
QUANTUM COMPUTING 6.

Jozef Gruska

Faculty of Informatics

Brno

Czech Republik

November 22, 2016

6. Shor algorithms and Fourier Transform, 2016.

Chapter 6. QUANTUM FOURIER TRANSFORM and SHOR’S ALGORITHMS

Perhaps the most significant success of quantum computing so far
has been Shor’s polynomial time algorithm for factorization that
will be presented in this section. This is a highly nontrivial
algorithm that uses a new technique, that of Quantum Fourier
Transform, that will also be illustrated in this chapter.

The fastest classical algorithm to factor m bit numbers requires time

O(ecm
1/3(lgm)2/3).

Shor’s factorization algorithm requires O(m2 lg2m lg lgm) time on a
quantum computer and polynomial time on a classical computer.

Of interest and importance is also another Shor’s polynomial time
algorithm, for discrete logarithm, to be also presented in this
chapter. We present also another than Shor’s approach to quantum
factorization.

Correctness and efficiency of Shor’s algorithm is based on several
simple results from number theory to be presented first.

Jozef Gruska November 22, 2016 1

6. Shor algorithms and Fourier Transform, 2016.

FIRST REDUCTION

Lemma 0.1 If there is a polynomial time deterministic (randomized) [quantum]
algorithm to find a nontrivial solution of the modular quadratic equations

a2 ≡ 1 (mod n),

then there is a polynomial time deterministic (randomized) [quantum] algorithm to
factorize integers.

Proof. Let a 6= ±1 be such that a2 ≡ 1 (mod n). Since

a2 − 1 = (a + 1)(a− 1),

if n is not prime, then a prime factor of n has to be a prime factor of either a + 1 or
a− 1.

By using Euclid’s algorithm to compute

gcd(a + 1, n) and gcd(a− 1, n)

we can find, in O(lg n) steps, a prime factor of n.

Jozef Gruska November 22, 2016 2

6. Shor algorithms and Fourier Transform, 2016.

SECOND REDUCTION

The second key concept is that of period of the functions

fn,x(k) = xk mod n.

It is the smallest integer r such that

fn,x(k + r) = fn,x(k)

for any k, i.e. the smallest r such that

xr ≡ 1 (mod n).

AN ALGORITHM TO SOLVE EQUATION x2 ≡ 1 (mod n).

1. Choose randomly 1 < a < n.

2. Compute gcd(a, n). If gcd(a, n) 6= 1 we have a factor.

3. Find period r of function ak mod n.

4. If r is odd or ar/2 ≡ ±1 (mod n),then go to step 1; otherwise stop.

If this algorithm stops, then ar/2 is a non-trivial solution of the equation

x2 ≡ 1 (mod n).

Jozef Gruska November 22, 2016 3

6. Shor algorithms and Fourier Transform, 2016.

EXAMPLE

Let n = 15. Select a < 15 such that gcd(a, 15) = 1.

{The set of such a is {2, 4, 7, 8, 11, 13, 14}}

Choose a = 11. Values of 11x mod 15 are then

11, 1, 11, 1, 11, 1

what gives r = 2.

Hence ar/2 = 11 (mod 15). Therefore

gcd(15, 12) = 3, gcd(15, 10) = 5

For a = 14 we get again r = 2, but in this case

142/2 ≡ −1 (mod 15)

and the following algorithm fails.

1. Choose randomly 1 < a < n.

2. Compute gcd(a, n). If gcd(a, n) 6= 1 we have a factor.

3. Find period r of function ak mod n.

4. If r is odd or ar/2 ≡ ±1 (mod n),then go to step 1; otherwise stop.

Jozef Gruska November 22, 2016 4

6. Shor algorithms and Fourier Transform, 2016.

EFFICIENCY of REDUCTION

Lemma 0.2 If 1 < a < n satisfying gcd(n, a) = 1 is selected in the above algorithm randomly and n is

not a power of prime, then

Pr{r is even and ar/2 6≡ ±1} ≥ 9

16
.

1. Choose randomly 1 < a < n.

2. Compute gcd(a, n). If gcd(a, n) 6= 1 we have a factor.

3. Find period r of function ak mod n.

4. If r is odd or ar/2 ≡ ±1 (mod n),then go to step 1; otherwise stop.

Corollary 0.3 If there is a polynomial time randomized [quantum] algorithm to compute the period of

the function

fn,a(k) = ak mod n,

then there is a polynomial time randomized [quantum] algorithm to find non-trivial solution of the

equation a2 ≡ 1 (mod n) (and therefore also to factorize integers).

Jozef Gruska November 22, 2016 5

6. Shor algorithms and Fourier Transform, 2016.

FROM SIMON PROBLEM TO FACTORIZATION

• One can see Simon’s problem as the one to find the unknown period
of a function on n-bit integers that is ”periodic” under bit-wise
modulo-2 addition.

• One can see factorization problem as the one to find period of integer
functions fb(x) = bx mod n under ordinary addition. That is to find
such an r that fb(x + r) = fb(x) for all x that is the smallest integer
r such that br ≡ 1(mod n).

