PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/PV211

> IIR 7: Scores in a complete search system Handout version

Petr Sojka, Hinrich Schütze et al.

Faculty of Informatics, Masaryk University, Brno Center for Information and Language Processing, University of Munich

2021-03-29

(compiled on 2021-06-22 15:48:45)

Sojka, IIR Group: PV211: Scores in a complete search system

Overview

- 3 More on cosine
- 4 The complete search system

Term frequency weight

• The log frequency weight of term t in d is defined as follows

$$\mathsf{w}_{t,d} = \begin{cases} 1 + \log_{10} \mathsf{tf}_{t,d} & \text{if } \mathsf{tf}_{t,d} > 0\\ 0 & \text{otherwise} \end{cases}$$

- The document frequency df_t is defined as the number of documents that t occurs in.
- df is an inverse measure of the informativeness of the term.
- We define the idf weight of term t as follows:

$$\operatorname{idf}_t = \log_{10} \frac{N}{\operatorname{df}_t}$$

• idf is a measure of the informativeness of the term.

tf-idf weight

• The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

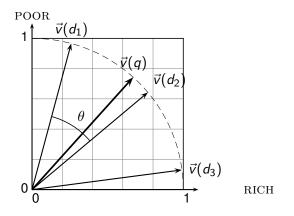
• Best known weighting scheme in information retrieval

Cosine similarity between query and document

$$\cos(\vec{q}, \vec{d}) = ext{SIM}(\vec{q}, \vec{d}) = rac{\vec{q}}{|\vec{q}|} \cdot rac{\vec{d}}{|\vec{d}|} = \sum_{i=1}^{|V|} rac{q_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2}} \cdot rac{d_i}{\sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i is the tf-idf weight of term i in the query.
- d_i is the tf-idf weight of term *i* in the document.
- $|\vec{q}|$ and $|\vec{d}|$ are the lengths of \vec{q} and \vec{d} .
- $\vec{q}/|\vec{q}|$ and $\vec{d}/|\vec{d}|$ are length-1 vectors (= normalized).

Cosine similarity illustrated



tf-idf example: Inc.ltn

Query:	"best	car	insurance".	Document:	"car	insurance	auto	insurance'	'.
--------	-------	-----	-------------	-----------	------	-----------	------	------------	----

word			query			document				product
					tf-idf					
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	tf-wght	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n'lized: document weights after cosine normalization, product: the product of final query weight and final document weight

$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

1/1.92 ≈ 0.52

$$1.3/1.92 \approx 0.68$$

Final similarity score between query and document: $\sum_{i} w_{qi} \cdot w_{di} = 0 + 0 + 1.04 + 2.04 = 3.08$

Take-away today

- The importance of ranking: User studies at Google
- Length normalization: Pivot normalization
- The complete search system
- Implementation of ranking

Why rank?

Why is ranking so important?

• Last lecture: Problems with unranked retrieval

- Users want to look at a few results not thousands.
- It's very hard to write queries that produce a few results.
- Even for expert searchers
- \rightarrow Ranking is important because it effectively reduces a large set of results to a very small one.
- Next: More data on "users only look at a few results"
- Actually, in the vast majority of cases they only examine 1, 2, or 3 results.

Why rank?

Empirical investigation of the effect of ranking

- The following slides are from Dan Russell's JCDL talk
- Dan Russell was the "Über Tech Lead for Search Quality & User Happiness" at Google.
- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
 - Videotape them
 - Ask them to "think aloud"
 - Interview them
 - Eye-track them
 - Time them
 - Record and count their clicks

So.. Did you notice the FTD official site?

- To be honest, I didn't even look at that.
- At first I saw "from \$20" and \$20 is what I was looking for.
- To be honest, 1800-flowers is what I'm familiar with and why I went there next even though I kind of assumed they wouldn't have \$20 flowers

And you knew they were expensive?

I knew they were expensive but I thought "hey, maybe they've got some flowers for under \$20 here..."

But you didn't notice the FTD?

No I didn't, actually... that's really funny.

