
SkipFlow: Improving the Precision of Points-to
Analysis using Primitive Values and Predicate Edges

David Kozak
ikozak@fit.vut.cz

Oracle Labs and Brno University of Technology
Czechia

Codrut Stancu
codrut.stancu@oracle.com

Oracle Labs
Switzerland

Tomas Vojnar
vojnar@fi.muni.cz

Masaryk University and Brno University of Technology
Czechia

Christian Wimmer
christian.wimmer@oracle.com

Work done while being a member of Oracle Labs
USA

Abstract
A typical points-to analysis such as Andersen’s or Steens-
gaard’s may lose precision because it ignores the branch-
ing structure of the analyzed program. Moreover, points-to
analysis typically focuses on objects only, not considering
instructions manipulating primitive values. We argue that
such an approach leads to an unnecessary precision loss, for
example, when primitive constants true and false flow out
of method calls. We propose a novel lightweight points-to
analysis called SkipFlow that interprocedurally tracks the
flow of both primitives and objects, and explicitly captures
the branching structure of the code using predicate edges. At
the same time, however, SkipFlow is as lightweight and scal-
able as possible, unlike a traditional flow-sensitive analysis.
We apply SkipFlow to GraalVMNative Image, a closed-world
solution to building standalone binaries for Java applications.
We evaluate the implementation using a set of microservice
applications as well as well-known benchmark suites. We
show that SkipFlow reduces the size of the application in
terms of reachable methods by 9% on average without sig-
nificantly increasing the analysis time.

CCS Concepts: • Software and its engineering→ Com-
pilers; Automated static analysis.

Keywords: points-to analysis, static analysis, pointer analy-
sis, compiler, optimization

ACM Reference Format:
David Kozak, Codrut Stancu, Tomas Vojnar, and Christian Wim-
mer. 2025. SkipFlow: Improving the Precision of Points-to Anal-
ysis using Primitive Values and Predicate Edges. In Proceedings

of the 23rd ACM/IEEE International Symposium on Code Genera-

tion and Optimization (CGO ’25), March 01–05, 2025, Las Vegas, NV,

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1275-3/25/03
https://doi.org/10.1145/3696443.3708932

USA. ACM, New York, NY, USA, 19 pages. https://doi.org/10.1145/
3696443.3708932

1 Introduction
Points-to analysis has been applied in many areas including
compiler optimizations [25], security analysis [4, 35], bug
hunting [17, 32], escape analysis [37], call graph construc-
tion [1, 43], and program understanding [16, 30]. However,
a typical points-to analysis such as Andersen’s [3] or Steens-
gaard’s [52] may loose a lot of precision because it ignores
the branching structure of the analyzed programs [19].

A flow-sensitive analysis canmitigate the issue by comput-
ing information per program point [62], but such an analysis
is known to have scalability issues [28]. This complicates us-
age in domains such as optimizing compilers or light-weight
bug-hunting tools, where the analysis has to finish in a few

minutes even on large programs.
Our key observation is that many branching instructions

can be efficiently evaluated during the analysis and used to
prune out unreachable successor branches without increas-
ing the overhead of the analysis. To do so, we introduce the
notion of predicate edges connecting the branching condi-
tions with nodes representing instructions contained within
the branches. In addition, we extend the domain of values
commonly tracked by points-to analysis with primitive val-

ues, motivated by the observation that many branching in-
structions are based on primitive values returned from other
methods.

We propose a novel predicated points-to analysis, named
SkipFlow, that tracks the flow of both primitives and objects
interprocedurally using a data structure called a predicated
value propagation graph (PVPG).We show how the PVPG can
be extracted by a sequential pass over a program and present
an algorithm computing the value states, i.e., points-to sets,
for all variables and fields.

We perform an extensive set of experiments using a set of
modern microservice applications as well as the well-known
benchmarking suites Renaissance [41] and DaCapo [7].