• Large difficulty of this task is connected with the fact that values of
the function f between fb(x) and fb(x + r) are almost randomly
distributed and therefore knowledge of some of them give almost no
clue about others.

Jozef Gruska November 22, 2016 6

6. Shor algorithms and Fourier Transform, 2016.

A GENERAL SCHEME FOR SHOR’S ALGORITHM

Jozef Gruska November 22, 2016 7

6. Shor algorithms and Fourier Transform, 2016.

quantum
x

find period r
subroutine

r is
even?

r/2 r/2

z=1 ?

output z

no

yes

no

compute
z = gcd(a, n)

z = 1?

yes

no

z = max{gcd(n, a -1), gcd(n, a +1)}

yes

of function a mod n

choose randomly
a {2, ... ,n-1}

Jozef Gruska November 22, 2016 8

6. Shor algorithms and Fourier Transform, 2016.

SHOR’s ALGORITHM

1. For given n, q = 2d, a create states

1√
q

q−1
∑

x=0
|n, a, q, x,0〉 and 1√

q

q−1
∑

x=0
|n, a, q, x, ax mod n〉

2. By measuring the last register the state collapses into the state

1√
A + 1

A
∑

j=0
|n, a, q, jr + l, y〉 or, shortly 1√

A + 1

A
∑

j=0
|jr + l〉,

where A is the largest integer such that l + Ar ≤ q, r is the period of ax mod n and l is the offset.

3. In case A = q
r
− 1, the resulting state has the form.

√

√

√

√

√

r

q

q
r−1
∑

j=0
|jr + l〉

4. By applying quantum Fourier transformation we get then the state

1√
r

r−1
∑

j=0
e2πilj/r|jq

r
〉.

5. By measuring the resulting state we get c = jq
r and if gcd(j, r) = 1, what happens with sufficient

large probability, then from c and q we can determine the period r.

Jozef Gruska November 22, 2016 9

6. Shor algorithms and Fourier Transform, 2016.

PERIOD COMPUTATION for fn,a(x) = ax mod n, q = 2d

Hadamard transform applied to the first register of the state |0(d), 0(d)〉 yields

|φ〉 = 1√
2d

q−1
∑

x=0
|x, 0(d))〉

and an application to both registers of the unitary transformation

Ufn,a : |x, 0(d)〉 → |x, ax mod n〉

provides the state

|φ1〉 = Ufn,a|φ〉 =
1√
2d

q−1
∑

x=0
|x, fn,a(x)〉

Note 1: All possible values of the function fn,a are encoded in the second register in the state |φ1〉.

Note 2: We are interested in the period of the function fn,a and not in particular values of fn,a.

Could we get period by measuring, several times, at first the second register and then the first one?

Jozef Gruska November 22, 2016 10

6. Shor algorithms and Fourier Transform, 2016.

EXAMPLE

For n = 15, a = 7, fn,a(x) = 7x mod 15, q = 16, the state

Ufn,a|φ〉 =
1
√
q

q−1
∑

x=0
|x, fn,a(x)〉

has the form

1

4
(|0〉|1〉 + |1〉|7〉 + |2〉|4〉 + |3〉|13〉+ |4〉|1〉 + |5〉|7〉 + . . . + |14〉|4〉 + |15〉|13〉).

If we measure at this point the second register, then we get as the outcome one of the numbers 1, 4, 7

or 13, and the following table shows the corresponding post-measurement states in the second column.

result post-measurement state offset

1 1
2(|0〉 + |4〉 + |8〉 + |12〉)|1〉 0

4 1
2
(|2〉 + |6〉 + |10〉 + |14〉)|4〉 2

7 1
2(|1〉 + |5〉 + |9〉 + |13〉)|7〉 1

13 1
2(|3〉 + |7〉 + |11〉 + |15〉)|13〉 3

The corresponding sequences of values of the first register are periodic with period 4 but they have

different offsets (pre-periods) listed in column 3 of the table.

Jozef Gruska November 22, 2016 11

6. Shor algorithms and Fourier Transform, 2016.

GRAPHICAL REPRESENTATION of STEPS

FOR SHOR’s ALGORITHM

q/r

(e)

q/r

(a)
(d)

period

(b)

(c)

r

l
offset

Figure 1: Graphical representation of steps of Shor’s algorithm

Jozef Gruska November 22, 2016 12

6. Shor algorithms and Fourier Transform, 2016.

DISCRETE FOURIER TRANSFORM

Discrete Fourier Transform maps a vector a = (a0, a1, . . . , an−1)
T into the vector

DFT (a) = Ana, where An is an n× n matrix such that An[i, j] =
1√
nω

ij for

0 ≤ i, j < n and ω = e2πi/n is the nth root of unity.
The matrix An has therefore the form

An =
1√
n

1 1 1 . . . 1
1 ω ω2 . . . ω(n−1)

1 ω2 ω4 . . . ω2(n−1)

...

