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Abstract. When looking for certain kinds of software bugs, successive versions
of software are compared. Performance-related bugs are a notable example. Meth-
ods used for detecting such bugs are, however, expensive and need to be applied
carefully. At the same time, current software development is rapid, with new soft-
ware versions released everyday. In this paper, we aim at two particular ways
how to optimize difference analyses of performance (but possibly other aspects
of the software too) of successive software versions. Namely, we propose (1) an
efficient layered representation of the program control flow spanning across the
program history, and (2) methods for efficient matching of pairs of corresponding
functions in different software versions and for selecting those whose differential
analysis should be performed. We have implemented our approach and performed
experiments on two selected versions of the CPython project. The results indicate
that our approach is a promising direction for improving the performance analysis
of real world programs.

1 Introduction
Over the last years, the software development community has seen a massive rise in the
popularity of Continuous Integration and Continuous Delivery (CI/CD) practices. In
particular, CI/CD aims to automate building, testing, and deploying software projects
during their entire development lifecycle, naturally leading to evolving software that is
constantly updated with new features without breaking the build.

As more developers adopted CI/CD in their software projects, numerous success
stories have been publicly shared, thus further accelerating interest and demand for
CI/CD solutions among software developers. Numerous companies reported impres-
sive results ranging from reducing the development costs by 78% (HP), to increasing
the number of deployments to more than ten per day (Flickr) or 50 million a year
(Amazon) [9]. Moreover, an empirical study [8] on open-source projects found out
that projects using CI/CD practices, as compared to projects without CI/CD, on av-
erage (1) save 1.6 hours on integrating pull requests; (2) manage to release twice as
often; (3) catch bugs earlier; and (4) help the developers avoid breaking the build.
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In their current state, most CI/CD test environments focus on finding functional bugs
only, i.e., bugs that lead to software crashes and/or incorrect results. Other types of bugs,
such as performance bugs, are often overlooked. However, a study of Mozilla Fire-
fox [16] concluded that, compared to any other type of bugs, performance bugs (1) take
more time to fix – up to 2.8 times more than even security fixes; (2) require more ex-
perienced developers to fix; and (3) the fixes are spanning up to 2.6 times more files.
Moreover, if such bugs remain in the software unnoticed for a long time (thus becom-
ing the so-called dormant bugs), the time needed to fix them almost doubles [5]. In
extreme cases, this can even lead to hundred-million dollar projects being abandoned
after several years of intense development [7].

Recently, there have been attempts to integrate performance testing to CI/CD [10,2].
However, these solutions usually provide only basic performance testing support (e.g.,
regression testing, micro benchmarking, or load testing) and focus on the latest software
version only. In our previous work [6], we have introduced Perun: a novel tool-suite for
performance testing and analysis. Perun supports more complex performance analyses
that require precise profiling and can possibly take into account multiple previous ver-
sions of the software. Such larger perspective is generally necessary to find root causes
of hard-to-detect performance issues, especially in the case of so-called creeping degra-
dations: performance degradations of software caused slowly over the time.

In order to integrate more complex performance analyses, e.g., into a CI/CD pipeline,
we need them to be efficient. A possible approach is to analyse only those source files
that have been changed since the last analysis. This is successfully used in practice, e.g.,
by Facebook/Meta Infer [1] in the area of static analysis. In our ongoing work on effi-
cient performance analyses, we build on this principle and focus our analysis to, among
other, code fragments with control flow changes. However, this poses numerous chal-
lenges in terms of efficient representation, versioning, storage, and difference analysis
of control flow models, i.e., control flow and call graphs, in evolving software.

In this work, we address the above challenges by proposing (1) an efficient lay-
ered representation of control flow models; (2) a hierarchical version labeling system –
using, among others, hashes of version control system (VCS) versions and local repos-
itory changes – along with accompanying algorithms for storage, retrieval, and intel-
ligent lazy deletion of individual versions; (3) six new heuristics for function match-
ing adapted specifically for evolving software to improve the matching accuracy; and
(4) a generic algorithm for difference analysis of call and control flow graphs that builds
on the matching heuristics. We have implemented the proposed solutions in the particu-
lar context of the Perun analyser and present a use-case demonstration with experimen-
tal results that confirm these solutions can indeed bring significant efficiency and false
match rate improvements. Moreover, we believe that the data structures and algorithms
that our solution is based on are general enough to be useful in other tools that leverage
control flow information, allowing them to be used efficiently in CI/CD.

