each observable (Hermitian matrix) O of HA.

In other words the average value of the measurement of ρA on HA

with respect to the observable O, on HA, equals the average value of
the measurement of ρ on H with respect to the observable O ⊗ I on
H.

Informally, one often says that in order to get the density matrix of
a subsystem, given the density matrix of the whole system, one
should trace over the degrees of freedom of the rest of the system.
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TRACING OUT OPERATION

Perhaps the simplest way to introduce tracing out
operation is to say that it is a linear operation such that
for any bipartite system A⊗ B and any states |φ1〉 and
|φ2〉 of A and any states |ψ1〉 and |ψ2〉 of B

TrB(|φ1〉〈φ2| ⊗ |ψ1〉〈ψ2|) = |φ1〉〈φ2|Tr(|ψ1〉〈ψ2|) = 〈ψ2|ψ1〉|φ1〉〈φ2|.
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EXAMPLES

Example 1. For

ρ =
1

2
(|00〉〈00| + |00〉〈11| + |11〉〈00| + |11〉〈11|)‖

it holds

Tr(ρ) =
1

2
(|0〉〈0| + |1〉〈1|
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MEASUREMENT of PURE STATES

Let us assume that we are measuring (with respect to) the observable X with
spectral decomposition

X =
∑

j
λj|j〉〈j|.

From the hermiticity of X it follows that the eigenvalues λj are real. For simplicity
we assume that eigenvalues are nondegenerate (all different) and the corresponding
eigenvectors, {|j〉}j, form an orthonormal basis. Then:

1. The projectors Pj = |j〉〈j| span the entire Hilbert space, ∑

j Pj = 1.

2. From the orthogonality of the basis states we have PiPj = δijPi. in particular,
P 2
i = Pi, what implies that eigenvalues of any projector are −1 and 1.

3. Each measurement of a state |φ〉 with respect to X yields, on a classical level, one
of the eigenvalues λj.
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4. (Collapse postulate) The quantum state of the system immediately, after the
measurement of |φ〉 with respect to X , is

|φj〉 =
Pj|φ〉

√

〈φ|Pj|φ〉
if the classical outcome is λj.

5. (Born’s rule) The probability that this particular outcome is found as the
measurement result is

pj = ||Pj|φ〉||2 = 〈φ|P 2
j |φ〉 = 〈φ|Pj|φ〉,

where we used the property 2.

6. If we perform the measurement as above, but we do not record the result, ten the
postmeasurement state can be described by the density operator

ρ =
∑

j
pj|φj〉〈φj| = ∑

j
Pj|φ〉〈φ|Pj.

The above six rules (postulates) describe what happens to the system during the
measurement if it was initially in a pure state.
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MEASUREMENT of MIXED STATES

If the quantum system is initially in a mixed state ρ, then the last three
postulates are to be replaced by their immediate generalisations:

1. The projectors Pj = |j〉〈j| span the entire Hilbert space, that is
∑

j Pj = 1.

2. From the orthogonality of the basis states we have PiPj = δijPi. in

particular, P 2
i = Pi, what implies that eigenvalues of any projector

are −1 and 1.

3. Each measurement of a state |φ〉 with respect to X yields, on the
classical level, one of the eigenvalues λj.
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4. The quantum state of the system after the measurement is

ρj =
PjρPj

Tr(PjρPj)
=

PjρPj
Tr(Pjρ)

if the classical outcome is λj.

5. The probability that this particular outcome is found as the
measurement result is

pj = Tr(PjρPj) = Tr(P 2
j ρ) = Tr(Pjρ)

where, again, we used the property 2.

6. If measurement is performed, but result is not recorded, then the
postmeasurement state can be described by the density operator

ρ0 =
∑

j
λjPjρPj.
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SUPEROPERATORS

•A superoperator (SO) is a linear mapping/map on
linear operators of a Hilbert space.

