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We study trees where each successor set is equipped with some
additional structure. We introduce a family of automaton models for
such trees and prove their equivalence to certain fixed-point logics.
As a consequence we obtain characterisations of various variants of
monadic second-order logic in terms of automata and fixed-point
logics. Finally, we use our machinery to give a simplified proof of the
Theorem of Muchnik and we derive several variants of this theorem
for other logics.
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1 Introduction
Translations between logical formulae and automata provide a versatile tool both
for applications (such as model-checking algorithms) and for purely theoretical
considerations (like, e.g., studying questions of expressive power). To give a
concrete example: two of the strongest decidability results in logic are proved by
automata-theoretic methods. The first one is the Theorem of Muchnik [16] which
states that a certain operation preserves the decidability of monadic second-order
theories; the second one is a Theorem of Puppis [12] on the decidability of certain
trees with non-regular labelling.

In most settings, the logic corresponding to automata turns out to be monadic
second-order logic, while many weaker logics can be characterised by automata
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of special types. But a closer look reveals that it would be more appropriate to say
that the logics corresponding to automata are certain fixed-point logics. The fact
that these logics have the same expressive power as monadic second-order logic
seems to be coincidental.
A systematic study of the correspondence between tree automata and fixed-

point logics can be found in the thesis of Carreiro [4] building on previous work
of Walukiewicz [7, 16] and Venema [15, 9, 8]. In this article, we improve upon
those results in two ways. First of all, the development in [4] is not uniform : each
equivalence between a logic and an automaton model is proved on a case-by-case
basis using ad-hoc methods. While all definitions and proofs share a similar
structure, the details of each case are different. We were able to abstract away
these details and to derive a general proof that allows us to derive all results of [4]
in a uniform way.

The second improvement concerns the classes of structures supported by our
framework. [4] only considers trees (possibly infinite). For some applications, this
is not sufficient since they requireworkingwith trees where the successors of each
vertex are equipped with some additional structure. This can simply be an left-to-
right ordering of the successors, or it can bemore substantial like, e.g., a probability
measure. For the above mentioned Theorem of Muchnik, for instance, one works
with trees expanded by an arbitrary number of additional relations, with the
restriction that these relations only relate siblings. Our translation generalises in
a straightforward way to trees enriched with such an additional structure. As a
consequence we are able to give characterisations of a variety of logics via suitable
automaton models that hold not only for trees, but also for such ‘enriched’ trees.

Finally, let me mention that, while most of the constructions and arguments
used below can be considered standard, it was surprisingly tricky to get the details
right.

The overview of this article is as follows. We set up our framework in Sections
2 and 3. In the first of these sections, we introduce the class of enriched trees we
are working with, while the second one introduces a general notion of a logic
and a way to extend such logics by fixed-point operators. Sections 4, 5, and 6
contain our translation between logics and automata. Section 4 recalls some
results about parity games, which are needed in Section 5 to prove the correctness
of our translation. Section 6 contains automata constructions corresponding
to various set quantifiers. In Section 7, we use the results from Section 5 to
give automata-theoretic characterisations of many variants of monadic second-
order logic. Finally, Section 8 contains an application consisting of a new, much
simplified proof of the Theorem of Muchnik and of some variants of this theorem

2



for other logics, some of them already known, some new.

2 Enriched Trees
In order to model transition systems with arbitrary enrichments, it is convenient
to use a coalgebraic approach, similar to that one in [15]. That is, we choose a
functor S that returns the set of all possible enriched successor structures and
then we model a transition system as a function suc ∶ S → SS mapping each state
s ∈ S to the structure of its successors.

Let us start bydefining the class of functorswewill use.Wewill restrict ourselves
to so called polynomial functors, as these have particularly nice properties and
they cover all the applications we have in mind. A polynomial functor maps a
set X to a set of X-labelled objects. The formal definition is as follows.

Definition 2.1. A functor S ∶ Set→ Set is polynomial if it is of the form

SX =∑
i∈I

XD i , for fixed sets I and D i , i ∈ I.

Such a functor maps a function f ∶ X → Y to the function S f ∶ SX → SY
applying f to each label. Formally,

F f (s) ∶= f ○ s , for s ∶ D i → X .

Thus, elements of SX are functions s ∶ D i → X, for some i. We denote the
domain of such a function by dom(s) ∶= D i .

(b) Let S be a polynomial functor. Two elements s, t ∈ SX have the same shape,

in symbols s ≃sh t, if s, t correspond to the same index i ∈ I, i.e, if s ∶ D i → X and
t ∶ D i → X, for some i ∈ I. ⌟

Examples. (a) The functor SX ∶= X∗ returning the set of finite words over the
alphabet X is polynomial since it can be written as

SX = ∑
n<ω

Xn .

(b) Fixing a signature Σ, the functor Smapping a set X to the set of all countable
X-labelled Σ-structures is polynomial since

SX =∑
A

XA,
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where the sum ranges over all countable Σ-structuresA andAdenotes theuniverse
of the structure A.

(c) LetD be the set of all pairs ⟨A, µ⟩where A is a finite set and µ is a probability
measure on A. There exists a polynomial functor

SX ∶= ∑
⟨A,µ⟩∈D

XA

mapping a set X to the set of all X-labellings of some ⟨A, µ⟩ ∈ D. ⌟

We can now define transition systems as S-coalgebras for some polynomial
functor S.

Definition 2.2. Let S ∶ Set → Set be a polynomial functor and Σ ∈ Set an
alphabet.

(a) A Σ-labelled S-enriched transition system is a structure of the form

S = ⟨S , suc, λ, v0⟩

where S is the set of states, v0 ∈ S is the initial state, λ ∶ S → Σ is a labelling of the
states, and suc ∶ S → SS is a function assigning a successor structure suc(v) ∈ SS

to each state v ∈ S. We call the elements of dom(suc(v)) directions at the state v.
As for polynomial functors, we will use the notation dom(s) to denote the

set of states of a transition system s and we represent s by the labelling function
s ∶ dom(s) → Σ, leaving the successor function suc ∶ dom(s) → Sdom(s)
implicit.

(b) A homomorphism φ ∶ s → t between transition systems s and t is a function
φ ∶ dom(s)→ dom(t) satisfying

t(φ(v)) = s(v) and suc(φ(v)) = Sφ(suc(v)) , for all v ∈ dom(s) .

(c) For a transition system S and a state v ∈ S, we denote byS, v the transition
system obtained from S by changing the initial state to v. ⌟

Examples. (a) For ordinary ‘non-enriched’ transition systems, we can use a func-
tor of the form

SX ∶= ∑
κ<λ

Xκ ,

where λ is some fixed cardinal and the sum ranges over all cardinals κ less than λ.
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(c) For Markov chains, we use a polynomial functor S where the index set I is
a set of probability measures.

(d) In Section 8 belowwewill define an operationA∗ called aMuchnik iteration.
This operation constructs an infinite S-enriched tree where S returns a set of
Σ-structures. ⌟

Remark. (a) We could model transition systems as coalgebras for the combined
functor S×Σ. But for our purposes it is more convenient to separate the successors
and the labelling.

(b) One shortcoming of the notion of a polynomial functor is the fact that
the index set I – which corresponds to the class of objects we want to label –
is a set and not a proper class. Therefore we will frequently have to introduce
arbitrary cut-offs for the class of successor structures. For instance, instead of the
class of all trees, we can only use classes of finitely branching ones, or countably
branching ones. While inconvenient, this is usually not a problem since we can
always choose the cut-off point large enough to cover the transition system under
consideration. ⌟

Trees can now be defined as unravellings of transition systems.

Definition 2.3. Let s be an S-enriched transition system.
(a) A (finite) path in s is a finite sequence of the form

v0 , d0 , v1 , d1 , . . . , vn−1 , dn−1 , vn

where v0 , . . . , vn ∈ dom(s) are states, each d i ∈ dom(suc(v i)) is a direction at v i ,
and v i+1 = suc(v i)(d i).

(b) The unravelling of s is the transition system un(s) whose domain consists
of all finite paths in s starting at the initial state of s, the labelling assigns to each
path ⟨v0 , . . . , vn⟩ the label s(vn) of the last state, and the successor function is
defined by suc(⟨v0 , . . . , vn⟩) ≃sh suc(vn) and

suc(⟨v0 , . . . , vn⟩)(d) ∶= ⟨v0 , . . . , vn , d , suc(vn)(d)⟩ .

(c) s is an S-enriched tree if it is isomorphic to its unravelling un(s). We denote
the root of s by ⟨⟩ (the empty sequence), and we write TSΣ for the set of all
Σ-labelled S-enriched trees. ⌟
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3 Logics
Since we are dealing with many different logics, we will use an abstract notion of
a logic introduced in [2].

Definition 3.1. (a) A logic is a triple ⟨L,M,⊧⟩ where L is a set of formulae,M a
set of models, and ⊧ ⊆M× L a satisfaction relation. Frequently, we denote a logic
simply by its set L of formulae, leavingM and ⊧ implicit.

(b)Amorphism of logics ⟨λ, µ⟩ ∶ ⟨L,M,⊧⟩→ ⟨L′ ,M′ ,⊧′⟩ is a pair of functions
λ ∶ L → L′ and µ ∶M′ →M satisfying

M′ ⊧ λ(φ) iff µ(M′) ⊧ φ , for all φ ∈ L and M′ ∈M′ .

Usually, we denote both components of a morphism with the same identifier. ⌟

Example. Let Σ be a fixed signature and let CΣ be the class of all countable Σ-
structures. Then ⟨FO[Σ], CΣ ,⊧⟩ forms a logic where FO[Σ] denotes the set of all
first-order formulae over the signature Σ. ⌟

As the preceding example shows, our notion of a logic requires us to fix a
signature. Frequently this is inconvenient since we would like to consider several
different signatures at once. Thereforewe introduce families of logics parametrised
by their signature.

Definition 3.2. (a) A family of logics is a functor L from the category of finite sets
to the category of logics.

(b) A family of logics L is over a functor S if, for every set Σ, the class of
models of L[Σ] is equal to SΣ and, for every function f ∶ Σ → Γ, the morphism
L[ f ] ∶ L[Σ]→ L[Γ] is of the form L[ f ] = ⟨λ, µ⟩ with µ = S f . ⌟

Examples. For transition systems, we can use the following families of logics.
(a) For each set Q, we obtain a logic ⟨MSO[Q],MQ ,⊧⟩ where MSO[Q] is the

set of monadic second-order formulae over the signature {E} + { Pq ∣ q ∈ Q }
(without free variables), andMQ is the set of all transition systems of the form
S = ⟨S , E , (Pq)q∈Q⟩ where E is the edge relation and the Pq are unary predicates.

Given a function f ∶ Q → Q′, we obtain a morphism MSO[ f ] ∶ MSO[Q] →
MSO[Q′]mapping a formula φ ∈ MSO[Q] to the formula MSO[ f ](φ) obtained
from φ by renaming every predicate Pq to Pf (q). The corresponding function on
transition systems maps a system S = ⟨S , E , (Pq′)q′∈Q′⟩ to the system

MSO[ f ](S) ∶= ⟨S , E , (Pf (q))q∈Q⟩ .
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(b) We obtain similar families FO[Q], WMSO[Q], µML[Q], for first-order

logic, weak monadic second-order logic, and the modal µ-calculus. (We will define
these logics formally in Section 7 below. Note that our notation µML is slightly
inconsistent with our notation for the fixed-point logics µL defined below.) ⌟

Below we will mostly work with families of logics over functors of the form
S ○ ℘ where S is a polynomial functor and ℘ the (covariant) power-set functor.
This corresponds to models whose elements are labelled by sets of symbols. In par-
ticular, logics whose models are Σ-structures are of this form since each element
in a structure can belong to several predicates.

Definition 3.3. Let L be a family of logics over S ○ ℘ where S is some polynomial
functor.

(a) A formula φ ∈ L[X] is monotone in a symbol x ∈ X if, given two models
s ≃sh s′ satisfying

s′(v) = s(v) or s′(v) = s(v) ∪ {x} , for all v ∈ dom(s) ,

we have

s ⊧ φ implies s′ ⊧ φ .

(a) A formula φ ∈ L[X] is antitone in x if, given two models s ≃sh s′ satisfying

s′(v) = s(v) or s′(v) = s(v) ∪ {x} , for all v ∈ dom(s) ,

we have

s′ ⊧ φ implies s ⊧ φ . ⌟

Example. A first-order formula φ over the signature Σ is monotone in a relation
R ∈ Σ if, and only if, φ is equivalent to some formula φ′ where every occurrence
of R in φ′ is under an even number of negation signs. ⌟

For some of the applications below, we will have to put additional restrictions
on certain symbols in a formula. For instance, we might require some of the
symbols to occur only positively in the formula and others only negatively. For this
reason, we add two more parameters to our logics, leading to logics L[X ,U ,V]
parametrised by three sets : the set X of all symbols, the set U of symbols with the
additional restriction, and the set V of symbols with the opposite/dual restriction.
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Definition 3.4. Let C be the category of all triples ⟨X ,U ,V⟩ of sets with U ,V ⊆ X
where the morphisms f ∶ ⟨X ,U ,V⟩ → ⟨X′ ,U ′ ,V ′⟩ are functions f ∶ X → X′

satisfying

x ∉ U ⇒ f (x) ∉ U ′ and x ∉ V ⇒ f (x) ∉ V ′ .