2 Preliminaries

In Perun, we employ, among other, two kinds of program control flow models (CFM):
(1) Control Flow Graphs (CFGs) to represent the structure of particular functions, and,
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(2) Call Graphs (CGs) to represent the calling relation between particular functions.
Their usage is quite versatile: we use CFGs to, e.g., match functions that were renamed
between two versions, allowing us to omit them from the subsequent analysis if just
the name changed, and we can potentially use CGs to, e.g., improve the precision of
the results reported to the user by supplying a more precise trace leading to a detected
bottleneck.

CFGs consist of nodes and edges where nodes represent basic blocks – sequences of
instructions without branching; and edges represent direct and indirect jumps between
basic blocks.

Definition 1 (Basic Block). A basic block BB is a straight-line sequence of instruc-
tions i0, i1, . . . , in−1 with no branches in (apart from the entry point) and no branches
out (apart from the exit point). We denote by len(BB) the length of the basic block, i.e.,
the number of instructions in BB.

In the rest of the paper, we assume dealing with instructions from the assembly lan-
guage of the x86_64 architecture, but the proposed algorithms should be applicable to
any other CPU architecture or machine-level instruction set without a loss of generality.
The concrete instruction set and architecture are relevant as they determine the set of
registers and control flow related instructions, such as jumps or calls.

Definition 2 (Program Control Flow Graph). The control flow graph (CFG) of a pro-
gram P is a directed graph CFGP = (BP , CP , TP ) where BP is the (finite) set of
basic blocks of P , CP ⊆ BP × BP is the control flow relation, and TP : CP →
{fallthrough, jump} is a mapping of edges to their type.

Note that we extend the classical definition of a CFG with an additional mapping
TP that assigns each edge its type. When a conditional branching occurs in a CFG (e.g.,
as a result of a comparison or a jump instruction at the end of some basic block), one or
more of the outgoing edges usually represent the control flow to the jump destination
(jump edges), while a single edge represents the control flow to the instruction directly
succeeding the jump condition (the fallthrough edge), which is taken when the jump
condition is not satisfied. This mapping has one practical advantage: it allows us to de-
terministically traverse two or more CFGs in a lockstep and compare their basic blocks
and/or structure.

Manipulation with the CFG of the entire program is usually impractical as many
analyses are performed on the function level. Even in the case of inter-procedural anal-
yses (such as those we will introduce in Section 4), we often need to limit the control
flow to the scope of individual functions.

Definition 3 (Function Control Flow Graph). Let CFGP be the CFG of a program
P . The CFG of a function f of P is the subgraph FCFGf = (Bf , Cf , Tf ) of CFGP

where Bf ⊆ BP is the finite set of basic blocks of the function f , Cf ⊆ Bf ×Bf ⊆ CP is
the control flow relation of f , and Tf : Cf → {fallthrough, jump} such that Tf ⊆ TP .

Call graphs consist of nodes that represent functions in a program and edges that
represent the caller/callee relation between the functions.
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Definition 4 (Call Graph). The call graph (CG) of P is a multi-rooted directed graph
CGP = (FP , EP ,RP ) where FP is the set of functions of P , EP ⊆ FP × FP is the
call relation (relating callers and callees), and RP ⊆ FP is the set of CGP roots.

Note that contrary to some of the established CG definitions, we require the CG
to support multiple root nodes as, in practice, many types of programs, e.g., (shared)
libraries, may expose multiple valid entry point functions.

3 Control Flow Models Representation

In our experience, a typical workflow of dealing with control flow models in program
analysis can be summarized into three steps: (1) (re)construct the models from source
or binary files, dynamic run traces, logs, or any other available resources; (2) analyse
the models according to the problem domain; and (3) discard the models. If a particular
model is required again later on, e.g., as a part of some more complex aggregate analy-
sis, it is simply reconstructed on-demand once more. Although this approach works for
simple enough use cases, it is insufficient for scenarios where repeated reconstruction of
control flow models or their post-processing is too expensive—as is the case with Perun.

Notably, obtaining precise CGs and CFGs using static analysis on binary executable
files is notoriously difficult and expensive, mainly due to function pointers or dynamic
dispatch calls found in many modern programming languages. Moreover, such control
flow models are generally unsound and incomplete when constructed using static anal-
ysis on binary files only. Similarly, constructing a precise CG using just dynamic anal-
ysis is often infeasible in practice as the number of potential execution paths through
a program rapidly grows with the size of the codebase. Such control flow models are,
however, at least sound but generally still incomplete [14].