1 ω(n−1) ω2(n−1) . . . ω(n−1)2

.

The Inverse Discrete Fourier Transform is the mapping

DFT−1(a) = A−1
n a,

where

A−1
n [i, j] =

1√
n
ω−ij.

Jozef Gruska November 22, 2016 13

6. Shor algorithms and Fourier Transform, 2016.

SOME INSIGHTS into DFT

There is a close relation between Discrete Fourier Transform and polynomial
evaluation and interpolation. Let us consider a polynomial

p(x) =
n−1
∑

i=0
aix

i.

Such a polynomial can be uniquely represented in two ways: either by a list of its
coefficients a0, a1, . . . , an−1, or by a list of its values at any n distinct points
x0, x1, . . . , xn−1.

The process of finding the coefficient representation of the polynomial given its values
at points x0, x1, . . . , xn−1 is called interpolation.

Computing the Discrete Fourier Transform of a vector (a0, a1, . . . , an−1) is equivalent
to converting the coefficient representation of the polynomial ∑n−1

i=0 aix
i to its value

representation at the points ω0, ω1, . . . , ωn−1.

Likewise, the Inverse Discrete Fourier Transform is equivalent to interpolating a
polynomial given its values at the n-th roots of unity.

Jozef Gruska November 22, 2016 14

6. Shor algorithms and Fourier Transform, 2016.

QUANTUM FOURIER TRANSFORM

The Quantum Fourier Transform is a quantum variant of the
Discrete Fourier Transform (DFT). DFT maps a discrete function to
another discrete one with equally distant points as its domain. For
example it maps a q-dimensional complex vector

{f(0), f(1), . . . , f(q − 1)} into {f̄ (0), f̄ (1), . . . , f̄ (q − 1)},
where for c ∈ {0, . . . , q − 1}

f̄(c) =
1
√
q

q−1
∑

a=0
e2πiac/qf(a), (1)

for c ∈ {0, . . . , q − 1}.
The quantum version of DFT (QFT) is the unitary transformation

QFTq : |a〉 →
1√
q

q−1
∑

c=0
e2πiac/q|c〉 (2)

Jozef Gruska November 22, 2016 15

6. Shor algorithms and Fourier Transform, 2016.

The quantum version of DFT (QFT) is the unitary transformation

QFTq : |a〉 →
1
√
q

q−1
∑

c=0
e2πiac/q|c〉 (3)

for 0 ≤ a < q, with the unitary matrix

Fq =
1√
q

1 1 1 . . . 1
1 ω ω2 . . . ω(q−1)

1 ω2 ω4 . . . ω2(q−1)

...

1 ω(q−1) ω2(q−1) . . . ω(q−1)2

,

where ω = e2πi/q is the qth root of unity.
If applied to a quantum superposition, QFTq performs as follows;

QFTq :
q−1
∑

a=0
f(a)|a〉 →

q−1
∑

c=0
f̄ (c)|c〉,

where f̄(c) is defined by (1).
Observe that

QFTq : |0〉 →
1
√
q

q−1
∑

i=0
|i〉,

Jozef Gruska November 22, 2016 16

6. Shor algorithms and Fourier Transform, 2016.

SHOR’s ALGORITHM — PHASE 1

Design of states whose amplitudes have the same period as fn,a

Given an m bit integer n we choose a n2 ≤ q = 2d ≤ 2n2 and start with five registers in states

|n, a, q,0,0〉, where the last two registers have m = ⌈lg q⌉ = d qubits.

An application of the Hadamard transformation to the fourth register yields the state

1
√
q

q−1
∑

x=0
|n, a, q, x,0〉.

and using quantum parallelism we compute ax mod n for all x in one step, to get

1
√
q

q−1
∑

x=0
|n, a, q, x, ax mod n〉.

As the next step we perform a measurement on the last register. Let y be the value obtained, i.e.

y = al mod n for the smallest ly with this property. If r is the period of fn,a, then aly ≡ ajr+ly

(mod n) for all j. Therefore, the measurement actually selects the sequence of x’s values (in the

fourth register), ly, ly + r, ly + 2r, . . . , ly + Ar, where A is the largest integer such that

ly + Ar ≤ q − 1. Clearly, A ≈ q
r . The post-measurement state is then

|φl〉 =
1√

A + 1

A
∑

j=0
|n, a, q, jr + ly, y〉 =

1√
A + 1

A
∑

j=0
|jr + ly〉. (4)

after omitting some registers being fixed from now on.

Jozef Gruska November 22, 2016 17

6. Shor algorithms and Fourier Transform, 2016.

SHOR’s ALGORITHM — PHASE 2.