A family of logics with polarities is a functor L from C to the category of logics.
We say that such a family is over a functor S if, for every triple ⟨X ,U ,V⟩, the class
of models of L[X ,U ,V] is equal to SX and, for every morphism f ∶ ⟨X ,U ,V⟩→
⟨X′ ,U ′ ,V ′⟩, the morphism L[ f ] ∶ L[X] → L[X′] is of the form L[ f ] = ⟨λ, µ⟩
with µ = S f . ⌟

Example. For first-order logic, we obtain a family of logics with polarities where
FO+[X ,U ,V] contains all formulae φ ∈ FO[X] such that every predicate in U

occurs only positively in φ and every predicate in V only negatively. ⌟

Besides monotonicity, there are two other restrictions we are interested in.

Definition 3.5. Let L be a family of logics over S ○ ℘.
(a) A formula φ ∈ L[X] is jointly discrete in a set of symbols C ⊆ X if it is

monotone in every x ∈ C and if s ⊧ φ implies s′ ⊧ φ, for some s′ that is obtained
from s by removing all but one occurrence of the labels in C. Formally, s′ ≃sh s

and that there are v0 ∈ dom(s) and c ∈ C such that

s′(v0) = s(v0) ∖ (C ∖ {c}) and s′(v) = s(v) ∖ C , for all v ≠ v0 .

Similarly, φ is jointly co-discrete in C if it is monotone in every x ∈ C and if,
given a model s,

∀v0∀c[sv0 ,c ⊧ φ] implies s ⊧ φ ,

where sv0 ,c is defined by sv0 ,c ≃sh s and

sv0 ,c(v0) = s(v0) ∪ (C ∖ {c}) and sv0 ,c(v) = s(v) ∪ C , for all v ≠ v0 .

By Ld[X ,U ,V] we denote the set of all L[X]-formulae that are jointly discrete
in U and jointly co-discrete in V .

(b) A formula φ ∈ L[X] is continuous in a symbol x ∈ X if it is monotone in x

and if s ⊧ φ implies s′ ⊧ φ, for some s′ obtained from s by removing all but finitely
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many occurrences of the label x. Formally, s′ ≃sh s and there is some finite set
P ⊆ dom(s) such that

s′(v) =

⎧⎪⎪
⎨
⎪⎪⎩

s(v) if v ∈ P ,
s(v) ∖ {x} if v ∉ P .

Similarly, φ is co-continuous in x if it is monotone in x and if, given a model s,

∀P[sP ⊧ φ] implies s ⊧ φ ,

where the quantifier ranges over all finite sets P ⊆ dom(s) and the model sP is
defined by sP ≃sh P and

sP(v) =

⎧⎪⎪
⎨
⎪⎪⎩

s(v) if v ∈ P ,
s(v) ∪ {x} if v ∉ P .

By Lc[X ,U ,V] we denote the set of all L[X]-formulae that are continuous in
every x ∈ U and co-continuous in every x ∈ V . ⌟

Example. (a) The FO-formula

φ ∶= ∀xPx ∧ ∃yQ y ∧ ∃yRy

is jointly co-discrete in {P}, jointly discrete both in {Q} and in {R}, but not
jointly discrete in {Q , R}.

(b) The formula

ψ ∶= ∃∞xPx ∧ ∃yQ y

is continuous in Q, but not in P. ⌟

We can define the usual logical connectives in our abstract setting.

Definition 3.6. Let L be a family of logics with polarities over S ○ ℘.
(a) A formula ψ ∈ L[X ,U ,V] is a dual of φ ∈ L[X ,V ,U] if

sop ⊧ ψ iff s ⊭ φ ,

where sop(v) ∶= X ∖ s(v). In this case we write φop ∶= ψ.
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(b) A formula ϑ ∈ L[X ,U ,V] is the conjunction of two formulae φ,ψ ∈
L[X ,U ,V] if

s ⊧ ϑ iff s ⊧ φ and s ⊧ ψ .

In this case we write φ ∧ ψ ∶= ϑ.
(c)A formula ϑ ∈ L[X ,U ,V] is the disjunction of two formulaeφ,ψ ∈ L[X ,U ,V]

if

s ⊧ ϑ iff s ⊧ φ or s ⊧ ψ .

In this case we write φ ∨ ψ ∶= ϑ. ⌟

Remark. Note that the formulae φ ∨ ψ, φ ∧ ψ, and φop are well-defined up to
logical equivalence (if they exist). Also note that the symbols in φop have their
polarity reversed. ⌟

Examples. For the first-order logic, we have

[Px ∨ ∃y(Exy ∧ Q y)]op = Px ∧ ∀y(Exy → Q y) ,

[∃x[Px ∧ ∀y[y ≠ x → Q y]]
op
= ∀x[Px ∨ ∃y[y ≠ x ∧ Q y]] . ⌟

The following observations follow immediately from the definitions.

Lemma 3.7. Let L be a family of logics for S ○ ℘.

(a) If φ ∈ L is monotone in x, so is φop.

(b) φ ∈ L is jointly discrete in C if, and only if, φop is jointly co-discrete in C.

(c) φ ∈ L is continuous in x if, and only if, φop is co-continuous in x.

Next, let us introduce a variant µL of the modal µ-calculus where the modal
operators are defined by L-formulae.

Definition 3.8. Let L be a family of logics with polarities over S ○ ℘.
(a) We denote by µL the following variant of the modal µ-calculus for S-

enriched transition systems. Given a set Σ of labels and two disjoint sets X ,Y
of fixed-point variables, we denote by µL[Σ; X ,Y] the smallest set of formulae
satisfying the following conditions.
◆ a ∈ µL[Σ; X ,Y], for every a ∈ Σ.
◆ x ∈ µL[Σ; X ,Y], for every x ∈ X ∪ Y .
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◆ φ,ψ ∈ µL[Σ; X ,Y] implies φ ∧ ψ, φ ∨ ψ ∈ L[Σ; X ,Y] and ¬φ ∈ µL[Σ;Y , X].
◆ Let Θ ⊆ µL[Σ; X ,Y] be a finite set of formulae and let Θ+ be the set of all

ϑ ∈ Θ containing a symbol from X and Θ− the set of all ϑ ∈ Θ containing a
symbol from Y . For every φ ∈ L[Θ, Θ+ , Θ−], we have ◯φ ∈ µL[Σ; X ,Y].

◆ If φ ∈ µL[Σ; X + {x},Y] is monotone in x, then µx .φ ∈ L[Σ; X ,Y]. Similarly,
if φ ∈ µL[Σ; X ,Y + {y}] is monotone in y, then νy.φ ∈ µL[Σ; X ,Y].

We will always tacitly assume that fixed-point variables used by distinct fixed-
point operators in a formula are distinct.

The semantics is defined as follows. For a given S-enriched transition sys-
tem S = ⟨S , suc, λ⟩, an µL-formula φ(x0 , . . . , xn−1) ∈ µL[Σ; X ,Y], and values
P0 , . . . , Pn−1 ⊆ S for the free fixed-point variables x0 , . . . , xn−1 ∈ X ∪Y , we define
the set ⟦φ⟧P̄ ⊆ S of states satisfying φ inductively as follows.

⟦a⟧P̄ ∶= λ−1(a) ,
⟦x i⟧P̄ ∶= Pi ,

⟦φ ∧ ψ⟧P̄ ∶= ⟦φ⟧P̄ ∩ ⟦ψ⟧P̄ ,
⟦φ ∨ ψ⟧P̄ ∶= ⟦φ⟧P̄ ∪ ⟦ψ⟧P̄ ,
⟦¬φ⟧P̄ ∶= S ∖ ⟦φ⟧P̄ ,

⟦◯ψ⟧P̄ ∶= { v ∈ S ∣ S f (suc(v)) ⊧ ψ }

where f ∶ S → ℘(Θ)maps v ∈ S to { ϑ ∈ Θ ∣ v ∈ ⟦ϑ⟧P̄ } ,
⟦µx .ψ⟧P̄ is the least fixed-point of the function

Fψ ∶ ℘(S)→ ℘(S) ∶ Q ↦ ⟦ψ⟧P̄Q ,
⟦νx .ψ⟧P̄ is the greatest fixed-point of Fψ .

Finally, we set µL[Σ] ∶= µL[Σ;∅,∅] and

S, v ⊧ φ : iff v ∈ ⟦φ⟧⟨⟩ .

(b) A formula φ ∈ µL is pure if, for every subformula of the form µx .ψ or νx .ψ,
we have ψ ∈ µL[Σ; X ,∅]∪ L[Σ;∅, X], for some X. We denote the corresponding
fragment of µL by µpL.

(c) A formula φ ∈ µL is alternation-free if
◆ for every subformula of the form µx .ψ, we have ψ ∈ µL[Σ; X ,∅], for some X,

and
◆ for every subformula of the form νx .ψ, we have ψ ∈ µL[Σ;∅, X], for some X.
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We denote the corresponding fragment of µL by µaf L. ⌟

Examples. Let E1 be the logic whose formulae are boolean combinations of state-
ments of the form

EC ∶= ‘There exists a position whose set of labels is equal to C.’ ,

for C ⊆ Σ. Similarly, let Eω be the logic consisting of boolean combinations of
statements of the form

EkC ∶= ‘There exist at least k positions whose set of labels is equal to C.’ ,

for C ⊆ Σ and k < ω.
(a) The fixed-point extension µE1 coincideswith the standardmodal µ-calculus.

Using L ∶= Eω , we obtain a graded version µEω of the µ-calculus.
(b) The µafE1-formula

φ ∶= µx[a ∨ ◯[E{x}]]

checks whether there is a reachable vertex labelled by a.
(c) The µpE1-formula

φ ∶= νx .µy[(a ∧ ◯[E{x}]) ∨ ◯[E{y}]]

checks for the existence of a path with infinitely many letters a.
(c) The µpEω-formula

φ ∶= νx .µy[◯[E2{x}] ∨ ◯[E1{y}]]

checks for an embedding of the infinite binary tree.
(e) To state that a given tree has exactly one vertex labelled a we can use the

µFOc-formula

µx .[(a ∧ ◯[∀u.Pϑ(u)]) ∧ (¬a ∧ ◯[∃u[Px(u) ∧ ∀v(v ≠ u → Pϑ(v))]])] ,

with ϑ ∶= νy.[¬a ∧ ◯[∀u.Py(u)]]. ⌟

Finally, let us introduce a normal form for µL-formulae that will come in handy
below in our translation of formulae into automata.
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Definition 3.9. Let φ ∈ µL[Σ; X ,Y].
(a) φ is in negation normal form if the onlynegations in φ appear in a subformula

of the form ¬a with a ∈ Σ.
(b) φ is guarded if, for each subformula of the form σx .ψ with σ ∈ {µ, ν}, every

occurrence of the variable x in ψ is inside a subformula ◯ϑ starting with a modal
operator. ⌟

Let us start with an observation that is useful to convert a formula into negation
normal form.

Remark. (a) Fixed-point formulae satisfy the usual negation law.

¬νx .φ ≡ µx .¬φ[x ↦ ¬x] .

(b) For modal operators, we obtain the relation

¬◯ψ ≡ ◯S℘c(ψop) ,

where c ∶ µL → µL is the function exchanging each label ϑ by ¬ϑ. For the proof,
note that we have

s ⊧ Sc(ψop) iff Sc(s) ⊧ ψop iff s ⊭ ψ .

Hence,

⟦¬◯ψ⟧P̄ = S ∖ ⟦◯ψ⟧P̄

= S ∖ { v ∈ S ∣ S f (suc(v)) ⊧ ψ }

= { v ∈ S ∣ S f (suc(v)) ⊭ ψ }

= { v ∈ S ∣ S f (suc(v)) ⊧ Sc(ψop) } = ⟦◯Sc(ψop)⟧P̄ . ⌟

Lemma 3.10. Let L be a logic over S ○ ℘ that is closed under duals.

(a) µL is closed under duals.

(b) Every µL-formula is equivalent to one that is guarded and in negation normal

form.

Proof. (a) Let φ ∈ µL. By (b), we can assume that φ is in negation normal form.
Then φop is the formula obtained from φ by
◆ replacing every disjunction by a conjunction and vice versa,
◆ replacing every µ-operator by a ν and vice versa.
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(b) To transform a given fromula φ into negation normal form we can use the
two laws from the above remark. It therefore remains to show how to make a
formula in negation normal form guarded. For each subformula µx .ψ, let ψ′ be
the formula obtained from ψ by replacing every unguarded occurrence of x by
false. Then we have

⟦ψ′⟧P̄Q ⊆ ⟦ψ⟧P̄Q ⊆ Q ∪ ⟦ψ′⟧P̄Q ,

which implies that

⟦µx .ψ′⟧P̄ ⊆ ⟦µx .ψ⟧P̄ ⊆ ⟦µx .(x ∨ ψ′)⟧P̄ = ⟦µx .ψ′⟧P̄ .

Hence, µx .ψ is equivalent to µx .ψ′. For greatest fixed points νx .ψ,we can similarly
replace all unguarded x by true instead.

4 Parity Games
Let us recall some material about parity games that will be used below in the
translation of automata into formulae.

