#include "lights.h"
-/* ADC numbering: PWM LEDs first, then ambient light sensor, battery sensor */
-static unsigned char adc_mux[] = { // pwmleds should be first
- // 0: pwmled 1: 1.1V, ADC0,1 (PA0,1), gain 20
- _BV(REFS1) | _BV(MUX3) | _BV(MUX1) | _BV(MUX0),
- // 1: pwmled 2: 1.1V, ADC2,1 (PA2,1), gain 20
- _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1),
- // 2: pwmled 3: 1.1V, ADC4 (PA5), single-ended
- _BV(REFS1) | _BV(MUX2),
- // 3: ambient light: 1.1V, ADC5 (PA6), single-ended
- _BV(REFS1) | _BV(MUX2) | _BV(MUX0),
- // 4: batt voltage: 1.1V, ADC6 (PA7), single-ended
- _BV(REFS1) | _BV(MUX2) | _BV(MUX1),
-};
-
#define AMBIENT_ADC N_PWMLEDS
#define BATTERY_ADC (N_PWMLEDS + 1)
-#define LAST_ADC (sizeof(adc_mux)/sizeof(adc_mux[0]))
+#define NUM_ADCS 5
volatile static unsigned char current_adc;
-static unsigned char adc_ignore;
+static uint16_t adc_sum;
+static unsigned char sum_shift;
+static unsigned char adc_vals;
-static void start_next_adc()
+static void inline setup_mux(unsigned char n)
{
- while (current_adc > 0) {
- --current_adc;
-
- // test if current_adc should be measured
- if (current_adc < N_PWMLEDS && pwmled_needs_adc(current_adc))
- goto found;
- if (current_adc == AMBIENT_ADC)
- goto found;
- // TODO battery sense, etc.
+ ADCSRA |= _BV(ADEN); // enable ADC
+
+ /* ADC numbering: PWM LEDs first, then ambient light sensor, battery sensor */
+ switch (n) {
+ case 0: // pwmled 1: 1.1V, ADC0,1 (PA0,1), gain 20
+ ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX1) | _BV(MUX0);
+ sum_shift = 3; // 8 measurements
+ break;
+ case 1: // pwmled 2: 1.1V, ADC2,1 (PA2,1), gain 20
+ ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
+ sum_shift = 3; // 8 measurements
+ break;
+ case 2: // pwmled 3: 1.1V, ADC4 (PA5), single-ended
+ ADMUX = _BV(REFS1) | _BV(MUX2);
+ sum_shift = 3; // 8 measurements
+ break;
+ case 3: // ambient light: 1.1V, ADC5 (PA6), single-ended
+ ADMUX = _BV(REFS1) | _BV(MUX2) | _BV(MUX0);
+ sum_shift = 0; // 1 measurement
+ break;
+ case 4: // batt voltage: 1.1V, ADC6 (PA7), single-ended
+ ADMUX = _BV(REFS1) | _BV(MUX2) | _BV(MUX1);
+ sum_shift = 0; // 1 measurement
+ break;
}
- // all ADCs have been handled
- current_adc = LAST_ADC;
- // TODO: kick the watchdog here.
- return;
-found:
- ADMUX = adc_mux[current_adc]; // set up mux, start one-shot conversion
- adc_ignore = 1; // ignore first reading after mux change
- ADCSRA |= _BV(ADSC);
+ adc_sum = 0;
+ adc_vals = 1 << sum_shift;
+}
+
+static void start_next_adc()
+{
+ if (current_adc > 0) {
+ current_adc--;
+ // set up mux, start one-shot conversion
+ setup_mux(current_adc);
+ ADCSRA |= _BV(ADSC);
+ } else {
+ current_adc = NUM_ADCS;
+ // TODO: kick the watchdog here.
+ }
}
void init_adc()
{
- current_adc = LAST_ADC;
- adc_ignore = 1;
+ current_adc = NUM_ADCS;
ADCSRA = _BV(ADEN) // enable
| _BV(ADPS1) | _BV(ADPS0) // CLK/8 = 125 kHz
while ((ADCSRA & _BV(ADIF)) == 0)
;
ADCSRA |= _BV(ADIF); // clear the IRQ flag
-
ADCSRA |= _BV(ADIE); // enable IRQ
+
+ ADCSRA &= ~_BV(ADEN); // disable until needed
}
void susp_adc()
ISR(ADC_vect) { // IRQ handler
uint16_t adcval = ADCW;
-#if 0
- log_byte(0xF3);
- log_byte(current_adc);
- log_word(adcval);
-#endif
-
- if (adc_ignore) {
+ if (adc_vals)
+ // start the next conversion immediately
ADCSRA |= _BV(ADSC);
- adc_ignore = 0;
+ else
+ ADCSRA &= ~_BV(ADEN); // the last one, disable ADC
+
+ if (adc_vals < (1 << sum_shift))
+ // drop the first conversion, use all others
+ adc_sum += adcval;
+
+ if (adc_vals) {
+ adc_vals--;
return;
}
+ // Now handle the (1 << sum_shift) measurements
+
+ adcval = adc_sum >> sum_shift;
+
if (current_adc < N_PWMLEDS)
pwmled_adc(current_adc, adcval);
if (current_adc == AMBIENT_ADC)
void timer_start_adcs()
{
- if (current_adc == LAST_ADC) // Don't start if in progress
+ if (current_adc == NUM_ADCS) // Don't start if in progress
start_next_adc();
}