Amplitude amplification by QFT
From now on we consider in detail only a special case. Namely that r divides q. In
such a case A = q

r − 1. In such a case the last state can be written in the form

|φl〉 =
√

√

√

√

√

√

r

q

q
r−1
∑

j=0
|jr + ly〉

and after QFTq is applied on |φl〉 we get:

QFTq|φl〉 =
1
√
q

q−1
∑

c=0

√

√

√

√

√

√

r

q

q
r−1
∑

j=0
e2πic(jr+ly)/q|c〉 =

√
r

q

q−1
∑

c=0
e2πilyc/q

q
r−1
∑

j=0
e2πijcr/q

|c〉 =
q−1
∑

c=0
αc|c〉.

If c is a multiple of q
r, then e2πijcr/q = 1 and if c is not a multiple of q

r , then
q
r−1
∑

j=0
e2πijcr/q = 0,

Jozef Gruska November 22, 2016 18

6. Shor algorithms and Fourier Transform, 2016.

because the above sum is over a set of q
r roots of unity equally spaced around the unit

circle. Thus

αc =

1√
re

2πilyc/q, if c is a multiple of q
r ;

0, otherwise;

and therefore

|φout〉 = QFTq|φl〉 =
1√
r

r−1
∑

j=0
e2πilyj/r|jq

r
〉.

The key point is that the trouble-making offset ly appears now in the phase factor
e2πilyj/r and has no influence either on the probabilities or on the values in the
register.

Jozef Gruska November 22, 2016 19

6. Shor algorithms and Fourier Transform, 2016.

SHOR’s ALGORITHM — PHASE 3

Period extraction

Each measurement of the state |φout〉 therefore yields one of the multiples c = λq
r
,

λ ∈ {0, 1, . . . r − 1}, where each λ is chosen with the same probability 1
r .

Observe also that in this case the QFT transforms a function with the period r (and an offset l) to a

function with the period q
r and offset 0. After each measurement we therefore know c and q and

c

q
=

λ

r
,

where λ is randomly chosen.

If gcd(λ, r) = 1, then from q we can determine r by dividing q with gcd(c, q). Since λ is chosen

randomly, the probability that gcd(λ, r) = 1 is greater than Ω(1
lg lg r). If the above computation is

repeated O(lg lg r) times, then the success probability can be as close to 1 as desired and therefore r

can be determined efficiently.1

In the general case, i.e., if A 6= q
r
− 1, there is only a more sophisticated computation of the resulting

probabilities and a more sophisticated way to determine r (using a continuous fraction method to

extract the period from its approximation).
1As observed by Shor (1994) and shown by Cleve et al. (1998), the expected number of trials can be put down to a constant.

Jozef Gruska November 22, 2016 20

6. Shor algorithms and Fourier Transform, 2016.

GENERAL CASE

Let us now sketch Shor’s algorithm to compute the period of a function f(x) = ax mod n for the

general case.

QFTq is applied to the first register of the state 1√
q

∑q−1
x=0 |x〉|f(x)〉 and afterwords the measurement is

performed on the first register to provide an y0 ∈ [0, . . . , q − 1].

To get the period r the following algorithm is realized where ξ = y0
q
, a0 = ⌊ξ⌋, ξ0 = ξ − a0,

p0 = a0, q0 = 1, p1 = a1a0 + 1, q1 = a1

for j = 1 until ξj = 0 do

• compute pj and qj using the recursion (for the case ξj 6= 0);

aj =

1

ξj−1

 , ξj =
1

ξj−1
− aj,

pj = ajpj−1 + pj−2, qj = ajqj−1 + qj−2

• Test whether qj = r by computing first mqj =
∏

i(m
2i)qj,i mod n, where qj =

∑

i qj,i2
i is the binary

expansion of qn.

If aqj = 1 mod n, then exit with r = qj; if not continue the loop.

The non-easy task is to show, what has been done, that the above algorithm provides the period r

with sufficient probability (> 0.232
lg lg n(1− 1

n)
2).

Jozef Gruska November 22, 2016 21

6. Shor algorithms and Fourier Transform, 2016.

FIRST COMMENTS on SHOR’s FACTORIZATION ALGORITHM

• Efficient implementations of QFTq, concerning the number of
gates, are known for the the case q = 2d or q is smooth (that is if
factors of q are smaller than O(lg q)).

• Efficient implementation of modular operations (including
exponentiation) are known.

• First estimation said that 300 lg n gates are needed to factor n.

• An estimation said that to factor 130 digit integers would require
two weeks on an ideal quantum computer with switching
frequency 1 MHz. However to factor 260-digit number only 16
times larger time would be needed.

• It has been shown that there is polynomial time factorization even
in the case only one pure qubit is available and the rest of
quantumness available is in mixed states.

Jozef Gruska November 22, 2016 22

6. Shor algorithms and Fourier Transform, 2016.

SHOR algorithm - from theory to practice

• Of real practical interest is only quantum factorization of such n = pq, where n is
at least 500-digit number. In such a case if d is to be the smallest integer such that
2d > n, then d has to be around a 1700-bit number.

• Periods need to be determined precisely - in spite of the fact that they could be
numbers of several hundred bits long!! However in such cases Quantum Fourier
Transform circuits should work with phase factors with numbers proportional to 1

2j

for so enormously large j that such small phases are practically impossible to
realise. It therefore seems that there is no way practically to determine period for
such large n.