Definition 4.1. (a) A parity game is a games played by two players (Player ◇
and Player ◻) who move a token along the edges of a directed graph. The game
starts in a fixed vertex of the graph and in each turn one of the players chooses an
outgoing edge along which to move the token. To determine the moving player,
we assign a player to each vertex of this graph. The player assigned to the current
vertex chooses the outgoing edge.

The game ends if one of the player cannot make a move (because there are no
outgoing edges), in which case that player looses. Otherwise, the choices of the
players determine an infinite path through the game, called a play of the game. To
determine the winner of such an infinite play, we label each vertex by a number,
its priority, and the least priority seen infinitely often during the play determines
the winner : Player ◇ wins if it is even ; otherwise Player ◻ wins.

Formally,we represent aparity game as a structure of the formG = ⟨V◇ ,V◻ , E ,Ω⟩
where V ∶= V◇ + V◻ is the set of positions, V◇ are the positions for Player ◇,
V◻ are the positions for Player ◻, E ⊆ V × V is the edge relation, and Ω ∶ V → ω

the priority function. Given an infinite play (vn)n<ω of such a game, Player ◇
wins if (vn)n<ω satisfies the parity condition :

lim inf
n<ω

Ω(vn) is even.
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(b)A (positional) strategy for Player τ in a parity game (τ ∈ {◇,◻}) is a function
σ ∶ Vτ → E assigning an outgoing edge to each position of Player τ. Such a strategy
is winning if Player τ wins every play where all of his choices are according to σ .

(c) A game G is positionally determined if there exist two positional strategies
σ◇ and σ◻ and a partition V = W◇ +W◻ of the positions (W◇ and W◻ may
be empty) such that σ◇ is winning for Player ◇, for every game that starts in
some position from W◇, and similarly σ◻ is winning for Player ◻, for all starting
positions in W◻. ⌟

The usefulness of parity games stems from the following well-known fact.

Theorem4.2 (Emerson, Jutla,Mostowski [6, 11]). Every parity game is positionally

determined.

The second result we will need is the fact that we can compute the winning
regions of a parity game by a formula of the modal µ-calculus µML. To do so, we
encode a parity game G = ⟨V◇ ,V◻ , E ,Ω⟩ as a transition system with predicates
V◇ ,V◻ ,Ωk , for each priority k.

Definition 4.3. For a µML-formula ψ and k < ω, we set

step ψ ∶= [V◇ ∧◇ψ] ∨ [V◻ ∧ ◻ψ] ,
win ∶= σ0x0⋯σk−1xk−1 . step⋁

i<k
(Ω i ∧ x i) ,

where σk is equal to µ if k is odd, and equal to ν if k is even. ⌟

Proposition 4.4 (Emerson, Jutla [6]). For all k < ω, the µML-formula win defines

the winning region for Player ◇ on all parity games with at most k priorities.

The games obtained from automata have a special form : the players strictly
alternate in making moves.

Definition 4.5. A parity game G = ⟨V◇ ,V◻ , E ,Ω⟩ is strictly alternating if, for
every edge ⟨u, v⟩ ∈ E,

u ∈ V◇⇔ v ∈ V◻ and u ∈ V◇ ⇒ Ω(u) ≤ Ω(v) . ⌟

For games of this special form, we obtain the following corollary to Proposi-
tion 4.4.
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Definition 4.6. For k < ω, we set

win2
k ∶= σ0x0⋯σk−1xk−1 .◇◻⋁

i<k
(Ω i ∧ x i) ,

where σk is equal to µ if k is odd, and equal to ν if k is even. ⌟

Corollary 4.7. For all k < ω, the µML-formula win2
k defines the winning region

(restricted to positions of Player ◇) for Player ◇ on all strictly alternating parity

games with at most k priorities.

5 Automata
When defining the transition relation for an automaton working on trees whose
branching degree is unbounded, we cannot simply list all allowed states for the
successors since this would be an infinite amount of data. To obtain a finite
automaton we need to adopt some formalism that can be used to specify the
transition relation in a finite way. Following an idea of Walukiewicz [16], we use
logical formulae for this task. Generalising the work of Carreiro [4], we will show
that we can translate µL-formulae into automata where the transition relation is
defined by L-formulae.

Definition 5.1. Let S ∶ Set→ Set be a polynomial functor and L a family of logics
with polarities over S ○ ℘.

(a) Given a formula φ ∈ L[Q] we say that a state q ∈ Q occurs in φ if φ ∉
L[Q ∖ {q}].

(b) Let δ ∶ Q × Σ → L[Q] be a function. We associate with δ a directed graph
whose set of vertices is Q and there is an edge p → q if q occurs in δ(p, a), for
some a ∈ Σ. We say that q ∈ Q is reachable from p ∈ Q if this graph has a path
from p to q.A component of δ is a strongly connected component of the associated
graph.

(c) An (alternating) L-automaton over S-enriched trees is a tuple

A = ⟨Q , Σ, δ, q0 ,Ω⟩

where Q is a finite set of states, Σ is a finite input alphabet, q0 ∈ Q the initial state,

Ω ∶ Q → ω a priority function, and δ ∶ Q × Σ → L[Q] is the transition function,

which we assume satisfies the following property : for every state q ∈ Q, there
exists two disjoint sets C ,D ⊆ Q such that
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◆ C ∪ D is the component containing q,
◆ δ(q, a) ∈ L[Q ,C ,D], for all a ∈ Σ, and
◆ δ(q, a) is monotone in all states p ∈ C ∪ D.

(d) A run of such an automaton A on an S-enriched tree t is a function
ρ ∶ dom(t) → ℘(Q × Q) with the following properties. (A pair ⟨p, q⟩ ∈ ρ(v)
represents the fact that (a copy of) the automaton is in state p at the predecessor
of v and in state q at the vertex v itself.) Given a state p ∈ Q, we write

ρ/p(v) ∶= { q ∈ Q ∣ ⟨p, q⟩ ∈ ρ(v) } .

We say that ρ is a run if ρ(⟨⟩) = {⟨q0 , q0⟩} and

Sρ/p(suc(v)) ⊧ δ(p, t(v)) , for all p ∈ ⋃
q∈Q

ρ/q(v) .

(e) Let ρ be a run and β = (v i)i<ω an infinite branch of t. A trace of ρ along β

is a sequence (q i)i<ω of states starting with the initial state q0 such that

⟨q i , q i+1⟩ ∈ ρ(v i+1) , for all i < ω .

A run ρ is accepting if all traces (q i)i along every branch satisfy the parity
condition :

lim inf
i<ω

Ω(q i) is even.

The language recognised byA is the set

⟦A⟧ ∶= { t ∈ TSΣ ∣ A has an accepting run on t } . ⌟

Examples. Let SX ∶= X∗ be the functor for finitely branching transition systems.
(a) The µafE1-formula

φ ∶= µx[a ∨ ◯[E1x]]

checks whether there is a reachable vertex labelled by a. We can translate it into
an E1-automaton with a single state q with priority Ω(q) ∶= 1 where the transition
function is

δ(q, a) ∶= true and δ(q, b) ∶= E1q .
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(b) The following FO-automaton recognises the language of all trees t ∈ TS{a, b}
where every subtree contains at least one letter a. We use two states p and q,where
p looks for the letter a while q checks the condition for every subtree. The state q

is initial, the transition function is

δ(p, a) ∶= true ,
δ(p, b) ∶= ∃xPpx ,
δ(q, c) ∶= ∀xPqx ∧ ∃xPpx , for c ∈ {a, b} ,

and the priorities are Ω(p) ∶= 1 and Ω(q) ∶= 0.
(c) The µpE1-formula

φ ∶= νx .µy[(a ∧ ◯[E1x]) ∨ ◯[E1 y]]

checks for the existence of a path with infinitely many letters a. We can translate
it into an E1-automaton with two states qa and qb . The priorities are Ω(qa) ∶= 0
and Ω(qb) ∶= 1 and the transition function is

δ(qc , d) ∶= E1qd , for c, d ∈ {a, b} . ⌟

It will turn out that the two fragments µpL and µaf L of µL can be characterised
by L-automata of the following form.

Definition 5.2. LetA = ⟨Q , Σ, δ, q0 ,Ω⟩ be an L-automaton.
(a)A is pure if, for every component C ⊆ Q ofA, we have

δ(q, a) ∈ L[Q ,C ,∅] , for all q ∈ C and a ∈ Σ ,
or δ(q, a) ∈ L[Q ,∅,C] , for all q ∈ C and a ∈ Σ .

(b)A is weak if

Ω(p) ≤ Ω(q) , for all states q that occur in δ(p, a) for some a ∈ Σ ,

and

Ω(q) is odd ⇒ δ(q, a) ∈ L[Q ,C ,∅] ,
Ω(q) is even ⇒ δ(q, a) ∈ L[Q ,∅,C] ,

where C ⊆ Q is the component ofA containing q. ⌟
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Remark. Every weak L-automaton is equivalent to a (non-weak) L-automaton
that only uses the priorities 0 and 1. (We can just replace the priority function Ω

by the function Ω′(q) ∶= Ω(q) mod 2.) ⌟

The main result of this section is the following equivalence between automata
and formulae. In fact, the two formalisms are close enough that, similar to the
modal µ-calculus, we can consider automata a normal form for formulae.

Theorem 5.3. Let L be a family of logics with polarities over S that is closed under

finite disjunctions, finite conjunctions, and duals.

(a) A language K ⊆ TSΣ is µL-definable if, and only if, it is recognised by an

L-automaton.

(b) A language K ⊆ TSΣ is µpL-definable if, and only if, it is recognised by a pure

L-automaton.

(c) A language K ⊆ TSΣ is µaf L-definable if, and only if, it is recognised by a weak

L-automaton.

Furthermore, the above translations between formulae and automata are effective

provided that disjunctions, conjunctions, and duals of L-formulae are computable.

The remainder of this section is devoted to the proof, which is basically the
same as the corresponding proof for the modal µ-calculus. We only have to
additionally check that the transition functions andmodal operators we construct
are well-formed and of the correct type. We split the proof into Propositions
5.8 and 5.9 below.

Before doing so, it is useful to give an alternative definition of acceptance via a
parity game.

Definition 5.4. LetA = ⟨Q , Σ, δ, q0 ,Ω⟩ be an L-automaton and t ∈ TSΣ an input
tree. The acceptance game forA on t is the parity gameG(A, t) ∶= ⟨V◇ ,V◻ , E ,Ω′⟩
with positions

V◇ ∶= dom(t) × Q ,
V◻ ∶= { ⟨v , s⟩ ∈ dom(t) × S℘(Q) ∣ s ≃sh suc(v) } .

The priorities are

Ω′(⟨v , q⟩) ∶= Ω(q) and Ω′(⟨v , s⟩) ∶= max rng Ω ,

for v ∈ dom(t), q ∈ Q, and s ∈ SQ.
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Finally, the edge relation is defined as follows. Let u, v ∈ dom(t), q ∈ Q, and
s ∈ S℘(Q). There are edges

⟨v , q⟩→ ⟨v , s⟩ : iff s ⊧ δ(q, t(v)) ,

⟨v , s⟩→ ⟨u, q⟩ : iff u = suc(v)(d) and q ∈ s(d) ,
for some d ∈ dom(suc(v)) . ⌟

Proposition 5.5. An L-automatonA accepts a tree t if, and only if, Player ◇ has a

winning strategy in the game G(A, t).

The proof is entirely standard: every accepting run can be used to define a
winning strategy and every winning strategy an accepting run.

For the two directions of the proof of Theorem 5.3, we generalise the standard
translation between the modal µ-calculus and tree automata. We start with the
translation of automata into formulae. To simplify the construction we will use a
variant of µL with simultaneous fixed points.

Definition 5.6. The variant of µL with simultaneous fixed points has fixed-point
formulae of the form

µk x̄ .ψ̄ and νk x̄ .ψ̄ ,

where x̄ is an n-tuple of (pairwise distinct) fixed-point variables, ψ̄ an n-tuple
of µL-formulae that are monotone in the variables x̄, and k < n is an index. The
semantics ⟦µk x̄ .ψ̄⟧P̄ of such a formula is defined as follows. Let T̄ be the least
fixed point of the operation F ∶ ℘(S)n → ℘(S)n defined by

F(Q̄) ∶= ⟨⟦ψk⟧P̄ Q̄⟩k<n .

Then ⟦µk x̄ .ψ̄⟧P̄ ∶= Tk . ⌟

Lemma 5.7. Every µL[Σ; X ,Y]-formula with simultaneous fixed points can be

translated to one without. Furthermore, if the given formula is alternation-free or

pure, so is the resulting formula.

Proof. This is a standard construction, which we will recall for convenience.
Consider a formula of the form φ = µk x̄ .ψ̄ where x̄ and ψ̄ are n-tuples. (The case
of a greatest fixed point is handled analogously.) We may assume by induction
that the formulae ψ i do not contain simultaneous fixed points. We transform φ

into a µL-formula in two steps.
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First, we modify the formula such the variables x0 , . . . , x i−1 are not free in ψ i ,
for i < n. To do so, we replace each occurrence of x0 in ψ i , for i > 0, by the
formula µx0 .ψ0. Next we replace each x1 in (the modified version of) ψ i , for i > 1,
by µx1 .ψ1 Continuing this way, we replace each x j in ψ i , for i > j, by µx j .ψ j .
We denote the resulting formulae again by ψ0 , . . . ,ψn−1. In the second step, we

eliminate the remaining variables. We start with the formula

φn−1 ∶= µxn−1 .ψn−1 .