Interview video

Rapidly scanning the results

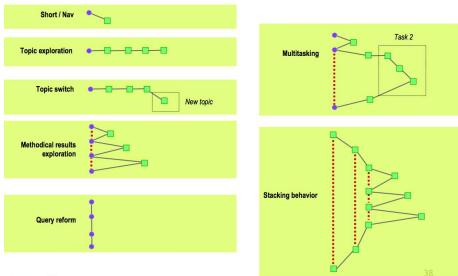
Note scan pattern:

Page 3: Result 1 Result 2 Result 3 Result 4 Result 3 Result 3 Result 2 Result 4 Result 4 Result 5 Result 6 <</ri>

Q: Why do this?

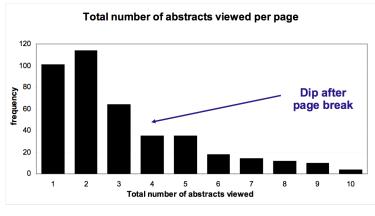
A: What's learned later influences judgment of earlier content.

Kinds of behaviors we see in the data



Google

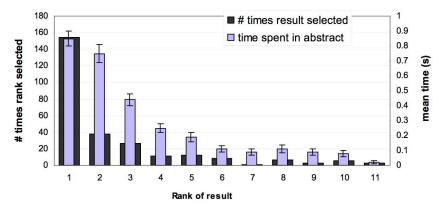
How many links do users view?



Mean: 3.07 Median/Mode: 2.00

Google

Looking vs. Clicking

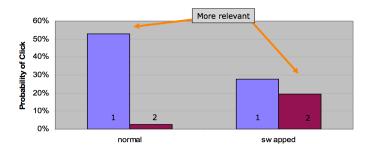


- Users view results one and two more often / thoroughly
- Users click most frequently on result one

Google

Presentation bias - reversed results

Order of presentation influences where users look
 AND where they click



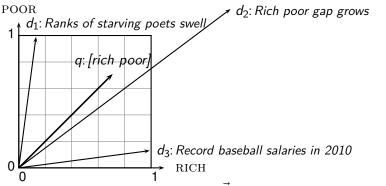
Why rank?

Importance of ranking: Summary

- Viewing abstracts: Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).
- Clicking: Distribution is even more skewed for clicking
- In 1 out of 2 cases, users click on the top-ranked page.
- Even if the top-ranked page is not relevant, 30% of users will click on it.
- $\bullet \rightarrow$ Getting the ranking right is very important.
- $\bullet \rightarrow$ Getting the top-ranked page right is most important.

- Ranking is also one of the high barriers to entry for competitors to established players in the search engine market.
- Why?

Why distance is a bad idea



The Euclidean distance of \vec{q} and \vec{d}_2 is large although the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.

That's why we do length normalization or, equivalently, use cosine to compute query-document matching scores.

Exercise: A problem for cosine normalization

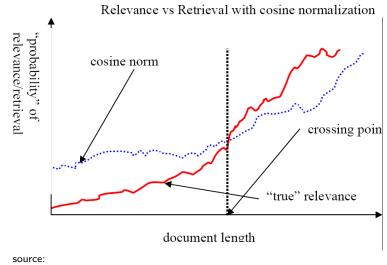
- Query q: "anti-doping rules Beijing 2008 olympics"
- Compare three documents
 - d_1 : a short document on anti-doping rules at 2008 Olympics
 - d₂: a long document that consists of a copy of d₁ and 5 other news stories, all on topics different from Olympics/anti-doping
 - *d*₃: a short document on anti-doping rules at the 2004 Athens Olympics
- What ranking do we expect in the vector space model?
- What can we do about this?

Pivot normalization

- Cosine normalization produces weights that are too large for short documents and too small for long documents (on average).
- Adjust cosine normalization by linear adjustment: "turning" the average normalization on the pivot
- Effect: Similarities of short documents with query decrease; similarities of long documents with query increase.
- This removes the unfair advantage that short documents have.