• It can be shown that this is not the case. The reason is that phases do not have
impact on discrete outcomes of measurements, only on their probabilities.

• It has been shown that relatively small ”cuts” of QFT circuits, for example to delete
all conditional gates that deal with wires more than 22 wires apart, are sufficient to
do necessary calculations precisely enough.

Jozef Gruska November 22, 2016 23

6. Shor algorithms and Fourier Transform, 2016.

• Of the key importance for the efficiency of Shor’s factorization algorithm is also the
fact that exponentiation in bx can be done efficiently.

• If computation would be done on classical computers than each bx could be done
efficiently by computing first values b2

j
for all j. However, would there be a need to

do that for so many x that would be enormously inefficient. However, once this is
done on quantum computer using quantum parallelism this can be done ”only
once” and this is also behind the overall efficiency of Shor’s quantum algorithm.

Jozef Gruska November 22, 2016 24

6. Shor algorithms and Fourier Transform, 2016.

FROM PERIOD FINDING to RSA BREAKING

We will show now how an efficient period finding
algorithm can lead to RSA breaking without factoring.

Jozef Gruska November 22, 2016 25

6. Shor algorithms and Fourier Transform, 2016.

ORDER in GROUPS

• If a is an element of a finite group G, then its order is the smallest integers k such
that ak = 1.

• Order of each element of a group G is a divisor of the number of elements of G.

• This implies that every element a ∈ Z∗
p, where p is a prime, has order p− 1 and it

holds
ap−1 ≡ 1 (mod)p

Jozef Gruska November 22, 2016 26

6. Shor algorithms and Fourier Transform, 2016.

BREAKING RSA using PERIOD FINDING ALGORITHMS

We show that if Eve has an efficient algorithm to determine the period of functions f(x) = bx mod n

in the group Z∗
n, where n = pq for primes p, q, that is an algorithm to find the order of elements in Z∗

n,

then she can break the RSA cryptosystem with modulus n.

Let us have an RSA cryptosystem with modulus n, a public encryption exponent e and a secret

decryption exponent d.

If Eve gets the cryptotext c = we of an unknown plaintext w, she will use her order finding algorithm

to determine the order r of c in Z∗
n.

Observation The order r of c in Z∗
n is the same as the order of w.

Indeed, the subgroup of Z∗
n generated by w contains clearly c and therefore it contains subgroup

generated by c. However, the subgroup generated by c contains cd = w and therefore contains

subgroup generated by w. Since each subgroup contains the other they have to be the same.

Therefore if Eve can find the order of the known cryptotext c she will have also the order of unknown

plaintext w.

Since e was chosen to have no factor with φ(n) = (p− 1)(q − 1) and since the order r has to divide

the order φ(n) = (p− 1)(q− 1) of Z∗
n, the encoding exponent e can have no factor in common with r.

This means that e is congruent modulo r to a member e′ of Zr, which has an inverse d′ in Zr and d′ is

Jozef Gruska November 22, 2016 27

6. Shor algorithms and Fourier Transform, 2016.

also a modulo-r inverse of e, that is

ed′ ≡ 1(mod r)

Therefore, given a cryptotext c and publicly known modulus n, Eve can calculate easily, using the

extended Euclid algorithm, d′ on a classical computer.

This implies, that for some integer m it holds

cd
′ ≡ wed′ ≡ w1+mr ≡ w(wr)m ≡ w(mod n)

and therefore an efficient period finding algorithm allows Eve to find the plaintext w without factoring

n.

Jozef Gruska November 22, 2016 28

6. Shor algorithms and Fourier Transform, 2016.

SHOR’s DISCRETE LOGARITHM ALGORITHM

Shor’s quantum algorithm for discrete logarithm will be again presented only for a special case.

The task is to determine an r such that gr ≡ x (mod p) given a prime p, a generator g of the group

Z∗
p and an 0 < x < p. The special case we consider is that p− 1 is smooth.

Using QFTp−1 twice, on the third and fourth sub-register of the state |x, g,0,0,0〉, we get

|φ〉 = 1

p− 1

p−2
∑

a=0

p−2
∑

b=0
|x, g, a, b,0〉,

a uniform distribution of all pairs (a, b), 0 ≤ a, b ≤ p− 2. By applying to |φ〉 the unitary mapping
(x, g, a, b,0) → (x, g, a, b, gax−b mod p)

we get

|φ′〉 = 1

p− 1

p−2
∑

a=0

p−2
∑

b=0
|x, g, a, b, gax−b mod p〉.

Since parameters x, g will not be changed in the following computations we will not write them

explicitly in what follows.

As the next step we apply QFTp−1 on |φ′〉 twice, once to map each a to each c with the amplitude
1√
p−1

e2πiac/(p−1) and once to map each b to each d with amplitude 1√
p−1

e2πibd/(p−1). The resulting state

will be:

|φ1〉 =
1

(p− 1)2

p−2
∑

a,b,c,d=0
e

2πi
p−1(ac+bd)|c, d, gax−b mod p〉.

