
Why rank? More on cosine The complete search system Implementation of ranking

PV211: Introduction to Information Retrieval
https://www.fi.muni.cz/~sojka/PV211

IIR 7: Scores in a complete search system
Handout version

Petr Sojka, Hinrich Schütze et al.

Faculty of Informatics, Masaryk University, Brno
Center for Information and Language Processing, University of Munich

2020-03-18

Sojka, IIR Group: PV211: Scores in a complete search system 1 / 54

https://www.fi.muni.cz/~sojka/PV211


Why rank? More on cosine The complete search system Implementation of ranking

Overview

1 Why rank?

2 More on cosine

3 The complete search system

4 Implementation of ranking

Sojka, IIR Group: PV211: Scores in a complete search system 2 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Take-away today

The importance of ranking: User studies at Google

Length normalization: Pivot normalization

The complete search system

Implementation of ranking

Sojka, IIR Group: PV211: Scores in a complete search system 3 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Why is ranking so important?

Last lecture: Problems with unranked retrieval
Users want to look at a few results – not thousands.
It’s very hard to write queries that produce a few results.
Even for expert searchers
→ Ranking is important because it effectively reduces a large
set of results to a very small one.

Next: More data on “users only look at a few results”

Actually, in the vast majority of cases they only examine 1, 2,
or 3 results.

Sojka, IIR Group: PV211: Scores in a complete search system 5 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Empirical investigation of the effect of ranking

The following slides are from Dan Russell’s JCDL talk

Dan Russell was the “Über Tech Lead for Search Quality &
User Happiness” at Google.

How can we measure how important ranking is?

Observe what searchers do when they are searching in a
controlled setting

Videotape them
Ask them to “think aloud”
Interview them
Eye-track them
Time them
Record and count their clicks

Sojka, IIR Group: PV211: Scores in a complete search system 6 / 54















Why rank? More on cosine The complete search system Implementation of ranking

Importance of ranking: Summary

Viewing abstracts: Users are a lot more likely to read the
abstracts of the top-ranked pages (1, 2, 3, 4) than the
abstracts of the lower ranked pages (7, 8, 9, 10).

Clicking: Distribution is even more skewed for clicking

In 1 out of 2 cases, users click on the top-ranked page.

Even if the top-ranked page is not relevant, 30% of users will
click on it.

→ Getting the ranking right is very important.

→ Getting the top-ranked page right is most important.

Sojka, IIR Group: PV211: Scores in a complete search system 13 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Exercise

Ranking is also one of the high barriers to entry for
competitors to established players in the search engine market.

Why?

Sojka, IIR Group: PV211: Scores in a complete search system 14 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Why distance is a bad idea

0 1

0

1

rich

poor

q: [rich poor]

d1:Ranks of starving poets swell
d2:Rich poor gap grows

d3:Record baseball salaries in 2010

The Euclidean distance of ~q and ~d2 is large although the
distribution of terms in the query q and the distribution of terms in
the document d2 are very similar.

That’s why we do length normalization or, equivalently, use cosine
to compute query-document matching scores.

Sojka, IIR Group: PV211: Scores in a complete search system 16 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Exercise: A problem for cosine normalization

Query q: “anti-doping rules Beijing 2008 olympics”

Compare three documents
d1: a short document on anti-doping rules at 2008 Olympics
d2: a long document that consists of a copy of d1 and 5 other
news stories, all on topics different from Olympics/anti-doping
d3: a short document on anti-doping rules at the 2004 Athens
Olympics

What ranking do we expect in the vector space model?

What can we do about this?

Sojka, IIR Group: PV211: Scores in a complete search system 17 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Pivot normalization

Cosine normalization produces weights that are too large for
short documents and too small for long documents (on
average).

Adjust cosine normalization by linear adjustment: “turning”
the average normalization on the pivot

Effect: Similarities of short documents with query decrease;
similarities of long documents with query increase.

This removes the unfair advantage that short documents have.