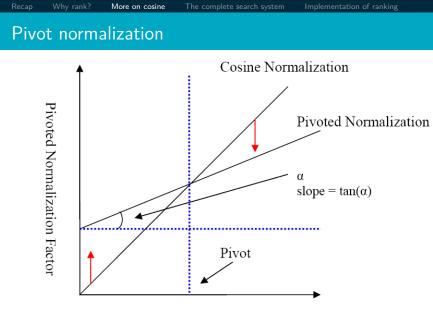
ecap Why rar

Predicted and true probability of relevance



Lillian Lee

Sojka, IIR Group: PV211: Scores in a complete search system



Cosine Normalization Factor

source:

Lillian Lee

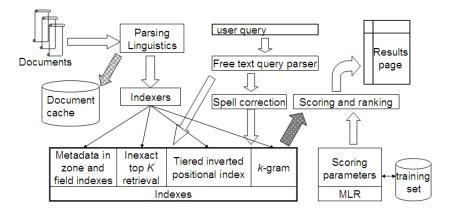
Sojka, IIR Group: PV211: Scores in a complete search system

Pivoted normalization: Amit Singhal's experiments

	Pivoted Cosine Normalization							
Cosine	Slope							
	0.60	0.65	0.70	0.75	0.80			
6,526	6,342	6,458	6,574	6,629	$6,\!671$			
0.2840	0.3024	0.3097	0.3144	0.3171	0.3162			
Improvement	+ 6.5%	+ 9.0%	+10.7%	+11.7%	+11.3%			

(relevant documents retrieved and (change in) average precision)

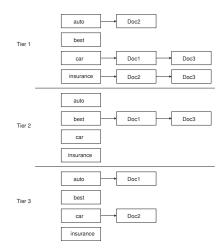
Complete search system



Tiered indexes

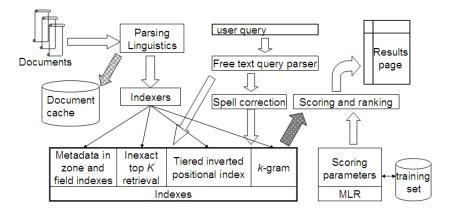
- Basic idea:
 - Create several tiers of indexes, corresponding to importance of indexing terms
 - During query processing, start with highest-tier index
 - If highest-tier index returns at least k (e.g., k = 100) results: stop and return results to user
 - If we've only found < k hits: repeat for next index in tier cascade
- Example: two-tier system
 - Tier 1: Index of all titles
 - Tier 2: Index of the rest of documents
 - Pages containing the search words in the title are better hits than pages containing the search words in the body of the text.

Tiered index



- The use of tiered indexes is believed to be one of the reasons that Google search quality was significantly higher initially (2000/01) than that of competitors.
- (along with PageRank, use of anchor text and proximity constraints)

Complete search system



Components we have introduced thus far

- Document preprocessing (linguistic and otherwise)
- Positional indexes
- Tiered indexes
- Spelling correction
- k-gram indexes for wildcard queries and spelling correction
- Query processing
- Document scoring

Components we haven't covered yet

- Document cache: we need this for generating snippets (= dynamic summaries)
- Zone indexes: They separate the indexes for different zones: the body of the document, all highlighted text in the document, anchor text, text in metadata fields,...
- Machine-learned ranking functions
- Proximity ranking (e.g., rank documents in which the query terms occur in the same local window higher than documents in which the query terms occur far from each other)
- Query parser

Components we haven't covered yet: Query parser

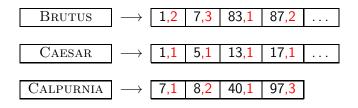
- IR systems often guess what the user intended.
- The two-term query *London tower* (without quotes) may be interpreted as the phrase query *"London tower"*.
- The query 100 Madison Avenue, New York may be interpreted as a request for a map.
- How do we "parse" the query and translate it into a formal specification containing phrase operators, proximity operators, indexes to search, etc.?

Vector space retrieval: Interactions

- How do we combine phrase retrieval with vector space retrieval?
- We do not want to compute document frequency / idf for every possible phrase. Why?
- How do we combine Boolean retrieval with vector space retrieval?
- For example: "+"-constraints and "-"-constraints
- Postfiltering is simple, but can be very inefficient no easy answer.
- How do we combine wild cards with vector space retrieval?
- Again, no easy answer.