Jozef Gruska November 22, 2016 29

6. Shor algorithms and Fourier Transform, 2016.

|φ1〉 =
1

(p− 1)2

p−2
∑

a,b,c,d=0
e

2πi
p−1(ac+bd)|c, d, gax−b mod p〉.

Let us now measure the last register and denote by y the value we get.

The state |φ1〉 then collapses into the state (before the normalization)

|φ2〉 =
p−2
∑

c,d=0
αy(c, d)|c, d, y〉,

where

αy(c, d) =
1

(p− 1)2
∑

{(a,b) | y=gax−b mod p}
e

2πi
p−1(ac+bd).

We now claim that if y = gax−b mod p, then y = gk for some k such that

a− rb ≡ k (mod p− 1).

Indeed,

y = gax−b ≡ ga(gr)−b = ga−rb.

and, therefore, if a− rb ≡ k (mod p− 1), then

ga−br ≡ gk (mod p)

Jozef Gruska November 22, 2016 30

6. Shor algorithms and Fourier Transform, 2016.

Therefore

α(c, d) =
1

(p− 1)2
∑

{(a,b) | a−rb≡k (mod p−1)}
e

2πi
p−1(ac+bd)

For the probability Pr that, for fixed c and d, we get by measurement of |φ2〉 a value y is therefore

Pr =

∣

∣

∣

∣

∣

∣

∣

1

(p− 1)2

p−2
∑

a,b=0
{e 2πi

p−1(ac+bd) |a− rb ≡ k (mod p− 1)}
∣

∣

∣

∣

∣

∣

∣

2

.

By substituting a = k + rb + jb(p− 1) we get the probability

Pr =

∣

∣

∣

∣

∣

∣

∣

1

(p− 1)2

p−2
∑

b=0
e

2πi
p−1(kc+cjb(p−1)+b(d+rc))

∣

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

∣

1

(p− 1)2
e
2πikc
p−1

p−2
∑

b=0
e

2πi
p−1(b(d+rc))

∣

∣

∣

∣

∣

∣

∣

2

what equals

Pr =

∣

∣

∣

∣

∣

∣

∣

1

(p− 1)2

p−2
∑

b=0
e

2πi
p−1(b(d+rc))

∣

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

∣

1

(p− 1)2

p−2
∑

b=0
(e

2πi
p−1(d+rc))b

∣

∣

∣

∣

∣

∣

∣

2

The above probability Pr is therefore 0 if

d + rc 6≡ 0 mod (p− 1)

because, as in the previous algorithm, in such a case the sum in the above expression is over a set of

(p− 1)st roots of unity equally spaced around the unit circle.

On the other hand, if

d ≡ −rc (mod p− 1),

Jozef Gruska November 22, 2016 31

6. Shor algorithms and Fourier Transform, 2016.

then the above sum does not depend on b and it is equal to

(p− 1)−1e(2πikc/(p−1)).

The square of its absolute value, the probability, is therefore 1
(p−1)2

.

Consequence: the measurements on the first and second register provide a (random) c < p− 1 and a d

such that

d ≡ −rc (mod p− 1).

If gcd(c, p − 1) = 1, r can now be obtained as a unique solution of the above congruence equation.

The number of computations needed to be performed, in order to get the probability close to 1 for

finding r, is polynomial in lg lg p.

Jozef Gruska November 22, 2016 32

6. Shor algorithms and Fourier Transform, 2016.

ANOTHER COMMENTS on SHOR’s ALGORITHMS

• To factor an integer n Shor’s algorithm uses O(lg3 n) steps and
success probability is guaranteed to be at least Ω(1

lg lg n).

• An analysis of Shor’s algorithm therefore shows that by running
the algorithm O(lg lg n) times, therefore in total in O(lg3 n lg lg n)
times we have very high success probability.

• Shor’s algorithms make some of the important current
cryptosystems, as RSA, ElGamal and so on vulnerable to attacks
using quantum computers.

• Shor’s result have been generalized to show that a large range of
cryptosystems, including elliptic curve cryptosystems, would be
vulnerable to attacks using quantum computers.

Jozef Gruska November 22, 2016 33

6. Shor algorithms and Fourier Transform, 2016.

EXTRAS

Jozef Gruska November 22, 2016 34

6. Shor algorithms and Fourier Transform, 2016.

HIDDEN SUBGROUP PROBLEM

All quantum algorithms we have been dealing with are to solve special cases of the following Hidden

Subgroup Problem

Given: An (efficiently computable) function f : G → R, where G group and R a finite set.

Promise: There exists a subgroup G0 ≤ G such that f is constant and distinct on the cossets of G0.