Sojka, IIR Group: PV211: Scores in a complete search system 18 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Predicted and true probability of relevance

source:
Lillian Lee

Sojka, IIR Group: PV211: Scores in a complete search system 19 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Pivot normalization

source:
Lillian Lee

Sojka, IIR Group: PV211: Scores in a complete search system 20 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Pivoted normalization: Amit Singhal’s experiments

(relevant documents retrieved and (change in) average precision)

Sojka, IIR Group: PV211: Scores in a complete search system 21 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Complete search system

Sojka, IIR Group: PV211: Scores in a complete search system 23 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Tiered indexes

Basic idea:
Create several tiers of indexes, corresponding to importance of
indexing terms
During query processing, start with highest-tier index
If highest-tier index returns at least k (e.g., k = 100) results:
stop and return results to user
If we’ve only found < k hits: repeat for next index in tier
cascade

Example: two-tier system
Tier 1: Index of all titles
Tier 2: Index of the rest of documents
Pages containing the search words in the title are better hits
than pages containing the search words in the body of the text.

Sojka, IIR Group: PV211: Scores in a complete search system 24 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Tiered index

Tier 1

Tier 2

Tier 3

auto

best

car

insurance

auto

auto

best

car

car

insurance

insurance

best

Doc2

Doc1

Doc2

Doc1

Doc3

Doc3

Doc3

Doc1

Doc2

Sojka, IIR Group: PV211: Scores in a complete search system 25 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Tiered indexes

The use of tiered indexes is believed to be one of the reasons
that Google search quality was significantly higher initially
(2000/01) than that of competitors.

(along with PageRank, use of anchor text and proximity
constraints)

Sojka, IIR Group: PV211: Scores in a complete search system 26 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Complete search system

Sojka, IIR Group: PV211: Scores in a complete search system 27 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Components we have introduced thus far

Document preprocessing (linguistic and otherwise)

Positional indexes

Tiered indexes

Spelling correction

k-gram indexes for wildcard queries and spelling correction

Query processing

Document scoring

Sojka, IIR Group: PV211: Scores in a complete search system 28 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Components we haven’t covered yet

Document cache: we need this for generating snippets (=
dynamic summaries)

Zone indexes: They separate the indexes for different zones:
the body of the document, all highlighted text in the
document, anchor text, text in metadata fields,. . .

Machine-learned ranking functions

Proximity ranking (e.g., rank documents in which the query
terms occur in the same local window higher than documents
in which the query terms occur far from each other)

Query parser

Sojka, IIR Group: PV211: Scores in a complete search system 29 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Components we haven’t covered yet: Query parser

IR systems often guess what the user intended.

The two-term query London tower (without quotes) may be
interpreted as the phrase query “London tower”.

The query 100 Madison Avenue, New York may be interpreted
as a request for a map.

How do we “parse” the query and translate it into a formal
specification containing phrase operators, proximity operators,
indexes to search etc.?

Sojka, IIR Group: PV211: Scores in a complete search system 30 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Vector space retrieval: Interactions

How do we combine phrase retrieval with vector space
retrieval?

We do not want to compute document frequency / idf for
every possible phrase. Why?

How do we combine Boolean retrieval with vector space
retrieval?

For example: “+”-constraints and “−”-constraints

Postfiltering is simple, but can be very inefficient – no easy
answer.

How do we combine wild cards with vector space retrieval?

Again, no easy answer.

Sojka, IIR Group: PV211: Scores in a complete search system 31 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Exercise

Design criteria for tiered system
Each tier should be an order of magnitude smaller than the
next tier.
The top 100 hits for most queries should be in tier 1, the top
100 hits for most of the remaining queries in tier 2 etc.
We need a simple test for “can I stop at this tier or do I have
to go to the next one?”

There is no advantage to tiering if we have to hit most tiers

for most queries anyway.

Consider a two-tier system where the first tier indexes titles
and the second tier everything.

Question: Can you think of a better way of setting up a
multitier system? Which “zones” of a document should be
indexed in the different tiers (title, body of document,
others?)? What criterion do you want to use for including a
document in tier 1?

Sojka, IIR Group: PV211: Scores in a complete search system 32 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Now we also need term frequencies in the index

Brutus −→ 1,2 7,3 83,1 87,2 . . .

Caesar −→ 1,1 5,1 13,1 17,1 . . .

Calpurnia −→ 7,1 8,2 40,1 97,3

term frequencies

We also need positions. Not shown here.