- Design criteria for tiered system
 - Each tier should be an order of magnitude smaller than the next tier.
 - The top 100 hits for most queries should be in tier 1, the top 100 hits for most of the remaining queries in tier 2, etc.
 - We need a simple test for "can I stop at this tier or do I have to go to the next one?"
 - There is no advantage to tiering if we have to hit most tiers for most queries anyway.
- Consider a two-tier system where the first tier indexes titles and the second tier everything.
- Question: Can you think of a better way of setting up a multitier system? Which "zones" of a document should be indexed in the different tiers (title, body of document, others?)? What criterion do you want to use for including a document in tier 1?

Now we also need term frequencies in the index



term frequencies

We also need positions. Not shown here.

Term frequencies in the inverted index

- Thus: In each posting, store $tf_{t,d}$ in addition to docID d.
- As an integer frequency, not as a (log-)weighted real number
- ... because real numbers are difficult to compress.
- Overall, additional space requirements are small: a byte per posting or less

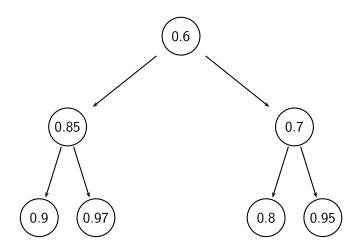
How do we compute the top k in ranking?

- We usually do not need a complete ranking.
- We just need the top k for a small k (e.g., k = 100).
- If we don't need a complete ranking, is there an efficient way of computing just the top *k*?
- Naïve:
 - Compute scores for all N documents
 - Sort
 - Return the top k
- Not very efficient
- Alternative: min heap

Use min heap for selecting top k ouf of N

- A binary min heap is a binary tree in which each node's value is less than the values of its children.
- Takes $O(N \log k)$ operations to construct (where N is the number of documents) ...
- ... then read off k winners in O(k log k) steps

Binary min heap



Selecting top k scoring documents in $O(N \log k)$

- Goal: Keep the top k documents seen so far
- Use a binary min heap
- To process a new document d' with score s':
 - Get current minimum h_m of heap (O(1))
 - If $s' \leq h_m$ skip to next document
 - If $s' > h_m$ heap-delete-root $(O(\log k))$
 - Heap-add d'/s' ($O(\log k)$)

Even more efficient computation of top k?

- Ranking has time complexity O(N) where N is the number of documents.
- Optimizations reduce the constant factor, but they are still O(N), $N > 10^{10}$
- Are there sublinear algorithms?
- What we're doing in effect: solving the *k*-nearest neighbor (kNN) problem for the query vector (= query point).
- There are no general solutions to this problem that are sublinear.

More efficient computation of top k: Heuristics

- Idea 1: Reorder postings lists
 - Instead of ordering according to docID ...
 - ... order according to some measure of "expected relevance".
- Idea 2: Heuristics to prune the search space
 - Not guaranteed to be correct ...
 - ... but fails rarely.
 - In practice, close to constant time.
 - For this, we'll need the concepts of document-at-a-time processing and term-at-a-time processing.

Non-docID ordering of postings lists

- So far: postings lists have been ordered according to docID.
- Alternative: a query-independent measure of "goodness" (credibility) of a page
- Example: PageRank g(d) of page d, a measure of how many "good" pages hyperlink to d (chapter 21)
- Order documents in postings lists according to PageRank:
 g(d₁) > g(d₂) > g(d₃) > ...
- Define composite score of a document:

$$\mathsf{net}\text{-}\mathsf{score}(q,d) = g(d) + \cos(q,d)$$

• This scheme supports early termination: We do not have to process postings lists in their entirety to find top *k*.