A naive solution to this problem might be to simply cache or persistently store all
the constructed models so that they can be accessed at a later time. However, such
a simple approach is impractical for numerous reasons, e.g., the space requirements for
storage of models would be needlessly high as each static and dynamic model would be
stored separately, and the lookup for a model tied to a concrete project version would be
difficult without a proper versioning scheme. Also, combining the statically and dynam-
ically constructed models into a single more precise model requires further, potentially
expensive, post-processing step on each retrieval given those models are stored sepa-
rately.

That is why we propose an efficient representation of a CG that composes both static
and dynamic models obtained by various tools or run configurations, while allowing to
manipulate with any individual model or a combination of models. Our representation
is based on the definition of CGs in Definition 4.

First, we extend CGs with a set of so-called layers. Each node or edge of the CG
must then belong to at least one layer but may belong to multiple or even all layers in
the graph. (Alternatively, one can view this such that each node and edge is labelled by
a set of layer identifiers.) The layers correspond to a single specific model or a combi-
nation of some simpler models. Each layer is associated with a tuple (source, config)
with source specifying the type of the model, e.g., static or dynamic, and config spec-
ifying the analysis tool, the configuration of the tool used, and/or the parameters the
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Fig. 1. An example of the proposed layered call graph representation with three distinct layers.
Each color-coded layer corresponds to a concrete source of CG data, e.g., two different static
analysis tools A and B, and one dynamic run C. Together the layers form a single, potentially
disconnected, graph structure.

push %rbp
mov %rsp, %rbp
sub $0x10, %rsp
mov %edi, %rbp
cmpl $0x0, -0x4

jle <g+29>

mov $0x0, %eax
call <i>

jmp <g+39>

mov $0x0, %eax
call <j>

mov %rbp, %eax
add $0x1, %eax

leave
ret

f g

main

i jh

Fig. 2. A schematic illustration of the combined representation of a layered CG and a nested
FCFG representation stored within the CG nodes.

given program was run or compiled with. Figure 1 shows an example of the proposed
representation with three layers.

Second, the CG nodes maintain a link to the function control flow graph (FCFG)
corresponding to the function represented by the node. Our implementation in Perun
currently supports a single FCFG associated with a function only as in our experience
there tends to be generally not so much variation between FCFGs obtained by different
disassembly or analysis tools. However, extending the implementation to accommodate
for multiple FCFGs or their combinations is straightforward. Figure 2 illustrates the
inclusion of the FCFG representation within the CG nodes.

Note that Definition 4 defining CGs does not make any assumption about the con-
nectivity of the graph (in the extreme case, the CG may contain no edges at all). It is
critical to not impose any restrictions on the graph connectivity, at least in the repre-
sentation itself, as disconnected CGs obtained by static analysis are quite commonly
encountered in practice, e.g., as a result of callbacks registered within a third-party li-
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Fig. 3. An example of the proposed layer selection operator σ used to obtain a combined view of
two distinct layers (static, A) and (dynamic, C).

brary that cannot be properly analysed due to missing source code or debug information.
A major benefit of this single-graph layered representation is that by extending the static
CG with data from particular dynamic runs may cause previously disconnected parts of
the CG to be reconnected as long as the dynamic runs visit the appropriate functions.

Using this representation and the accompanying features (such as the selection op-
erator, versioning, or reuse of dynamic models introduced in the following sections),
Perun is able to efficiently store even extensive control flow models combined from
multiple sources, hence increasing the models precision. Perun can then leverage those
models to quickly identify functions that have been changed in a new project version
and focus on the performance of those particular functions, or apply other profiling
optimizations that utilize call or control flow graph information.

3.1 CFM Layer Selection Operator

To easily manipulate individual layers or their combinations within the layered repre-
sentation, Perun defines a layer selection operator σ that allows individual analyses to
choose a subset of layers that will form a frozen view over the selected layers. Our im-
plementation of a frozen view does not allow direct updates to the view itself to avoid
invalidation of iterators and possible inconsistencies, but provides access to the original
CFM representation that can be updated. Note that the frozen view can be configured
to preserve or exclude the links to the FCFG of individual CG nodes.