When applied on top of a context-insensitive typed-based
points-to analysis [60], SkipFlow reduces the size of the

https://orcid.org/0000-0002-8846-922X
https://orcid.org/0009-0007-3646-3663
https://orcid.org/0000-0002-2746-8792
https://orcid.org/0009-0003-3213-9306
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3696443.3708932
https://doi.org/10.1145/3696443.3708932
https://doi.org/10.1145/3696443.3708932

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA David Kozak, Codrut Stancu, Tomas Vojnar, and Christian Wimmer

class Scene {
void render(..., Display display) {

if (display == null) {
display = new FrameDisplay();

}
...

}
}

class BucketRenderer {
void render(Display display) {

...
display.imageBegin();
...

}
}

Figure 1. A DaCapo Sunflow motivating example.

applications in terms of reachable methods by max 9.2%, min
3.3%, avg 6.3% for microservices, max 17.2%, min 3.7%, avg
8.4% for Renaissance, and max 52.3%, min 3.5%, avg 13.3% for
DaCapo without much negative impact on the analysis time.
In fact, SkipFlow often reduces the analysis time because
fewer methods have to be processed.
The implementation presented in this paper is based on

GraalVM Native Image [59], which is written in Java, ana-
lyzes Java bytecode, and Java is used for all examples in this
paper. Nevertheless, our approach is not limited to Java or
languages that compile to Java bytecode. It can be applied to
all managed languages that are amenable to points-to analy-
sis, such as C# or other languages of the .NET framework.

In summary, this paper contributes to the state of the art
the following:
• We propose a novel approach that increases the pre-
cision of a points-to analysis using predicate edges, in
which flow-sensitivity is maintained for selected kinds
of branching instructions only.
• We extend the points-to analysis to also track primitive
constant values.
• We present an implementation for GraalVM Native
Image and evaluate it using a set of modern microser-
vice applications as well as the well-known benchmark
suites Renaissance and DaCapo. The results show that
SkipFlow reduces the size of the applications in terms
of reachable methods by 9%, and also reduces analysis
time in many cases.

2 Real-World Motivating Examples
Consider Figure 1 that is taken from the DaCapo Sunflow
benchmark [7]. The method Scene.render has a parameter
display that gets assigned a newly allocated FrameDisplay
if being null initially. However, in the configuration of
Sunflow used by the benchmark, the value of display is

class SharedThreadContainer {
Set<Thread> virtualThreads;
public void onExit(Thread thread) {

if (thread.isVirtual()) {
virtualThreads.remove(thread);

}
}

}

class Thread {
public boolean isVirtual() {

return this instanceof BaseVirtualThread;
}

}

Figure 2. A JDK motivating example.

never null. Since this is the only place where the class
FrameDisplay is instantiated, we can conclude it is not nec-
essary for the execution at all. Eventually, the imageBegin
method is called on display in the render method of the
BucketRenderer class, which for a FrameDisplay transi-
tively calls into the AWT and Swing libraries, none of which
are needed. Yet, a flow-insensitive analysis is not precise
enough to prove that. As it considers neither the order of
statements nor the branching structure, its pointer assign-
ment graph contains the spurious path 𝒏𝒆𝒘 FrameDisplay()
⇝ displayScene ⇝ displayBucketRenderer . On the other
hand, a flow-sensitive analysis can cover this case (assum-
ing it evaluates branching conditions and tracks the null-
ness of values), but at the cost of significantly higher anal-
ysis overhead. In SkipFlow, the PVPG contains a predicate
edge displayScene == null ⇝𝑝𝑟𝑒𝑑 𝒏𝒆𝒘 FrameDisplay() ,
which never triggers, thus preventing FrameDisplay from
being considered as instantiated. This ensures that AWT and
Swing are proven unreachable.
As a second example, consider the program in Figure 2.

The top part contains the method onExit taken from the
class SharedThreadContainer from the jdk.internal.vm
package. The method checks whether an exited thread is
a virtual thread and if so, the thread is removed from the
set of virtual threads the class maintains. The actual logic of
Thread.isVirtual() simply checks whether the thread is
a subclass of the BaseVirtualThread class.
If the application does not use virtual threads, the body

of the if statement is dead code. To prove that, we need an
interprocedural analysis (since the condition and the type
check are in different methods) that tracks both the flow
of types (to prove that the type check always fails) and the
flow of primitive values (to propagate the false value from
the type check back to the caller). Furthermore, the analy-
sis has to be at least partially flow-sensitive to utilize the
information and consider the remove() call unreachable.