Non-docID ordering of postings lists (2)

- Order documents in postings lists according to PageRank:
 g(d₁) > g(d₂) > g(d₃) > ...
- Define composite score of a document:

$$\mathsf{net}\text{-}\mathsf{score}(q,d) = g(d) + \cos(q,d)$$

Implementation of ranking

- Suppose: (i) g → [0,1]; (ii) g(d) < 0.1 for the document d we're currently processing; (iii) smallest top k score we've found so far is 1.2
- Then all subsequent scores will be < 1.1.
- So we've already found the top k and can stop processing the remainder of postings lists.
- Questions?

Document-at-a-time processing

- Both docID-ordering and PageRank-ordering impose a consistent ordering on documents in postings lists.
- Computing cosines in this scheme is document-at-a-time.
- We complete computation of the query-document similarity score of document *d_i* before starting to compute the query-document similarity score of *d_{i+1}*.
- Alternative: term-at-a-time processing

Weight-sorted postings lists

- Idea: don't process postings that contribute little to final score
- Order documents in postings list according to weight
- Simplest case: normalized tf-idf weight (rarely done: hard to compress)
- Documents in the top k are likely to occur early in these ordered lists.
- \rightarrow Early termination while processing postings lists is unlikely to change the top k.
- But:
 - We no longer have a consistent ordering of documents in postings lists.
 - We no longer can employ document-at-a-time processing.

Term-at-a-time processing

- Simplest case: completely process the postings list of the first query term
- Create an accumulator for each docID you encounter
- Then completely process the postings list of the second query term
- ...and so forth

Term-at-a-time processing

 $\operatorname{COSINESCORE}(q)$

- 1 float Scores[N] = 0
- 2 float Length[N]
- 3 **for each** query term *t*
- 4 **do** calculate $w_{t,q}$ and fetch postings list for t
- 5 **for each** $pair(d, tf_{t,d})$ in postings list

6 **do**
$$Scores[d] + = w_{t,d} \times w_{t,q}$$

- 7 Read the array Length
- 8 for each d
- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 return Top k components of Scores[]

The elements of the array "Scores" are called accumulators.

Computing cosine scores

- Use inverted index
- At query time use an array of accumulators A to store sum (= the cosine score)
- ٢

$$A_j = \sum_k w_{qk} \cdot w_{d_jk}$$

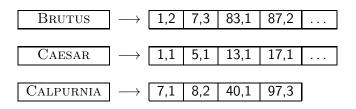
(for document d_j)

• "Accumulate" scores as postings lists are being processed.

Accumulators

- For the web (20 billion documents), an array of accumulators A in memory is infeasible.
- Thus: Only create accumulators for docs occurring in postings lists
- This is equivalent to: Do not create accumulators for docs with zero scores (i.e., docs that do not contain any of the query terms)

Accumulators: Example



- For query: [Brutus Caesar]:
- Only need accumulators for 1, 5, 7, 13, 17, 83, 87
- Don't need accumulators for 3, 8, etc.

Enforcing conjunctive search

- We can enforce conjunctive search (à la Google): only consider documents (and create accumulators) if all terms occur.
- Example: just one accumulator for [Brutus Caesar] in the example above ...
- ... because only d_1 contains both words.

Implementation of ranking: Summary

- Ranking is very expensive in applications where we have to compute similarity scores for all documents in the collection.
- In most applications, the vast majority of documents have similarity score 0 for a given query → lots of potential for speeding things up.
- However, there is no fast nearest neighbor algorithm that is guaranteed to be correct even in this scenario.
- In practice: use heuristics to prune search space usually works very well.

Take-away today

- The importance of ranking: User studies at Google
- Length normalization: Pivot normalization
- The complete search system
- Implementation of ranking

Resources

- Chapter 7 of IIR
- Resources at https://www.fi.muni.cz/~sojka/PV211/ and http://cislmu.org, materials in MU IS and FI MU library
 - How your colleague Till manages to reach 50% MAP?
 - How Google tweaks its ranking function?
 - Interview with Google search guru Udi Manber
 - Amit Singhal on Google ranking
 - SEO perspective: ranking factors
 - Yahoo Search BOSS: Opens up the search engine to developers. For example, you can rerank search results.
 - How Google uses eye tracking for improving search.