Sojka, IIR Group: PV211: Scores in a complete search system 34 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Term frequencies in the inverted index

Thus: In each posting, store tft,d in addition to docID d .

As an integer frequency, not as a (log-)weighted real number
. . .

. . . because real numbers are difficult to compress.

Overall, additional space requirements are small: a byte per
posting or less

Sojka, IIR Group: PV211: Scores in a complete search system 35 / 54



Why rank? More on cosine The complete search system Implementation of ranking

How do we compute the top k in ranking?

We usually do not need a complete ranking.

We just need the top k for a small k (e.g., k = 100).

If we don’t need a complete ranking, is there an efficient way
of computing just the top k?

Naïve:
Compute scores for all N documents
Sort
Return the top k

Not very efficient

Alternative: min heap

Sojka, IIR Group: PV211: Scores in a complete search system 36 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Use min heap for selecting top k ouf of N

A binary min heap is a binary tree in which each node’s value
is less than the values of its children.

Takes O(N log k) operations to construct (where N is the
number of documents) . . .

. . . then read off k winners in O(k log k) steps

Sojka, IIR Group: PV211: Scores in a complete search system 37 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Binary min heap

0.6

0.85 0.7

0.9 0.97 0.8 0.95

Sojka, IIR Group: PV211: Scores in a complete search system 38 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Selecting top k scoring documents in O(N log k)

Goal: Keep the top k documents seen so far

Use a binary min heap

To process a new document d ′ with score s ′:
Get current minimum hm of heap (O(1))
If s ′ ≤ hm skip to next document
If s ′ > hm heap-delete-root (O(log k))
Heap-add d ′/s ′ (O(log k))

Sojka, IIR Group: PV211: Scores in a complete search system 39 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Even more efficient computation of top k?

Ranking has time complexity O(N) where N is the number of
documents.

Optimizations reduce the constant factor, but they are still
O(N), N > 1010

Are there sublinear algorithms?

What we’re doing in effect: solving the k-nearest neighbor
(kNN) problem for the query vector (= query point).

There are no general solutions to this problem that are
sublinear.

Sojka, IIR Group: PV211: Scores in a complete search system 40 / 54



Why rank? More on cosine The complete search system Implementation of ranking

More efficient computation of top k : Heuristics

Idea 1: Reorder postings lists
Instead of ordering according to docID . . .
. . . order according to some measure of “expected relevance”.

Idea 2: Heuristics to prune the search space
Not guaranteed to be correct . . .
. . . but fails rarely.
In practice, close to constant time.
For this, we’ll need the concepts of document-at-a-time
processing and term-at-a-time processing.

Sojka, IIR Group: PV211: Scores in a complete search system 41 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Non-docID ordering of postings lists

So far: postings lists have been ordered according to docID.

Alternative: a query-independent measure of “goodness”
(credibility) of a page

Example: PageRank g(d) of page d , a measure of how many
“good” pages hyperlink to d (chapter 21)

Order documents in postings lists according to PageRank:
g(d1) > g(d2) > g(d3) > . . .

Define composite score of a document:

net-score(q, d) = g(d) + cos(q, d)

This scheme supports early termination: We do not have to
process postings lists in their entirety to find top k.

Sojka, IIR Group: PV211: Scores in a complete search system 42 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Non-docID ordering of postings lists (2)

Order documents in postings lists according to PageRank:
g(d1) > g(d2) > g(d3) > . . .

Define composite score of a document:

net-score(q, d) = g(d) + cos(q, d)

Suppose: (i) g → [0, 1]; (ii) g(d) < 0.1 for the document d
we’re currently processing; (iii) smallest top k score we’ve
found so far is 1.2

Then all subsequent scores will be < 1.1.

So we’ve already found the top k and can stop processing the
remainder of postings lists.

Questions?

Sojka, IIR Group: PV211: Scores in a complete search system 43 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Document-at-a-time processing

Both docID-ordering and PageRank-ordering impose a
consistent ordering on documents in postings lists.

Computing cosines in this scheme is document-at-a-time.

We complete computation of the query-document similarity
score of document di before starting to compute the
query-document similarity score of di+1.