SkipFlow: Improving the Precision of Points-to Analysis using Primitive Values and Predicate Edges CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

if (x instanceof T) {
use1(x);

} else {
use2(x);

}

x

instanceof T

use1

!instanceof T

use2

Figure 3. A type check example for filtering flows.

Our analysis satisfies all these requirements and successfully
removes the call.

These examples are not artificial: the former comes from
the well-established benchmark DaCapo Sunflow and the
latter from the JDK itself. We discovered both of them when
manually inspecting the results of our analysis, but they are
common patterns used to dynamically configure an applica-
tion. In our experiments, we show that handling such cases
precisely has a significant impact on the overall precision of
the analysis.

3 System Overview
This section presents a high-level overview of our analysis,
informally describes the intuition behind it, and lists its key
features. In the examples, we utilize statements use(x) in
code snippets. Their purpose is to represent an arbitrary
instruction resulting in a use dependency of a variable x at
a given program point.

Analysis Overview. Our analysis is field-sensitive and par-
tially flow-sensitive as explained later in this section. The
analysis starts with a set of root methods, e.g., {main}, and
then processes all transitively reachablemethods until a fixed
point is reached. Each reachable method is transformed into
a predicated value propagation graph (PVPG) that represents
the flow of both primitive values and objects. Nodes in the
PVPG are called flows. Roughly, flows correspond to mem-
ory locations and instructions in the analyzed language. We
defer a more precise definition of flows to Section 4 after
we describe the intuition behind the key features of a PVPG.
Flows can be connected by three types of edges: use edges
for classical value propagation; predicate edges used for sig-
nalling when a given flow becomes executable (essentially
unblocking value propagation through this flow); and observe
edges to reflect that some flow-specific actions need to be
performed when the value of some other flow changes (e.g.,
when a new type appears in a flow modeling the receiver
of an invoke operation, the resolution and linking of a new
target method might be needed). The graphs of individual
methods are connected into an interprocedural graph by
linking the actual arguments with the formal parameters
and the return from the callee back to the invocation in the
caller.

if (x > 10) {
m();

} else {
f();

}

x

x > 10

invoke m()

x <= 10

invoke f()

42

Figure 4. A predicate example. Enabled flows are coloured
in red, and disabled flows in grey.

Filtering Flows. While SkipFlow is mostly flow-insensitive,
we maintain a certain degree of flow-sensitivity using mul-
tiple approaches. First, the analysis is executed on a base
language in static single assignment (SSA) form [13], which
maintains flow-sensitivity for local variables. Second, we
model conditional branches that involve type checks, null
checks, and primitive comparisons to increase the precision.
Consider the example shown in Figure 3. It is obvious from
the structure of the program that the value of x in use1 can
only be of the type T (or some of its subtypes), and simi-
larly the value of x in use2 can never be of the type T (nor
of any of its subtypes). Correspondingly, the filtering flow
instanceOf T only passes further the type T (and its sub-
types) for x, and vice versa for the other branch. When the
value state of a variable ends up empty in a branch, the code
of that branch is proven unreachable by the analysis.

Control Flow Predicates. Control flow predicates model
the relationship between a condition in a branching instruc-
tion and the nodes within its branches. An instruction within
a then branch is executable iff the flow representing the con-
dition of the branch has a non-empty value state, and simi-
larly for the else branch. Contrary to the typical Andersen’s
points-to analysis [2], flows in our analysis only propagate
values if the value state of their predicate becomes non-empty.
Consider the example in Figure 4. Predicate edges are visu-
alized using dashed lines with empty arrow heads. If the
value of x is known to be 42, it passes only the condition
x > 10 and thus only the flow representing the invoke m()
is marked as executable. The condition x <= 10 of the else
branch filters x to empty, not enabling the flow representing
the invoke f(). In this example, a primitive comparison acts
as the predicate. Similarly, any type check or null check ex-
pressed as a filtering flow is a predicate for the beginning
of its block. When using predicates, the method f() is not
marked as reachable and therefore not analyzed.
One might think that the above approach is covered by

constant folding commonly implemented by compilers. How-
ever, constant folding is typically implemented within the
scope of a single method, therefore it covers only the case
when x is defined as a constant locally. In the case where x is
not a constant locally, e.g. it is a method parameter, achieving
the same effect using only intraprocedural optimizations is
no longer possible.