Task: Find a generating set for G0 (in polynomial time (in lg |G|) number of calls to the oracle for f

and in the overall polynomial time).2

Deutsch’s problem, G = Z2, f : {0, 1} → {0, 1}, x− y ∈ G0 ⇔ f(x) = f(y). Decide whether

G0 = {0} (and f is balanced) or G0 = {0, 1} (and f is constant).

Simon’s problem, G = Zn
2 , f : G → R. x− y ∈ G0 ⇔ f(x) = f(y), G0 = {0(n), s}, s ∈ Zn

2 .

Decide whether G0 = {0(n)} or G0 = {0(n), s}, with an s 6= 0(n) (and in the second case find s).

Order-finding problem, G = Z, a ∈ N, f(x) = ax, x− y ∈ G0 ⇔ f(x) = f(y), G0 = {rk | k ∈ Z

for the smallest r such that ar = 1.} Find r.

Discrete logarithm problem, G = Zr × Zr, a
r = 1, b = am, a, b ∈ N, f(x, y) = axby,

f(x1, y1) = f(x2, y2) ⇔ (x1, y1)− (x2, y2) ∈ G0. G0 = {(−km,m) | k ∈ Zr}. Find G0 (or m).
2A way to solve the problem is to show that in polynomial number of oracle calls (or time) the states corresponding to different candidate subgroups have exponentially small

inner product and are therefore distinguishable.

Jozef Gruska November 22, 2016 35

6. Shor algorithms and Fourier Transform, 2016.

Graph automorphism problem: Consider G = Sn, the symmetric group of all permutations on

{1, 2, . . . , n}. Let G be a graph on n vertices labelled {1, 2, . . . , n}. For any permutation σ ∈ Sn,

let fG maps Sn to the set of n-vertex graphs by mapping fG(σ) = σ(G), where σ(G) is the graph

obtained by permuting the vertex labels of G according to σ. For the function fG, the hidden

subgroup of G is the automorphism group of G.

Note that for the graph automorphism problem the group G is non-Abelian.

Jozef Gruska November 22, 2016 36

6. Shor algorithms and Fourier Transform, 2016.

IMPLEMENTATION Of THE FOURIER TRANSFORM in Z2m

The clue to the design of a quantum circuit to implement the QFT

|x〉 → 1√
2m

2m−1
∑

y=0
e
2πixy
2m |y〉

for |x〉 = |xm−1〉|xm−2〉 . . . |x0〉, wher xis are bits, is the decomposition
2m−1

∑

y=0
e
2πixy
2m |y〉 = (|0〉 + e

πix
20 |1〉)(|0〉 + e

πix
21 |1〉) . . . (|0〉 + e

πix
2m−1 |1〉)

as shown on the next slide. The exponent in th l-th factor of the above

decomposition can be written as follows

exp(
πi(2m−1xm−1 + 2m−2xm−2 + . . . + 2x1 + x0)

2l−1
)

= exp(
πi(2l−1xl−1 + 2l−2xl−2 + . . . + 2x1 + x0)

2l−1
)

= (−1)xl−1exp(
πixl−2

2
) . . . exp(

πix1
2l−2

)exp(
πix0
2l−1

)

Jozef Gruska November 22, 2016 37

6. Shor algorithms and Fourier Transform, 2016.

LEMMA

Let x ∈ {0, 1, . . . , 2n − 1} and let its binary representation be x1x2 . . . xn. For
quantum Fourier transform

F |x〉 = 1√
2n

2n−1
∑

k=0
e2πixk/2

n|k〉

it holds
Lemma:

F |x〉 = 1√
2n
[(|0〉 + e2πi0.xn|1〉)(|0〉 + e2πi0.xn−1xn|1〉) . . . (|0〉 + e2πi0.x1...xn|1〉)].

Proof: This follows form calculations

F |x〉 =
1√
2n

2n−1
∑

k=0
e2πixk/2

n|k〉 = 1√
2n

1
∑

k1=0
. . .

1
∑

kn=0
exp(2πix

n
∑

l=1
kl2

−l)|k1 . . . kn〉 (5)

=
1√
2n

1
∑

k1=0
. . .

1
∑

kn=0

n
⊗

l=1
e2πixkl/2

l|kl〉 =
1√
2n

n
⊗

l=1

1
∑

kl=0
e2πixkl/2

l|kl〉 (6)

=
1√
2n

n
⊗

l=1
(|0〉 + e2πix/2

l|1〉) (7)

Jozef Gruska November 22, 2016 38

6. Shor algorithms and Fourier Transform, 2016.

DESIGN of CIRCUIT

Starting, for convenience, with the reverse representation of x as
x0x1 . . . xm−1 we show how to implement

(|0〉 + e
πix
20 |1〉)(|0〉 + e

πix
21 |1〉) . . . (|0〉 + e

πix
2m−1 |1〉)

for qubits m− 1,m− 2, . . . , 0, step by step, starting with (m− 1)-th
qubit.