Additionally, we establish new auxiliary convenience layers to be used with the
selection operator that predefine some commonly used combinations of layers, e.g., the
mixed layer that combines all static and dynamic layers restricted to nodes and edges
reachable from the root nodes.

Perun relies on the selection operator to obtain submodels of the entire control flow
model restricted by custom user-defined conditions, e.g., a CFM view of concrete dy-
namic runs that may be reused in newer CFM versions as described in Section 4.5.
Moreover, the matching and analysis algorithms introduced in Section 4 are designed
to work on the view objects obtained by the selection operator. Figure 3 presents an
example of the selection operator usage.
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3.2 Call Graph Versioning

As projects evolve over time, new project versions are continuously released and both
the CFG and CG may change as the project developers add new features or refactor the
existing code. Some tools, such as Perun, need to frequently access some of those ver-
sions of the control flow models for comparison or other types of analyses. However, re-
constructing precise multi-layered models can be extremely expensive, especially when
using multiple static analysis tools and/or executing numerous dynamic runs to obtain
control flow data. Therefore, we want to store the once constructed models for possible
future use.

Perun already supports storing auxiliary data and models linked to concrete VCS
versions, e.g., Git commits. However, versioning the models using the VCS versions
only is generally insufficient as certain models might correspond to the so-called dirty
versions4, or even a different project setup or configuration. Naturally, we want to sup-
port the linkage of models to dirty versions or specific project configurations since we
usually repeat the profiling when trying to fix a performance regression introduced in
a concrete project version, hence introducing possibly many new dirty versions.

To solve the above issue with naive versioning, we propose a compound version
identification version(CFM ) = (v, h, s, c, t) where v is the VCS version (e.g., a com-
mit hash); h is a CFM version computed in a VCS-specific versioning algorithm (e.g.,
an SHA hash in Git) from files used for the CFM extraction; s is the repository state,
either clean or dirty; c is a configuration name of the project setup, e.g., release,
debug, nightly-build, etc.; and t is the timestamp of the CFM creation.

As the number of stored dirty models (i.e., models linked to dirty VCS versions)
and their size can become significant over time, especially for large actively maintained
projects, we propose a lazy deletion algorithm to counter this issue. When traversing the
project VCS history to retrieve a specific CFM version, the deletion algorithm identifies
and deletes obsolete models, i.e., dirty models of the same project configuration in VCS
versions other than the current HEAD5.

4 Function Matching and Difference Analysis

Perun mainly focuses on detecting code changes between (recent) project versions.
More precisely, Perun aims to automatically identify functions that were changed in
a concrete (analysed) project version, as those functions are more likely to manifest
new changes in performance as well as are more likely to be fixed by the develop-
ers [3,4,5]. Identifying changed functions naively by source code diff analysis leads
to a significant number of false positives as many types of source code changes may
have no impact on the behaviour or performance of a function, e.g., renaming variables,
changing comments or refactoring code to macro expansions. Hence, the analysis needs

4 A project version is considered dirty if it contains uncommited changes, i.e., changes that were
not yet published in a commit.

5 Using Git terminology, HEAD refers to the most current version in a given branch or a specific
version if we find ourselves in a HEAD-detached state.
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to be performed on a finer representation of functions, e.g., on the level of the control
flow.

However, any such diff algorithm must first match functions from the new project
version to their corresponding functions in the previous version6. We search for a bi-
jection m : F ′

Pb
↔ F ′

Pt
where F ′

Pb
⊆ FPb

and F ′
Pt

⊆ FPt
are the largest possible

subsets of functions from the previous (also called baseline) and current (called target)
versions of a program P for which such a bijection m could be constructed w.r.t. some
concrete chosen function correspondence criterion. This problem is computationally
hard—indeed, even finding an isomorphism between two call graphs is a well-known
NP-complete problem [11]. As such, it is in general infeasible to find a perfect solution
to this problem. However, we believe we can find a good enough solution applicable to
wide range of projects.

Our solution to this problem is inspired by existing works in this area [13,11] that
are, however, mostly tailored for malware similarity analysis and other security-oriented
analyses, and as such cannot rely on the availability of function names in the analysed
programs. Hence, we propose a set of three matching heuristics based on function sum-
maries inspired by [11], and three matching heuristics based on function call context
that complement the function summary heuristics with a context-aware approach.

4.1 Function Matching Using Function Summaries

Function summaries are key characteristics about a function derived from its control
flow data that can be exploited for fast identification of matching candidates. Formally,
we define function summaries as follows.