•A positive superoperator (PSO) is a superoperator that
maps density matrices into density matrices.

•A completely positive superoperator/map (CPO) G is a
PSO such that, for all positive integer m, G⊗ Im is also
a PSO, where Im is the identity matrix.

CPO are exactly (all) physically allowed transformations
on density matrices.

Examples: encoders, decoders, quantum channels,
quantum measurements.
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CPO — INFORMAL VIEW

Informally, the best way is to see a CPO S applied to a
state |φ〉 of a Hilbert space H as follows:

Take at first an auxiliary state (called usually ancilla) of
another Hilbert space H ′, then apply a unitary operator
U to the state |φ〉 ⊗ |ψ〉 and, finally, discard (trace out)
the H ′-part of the resulting state.
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WHAT ARE QUANTUM OPERATIONS?

The main question we deal with in this section is very fundamental.
What are physically realizable operations one can perform (at least
theoretically) on (mixed) states (to get again (mixed) states )?

In closed quantum systems unitary operations are actually the only
quantum operations that are available. Measurements are actually
outside of the closed quantum system framework, an interface from
the quantum to classical world, but surely they are operations we
should consider as physically realizable.

Of the main importance are quantum operations in open quantum
systems. Actually, all actions that are performed in/on quantum
systems are quantum operations: unitary operations ,
measurements, channel transmissions, flow of time, noise impacts,
....

The concept of quantum operations is therefore very general and
very fundamental.
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It is perhaps a bit surprising, but actually nice, useful and natural,
that we can actually study and consider open quantum systems in
the framework of closed quantum systems. We can consider as the
basic setting that our (principal) quantum system and its
environment form a closed quantum system in which we operate.

The requirement to consider only physically realizable (at least
theoretically) operation is, of course, logical. As we shall see this
question has, in a sense and at least theoretically, clear and simple
answer. They are, as discussed later, trace preserving completely
positive linear maps.
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THREE APPROACHES

There are basically three main approaches to define what are
“physically realizable quantum operations” (superoperators) E.
A physically motivated axiomatic approach says that for a Hilbert
space H we should consider as physically realizable operations/maps
B(H) → B(H) which are consistent with the (statistical)
interpretation of quantum theory.

That is physically realisable quantum operations aremaps that are
linear (to preserve superpositions), positive and trace preserving (to
map density operators to density operators) and actually completely
positive (to be sure that if a superoperator is applied to a
subsystem, then the whole system is again in a quantum state).
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A pragmatic approach says that superoperators are those operations
that can be combined from unitary operations, adding ancillas,
performing (non-selective) projective measurement and discarding
subsystems (ancillas), by performing a tracing out operation.

A mathematical approach says that all basic quantum operations:
adding and discarding quantum subsystems, unitary operations and
non-selective projective measurements are those operations that
have Kraus operator-sum representation

ρ→ k
∑

i=1
EiρE

†
i ,

where so called Kraus operators Ei : H → H are not necessarily
Hermitian operators, but they should be positive and should form a
“decomposition of the identity operator”, that is it should hold:,

∑k
i=1E

†
iEi = IH – so called completeness condition.

It is a consequence of the completeness condition, and a property of
trace operation, that for any superoperator E holds

Tr(E(ρ)) = Tr(
∑

i
EiρE

†
i ) = Tr(

∑

i
E†
iEiρ) = Tr((

∑

i
E†
iEi)ρ) = Tr(ρ) = 1.
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STINESPRING DILATION THEOREM

So called Stinespring dilation theorem, discussed below,
says that each superoperator can be realized in “one big
three-stage-step” : adding an ancilla, performing a
unitary operation on a composed quantum system and,
finally, discarding the ancilla, see Figure 1

ρ

|φ><φ|

Ε(ρ)
U

Figure 1: A Stinespring realization of a superoperator. In this view a superoperator E performs the mapping E(ρ) = Tra(U(ρ × ρa)U
†), where ρa is

the “initial state”, for example |φ〉〈φ| of an ancilla subsystem, U is a unitary operation on composed system and, finally, a tracing out operation is
performed.
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POVM (GENERALIZED QUANTUM MEASUREMENT

Most general quantum observables (measurements) , so called
POVM measurements, are given by a set {Ei}i of positive operators
0 ≤ Ei ≤ I such that ∑

iEi = I.