Next, we construct

φn−2 ∶= µxn−2 .ψ′n−2 ,

where ψ′n−2 is the formula obtained from ψn−2 by replacing each occurrence
of xn−1 by φn−1. Continuing in this way, we set

φ j ∶= µx j .ψ′j ,

where ψ′j is the formula obtained from ψ j by replacing each occurrence of x i
with i > j by φ i . The resulting formulae φ0 , . . . , φn−1 belong to µL and define the
respective components of the fixed point. In particular, φk is equivalent to µk x̄ .ψ̄.

Finally, note that our construction preserves purity and alternation freeness.

The two directions of the proof of Theorem 5.3 can now be proved as follows.

Proposition 5.8.
(a) Every language recognised by an L-automaton is µL-definable.

(b) Every language recognised by a weak L-automaton is µaf L-definable.

(c) Every language recognised by a pure L-automaton is µpL-definable.

Proof. Let A = ⟨Q , Σ, δ, q0 ,Ω⟩ be an L-automaton, t ∈ TSΣ an input tree, and
G = ⟨V◇ ,V◻ , E ,Ω⟩ the associated acceptance game. It is sufficient to find a
formula φ of the respective logic such that

t ⊧ φ iff the initial position of G is winning for Player ◇.

More precisely, for each state q ∈ Q, we will construct a formula φq ∈ µL such
that, for every vertex v ∈ dom(t),

t, v ⊧ φq iff Player ◇ wins when starting in the position ⟨v , q⟩ .
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We proceed by induction on the number of components ofA that are reachable
from q. Hence, let C be a component with q ∈ C and let P ⊆ Q be the set of all
states p ∈ Q ∖ C reachable from some q ∈ C. By inductive hypothesis, we already
know the formulae φp , for p ∈ P. By Corollary 4.7, the µML-formula

win2 ∶= σ0x0⋯σk−1xk−1 .◇◻⋁
i<k
(Ω i ∧ x i)

defines the winning region for Player ◇ in G. It follows that the µML-formula

χC ∶= σ0x0⋯σk−1xk−1 .◇◻[⋁
p∈C
(Qp ∧ xΩ(p)) ∨ ⋁

p∈P
(Qp ∧ χP)]

defines the winning region restricted to positions with a state in C. (χP is the
corresponding formula for states in P and Qp is the predicate checking that the
current state is p. Hence, Ωk ≡ ⋁p∈Ω−1(k) Qp .)

(a), (b) We will inductively translate every subformula ψ(x0 , . . . , xn−1) of χC
into an µL-formulaψ∗q(x̄0 , . . . , x̄n−1) such that, for all v ∈ dom(t) and P0 , . . . , Pk−1 ⊆
V◇,

G , ⟨v , q⟩ ⊧ ψ(P0 , . . . , Pk−1) iff t, v ⊧ ψ∗q(P̄0 , . . . , P̄k−1) ,

where P̄i ∶= (P
p
i )p∈Q with

P
p
i ∶= { v ∈ dom(t) ∣ ⟨v , p⟩ ∈ Pi } .

Note that to each variable x i in χC there corresponds a Q-tuple (x i ,q)q∈Q in the
translation. We start with

[⋁
p∈C
(Qp ∧ xΩ(p)) ∨ ⋁

p∈P
(Qp ∧ χP)]

∗

q
∶=

⎧⎪⎪
⎨
⎪⎪⎩

xΩ(q),q if q ∈ C ,
φq if q ∈ P .

For the modal operators, we set

[◇◻(⋁
p∈C
(Qp ∧ xΩ(p)) ∨ ⋁

p∈P
(Qp ∧ χP))]

∗

q
∶= ⋁

a∈Σ
[a ∧ ◯S f (δ(q, a))] ,

where X ∶= { xΩ(p),p ∣ p ∈ C } and the function f ∶ Q → µL[Σ; X , X] is defined
by

f (p) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

xΩ(p),p if p ∈ C ,
φp if p ∈ P .
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Note that the above formula is well-formed since we have δ(q, a) ∈ L[Q ,C1 ,C2],
for some partition C = C1 + C2 independent of a, which implies that

◯S f (δ(q, a)) ∈ µL[Σ; X1 , X2] where X i ∶= { xΩ(p),p ∣ p ∈ C i } .

Furthermore, in case (b), we have δ(q, a) ∈ L[Q ,C ,∅] ∪ L[Q ,∅,C], which
implies that

◯S f (δ(q, a)) ∈ µpL[Σ; X ,∅] ∪ µpL[Σ;∅, X] .

Hence, the resulting formula is pure.
Finally, we translate the fixed-point operators using simultaneous fixed-points

as

(µx i .ψ)∗q ∶= µq(x i ,p)p∈C∩Ω−1(i) .(ψ∗p)p∈C∩Ω−1(i) , if i is odd,
or (νx i .ψ)∗q ∶= νq(x i ,p)p∈C∩Ω−1(i) .(ψ∗p)p∈C∩Ω−1(i) , if i is odd.

Note that these formulae are well-formed since every state p ∈ C occurs positively
in δ(q, a). This implies that every variable x i ,p occurs positively in ψp′ , for p, p′ ∈
C ∩Ω−1(i).

It remains to prove the correctness of our translation. We proceed by induction
on the formula ψ. Since most steps are straightforward, we only consider the case
of the modal operator. Hence, suppose that ψ =◇◻ϑ. By definition of G, we have

G , ⟨v , q⟩ ⊧◇◻ϑ

if, and only if, there exists a labelling s ∈ SQ such that s ≃sh suc(v),

s ⊧ δ(q, t(v)) and G , ⟨suc(v)(d), s(d)⟩ ⊧ ϑ , for all d ∈ dom(suc(v)) .

By inductive hypothesis, this is equivalent to the existance of some s ∈ SQ satisfy-
ing

s ⊧ δ(q, t(v)) and t, suc(v)(d) ⊧ ϑ∗s(d) , for all d ∈ dom(suc(v)) .

This last statement holds if, and only if,

t, v ⊧ ◯S f (δ(q, t(v)))p∈Q(P̄0 , . . . , P̄n−1) ,

which is equivalent to

t, v ⊧ ⋁
a∈Σ
[a ∧ ◯S f (δ(q, a))p∈Q(P̄0 , . . . , P̄n−1)] .
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(c) As above, we can use the µML-formula

χC ∶= σ0x0⋯σk−1xk−1 .◇◻[⋁
p∈C
(Qp ∧ xΩ(p)) ∨ ⋁

p∈P
(Qp ∧ χP)]

to define the winning region restricted to positions with a state in C. Since the
automaton is weak, all states in C have the same priority k. Consequently, the
formula simplifies to

χ′C ∶= σkx .◇◻[⋁
p∈C
(Qp ∧ x) ∨ ⋁

p∈P
(Qp ∧ χ′P)] .

As above, we inductively translate every subformula ψ of χ′C into into an µpL-
formula ψ∗q , starting with

[⋁
p∈C
(Qp ∧ x) ∨ ⋁

p∈P
(Qp ∧ χ′P)]

∗

q
∶=

⎧⎪⎪
⎨
⎪⎪⎩

xq if q ∈ C ,
φq if q ∈ P ,

and

[◇◻(⋁
p∈C
(Qp ∧ xΩ(p)) ∨ ⋁

p∈P
(Qp ∧ χ′P))]

∗

q
∶= ⋁

a∈Σ
[a ∧ ◯S f (δ(q, a))] ,

where X ∶= { xp ∣ p ∈ C } and the function f ∶ Q → µpL[Σ; X , X] is defined by

f (p) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

xp if p ∈ C ,
φp if p ∈ P .

Note that this formula is well-formed since, depending on whether or not k is
odd, we have δ(q, a) ∈ L[Q ,C ,∅] or δ(q, a) ∈ L[Q ,∅,C], which implies that

◯S f (δ(q, a)) ∈
⎧⎪⎪
⎨
⎪⎪⎩

µpL[Σ; X ,∅] if k is odd ,
µpL[Σ;∅, X] if k is odd .

Finally, we translate the fixed-point operator by

(µx .ψ)∗q ∶= µq(xp)p∈Q .(ψ∗p)p∈Q , if k is odd,
or (νx .ψ)∗q ∶= νq(xp)p∈Q .(ψ∗p)p∈Q , if k is odd,

which is alternation-free.
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Example. To understand the construction in the following proof, let us consider
the µE1-formula

φ ∶= νx .µy[(a ∧ ◯[Ex]) ∨ ◯[Ey]]

which checks for the existence of a pathwith infinitelymany letters a. This formula
has the following subformulae.

a , x , ψ0 ∶= ◯[Ey] , ψ2 ∶= a ∧ ψ1 , ψ4 ∶= µy.ψ3 ,
y , ψ1 ∶= ◯[Ex] , ψ3 ∶= ψ2 ∧ ψ0 , φ .

We translate φ into the automaton with states

Q ∶= {x , y, φ} ,

priorities

Ω(φ) ∶= 0 , Ω(x) ∶= 0 , Ω(y) ∶= 1 ,

and transitions

δ(φ, c) = δ(x , c) = δ(y, c) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

Ex ∨ Ey if c = a ,
Ey if c ≠ a . ⌟

Proposition 5.9. Let L be a family of logics over S that is closed under finite

disjunctions, finite conjunctions, and duals.

(a) Every µL-definable language is recognised by an L-automaton.

(b) Every µpL-definable language is recognised by a pure L-automaton.

(c) Every µaf L-definable language is recognised by a weak L-automaton.

Proof. For technical reasons, we will present our translation for formulae with
free fixed-point variables. Therefore we have to work with trees equipped with
additional information specifying the values of the variables. We will represent
such a tree as a tree over the extended alphabet Σ × ℘(V), where V is the set
of variables. The labels of such a tree are therefore pairs ⟨a,U⟩ with a ∈ Σ and
U ⊆ V , where the second component specifies to which of the variables x ∈ V
the current vertex belongs. Our notation for such trees is

t, P̄ ∈ TS[Σ × ℘(V)] where t ∈ TSΣ and Px ⊆ dom(t), for x ∈ V .
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Fix a formula φ ∈ µL[Σ; Xf ,Yf]. By Lemma 3.10, we may assume that φ is
guarded and in negation normal form. For each fixed-point variable x bound
in φ, we denote by σxx .ψx the subformula where x is bound. Set

Xb ∶= { x ∣ ψx ∈ µL[Σ; U ,V] for some U ,V with x ∈ U } ,
Yb ∶= { x ∣ ψx ∈ µL[Σ; U ,V] for some U ,V with x ∈ V } .

Note that, since φ is in negation normal form, we have ψ ∈ L[Σ; Xf + Xb ,Yf +Yb],
for all subformulae ψ of φ.
We define the alternation-depth of a variable x as the length n of the longest

sequence σ0 y0 .ψ0 , . . . , σn yn .ψn of subformulae in Q such that
◆ σ0 y0 .ψ0 ∈ Q,
◆ σn yn .ψn = σxx .ψx , and
◆ σi+1 y i+1 .ψ i+1 is a subformula of σi y i .ψ i and σi+1 ≠ σi , for all i < n.
We construct an automatonAφ whose set of states

Q ⊆ L[Σ; Xf + Xb ,Yf + Yb]

is the set of all subformulae of φ. (We treat different occurrences of the same
subformula as different subformulae.) Each state ψ ∈ Q checks whether a subtree
satisfies the formula ψ. We use the second component i only to signal when we
iterate a fixed point. The initial state is φ and the priorities are given by

Ω(ψ) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2ix + 1 if ψ = x ∈ Xb ∪ Yb and σx = µ ,
2ix if ψ = x ∈ Xb ∪ Yb and σx = ν ,
2k otherwise ,

where ix is the alternation-depth of the variable x and k is themaximal alternation-
depth of a variable in φ.
We define the transition function δ inductively starting with the letters and

the modal operators.

δ(a, ⟨c,U⟩) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

true if a = c ,
false if a ≠ c ,

for a ∈ Σ ,

δ(¬a, ⟨c,U⟩) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

false if a = c ,
true if a ≠ c ,

for a ∈ Σ ,

δ(x , ⟨c,U⟩) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

true if a ∈ U ,
false if a ∉ U ,

for x ∈ Xf ∪ Yf ,
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δ(ψ0 ∨ ψ1 , ⟨c,U⟩) ∶= δ(ψ0 , ⟨c,U⟩) ∨ δ(ψ1 , ⟨c,U⟩) ,

δ(ψ0 ∧ ψ1 , ⟨c,U⟩) ∶= δ(ψ0 , ⟨c,U⟩) ∧ δ(ψ1 , ⟨c,U⟩) ,

δ(µx .ψ0 , ⟨c,U⟩) ∶= δ(ψ0 , ⟨c,U⟩) ,

δ(νx .ψ0 , ⟨c,U⟩) ∶= δ(ψ0 , ⟨c,U⟩) ,

δ(◯ψ, ⟨c,U⟩) ∶= ψ ,

δ(x , ⟨c,U⟩) ∶= δ(ψx , ⟨c,U⟩) , for x ∈ Xb ∪ Yb .