Definition 5 (Function Summary). Let CFGf be the function control flow graph of
a function f . A function summary S of f is a tuple Sf = (β, ϕ, ϵ, ι, µ) where β is |Bf |,
i.e., the number of basic blocks in f ; ϕ is the number of function call instructions in
CFGf ; ϵ is |Cf |, i.e., the number of edges in CFGf ; ι is

∑
b∈Bf

len(b), i.e., the total
number of instructions in CFGf ; and µ is maxb∈Bf

len(b), i.e., the maximum length
of a basic block in CFGf . Let Sf denote the summary set of functions that share the
same summary as f , including f .

However, in our experience, using such summaries for function matching in real-
world programs with hundreds of thousands of lines of code, such as CPython7, can
lead to a substantial number of false matching candidates. Large codebases typically
contain many tiny functions, possibly consisting of only a single basic block. Conse-
quently these blocks will most likely be matched as identical in terms of their function
summaries. To combat this issue, we extended the function summaries with additional
metrics to reduce the number of false matches. These extended summaries are then used
only in the strictest matching heuristic.

6 Informally, for each function we want to find its origin: a possibly renamed or changed function
that is still enough structurally similar to the origin so one could argue that this function is
indeed the evolved version of the origin. Whether two function implementations are enough
structurally similar is of course highly subjective—one can hardly come up with an exact
formal definition in this case.

7 The reference C implementation of Python interpreter: https://github.com/python/cpython.

https://github.com/python/cpython
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Definition 6 (Extended Function Summary). Let CFGf be the function control flow
graph of a function f . An extended function summary ES of a function f is a tuple
ESf = (ν, β, ϕ, ϵ, ι, µ) where ν is the name of the function f and the remaining mem-
bers of the tuple have the same meaning as in Sf .

Extended Function Summary Exact Matches. Our first heuristic matches functions from
FPb

and FPt
that have the same extended summaries. In particular, it matches functions

that have identical name in the baseline and target versions, as well as the key charac-
teristics of their FCFG, i.e., the function summaries. The goal is to quickly identify
functions that have either not changed at all or changed just enough to not affect their
FCFG in the target version.

Function Summary Unique Renames. Our second heuristic attempts to match functions
that appear to be simply renamed without any substantial change that would alter their
FCFG. First, we identify functions whose name appears exclusively in the target or
baseline version denoted as Fmissing ⊆ FPb

and Fnew ⊆ FPt , respectively. Next,
we match only those functions fm ∈ Fmissing and fn ∈ Fnew that have the same
unique function summary, meaning no other functions f ′

m ∈ Fmissing, f
′
m ̸= fm or

f ′
n ∈ Fnew, f

′
n ̸= fn belong to S(fm,fn), i.e., share the same function summary.

Function Summary Exclusive Renames. The last heuristics heuristic aims to match re-
named functions that did not meet the summary uniqueness criteria in the Function
Summary Unique Renames heuristic and instead satisfy the summary and FCFG exclu-
siveness condition. We consider two functions fm ∈ Fmissing and fn ∈ Fnew to have
an exclusive summary and FCFG8 iff their summaries and FCFGs are equal, hence must
belong to the same summary set S(fm,fn), and ∄f ′ ∈ S(fm,fn) ∩ (Fmissing ∪ Fnew)
whose FCFGf ′ is equal to FCFGfm or FCFGfn . The exclusiveness check is it-
eratively repeated until no new renames are found as the FCFG equality check result
depends on the so-far known renames (see Section 4.4). Intuitively, this heuristic re-
laxes the requirement of summary uniqueness and instead, as a trade-off, introduces
a new requirement of FCFG equality. Note that summary equality generally does not
imply FCFG equality due to possible changes on the instruction level of individual basic
blocks.

4.2 Function Matching Using Call Contexts

The next three heuristics are based on the notion of function’s immediate neighbour-
hood in terms of the call relation.

Definition 7 (Function Call Context). The caller context Cf of a function f ∈ P is
the set of functions in P that may call f , formally: Cf = {c | (c, f) ∈ EP } ⊆ FP . The
callee context Cf of f is the set of functions in P that may be called from f , formally:
Cf = {c | (f, c) ∈ EP } ⊆ FP . The function call context C of f is then Cf = Cf ∪ Cf .