Alternative: term-at-a-time processing

Sojka, IIR Group: PV211: Scores in a complete search system 44 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Weight-sorted postings lists

Idea: don’t process postings that contribute little to final score

Order documents in postings list according to weight

Simplest case: normalized tf-idf weight (rarely done: hard to
compress)

Documents in the top k are likely to occur early in these
ordered lists.

→ Early termination while processing postings lists is unlikely
to change the top k.

But:
We no longer have a consistent ordering of documents in
postings lists.
We no longer can employ document-at-a-time processing.

Sojka, IIR Group: PV211: Scores in a complete search system 45 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Term-at-a-time processing

Simplest case: completely process the postings list of the first
query term

Create an accumulator for each docID you encounter

Then completely process the postings list of the second query
term

. . . and so forth

Sojka, IIR Group: PV211: Scores in a complete search system 46 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Term-at-a-time processing

CosineScore(q)
1 float Scores[N] = 0
2 float Length[N]
3 for each query term t
4 do calculate wt,q and fetch postings list for t
5 for each pair(d , tft,d) in postings list
6 do Scores[d ]+ = wt,d × wt,q

7 Read the array Length
8 for each d
9 do Scores[d ] = Scores[d ]/Length[d ]

10 return Top k components of Scores[]

The elements of the array “Scores” are called accumulators.

Sojka, IIR Group: PV211: Scores in a complete search system 47 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Computing cosine scores

Use inverted index

At query time use an array of accumulators A to store sum (=
the cosine score)

Aj =
∑

k

wqk · wdj k

(for document dj)

“Accumulate” scores as postings lists are being processed.

Sojka, IIR Group: PV211: Scores in a complete search system 48 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Accumulators

For the web (20 billion documents), an array of
accumulators A in memory is infeasible.

Thus: Only create accumulators for docs occurring in postings
lists

This is equivalent to: Do not create accumulators for docs
with zero scores (i.e., docs that do not contain any of the
query terms)

Sojka, IIR Group: PV211: Scores in a complete search system 49 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Accumulators: Example

Brutus −→ 1,2 7,3 83,1 87,2 . . .

Caesar −→ 1,1 5,1 13,1 17,1 . . .

Calpurnia −→ 7,1 8,2 40,1 97,3

For query: [Brutus Caesar]:

Only need accumulators for 1, 5, 7, 13, 17, 83, 87

Don’t need accumulators for 3, 8 etc.

Sojka, IIR Group: PV211: Scores in a complete search system 50 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Enforcing conjunctive search

We can enforce conjunctive search (à la Google): only
consider documents (and create accumulators) if all terms
occur.

Example: just one accumulator for [Brutus Caesar] in the
example above . . .

. . . because only d1 contains both words.

Sojka, IIR Group: PV211: Scores in a complete search system 51 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Implementation of ranking: Summary

Ranking is very expensive in applications where we have to
compute similarity scores for all documents in the collection.

In most applications, the vast majority of documents have
similarity score 0 for a given query → lots of potential for
speeding things up.

However, there is no fast nearest neighbor algorithm that is
guaranteed to be correct even in this scenario.

In practice: use heuristics to prune search space – usually
works very well.

Sojka, IIR Group: PV211: Scores in a complete search system 52 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Take-away today

The importance of ranking: User studies at Google

Length normalization: Pivot normalization

The complete search system

Implementation of ranking

Sojka, IIR Group: PV211: Scores in a complete search system 53 / 54



Why rank? More on cosine The complete search system Implementation of ranking

Resources

Chapter 6 of IIR

Chapter 7 of IIR

Resources at https://www.fi.muni.cz/~sojka/PV211/
and http://cislmu.org, materials in MU IS and FI MU
library

How Google tweaks its ranking function
Interview with Google search guru Udi Manber
Amit Singhal on Google ranking
SEO perspective: ranking factors
Yahoo Search BOSS: Opens up the search engine to
developers. For example, you can rerank search results.
Compare Google and Yahoo ranking for a query.
How Google uses eye tracking for improving search.

Sojka, IIR Group: PV211: Scores in a complete search system 54 / 54

https://www.fi.muni.cz/~sojka/PV211/
http://cislmu.org

	Why rank?
	More on cosine
	The complete search system
	Implementation of ranking