(Note that, since φ is guarded, the definition of δ(ψx , ⟨c,U⟩) does not depend
on the definition of δ(x , ⟨c,U⟩). So the above definition does not create a cyclic
dependency.)
Before proving that the resulting automaton Aφ recognises the correct lan-

guage, let us show that it is well-formed and that is has the correct type. Fix a
component C ofAφ . Set

Z ∶= { x ∈ Xb ∪ Yb ∣ σxx .ψx ∈ C } .

Then

C ⊆ µL[Σ; Xf + (Z ∩ Xb),Yf + (Z ∩ Yb) .

Let Φ+ ⊆ C be the set of all subformulae of φ that contain some variable from
Z ∩Xb and let Φ− ⊆ C the the corresponding set for variables in Z ∩Yb. It follows
that

◯ψ ∈ C implies ψ ∈ L[µL, Φ+ , Φ−] .

Since every transition formula is a boolean combination of such formulae ψ, it
follows that

δ(ψ, ⟨c,U⟩) ∈ L[Q , Φ+ , Φ−] , for all ψ ∈ C .

Consequently,Aφ is well-formed.
Furthermore, if φ is pure, we have Z ⊆ Xb or Z ⊆ Yb. Consequently, Φ+ = ∅ or

Φ− = ∅, and it follows thatAφ is pure.
In order to obtain a weak automaton we have to slightly modify the above

construction. Note that, if our formula φ is weak,we have σx = σy , for all variables
x , y ∈ C. Consequently, all such variables x have the same alternation depth and
therefore the same priority Ω(x). Since every loop contains a state x ∈ Xb ∪ Yb
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and the other states have maximal priority, it follows that we can set all priorities
in C to the same value Ω(x) without changing the behaviour of the automaton.
The resulting automaton is weak.

To prove the correctness of our construction, letAψ be the automaton obtained
by translating the formula ψ ∈ Q. Note that each of these automata is equal to part
of the automatonAφ for the whole formula φ, except that the transition function
differs for states of the form ⟨x , i⟩ with x ∈ Xb + Yb.
We show by induction on ψ ∈ Q that

t, P̄ ∈ ⟦Aψ⟧ iff t ∈ ⟦ψ⟧P̄

(where P̄ are the value of the free variables in ψ). Most cases are straightforward.
Let us give the proof for the least fixed-point operator. Hence, let us consider a
subformula µx .ψ ∈ Q and suppose that we have already proved the claim for the
formula ψ.
(⇒) Fix a tree t, P̄ ∈ TS(Σ ×℘(Xf +Yf)). Suppose that σ is a winning strategy

for Player ◇ in the game G(Aµx .ψ , t, P̄). Since no infinite play conforming to σ

contains infinitely many positions with the state x, we can define the following
ordinal rank for the positions in the game. If, from a postion ⟨v , q⟩, no position of
the form ⟨u, x⟩ is reachable when following the strategy σ , we assign the rank 0
to ⟨v , q⟩. Inductively, the rank of an arbitrary position ⟨v , q⟩ of Player ◇ is the
least ordinal α such that every successor of the position σ(⟨v , q⟩) has a rank less
than α.
By induction on α we prove that, if Player ◇ has a winning strategy σ of

rank at most α in the game G(Aµx .ψ , t, P̄), then t ∈ ⟦µx .ψ⟧P̄ . Let Q be the set
of all vertices v ∈ dom(t) such that the position ⟨v , x⟩ of G(Aµx .ψ , t, P̄) has
rank less than α. Then σ induces a winning strategy in G(Aψ , t, P̄Q), which
implies that t ∈ ⟦ψ⟧P̄ ,Q . By inductive hypothesis, we further have Q ⊆ ⟦µx .ψ⟧P̄ .
By monotonicity of ψ, it follows that t ∈ ⟦ψ(µx .ψ)⟧P̄ , which is equivalent to
t ∈ ⟦µx .ψ⟧P̄ ,
(⇐) Fix a tree t, P̄ ∈ TS(Σ×℘(Xf +Yf)). For an ordinal α, let Fα ∶= Fα

ψ (∅) be
the α-th stage of the fixed-point induction for the formula ψ on t, P̄. By induction
on α, we show that v ∈ Fα implies (t, P̄)∣v ∈ ⟦Aµx .ψ⟧, where (t, P̄)∣v denotes the
subtree of t, P̄ rooted at v. For α = 0, the claim is trivial. If α is a limit ordinal, we
have Fα = ⋃β<α Fβ and the claim follows immediately by inductive hypothesis.
For the successor step, suppose that we have already proved the claim for α. Let
v ∈ Fα+1. By the inductive hypothesis for ψ, there exists an accepting run ofAψ
on t, P̄Fα . Furthermore, for every u ∈ Fα , the inductive hypothesis for α provides
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a run of Aµx .ψ on (t, P̄)∣u . Combining these runs, we obtain a run of Aµx .ψ
on (t, P̄)∣v .

6 Projection
We would like to translate various variants of monadic second-order logic into
automata. To be able to do so, we need to prove that the resulting classes of
automata are closed under projections of various kinds.

Definition 6.1. Let F be a polynomial functor and Σ, Γ two sets.
(a) The projection of s ∈ F(Σ × Γ) is

prΣ(s) ∶= f ○ s ,

where f ∶ Σ × Γ → Σ is the projection to the first component.
The projection of a language K ⊆ F(Σ × Γ) is the language

prΣ[K] ∶= {prΣ(s) ∣ s ∈ K } .

(b) Fix a distinguished element γ0 ∈ Γ and a class

P ⊆ { P ∣ P ⊆ dom(t), for some t ∈ F1} .

(Usually, Γ = ℘(X) is a power set and γ0 = ∅ the empty set.)
The P-projection of K ⊆ T(Σ × Γ) is the language prPΣ ,γ0

[K] ∶= prΣ ,γ0
[KP],

where

KP ∶= { s ∈ K ∣ there is some P ∈ P such that dom(s) ∖ t−1[Σ × {γ0}] ⊆ P } .

If F = TS and the set P consists of all finite sets, well-founded sets, finitely

branching sets, chains, or finite chains,we speak of, respectively, the finite projection,

the well-founded projection, the finitely branching projection, the chain projection,

or the finite chain projection of K.
If F = S and the set P consists of all finite sets or all singletons, we speak of,

respectively, the finite projection or the singleton projection.

(c) We say that a property P of languages is closed under P-projections if,
whenever a language K has property P, so does everyP-projection of K. Similarly,
we say that a family of logics L is closed under P-projections if, whenever a
language K is L-definable, so is every P-projection of K. Given a formula φ ∈
L[Σ×Γ] defining K,we denote by ∃PΓ ,γ0

φ the formula defining the corresponding
P-projection. ⌟
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The automaton construction below does not work for arbitrary logics L. We
have to make a few restrictions. First of all, the construction does not respect
polarities.Which means thatwewillworkwith families of logicswithout polarities.
Furthermore, we require two basic closure properties.

Definition 6.2. Let L be a family of logics over S ○ ℘.
(a) We say that L is closed under label restrictions if, for all ∆ ⊆ ℘(Σ), there

exists an L[Σ]-formula χ∆ defining the set S∆.
(b) L is closed under boolean label substitutions if there exists a family L̂ of

logics over S such that L[Q] = L̂[℘(Q)], for all sets Q. ⌟

Lemma 6.3. Let L be a family of logics over S ○℘ that is closed under boolean label

substitutions, Let Σ, Γ , ∆ be sets, ψ ∈ L[Σ] a formula, and let (ϑc)c∈Σ be a family of

boolean combinations of elements of ∆ × Γ. There exists an L[∆ × ℘(Γ)]-formula

ψ[c ↦ ϑc]c∈Σ such that

s ⊧ ψ[c ↦ ϑc]c∈Σ iff Sτ(s) ⊧ ψ ,

where τ ∶ ℘(∆ × ℘(Γ))→ ℘(Σ) is the function

τ(P) ∶= { c ∈ Σ ∣ ⟨a, B⟩ ∈ P, {a} × B satisfies ϑc } .

Proof. We have to show that Sτ ∶ S℘(∆ × ℘(Γ)) → S℘(Σ) is (the second com-
ponent of) a morphism L[Σ]→ L[∆ × ℘(Γ)] of logics. Note that

τ = g ○ ℘( f ) ,

where

f ∶ ∆ × ℘(Γ)→ ℘(∆ × Γ) ∶ ⟨a, B⟩↦ {a} × B ,
g ∶ ℘℘(∆ × Γ)→ ℘(Σ) ∶ P ↦ { c ∈ Σ ∣ A ∈ P, A satisfies ϑc } .

Let L̂ be the extension of L to a logic over S. We obtain morphisms of logics

S℘( f ) ∶ L[℘(∆ × Γ)]→ L[∆ × ℘(Γ)] ,

Sg ∶ L̂[Σ]→ L̂[℘(∆ × Γ)] .

The composition Sτ = S(g ○ ℘( f )) induces the desired morphism of logics
L[Σ]→ L[∆ × ℘(Γ)].
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Definition 6.4. LetA = ⟨Q , Σ, δ, q0 ,Ω⟩ be an L-automaton.
(a) For s, t ∈ S℘(X), we write

s ≤ t : iff s ≃sh t and s(d) ⊆ t(d) , for all d ∈ dom(s) .

(b)A is partially non-deterministic if there exists a partition Q = Qalt + Qnd of
its states such that,
◆ for q ∈ Qalt, the formula δ(q, a) does not contain any state from Qnd,
◆ for all q ∈ Qnd and a ∈ Σ,

s ⊧ δ(q, a) implies there is some s0 ≤ s such that
s0 ⊧ δ(q, a) and, for all d ∈ dom(s)
∣s0(d)∣ = 1 or s0(d) ⊆ Qalt .

We call the elements of Qalt the alternating states ofA and those of Qnd its non-

deterministic states.

(c) Suppose thatA is partially non-deterministic. Let Q = Qalt + Qnd be the
corresponding partition of its states, and let ρ be a run on the input tree t.
We say that ρ is economical if, for all v ∈ dom(ρ),

∣ρ(v)∣ = 1 or ρ(v) ⊆ Q × Qalt .

The non-deterministic part of an economical run ρ on t is the set

P ∶= { v ∈ dom(ρ) ∣ ρ(v) ∈ ℘(Qnd × Qnd) } .

The complement of P is the alternating part of ρ.
Given a class P of prefixes as in Definition 6.1, we say thatA is partially non-

deterministic of shapeP if, for every t ∈ ⟦A⟧, there exists an accpeting economical
run ρ whose non-deterministic part belongs to P . ⌟

Lemma 6.5. LetA be a partially non-deterministic automaton. For every t ∈ ⟦A⟧,
there exists an accpeting run ρ ofA on t that is economical.

Proof. Let ρ be a minimal (with respect to ⊆) accepting run ofA on t. We claim
that ρ is economical. For a contradiction, suppose otherwise. Fix a vertex v ∈
dom(t) such that

∣ρ(v)∣ > 1 and ρ(v) ∩ (Q × Qnd) ≠ ∅ .
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Choose v such that ∣v∣ is minimal, let u be the predecessor of v, and fix a pair
⟨p, q⟩ ∈ ρ(v) with q ∈ Qnd.
We distinguish two cases. If p ∈ Qalt, the transition formula δ(p, t(u)) does

not mention the state q ∈ Qnd. Hence, we can remove the pair ⟨p, q⟩ from ρ(v)
and still obtain a valid run. A contradiction to the minimality of ρ.

Hence, we have p ∈ Qnd. SinceA is partiall non-deterministic, it follows that
there exists some s ≃sh suc(u) with
◆ s ⊧ δ(p, t(u)),
◆ ∣s(d)∣ = 1 or s(d) ⊆ Qalt,
◆ q′ ∈ s(d)⇒ ⟨p, q′⟩ ∈ ρ(suc(u)(d)).

Let d be the direction such that v = suc(u)(d). If s(d) = {q′}, we could re-
move everything from ρ(v) except for the pair ⟨p, q′⟩. If s(d) ⊆ Qalt, we could
remove the pair ⟨p, q⟩ from ρ(v). In both cases we obtain a contradiction to the
minimality of ρ.

By definition, every partially non-deterministic L-automaton is an alternat-
ing L-automaton. Conversely, we can translate every alternating L-automaton
into a partially non-deterministic one. To do so, we make use of the following
consequence of the theorem of McNaughton-Pappert [10].

Proposition 6.6. For every finite ω-semigroup S = ⟨S , Sω⟩ and every element

a ∈ Sω , there exists a deterministic ω-automatonA such that

⟦A⟧ = {w ∈ Sω ∣ π(w) = a } .

Proposition 6.7. Let T ∈ {general, pure,weak} be a type of automaton, let L be a

family of logics without(!) polarities for S ○ ℘ that is closed under conjunctions, dis-

junctions, label restrictions, and boolean label substitutions, and let L′ ∈ {L, Lc , Ld}.
Suppose that L and L′ satisfy one of the following conditions.

◆ L′ = L and L is closed under projections.

◆ L′ = Lc and L is closed under finite projections.

◆ L′ = Ld and L is closed under singleton projections.