8 Note that the FCFG equality check is done using the algorithm introduced in Section 4.4.
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Note that in practice when comparing the C, C or the entire C of two functions,
the function names within the sets must be translated according to the already known
function renames.

Unique Function Call Contexts. The first heuristic matches a function fb ∈ FPb
with

ft ∈ FPt
iff they have the the same unique C, C and their names are either identical or

are candidates for a rename, i.e., fb ∈ Fmissing ⊆ FPb
and ft ∈ Fnew ⊆ FPt

. Intu-
itively, this approach can match functions that might have different summaries and/or
FCFGs as long as the functions fb and ft are used in exactly the same call contexts,
thus nicely complementing the summaries heuristics.

Equal Function Call Contexts. This next heuristic relaxes the uniqueness requirement
of the previous heuristic and instead limits the matching only to functions with the
same name to reduce the risk of false matches. More concretely, function fb ∈ FPb

and
a function ft ∈ FPt

will be matched iff their C, C and names are equal.

Similar Function Call Contexts. This last heuristic matches functions fb ∈ FPb
and

ft ∈ FPt
with the same name and similar call contexts. We define context similarity

in terms of subsets: contexts Cfb
and Cft are similar iff Cfb ⊆ Cft ∨ Cft ⊆ Cfb and

Cfb
⊆ Cft

∨ Cft
⊆ Cfb

. The intuition behind this heuristic is that function call contexts
may often change between versions and may contain new, or lack some previously
present, callee or caller functions. To reduce the number of potential false matches,
only functions with the same name are eligible for matching.

4.3 Heuristics Application Order

In general, we designed these heuristics to be applied in a sequence such that each
subsequent heuristic tries to match the functions that still remain unmatched. Although
these heuristics could be applied in an arbitrary order, we propose a specific application
order: from the most strict to the most lenient ones. This way we avoid potential mis-
matches that would happen if the lenient, low-confidence heuristics were applied first.

The proposed ordering is as follows: 1. Extended Function Summary Exact Matches,
2. Function Summary Unique Renames, 3. Unique Function Call Contexts, 4. Function
Summary Exclusive Renames, 5. Equal Function Call Contexts, and 6. Similar Function
Call Contexts. Note that the heuristics are not applied in exactly the same order as they
were defined.

The intuition behind this ordering is that the first three heuristics attempt to find the
“low-hanging fruit” in terms of function similarity by checking for complete summary
or context equality. Function Summary Exclusive Renames is used next as it relies on
the already known renames from the second and third heuristics, and no subsequent
heuristic is designed to identify renames. Also, while the Unique Function Call Con-
texts heuristic could potentially find more matches after the Function Summary Exclu-
sive Renames is executed, the subsequent Equal Function Call Contexts heuristic will
be able to identify those as well, hence no precision is lost by this specific ordering.

The last two heuristics work the best when the known renames mapping is as precise
as possible, hence why they are applied only after all the heuristics that can extend
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the known renames mapping. Naturally, the Similar Function Call Contexts heuristic is
potentially the least precise one, and as such is left to be applied the last. Any remaining
functions not matched by any of the heuristics are either considered a low confidence
name-only match if they appear in both baseline and target, or new or deleted if their
name counterpart is not found in the other version.

4.4 Control Flow Graph Difference Analysis

Once the function bijection m is constructed (or when candidate matches are being
evaluated, e.g., in the Function Summary Exclusive Renames heuristic), the matched
functions may be compared. Our FCFG diff analysis algorithm works by traversing the
FCFGfb and FCFGft in lockstep in a deterministic manner and comparing every pair
of visited edges and basic blocks according to the equality criterion. Given our use-case
for FCFG diff analysis in Perun, the algorithm simply returns whether two functions
are equal or not. Moreover, we can implement this check efficiently: upon encountering
the first difference we can terminate the analysis early.

The traversal starts at the entry basic block and continues to the subsequent basic
block through the next yet unvisited outgoing edge. We chose the next unvisited outgo-
ing edge according to its type: the fallthrough edge has the highest priority as there
may be at most one such edge; while the remaining jump edges are ordered according
to the destination address to ensure deterministic traversal of the edges. Whenever the
algorithm reaches a basic block that has no remaining unvisited outgoing edge, or the
basic block is already present in the current CFG traversal path9, the traversal back-
tracks to the previous basic block. We keep the current CFG path in a stack structure.