Using Hadamard transform on the m− 1-th qubit we get

1√
2
|x0〉|x1〉 . . . |xm−2〉(|0〉 + (−1)xm−1|1〉)

and then we can complete the phase (−1)xm−1 to

(−1)xm−1exp(
πixm−2

21
) . . . exp(

πix1
2m−2

)exp(
πix0
2m−1

)

by using conditionally, with respect to xm−1, xm−2, . . . , x1, phase
rotations

exp(
πi

21
), . . . , exp(

πi

2m−2
,)exp(

πi

2m−1
)

Jozef Gruska November 22, 2016 39

6. Shor algorithms and Fourier Transform, 2016.

This means that for each l ∈ {1, 2, . . . , m− 1} a phase factor exp(πi
2m−l) is

introduced to the m-th bit if and only if mth and lth qubits are both
1. This will provide the state

1√
2
|x0〉|x1〉 . . . |xm−2〉(|0〉 + e

2πix
2m−1 |1〉)

This process can be repeated with other qubits. Each time we use
once the Hadamard transform and then the unitary

φkl =

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e
πi

2l−k

which acts on the lth and kth qubit. The resulting circuit has then
the following form:

Jozef Gruska November 22, 2016 40

6. Shor algorithms and Fourier Transform, 2016.

H

H

H

H

φ φ

φ φ

φ

φ

Jozef Gruska November 22, 2016 41

6. Shor algorithms and Fourier Transform, 2016.

COMPLEXITY of FOURIER TRANSFORM

•The naive algorithm to compute all elements of
classical Fourier transform, element by element using
basic definition, requires O(22m) steps.

•A special recursive method, called Fast Fourier
Transform, that recursively reduces computation of
DFT in Z2m to computation of two DFT in Z2m−1,
requires O(m2m) steps - a significant improvement.

•Quantum Fourier Transform in Z2m can be done in
O(m2) quantum steps.

Jozef Gruska November 22, 2016 42

6. Shor algorithms and Fourier Transform, 2016.

Moreover, in the classical case, physical representation of

(f (0), f (1), . . . , f (2m − 1))

requires Ω(2m) bits,

but in the quantum case representation of

c0|0〉 + c1|1〉 + . . . + c2m−1|2m − 1〉
requires only m qubits.

Jozef Gruska November 22, 2016 43

6. Shor algorithms and Fourier Transform, 2016.

FOURIER TRANSFORM on FINITE ABELIAN GROUPS

We show now basics how the concept of Fourier Transform is defined
on any finite Abelian group.

Jozef Gruska November 22, 2016 44

6. Shor algorithms and Fourier Transform, 2016.

CHARACTERS of ABELIAN GROUPS

Let G be an Abelian group written additively, and |G| = n. A character χ of G is
any morphism χ : G → C/0. That is for any g1, g2 ∈ G it holds:

χ(g1 + g2) = χ(g1)χ(g2)).

This implies that χ(0) = 1 and 1 = χ(ng) = χ(g)n for any g ∈ G. Therefore, all
values of χ are nth roots of unity.

If we define multiplication of characters χ1 and χ2 by χ1χ2(g) = χ1(g)χ2(g), then

characters form so-called dual group Ĝ. Groups G and Ĝ are isomorphic for all
Abelian groups G.

Example 1 Any cyclic group of n elements is isomorphic to the group Zn and all its
characters have the form, for some y ∈ Zn:

χy(x) = e
2πixy
n .

Example 2 In the additive group F2
m, of all binary strings of length m, all characters

have the form, for some binary m-bit strings x and y:

χy(x) = (−1)x·y,

where x · y = ∑m
i=1 xiyi mod 2

Jozef Gruska November 22, 2016 45

6. Shor algorithms and Fourier Transform, 2016.

ORTHOGONALITY of CHARACTERS

Any function f : G → C on an Abelian group G = {g1, . . . , gn} can be specified by
the vector (f(g1), . . . , f(gn)), and if the scalar product of two functions is defined in
the standard way as

〈f |g〉 = n
∑

i=1
f ∗(gi)h(gi),

then for any characters χ1 and χ2 on G it holds

〈χi|χj〉 =

0, if i 6= j
n, if i = j

Therefore, the functions {Bi =
1√
nχi} form an orthonormal basis on the set of all

functions f : G → C.

Jozef Gruska November 22, 2016 46

6. Shor algorithms and Fourier Transform, 2016.

FOURIER TRANSFORM

Since any f : G → C has a unique representation with respect to the basis
{Bi =

1√
nχi}ni=1,

f = f̂1B1 + . . . + f̂nBn

the function f̂: G → C defined by

f̂(gi) = f̂i

is called the Fourier transform of f .
Since f̂i = 〈Bi|f〉, we get

f̂(gi) =
1√
n

n
∑

k=1
χ∗
i (gk)f(gk),

and therefore in Zn the Fourier transform has the form

f̂(x) =
1√
n

∑

y∈Zn

e−
2πixy
n f(y)

and in Fm
2 the Fourier transform has the form

f̂(x) =
1√
2m

∑

y∈Fm
2

(−1)x·yf(y).

Jozef Gruska November 22, 2016 47