For every alternating L′-automatonA of type T , there exists an L′-automaton B
of type T such that ⟦B⟧ = ⟦A⟧ and B is partially non-deterministic whose shape is

given by the following table.
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type general pure weak

L all trees all trees well-founded trees

Lc finitely-branching trees finitely-branching trees finite trees

Ld chains chains finite chains

Proof. We startwith the caseswhereT = general or T = pure, and thenwe explain
how to modify this proof for weak automata. LetA = ⟨Q , Σ, δ, q0 ,Ω⟩ be an altern-
ating L′-automaton, possibly pure. We construct a partially non-deterministic
automaton B whose alternating part is justA, while the non-deterministic part
guesses a run ρ of A and verifies that it is accepting. To do so, B has to check
that every trace of ρ satisfies the parity condition. Unfortunately, this condition
is not a parity condition itself. Hence, we first have to construct a deterministic
ω-automaton C that reads a branch of ρ and checks all the traces along that branch.
Then we simply have to run C along all the branches of ρ and use the states of C
for our parity condition.

The automaton C is based on the ω-semigroup S = ⟨S , Sω⟩ with domains

S ∶= ℘(Q × Q) and Sω ∶= ℘(Q) ,

where the product is defined as follows. For A, B,A0 ,A1 , . . . ∈ S and U ∈ Sω , we
set

A ⋅ B ∶= { ⟨p, r⟩ ∣ ⟨p, q⟩ ∈ A and ⟨q, r⟩ ∈ B } ,

A ⋅U ∶= { p ∣ ⟨p, q⟩ ∈ A and q ∈ U } ,

∏
i<ω

A i ∶= { p0 ∈ Q ∣ there are p0 , p1 , ⋅ ⋅ ⋅ ∈ Q with ⟨p i , p i+1⟩ ∈ A i , for all i ,

such that lim inf i Ω(p i) is even} .

By Proposition 6.6 there exists a deterministic ω-automaton C = ⟨W , S , η,w0 , Φ⟩
recognising the language

⟦C⟧ = { (A i)i ∈ Sω ∣ q0 ∈∏i A i } .

We construct a partially non-deterministic automaton B ∶= ⟨Q′ , Σ, δ′ , q′0 ,Ω′⟩
as follows. For the alternating part, we use the original states ofA, while the non-
deterministic part uses states inW×S. For technical reasons,when switching from
non-deterministic to alternating mode, the automaton goes through a state in
Q×Q (the first component contains the previous state and the second component
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the current one). Hence, we set

Q′alt ∶= Q + Q × Q and Q′nd ∶=W × S .

Initial state and priority function are given by

q′0 ∶= ⟨w0 , {⟨q0 , q0⟩}⟩ ,

Ω′(p) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Ω(p) if p ∈ Q ,
Ω(q′) if p = ⟨p′ , q′⟩ ∈ Q × Q ,
Φ(w) if p = ⟨w ,A⟩ ∈W × S ,

Finally, the transition function is defined as follows. For the alternating part, we
set

δ′(p, a) ∶= δ(p, a) , for p ∈ Q ,
δ′(⟨p, q⟩, a) ∶= δ(q, a) , for ⟨p, q⟩ ∈ Q × Q .

To define the transition function for the non-deterministic part, we have to
deal with the problem that a (non-economical) run might assign several non-
deterministic states to the same vertex. What we do in this case is to guess one of
these states and ignore the others. Hence, given a labelling s ∈ S℘(Q′), we use an
inverse projection to guess a labelling s′ ∈ S∆ where

∆ ∶= { ⟨P, P†⟩ ∈ ℘(Q′) × ℘(Q′nd) ∣ P
† ⊆ P, ∣P†∣ ≤ 1} ,

and then we ignore all non-deterministic states that do not belong to P0. To
distinguish given states in p ∈ P∩Q′nd from the guessed ones in P†,we denote the
latter states by p†. Hence, the formula p† checks whether p ∈ P† while p checks
whether p ∈ P. This leads to the transition formula

δ′(⟨w ,A⟩, a) ∶= ∃P℘(Q′),∅[χ∆ ∧ ⋀
⟨p′ ,p⟩∈A

δ̂p]

where χ∆ ∈ L[℘(Q′)×℘(Q′nd)] is a formula stating that all labels belong ∆ (which
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exists since L is closed under label restrictions), and

P ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

all sets if L′ = L ,
finite sets if L′ = Lc ,
singletons if L′ = Ld ,

δ̂p ∶= δ(p, a)[q ↦ (ϑ ∧ ⟨p, q⟩†) ∨ ⋁
B∋⟨p,q⟩

⟨η(w ,A), B⟩†]
q∈Q

,

ϑ ∶= ⋀
q∈Q′

nd

¬q† .

(δ(p, a)[q ↦ ϑq]q∈Q is the formula from Lemma 6.3.)
The automatonB is awell-formed L′-automaton since every non-deterministic

state occurs positively in the formula δ′(⟨w ,A⟩, a) and

δ′(⟨w ,A⟩, a) ∈ L′[Q′ , Q′nd ,∅] .

(We can remove all non-deterministic states that are different from the guessed
ones. And there are only finitely many guessed states if L′ = Lc, and only a single
one if L′ = Ld.) Furthermore it follows that, ifA is pure, then so is B.

Let us check that B is partially non-deterministic with the desired shape and
with alternating states Q′alt = Q+Q×Q and non-deterministic states Q′nd =W×S.
To check that B is partially non-deterministic, suppose that

s ⊧ δ′(q, a) , for q ∈ Q′nd and a ∈ Σ .

By definition of the transition formula for non-deterministic states, it follows that
there is some s0 ≤ s such that

s0 ⊧ δ′(q, a) and, for all d ∈ dom(s), ∣s0(d)∣ = 1 or s0(d) ⊆ Q′alt .

The fact that the shape of B is either the class of all trees, of all finitely-branching
ones, or of all chains, follows by choice of P in the transition formula above.

It remains to prove that ⟦B⟧ = ⟦A⟧. First, note that we have

s ⊧ δ′(⟨w ,A⟩, a)

if, and only if, there exists some s0 ≤ s such that
◆ ∣s0(d)∣ = 1 or s0(d) ⊆ Q × Q , for all d ∈ dom(s) ,
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◆ { d ∈ dom(s) ∣ s0(d) ∈ Qnd } ∈ P

◆ Sτp(s0) ⊧ δ(p, a) , for all ⟨p′ , p⟩ ∈ A , where

τp(P) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

fp[P] if P ⊆ Q × Q ,

{ q ∈ Q ∣ ⟨w′ , B⟩ ∈ P, w′ = η(w ,A) and ⟨p, q⟩ ∈ B }

if P ⊆W × S .

and fp(B) ∶= { q ∈ Q ∣ ⟨p, q⟩ ∈ B }.
It follows that s is a model of δ′(⟨w ,A⟩, a) if, and only if, there is some s′ ∈
S[℘(Q × Q)] such that

s′(d) ⊆ s(d) ∩ Qalt or ⟨η(w ,A), s′(d)⟩ ∈ s(d) ,

and

S fp(s
′) ⊧ δ(p, a) , for all ⟨p′ , p⟩ ∈ A ,

where fp ∶ Q × Q → Q is defined as above.
(⊆) Let ρ′ ∶ dom(t) → ℘(Q′ × Q′) be an accepting economical run of B on

some tree t. We define a function ρ ∶ dom(t)→ ℘(Q × Q) by

ρ(v) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ′(v) if ρ′(v) ⊆ Q × Q ,
{ ⟨p′ , q⟩ ∣ ⟨⟨p, p′⟩, q⟩ ∈ ρ′(v) } if ρ′(v) ⊆ (Q × Q) × Q ,

B if ρ′(v) = {⟨w ,A⟩} × B for some B ⊆ Q × Q ,
B if ρ′(v) = {⟨w ,A, u, B⟩} ⊆ (W × S) × (W × S) ,

By the above remark, it follows that ρ is an accepting run ofA on t.
(⊇) Let ρ ∶ dom(t) → ℘(Q × Q) be an accepting run of A on some tree t.

W.l.o.g. we may assume that, for every vertex v ∈ dom(t) with predecessor u and
every pair ⟨q, q′⟩ ∈ ρ(v), there is some ⟨p, p′⟩ ∈ ρ(u)with p′ = q. (Otherwise,we
can remove from ρ(v) all pairs ⟨q, q′⟩ not satisfying this condition.) Given a prefix-
closed subset P ⊆ dom(t), we will construct a run ρ′ ∶ dom(t) → ℘(Q′ × Q′)
whose non-deterministic part is P. Let σ ∶ dom(t)→W be the function with

σ(v) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

w0 if v = ⟨⟩ is the root,
η(σ(u), ρ(u)) if v has a predecessor u .

36



We define ρ′ ∶ dom(t) → ℘(Q′ × Q′) as follows. For a vertex v ∈ dom(t) with
predecessor u, we set

ρ′(v) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

{⟨σ(u), ρ(u), σ(v), ρ(v)⟩} if v ∈ P ,
{⟨σ(u), ρ(u)⟩} × ρ(v) if v ∉ P but u ∈ P ,
ρ(v) if u ∉ P .

By the above remark, it follows that ρ′ is an accpeting economical run of B on t

whose non-deterministic part is equal to P.
It remains to consider the weak cases. Let B′ be the automaton obtained from

the automaton B constructed above by increasing the priorities of all states in Q′at
by 2 and setting the priorities of all states in Q′nd to 1. Since no accpeting run
of B′ has an infinite branch with non-deterministic states only, it follows that the
shape of B′ consists of all well-founded trees in the shape of B. Furthermore, the
automaton B′ is weak since, as we remarked above,

δ′(⟨w ,A⟩, a) ∈ L′[Q′ , Q′nd ,∅] .

Theorem 6.8. Let T ∈ {general, pure,weak} be a type of automaton, let L be a

family of logics without(!) polarities for S ○ ℘ that is closed under conjunctions, dis-

junctions, label restrictions, and boolean label substitutions, and let L′ ∈ {L, Lc , Ld}.
Suppose that L and L′ satisfy one of the following conditions.

◆ L′ = L and L is closed under projections.

◆ L′ = Lc and L is closed under finite projections.

◆ L′ = Ld and L is closed under singleton projections.

The class of languages recognised by L′-automata of type T is closed under P-

projections where P is the class of trees from the following table.

type general pure weak

L all trees all trees well-founded trees

Lc finitely-branching trees finitely-branching trees finite trees

Ld chains chains finite chains

Proof. Let K ⊆ TS[Σ × Γ] be a language of the form K = ⟦A⟧ for some L′-
automatonA of type T and fix a distinguished element γ0 ∈ Γ. By Proposition 6.7,
there exists a partially non-deterministic L′-automaton B = ⟨Q , Σ × Γ , δ, q0 ,Ω⟩
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such that ⟦B⟧ = K and the shape of B is equal to P . Let C be the automaton
obtained from B by changing the transition relation to

δ′(q, a) ∶=
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

δ(q, ⟨a, γ0⟩) if q ∈ Qalt ,
⋁
γ∈Γ

δ(q, ⟨a, γ⟩) if q ∈ Qnd , for q ∈ Q and a ∈ Σ .

We claim that ⟦C⟧ = prPΣ ,γ0
[K].

(⊇) Let t = prPΓ ,γ0
(s), for some s ∈ K. By assumption, there exists an accepting

economical run ρ of B on s such that the set

P ∶= { v ∈ dom(s) ∣ s(v) ∉ Σ × {γ0}}

is included in the non-deterministic part of ρ. Then ρ is also an accepting run
of C on t.
(⊆) Let ρ be an accepting economical run of C on t and let P be its non-

deterministic part. Since the shape of C is equal to the shape of B, we have P ∈ P .
By definition of δ′ we can choose, for every v ∈ P, some element cv ∈ Γ such that

sv ,p ⊧ δ(p, ⟨t(v), cv⟩) , for all v ∈ P with ρ(v) = {⟨q, p⟩} ,

where sv ,p ∈ S℘(Q) is the successor structure obtained from ρ as in Definition 5.1.
We define a tree s ∈ TS(Σ × Γ) by

s(v) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

⟨t(v), γ0⟩ if v ∉ P ,
⟨t(v), cv⟩ if v ∈ P .

Then t = prΣ ,γ0
(s) and ρ is an accepting run of B on s. Hence, s ∈ K and t ∈

prΣ ,γ0
[K].

7 Monadic Second-Order Logic
In this section, we use the machinery we have set up to derive characterisations
of certain variants of monadic second-order logic. Let us start by introducing the
logics we will work with.

Definition 7.1. Let Q be an alphabet and Σ a signature.
(a) The logic E∞[Q] has formulae that are boolean combination of statements

of the form Ek φ where k < ω or k = ∞, and φ is a boolean combination of
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elements of Q. Such a formula holds in a structure s ∈ S℘(Q) if, and only if, there
are at least k elements v ∈ dom(s) such that s(v) satisfies φ.

(b) We denote by Eω[Q] the fragment of E∞[Q] that only uses the quantifier
Ek with k < ω. Similarly, E1[Q] is the fragment of E∞[Q] that only uses the
quantifier Ek with k = 1. Finally, we denote by C[Q] the extension of E∞[Q] by
statements of the form Ck ,mφ stating that the number of elements satisfying φ is
finite and congruent k modulo m.

(c) For a relational signature Σ, we denote by SΣ the functor mapping a set Q

to the class of all structures of signature Σ + { Pq ∣ q ∈ Q } where the (unary)
predicates Pq form a partition of the universe.