A measurement of a state ρ with respect to such an observable
provides i-th outcome with the probability

Tr[ρEi].

The idea of POVM occurs naturally when we consider projective
measurements on copositive systems. Indeed,the projective
measurement on the tensor product Hilbert space of subsystems A
and B may not remain projective on the Hilbert space associated
with A and may result in a POVM on it.

By Neumark’s theorem a POVM measurement on a Hilbert space
can always be realized as projective measurement in a larger Hilbert
space.
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APPENDIX
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SCHMIDT DECOMPOSITION THEOREM

If |ψ〉 is a state in a bipartite Hilbert space HA⊗HB, and {|αi〉}ni=1 is a basis of HA,
{|βj〉}mj=1 is a basis of HB, then

|ψ〉 = n
∑

i=1

m
∑

j=1
pij|αi〉 ⊗ |βj〉

for some amplitudes pij.

Schmidt decomposition theorem says that |ψ〉 can be expressed also through a
one-sum superposition and not only through a two-sums superposition as above, what
very often makes considerations and proofs much simpler.

Theorem If |ψ〉 is a vector of a bipartite Hilbert space HA ⊗HB, then there exists an
orthogonal basis {|αi〉} of HA and an orthogonal basis {|βj〉|〉} of HB and
nonnegative integers {pk} such that

|ψ〉 = ∑

k

√
pk|αk〉 ⊗ |βk〉.

The coefficients
√
pk are called Schmidt coefficients and k = 1, ...,min{n,m}.
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PARTIAL TRACE and SCHMIDT DECOMPOSITION

If a state |ψ〉 of a bipartite Hilbert space HA ⊗HB has the Schmidt decomposition

|ψ〉 = ∑

k

√
pk|αk〉 ⊗ |βk〉.

where {|αi〉} and {|βj〉} of HB are orthogonal bases of HA and HB, then to trace
out any of the subsystems is easy. Indeed

TrHB
(|ψ〉〈ψ|) = ∑

k
pk|αk〉〈αk|

and

TrHA
(|ψ〉〈ψ|) = ∑

k
pk|βk〉〈βk|
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PARTIAL TRACE - A USEFUL FACT

The following fact concerning tracing out operation are often useful:

• If HA ⊗HB is a bipartite system and ρ a state on it, then an
application of a unitary operation U on A commute with operation of
tracing out system B. Namely

TrB((U ⊗ I)ρ(U† ⊗ I)) = U(TrBρ)U
†.
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MATHEMATICAL versus PHYSICAL NOTATION

If |φ〉 is a vector of a Hilbert space H1 and |ψ〉 of a Hilbert space H2, then

|φ〉 ⊗ |ψ〉 = |φ〉|ψ〉
is a vector of H1 ⊗H2.

If we want to be more precise about to which Hilbert space vectors belong we specify
them explicitly through indices as follows, for example,

|φ1〉|ψ2〉.
In such a case for dual vectors mathematicians usually write

(|φ1〉|ψ2〉)† = 〈φ1|〈|ψ2|.
However, physicists usually write

(|φ1〉|ψ2〉)† = 〈ψ2|〈φ1|.
If this convention is used, then we have

(|φ〉|ψ〉)†|α〉|β〉 = 〈ψ|〈φ||α〉|β〉 = 〈φ|α〉〈ψ|β〉
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Moreover it holds

(|φ1〉 ⊗ |ψ2〉)(〈α1| ⊗ |ψ2) = |α1〉〈α1| ⊗ |ψ2〉〈β2|.
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