We compare individual basic blocks on a per-instruction basis: the instructions are
iterated from the first to last and for each instruction, its mnemonic and operands are
compared. However, comparing the individual basic blocks for an absolute equality is
generally too strict in practice, as address or register operands might change in subse-
quent compilations due to a number of reasons not associated with code changes in the
analysed function. Hence, we compare individual basic blocks in a generic manner – the
algorithm defines several comparison criteria listed from the most to least strict: (1) ab-
solute instructions and operands equality, (2) instructions equality with register bijec-
tion (3) instructions equality with register bijection and ignoring addresses or offsets,
(4) instructions equality while ignoring the operands, and (5) the number of instruc-
tions. Note that when we compare the fully unfolded destinations of call instructions,
i.e., we take into account any previously detected renaming.

4.5 Reusing Dynamic Models

We will close our approach with a discussion on how to efficiently reuse the dynamic
models. We emphasize that obtaining precise dynamic control flow models is often
quite expensive as it typically entails, e.g., running the entire test suite with some form
of profiling or tracing enabled. As such, when a control flow model is being constructed

9 By CFG traversal path, we mean the sequence of basic blocks BB0, BB1, . . . , BBi where
each pair of adjacent basic blocks (BBn, BBn+1) ∈ CP for 0 ≤ n < n+ 1 ≤ i.
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for a new project version, we reuse parts of the dynamic models observed in previous
versions of the software. This way, we get to reduce the number of dynamic runs that
need to be executed in order to improve the accuracy of the static models (and, in
extreme cases, possibly even skip the runs altogether if the entire dynamic model can
be reused). However, we want the reuse to be conservative to not accidentally include
dynamic call relations that may no longer exist in the new versions of the project.

The algorithm for identifying reusable parts of the dynamic models iterates over all
matched baseline and target function pairs (fb, ft) ∈ m and evaluates whether the func-
tions satisfy at least one of these two conditions: (1) the difference analysis determined
that ft has not changed compared to fb, or (2) the callee contexts restricted to the static
control flow models only, Cs

fb
and Cs

ft
, are equal. If at least one condition is satisfied, the

entire dynamic callee context Cd
fb

is reused in ft as its dynamic callee context Cd
ft

. The
intuition is simple: if the FCFGs or callee contexts obtained by the same static analysis
tools are identical, then the dynamic call relations are highly likely10 to be present in
the new project version as well – provided the same dynamic runs are still executable in
the new project version.

As the algorithm depends on the function mapping and difference analysis results,
it is currently scheduled only after those analyses have finished. However, we plan
to explore the possibility of running the algorithm simultaneously with the function
matching and diff analysis to improve both their recall and precision.

5 CPython Use-case Demonstration

To demonstrate the capabilities and efficiency of the proposed heuristics and algorithms,
we applied them on the CPython project; more precisely on its versions 3.10.4 and
3.11.0a7. We have selected two use-cases that demonstrate our approach.

– UC1: Constructing static control flow models of both CPython versions, and ob-
serving the efficiency and accuracy of both the function matching heuristics and
diff analysis criteria.

– UC2: Comparing our matching heuristics with our implementation11of the match-
ing algorithm described in [11].

We measured the results for both use-cases on a Linux Fedora 40 machine with 8
cores and 16 threads, AMD Ryzen 7 PRO 5850U 1.9 GHz CPU and 16 GB of RAM.
All measurements were repeated 7 times with the first two runs being discarded as
warm-up runs. Our implementation is written in Python 3.10 and we used the Angr [15]
library for the static CFM construction. The total number of functions discovered in the
CPython binary by Angr in 3.10.4 and 3.11.0a7 versions is 5262 and 5486, respectively.

10 Nonetheless, this algorithm is generally not sound nor complete. More advanced inter-
procedural analyses would likely be needed to enhance the precision of this algorithm.

11 As far as we know, the authors did not publish a software artifact with their implementation.
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Table 1. An overview of the number of matches and renames identified by each individual
heuristic. The heuristics were applied exactly in the order defined in Section 4.3.

Function Matching Heuristic |match| |rename| |remain3.10| |remain3.11|

Ext. Function Summary Exact Matches 3945 0 1317 1541
Function Summary Unique Renames 0 19 1298 1522
Unique Function Call Contexts 147 0 1151 1375
Function Summary Exclusive Renames 0 3 1148 1372
Equal Function Call Contexts 103 0 1045 1269
Similar Function Call Contexts 826 0 219 443

Total 5021 (95%) 22 219 443
Avg. runtime [s] 0.1569

Table 2. An overview of the number of functions identified as changed, resp. unchanged, using
the various diff analysis equality criteria defined in Section 4.4.