Let A be a structure over a signature of the form Σ + {E} + { Pq ∣ q ∈ Q }
(where E is binary) such that the predicates Pq form a partition of the universe A.
We identify A with with the Q-labelled SΣ-enriched transition system ⟨A, suc, λ⟩
where

λ(a) ∶= q : iff a ∈ Pq , for a ∈ A and q ∈ Q ,

and suc(a) is the (Σ + { Pq ∣ q ∈ Q })-reduct of the substructure of A induced by
the set

{ b ∈ A ∣ ⟨a, b⟩ ∈ E } .

(d) Let P be a property of sets. We denote by MSOP[Σ; Q] the version of
monadic second-order logic where quantification is restricted to sets included
in some set satisfying P , and where the models are structures with the signature
Σ + {E} + { Pq ∣ q ∈ Q }. For particular choices of P we obtain the following
variants.

logic name P

MSO monadic second-order logic all sets
WMSO weak monadic second-order logic finite sets
CL chain logic chains
WCL weak chain logic finite chains

MSOwf — well-founded trees
MSOfb — finitely-branching trees

(e) Guarded second-order logic GSO is a variant of full second-order logicwhere
all second-order quantifiers are restricted to range over guarded relations only.
A relation R is called guarded if every tuple ā ∈ R is included (as a set) in some
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tuple c̄ from a relation of the given structure. (We consider equality as a binary
relation in this context, which implies that every unary relation is guarded.)

(f) Finally, the counting variants of MSO and GSO are the extensions of the
respective logic by predicates of the form

∣X∣ <∞ ∧ ∣X∣ ≡ k (mod m) , for k < m < ω .

We denote these two logics by CMSO and CGSO. ⌟

We use a variant of MSOP[Σ; Q]without first-order variables where the atomic
formulae are of the form

X ⊆ Y and RZ0 . . . Zk−1 ,

for relation symbols R ∈ Σ+{ Pq ∣ q ∈ Q } andmonadic variables X ,Y , Z0 , . . . , Zk−1.
A formula of the form RZ̄ holds if there are elements v i ∈ Z i such that the tuple v̄
belongs to the relation R. It is straightforward to inductively translate every MSO-
formula into one of this special form (see, e.g., [14, 1]).

Wewill prove below that everyMSOP -formula is equivalent to a formula from a
suitable fixed-point logic. For the inductive proof,wewill have to dealwith MSOP -
formulae φ(X̄) with free monadic variables X̄. In order to make the values of
these variables accessible to the fixed-point formula we annotate each vertex v of
the given treewith the set of variables it belongs to. Thus, given a tree t ∈ TSQ and
values P0 , . . . , Pn−1 ⊆ dom(t) for X̄,we construct the tree tP̄ ∈ TS(℘(Q)×℘(X̄))
with dom(tP̄) = dom(t) and labelling

tP̄(v) ∶= ⟨t(v),Uv⟩ where Uv ∶= {X i ∣ v ∈ Pi } .

The base case of the induction is given by the following lemma.

Lemma 7.2. For every atomicMSO[Σ; Q]-formula φ(X̄), there exists an µafFO[Q×℘(X̄)]-
formula ψ such that

t ⊧ φ(P̄) iff t∣P̄ ⊧ ψ , for all t and P̄ .

Proof. For the labelling of the tree we use the predicates Pq and PX , for q ∈ Q and
monadic variables X. Furthermore, we use the predicates P′ϑ , for ϑ ∈ µafFO, to
check inside of a modal operator ◯ whether the corresponding successor satisfies
the µafFO-formula ϑ.
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If φ = (X ⊆ Y), we use the formula

ψ ∶= νx .[(PX → PY) ∧ ◯[∀d .P′xd]] .

If φ = PqX, for q ∈ Q, we define

ψ ∶= µx .[◯[∃d .P′xd] ∨ (PX ∧ Pq)] .

If φ = (X ⪯ Y) where ⪯ is the tree order on the vertices, we set

ψ ∶= µx .[◯[∃d .P′xd] ∨ [PX ∧ µy.(◯[∃d .P′yd] ∨ PY)]] .

Finally, if φ = RZ̄ where R is one of the relations from the successor structures,
we define

ψ ∶= µx .[◯[∃z.P′xz] ∨ ◯[∃d̄ .(Rd̄ ∧⋀i P′PZ i
d i)]] .

Lemma 7.3. LetA = ⟨Q , Σ, δ, q0 ,Ω⟩ be an automaton.

(a) IfA is a weak MSO-automaton, the language ⟦A⟧ is MSOwf -definable.

(b) IfA is a pureWMSOc-automaton, the language ⟦A⟧ is MSOfb-definable.

(c) IfA is a weak WMSOc-automaton, the language ⟦A⟧ is WMSO-definable.

(d) IfA is a pure FOd-automaton, the language ⟦A⟧ is CL-definable.

(e) IfA is a weak FOd-automaton, the language ⟦A⟧ is WCL-definable.

Proof. For each state q of A, we will construct a formula φq of the respective
logic stating that the given tree has an accepting run which starts in the state q.
We proceed by induction on the number of states reachable from q. Let C be
the connected component of A containing q and let D be the set of all states
reachable from q that do not belong to C. We distinguish two cases.

First suppose that δ(q, a) ∈ L[C ,∅],where L is the transition logic in question.
We claim that, if there exists an accepting run ρ with initial state q,we can choose ρ

such that the set

P ∶= { v ∣ ρ(v) ∩ C × C ≠ ∅}

forms (a) a well-founded tree, (b) a finitely branching tree, (c) a finite tree, (d) a
chain, or (e) a finite chain, respectively. Then we obtain the desired formula φq of
the respective logic by stating that
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◆ there exists a set P and a family (Zp′ ,p)p,p′∈C of sets (of the kind allowed by
our logic) encoding the restriction of ρ to P,

◆ the root satisfies Zq ,q ,
◆ for every infinite branch β that is contained entirely in P, every trace along β

satisfies the parity condition,
◆ the formula

(∀v ∈ P) ⋀
p,p′∈C

[Zp′ ,pv → δ̂p(v)]

holds where δ̂p(v) is the formula obtained from δ(p, t(v)) by (i) relativising
the formula to the set of successors of v ; (ii) replacing all states r ∈ C by the
formula Zp,r ; and (iii) replacing all states r ∈ D by the formula φr (which
exists by inductive hypothesis).

It therefore remains to prove the above claim. Fix an accepting run ρ ofA on
the given input tree. We construct an accepting run ρ0 that has the above property.
We choose ρ0(v) ⊆ ρ(v) by induction on the distance of v from the root.

We call an entry ⟨p′ , p⟩ ∈ ρ(v) unreachable if either v is the root and p ≠ q,
or if v has a predecessor u and there is no ⟨r′ , r⟩ ∈ ρ(u) with r = p′. Clearly,
(recursively) removing all unreachable entries from an accepting run results again
in an accepting run. Furthermore note that, if ρ is a run without unreachable
entries, the corresponding set P is prefix-closed.

(a) If A is weak, δ(q, a) ∈ L[C ,∅] implies that Ω(q) is odd. Let ρ0 be the
run obtained from ρ by recursively removing all unreachable entries. Then the
associated set P does not contain any infinite branches. Hence, it forms a well-
formed tree.

(b) Suppose thatA is a pure MSOc-automaton. For every vertex v and every
entry ⟨p′ , p⟩ ∈ ρ(v), it follows that there exists a finite set Uv ,p of successors such
that the truth value of the transition formula δ(p, t(v)) does not change when
we remove all entries of the form ⟨p, r⟩ from ρ(w), for successors w of v that do
not belong to Uv ,p . Let ρ0 be the resulting run and P the corresponding set. It
follows that every vertex v ∈ P has only finitely many successors in P (those in
⋃p∈C Uv ,p). Hence, P forms a finitely-branching tree.

(c) Combining the arguments in (a) and (b), we obtain a finite set P.
(d) Given an accpeting run ρ, we will construct an accpeting run ρ0 and a path

(v i)i such that each set ρ0(v i) contains a single entry from C × C while ρ0(u) is
disjoint from C × C, for all vertices u that do not lie on the path.
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We startwith the root v0 and ρ0(v0) ∶= {⟨q, q⟩}. For the inductive step, suppose
that we have already defined v i and ρ0(v i). Let ⟨p′ , p⟩ ∈ ρ0(v i) be the unique
entry fromC×C. Since the transition formula δ(p, t(v i)) belongs to MSOd[C ,∅],
we can find some successor u of v i and some state r ∈ C such that the truth value
of δ(p, t(v i)) does not change when we remove all the states from C from every
successer, except for the state r at u. If ⟨p, r⟩ ∈ ρ(u), we set

v i+1 ∶= u and ρ0(v i+1) ∶= (ρ(v i+1) ∖ (C × C)) ∪ {⟨p, r⟩} .

Otherwise, we stop the construction of the path at the vertex v i . Finally, we set

ρ0(u) ∶= ρ(u) ∖ (C × C) , for all vertices u not on the path.

The run obtained from ρ0 by removing all unreachable entries has the desired
properties.

(e) Combining the arguments in (a) and (d), we obtain a finite chain P.
It remains to consider the case where δ(q, a) ∈ L[∅,C]. LetAop be the auto-

maton for the complement. Recall that Aop has the same states as A, but their
priorities are increased by 1, and the transition formulae are the duals of the
formulae fromA. Furthermore, a tree is accepted byAop with initial state q if,
and only if, the tree is rejected by A with initial state q. In particular, C is still
a component of Aop and we have δop(q, a) ∈ L[C ,∅] for q ∈ C. Consequently,
we can use the above case to find a formula φq that defines the set of all trees
that are rejected byA when starting in state q. The negation ¬φq is the desired
formula.

The first characterisation is basically due to Walukiewicz [16].

Theorem 7.4 (Walukiewicz [16]). For a languageK ⊆ TSΣ, the following statements

are equivalent.

(1) K is MSO-definable.

(2) K is µpMSO-definable.

(3) K is recognised by a pure MSO-automaton.

For ordinary trees, the following statements are equivalent to those above.

(4) K is µpEω-definable.

(5) K is recognised by a pure Eω-automaton.

Furthermore, all translations between the above formalisms are effective.
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Proof. (3)⇔ (2) follows by Theorem 5.3.
(2)⇒ (1) It is straightforward to inductively translate every µMSO-formula

into MSO.
(3)⇒ (5) One can use a standard back-and-forth argument [5, 1] to prove that,

over structures with an empty signature, every MSO-formula is equivalent to an
Eω-formula.

(5)⇒ (3) is trivial and (4)⇔ (5) follows by Theorem 5.3.
(1)⇒ (3) By induction on a given MSO-formula φ, we construct an equivalent

automaton A. If φ is atomic, the existence of A follows by Lemma 7.2 and the
already established implication (2)⇒ (3). If φ is a boolean combination of MSO-
formulae, the claim follows by inductive hypothesis, the equivalence (2)⇔ (3),
and the fact that the logic µpMSO is closed under boolean combinations. Finally,
if φ = ∃Xψ, the claim follows by inductive hypothesis and Theorem 6.8.

We obtain analogous results for CMSO, GSO, and CGSO. The proofs are the
same as that of Theorem 7.4, except that for counting logics, we also have to
construct automata for predicates of the form

∣X∣ <∞ ∧ ∣X∣ ≡ k (mod m) .

in the implication (1)⇒ (3).

Theorem 7.5. For a language K ⊆ TSΣ, the following statements are equivalent.

(1) K is CMSO-definable.

(2) K is µpCMSO-definable.

(3) K is recognised by a pure CMSO-automaton.

For ordinary trees, the following statements are equivalent to those above.

(4) K is µpC-definable.

(5) K is recognised by a pure C-automaton.

Furthermore, all translations between the above formalisms are effective.

Theorem 7.6. For a language K ⊆ TSΣ, the following statements are equivalent.

(1) K is GSO-definable.

(2) K is µpGSO-definable.

(3) K is recognised by a pure GSO-automaton.

For ordinary trees, the following statements are equivalent to those above.
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(4) K is µpEω-definable.

(5) K is recognised by a pure Eω-automaton.

(6) K is MSO-definable.

Furthermore, all translations between the above formalisms are effective.

Theorem 7.7. For a language K ⊆ TSΣ, the following statements are equivalent.

(1) K is CGSO-definable.

(2) K is µpCGSO-definable.

(3) K is recognised by a pure CGSO-automaton.

For ordinary trees, the following statements are equivalent to those above.

(4) K is µpC-definable.

(5) K is recognised by a pure C-automaton.

(6) K is CMSO-definable.

Furthermore, all translations between the above formalisms are effective.

For the special case of ordinary trees, the next two theorems are due to [4].

Theorem 7.8. For a language K ⊆ TSΣ, the following statements are equivalent.

(1) K is WMSO-definable.

(2) K is µafWMSOc-definable.

(3) K is recognised by a weak WMSOc-automaton.

For ordinary trees, the following statements are equivalent to those above.

(4) K is µaf(E∞)c-definable.

(5) K is recognised by a weak (E∞)c-automaton.

Furthermore, all translations between the above formalisms are effective.

Proof. The proof is analogous to that of Theorem 7.4, except for the implica-
tion (2) ⇒ (1). Instead, we prove the implication (3) ⇒ (1), which follows by
Lemma 7.3 (c).

Theorem 7.9. For a language K ⊆ TSΣ, the following statements are equivalent.

(1) K is WCL-definable.

(2) K is µafFOd-definable.

(3) K is recognised by a weak FOd-automaton.
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For ordinary trees, the following statements are equivalent to those above.

(4) K is µaf(Eω)d-definable.

(5) K is recognised by a weak (Eω)d-automaton.

Furthermore, all translations between the above formalisms are effective.

Proof. Again the proof is analogous to that of Theorem 7.4, except for the implica-
tion (2)⇒ (1). Insteadwe can prove the implication (3)⇒ (1) using Lemma 7.3 (e).

The following results seem to be new.

Theorem 7.10. For a language K ⊆ TSΣ, the following statements are equivalent.

(1) K is CL-definable.

(2) K is µpFOd-definable.

(3) K is recognised by a pure FOd-automaton.

For ordinary trees, the following statements are equivalent to those above.

(4) K is µp(Eω)d-definable.

(5) K is recognised by a pure (Eω)d-automaton.

Furthermore, all translations between the above formalisms are effective.

Proof. Again, we replace the implication (2)⇒ (1) by (3)⇒ (1), which follows by
Lemma 7.3 (d).

Theorem 7.11. For a language K ⊆ TSΣ, the following statements are equivalent.

(1) K is MSOfb-definable.

(2) K is µpWMSOc-definable.

(3) K is recognised by a pureWMSOc-automaton.

For ordinary trees, the following statements are equivalent to those above.

(4) K is µp(E∞)c-definable.

(5) K is recognised by a pure (E∞)c-automaton.

Furthermore, all translations between the above formalisms are effective.

Proof. Again the proof is similar to the ones above. For (3)⇒ (1), we can use
Lemma 7.3 (b).

Theorem 7.12. For a language K ⊆ TSΣ, the following statements are equivalent.
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(1) K is MSOwf -definable.

(2) K is µafMSO-definable.

(3) K is recognised by a weak MSO-automaton.

For ordinary trees, the following statements are equivalent to those above.

(4) K is µafEω-definable.

(5) K is recognised by a weak Eω-automaton.

Furthermore, all translations between the above formalisms are effective.

Proof. Again the proof is similar to the ones above. For (3)⇒ (1), we can use
Lemma 7.3 (1).

Open Question. Is there an automaton characterisation of MSOP where P is the

set of thin trees?

8 The Muchnik Iteration
As an application of the machinery developed in this article we consider the
so-called Muchnik iteration which, given some Σ-structure A, creates an infinite
tree of copies of A. It can be seen as a generalisation of the unravelling operation
to arbitrary Σ-structures.

Definition 8.1. Let A = ⟨A, R̄⟩ be a Σ-structure.
(a) TheMuchnik iteration ofA is the (Σ+{E , cl})-structureA∗ = ⟨A∗ , E , cl, R̄∗⟩

whose universe consists of all finite sequence over A and

R∗i ∶= { ⟨wa0 , . . . ,wan−1⟩ ∣ w ∈ A
∗ , ā ∈ R } ,

E ∶= { ⟨w ,wa⟩ ∣ w ∈ A∗ , a ∈ A} ,
cl ∶= {waa ∣ w ∈ A∗ , a ∈ A} .

We call cl the clone predicate.

(b) We regard A∗ as an S-enriched transition system for the functor SX ∶= XA

by choosing for suc(w) (with w ∈ A∗) the substructure of A∗ induced by the set

{wa ∣ a ∈ A} . ⌟

The following theorem, originally due to Muchnik, is one of the strongest
decidability results for MSO known. The theorem was announced in [13], but
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the original proof has never been published. Walukiewicz [16] introduced MSO-
automata to give a new independent proof of this theorem. Here we present a
new, much simplified proof that also applies to several other logics.

Theorem 8.2 (Muchnik, Walukiewicz [16]). Given an MSO-formula φ, we can

compute an MSO-formula φ∗ such that

A∗ ⊧ φ iff A ⊧ φ∗ , for all structures A .

The proof of this theorem is split into two lemmas. Let us start with a bit of
terminology.

Definition 8.3. (a) A system of logics is a functor L mapping each finite relational
signature Σ to a logic L[Σ] whose class of models is the class of all Σ-structures.

(b) Given such a system L and a signature Σ, we construct a family of logics LΣ
by

LΣ[Q] ∶= L[Σ + { Pq ∣ q ∈ Q }] , for every setQ ,

where the Pq are unary predicates. ⌟

Remark. (a) I apologise for any confusion caused by defining both families of
logics and systems of logics, but I was simply not able to come up with better
terminology.

(b)Clearly, all of the classical logics like first-order logic,monadic second-order
logic, etc. are systems of logics. ⌟

Next, let us extend the logic µL by a mechanism for loop-detection.

Definition 8.4. Let L be a family of logics with polarities over S ○ ℘.
(a) We denote by µ⟲L the following variant of µL. Given a set Σ of labels and

two disjoint sets X ,Y of fixed-point variables, we define the syntax and semantics
of µ⟲L[Σ; X ,Y] using the same rules for as µL[Σ; X ,Y], except the one for
the modal operators, which is modified as follows. In the syntax, we allow an
additional label ∗ ∈ 1.
◆ Let Θ ⊆ µL[Σ; X ,Y] be a finite set of formulae and let Θ+ be the set of all

ϑ ∈ Θ containing a symbol from X and Θ− the set of all ϑ ∈ Θ containing a
symbol from Y . For every φ ∈ L[Θ + 1, Θ+ , Θ−], we have ◯φ ∈ µL[Σ; X ,Y].
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The label ∗ is used to mark loops, that is, if the vertex v is a successor of itself, we
label it by ∗. Formally, we set

⟦◯ψ⟧P̄ ∶= { v ∈ S ∣ S fv(suc(v)) ⊧ ψ }

where the function fv ∶ S → ℘(Θ)maps u ∈ S to

{ ϑ ∈ Θ ∣ u ∈ ⟦ϑ⟧P̄ } ∪

⎧⎪⎪
⎨
⎪⎪⎩

1 if u = v ,
∅ otherwise ,

(b) We denote by µ
⟲
p L and µ

⟲

af L the corresponding pure and alternation-free

fragments of µ⟲L. ⌟

Definition 8.5. Given a Σ-structure A, we denote by Â the (Σ + {E})-structure
⟨A + 1, E⟩ with edge relation E ∶= (A+ 1) × A. ⌟

Note that the unravelling of Â coincides with A∗, except that it does not have
the clone predicate.

The first step in the proof of Theorem 8.2 consists in proving a variant for the
logic µ⟲L.

Lemma 8.6. Let L be a system of logics with polarities over S ○ ℘. For every µL-

formula φ, there exists a µ⟲L-formula φ∗ such that

A∗ ⊧ φ iff Â ⊧ φ∗ , for every Σ-structure A .

Furthermore, if φ ∈ µpL or φ ∈ µaf L, we can choose ψ ∈ µ
⟲
p L and ψ ∈ µ

⟲

af L,

respectively.

Proof. Let φ(x̄) be a µL-formula, possibly with free fixed-point variables x̄. By
induction on φ, we construct an µ⟲L-formula φ∗(x̄) such that

A∗ ⊧ φ(ρ−1[P̄]) iff Â ⊧ φ∗(P̄) ,

for every Σ-structure A and all sets P̄ in Â, where ρ ∶ A∗ → Â = A + 1 is the
function mapping the empty word ⟨⟩ to the unique element ∗ ∈ 1 and every other
word to its last letter. The only two non-trivial steps in the induction is the case
of modal operators and fixed-points.
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First, suppose that φ = ◯ψ. Fix a finite set Θ of µL-formulae such that ψ ∈
LΣ+{cl}[Θ]. By inductive hypothesis, we can translate every ϑ ∈ Θ into an equi-
valent µ⟲L-formula ϑ∗. Let Θ∗ be the resulting set and let ψ∗ be the formula
obtained from ψ by replacing each ϑ by ϑ∗. Since

LΣ+{cl}[Θ] = L[Σ + {cl} + Θ] = LΣ[Θ + {cl}],

it follows that φ∗ ∶= ◯ψ∗ ∈ µ⟲L. Furthermore, the fact that

A∗ ⊧ φ(ρ−1[P̄]) iff Â ⊧ φ∗(P̄)

follows immediately from the inductive hypothesis.
It remains to consider a fixed-point formula µy.ψ(x̄ , y). Let ψ∗ be the µ⟲L-

formula obtained by inductive hypothesis. We set φ∗ ∶= µy.ψ∗. To see that φ∗ has
the desired properties, let (Q i)i be the fixed-point induction of ψ on the struc-
ture A∗. By induction on i, it then follows that Q i = ρ−1[Pi], where Pi is the i-th
stage of the fixed-point induction of ψ∗ on Â.

Finally,we have to translate µ⟲L back into the logics we are actually interested
in.

Lemma 8.7.
(a) Let L be MSO or GSO. For every µ⟲L-formula φ, there exists an L-formula ψ

such that

S ⊧ φ iff S ⊧ ψ , for every transition system S .

(b) For every µ
⟲

af WMSOc-formula φ, there exists aWMSO-formula ψ such that

S ⊧ φ iff S ⊧ ψ , for every transition system S .

Proof. (a) Given a µ⟲L-formula φ(x̄), possibly with free fixed-point variables x̄,
we inductively construct an L-formula ψ(z, X̄) such that

S, s ⊧ φ(P̄) iff S ⊧ ψ(s, P̄) ,

for all transition systems S and all sets P̄. Most steps of the induction are trivial.
For a fixed point µy.φ(x̄ , y) we can express in L that z ∈ Y , where Y is the least
set satisfying

∀y[y ∈ Y ↔ ψ(y, X̄ ,Y)] .
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For a modal operator ◯ϑ, we can use the relativisation of the formula ϑ to the
set U of all successors of z. The additional predicate used for loop-detection is
equal to U ∩ {z}, which is obviously definable.

(b) We proceed analogously to (a), the only exception being the translation
of fixed-point operators. Hence, suppose that φ = µx0⋯µxn−1ψ(x̄) where ψ ∈
WMSOc[x̄ , x̄ ,∅] is continuous in x̄. By induction on n we prove that, for every
transition system S, there exists a finite set U ⊆ S such that

S ⊧ µx0⋯µxn−1ψ iff S ⊧ µx0⋯µxn−1[U ∧ ψ] .

Then it follows that we can define the fixed-point in WMSO by stating that z ∈ Y ,
where Y ⊆ U is the least set satisfying

∀y[y ∈ Y ↔ y ∈ U ∧ ψ(y, X̄ ,Y)] .

First, suppose that n = 1. Let F ∶ ℘(S)→ ℘(S) be the function associated with
the formula ψ, let H i ∶= F i(∅) be the i-th stage of the fixed-point induction, and
let H∞ be the limit. Since ψ is continuous in x0, it follows that, for every i < ω

and every element u ∈ H i+1, there exists some finite set Wu ⊆ H i with u ∈ F(Wu).
Let us show that this implies that H∞ = Hω . For a contradiction, suppose

otherwise. Then there exists some element u ∈ Hω+1 ∖Hω . Let k be the maximal
number such that Wu contains some element of Hk+1 ∖Hk . SinceWu is finite, it
follows that k < ω. Hence, u ∈ F(Wu) ⊆ F(Hk) ⊆ Hω . A contradiction.

Setting

Uu ∶= {u} ∪ ⋃
w∈Wu

Uw ,

it now follows by induction on i that, for every u ∈ H i , there is some finite set
Uu ⊆ S with

S, u ⊧ µx0[Uu ∧ ψ] .

Hence, the set U ∶= Uv has the desired properties.
For the inductive step, suppose that n > 1. We can use the above case to find a

finite set W such that

S ⊧ µx0[W ∧ µx1⋯µxn−1ψ] .
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Furthermore, we can use the inductive hypothesis to find, for every w ∈W and
every finite P ⊆W , some finite set VP ,w with

S,w ⊧ µx1⋯µxn−1ψ(P, x1 , . . . , xn−1)

iff S,w ⊧ µx1⋯µxn−1[VP ,w ∧ ψ(P, x1 , . . . , xn−1)] .

Setting U ∶= ⋃P ,w VP ,w it follows that

S, u ⊧ µx1⋯µxn−1[U ∧ ψ(H i , x0 , . . . , xn−1)] , for all u ∈W ∩H i+1 .

Consequently, we have

S ⊧ µx0⋯µxn−1[U ∧ ψ] .

Combining these two lemmas we obtain the following theorem. The case
L = MSO is the origninal Theorem of Muchnik, the cases for CMSO, GSO, and
CGSO were proved in [3], and the case L =WMSO is new.

Theorem 8.8. Let L be one of MSO, CMSO, GSO, CGSO, or WMSO. Given an

L-formula φ, we can compute an L-formula φ∗ such that

A∗ ⊧ φ iff A ⊧ φ∗ , for all structures A .

Proof. We give the proof for L = MSO. The other cases are entirely analogous. We
can use Theorem 7.4 to translate a given MSO-formula φ into a µMSO-formula ψ.
Let ψ∗ be the µ⟲MSO-formula obtained from ψ via Lemma 8.6. We obtain the
desired MSO-formula φ∗ by applying Lemma 8.7 to ψ∗.
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