FCFG Diff Analysis Equality Criterion |changed| |same| Avg. runtime [s]

Exact instructions and operands equality 4002 1019 0.3100
Exact instructions equality, register and op. bijection 4001 1020 0.6173
Exact instructions equality and register bijection 1370 3651 2.3170
Exact instructions equality 1363 3657 0.9184
Instruction count 1285 3736 0.8184

5.1 Use-case 1: Function Matching and Diff Analysis

Table 1 shows the results obtained by running the heuristics in the proposed order on
CFMs constructed for CPython 3.10.4 and 3.11.0a7. We list for each heuristic the num-
ber of matched functions as |match|, the number of identified renames as |rename|
and the number of remaining functions to match in each version as |remain3.10| and
|remain3.11|. Overall, our heuristics successfully matched 95 % of the functions in
both CPython versions and identified 22 renames out of 150 missing (Fmissing) and
374 new (Fnew) names. Functions identified as renames were manually inspected and
we confirmed that they indeed represent a simple rename without a significant, that is,
control flow model altering change. The remaining 219 baseline and 443 target un-
matched functions represent either actually new and deleted functions, or functions that
have structurally changed so much that it is unclear whether they are corresponding to
their baseline or target counterpart in any other way than just by their name.

Table 2 shows the results of our FCFG diff analysis algorithm executed after the
function matching step. The Table lists the different equality criteria described in Sec-
tion 4.4 and the number of changed (|changed|), resp. unchanged (|same|), functions
each criterion identified. We plan to build on the proposed difference analysis with these
equality criteria, and possibly some more advanced tools such as DiffKemp [12], in our
future work on optimised profiling. The optimised profiling relies, among other, on the
ability to control the strictness of the function equality comparison within the employed
function difference analysis, which is supported by our analysis approach.
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Table 3. A comparison of identified matches, renames, false positives and runtime overhead of
the proposed heuristics (divided into the summary-based and call context-based categories) with
the two-step matching algorithm in [11].

Algorithm |match| |rename| |false matches| Avg. runtime [s]

Proposed function summaries 3945 22 0 0.0817
Call contexts matching 1076 0 0 0.0752
Total 5021 22 0 0.1569

Function summaries in [11] 1703 9 20 1.3564
N-gram similarity matching in [11] 3475 80 1278 448.0557
Total 5178 89 1298 449.4121

5.2 Use-case 2: Comparison

In the second use-case, we compared our three summaries-based and three call con-
text matching heuristics with the existing two-step matching algorithm from [11]. We
summarise the obtained results in Table 3; although the algorithm proposed by [11]
managed to overall match approximately 3 % more functions and identify almost four
times more renames, it suffers from 25 % false match rate and several orders of magni-
tude worse run time.

The vast difference in performance and false match rate can be explained by the as-
sumption about the connectivity of the CG made by the authors of [11]. The originally
proposed algorithm consists of two steps. First, a summary-based iterative matching is
used; in its initial step, it finds exact and unique summary matches, and subsequently
traverses and matches the rest of the CGs based on the existing call relations CP . How-
ever, for partially disconnected CGs with a lot of call context changes – e.g., CPython
CGs of different major versions constructed by Angr – this approach may fail and lead
to many unmatched functions. Second, the computationally expensive12 and less precise
N-gram similarity matching is used to match all of the remaining functions, resulting
in poor performance and high false match rate as no cut-off value for the similarity
measure is defined.

6 Conclusion

In this work we propose (1) an efficient layered control flow models representation that
conservatively reuses parts of dynamic models, (2) a hierarchical versioning system for
the storage of said models, (3) six function matching heuristics tailored specifically for
evolving software, and (4) a fast control flow difference analysis algorithm.

We have demonstrated our function matching heuristics and diff analysis in an use-
case with CPython project that resulted in a 95 % functions successfully matched with
no detected false positives tied to the function renames discovery. Although our heuris-
tics match about 3 % less functions compared to the existing approach in [11], they are
faster by several orders of magnitude and work even on partially disconnected CGs.
12 The algorithm needs to compute similarity for every pair of unmatched baseline and target

functions. Each such function comparison entails the computation and comparison of N-gram
sets for every pair of baseline and target basic blocks within those functions.
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