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA David Kozak, Codrut Stancu, Tomas Vojnar, and Christian Wimmer

if (x != null) {
y = 5;

} else {
y = 10;

}
use(y);

x

x != null

5

x == null

10𝜙𝑝𝑟𝑒𝑑

𝜙
use

Figure 5. An example PVPG with 𝜙 flows.

Any

0 1 2 ...-1... -2

Empty

Figure 6. The lattice P of primitive values.

Method Invocations as Predicates. If we can prove that
a method never returns, we can conclude that all the state-
ments following themethod invocation are unreachable. This
happens, e.g., when a method contains an infinite loop, or
when an exception is always thrown, e.g., Assert.fail()
and similar methods. In our analysis, every method invoca-
tion is a predicate for the following statements in the block.
A method with a void return type still returns the predi-
cate of the return instruction as an artificial value signaling
whether the return is reachable.

Joining Values using 𝜙 Flows. When multiple branches
join in the control flow graph, it is necessary to join the
incoming values in the PVPG. Consider Figure 5. The value of
y depends on which branch was taken. In SSA form, a 𝑦3 ←
𝜙 (𝑦1, 𝑦2) instruction expresses that explicitly. In a PVPG, a 𝜙
flow (depicted as 𝜙) is introduced to join the two definitions
of y.

Each of the definitions of𝑦 is guarded by their correspond-
ing predicate, the 𝑥 ≠ null flow in case of 𝑦 = 5 and the
𝑥 == null flow in case of 𝑦 = 10. These predicates need to
be joined too, producing a predicate flow, denoted as 𝜙𝑝𝑟𝑒𝑑 ,
for the joined value. Intuitively, the code after a control flow
join is executable iff the end of any of its predecessors is.
For each control flow join, a 𝜙𝑝𝑟𝑒𝑑 flow is introduced, and
connected via predicate edges with the latest predicates from
the predecessor branches. This 𝜙𝑝𝑟𝑒𝑑 becomes the new pred-
icate in the following block, and is also the predicate of all
the 𝜙 flows generated for joining values (see the pred edge
going from the 𝜙𝑝𝑟𝑒𝑑 to 𝜙).

Abstractions for Primitive Values. As shown in the mo-
tivating example, the analysis needs to track some primitive
values such as boolean constants. But to scale the analysis

to hundreds of thousands of methods analyzed within a few
minutes, it is necessary to provide sufficient abstractions.
Therefore, we use the simple lattice P depicted in Figure 6
to model primitive values. We do not attempt to model in-
tervals or sets, only concrete values, Empty, and Any. The
join of two different constant values results immediately in
Any. The boolean constants true and false are modelled as
constants 1 and 0, respectively. Similarly, we do not explicitly
model arithmetic operations in the PVPG. Instead, a flow is
inserted into the graph that always produces the value Any.

Abstractions for Objects. SkipFlow is designed to work
with any lattice-based representation for objects as long as
type checks, null checks, and virtual method resolution can
be applied on the elements of the lattice. Null references are
handled as a special type that can be part of any value state.
In the implementation of SkipFlow evaluated in this paper,
we have chosen to represent objects by their types only.
This type abstraction was shown useful by prior work when
embedding the analysis in a compiler [60]. On top of that, the
type abstraction (or a similar mechanism) is in some cases
even necessary to preserve soundness for Java: For example,
allocation-site information is not available when interfacing
with C code via JNI where new Java objects can be created
in C or passed back and forth between Java and C, or object
fields can be queried in C and the results then passed back
into Java.
However, we argue that our technique is applicable to

both type-based and object-based points-to analysis. The
decision to use the type abstraction is an implementation
detail as the same analysis can be executed using a subset
lattice based on allocation sites, possibly even extended with
allocation context for context-sensitive analysis.

4 Predicated Value Propagation Graphs
In this section, we describe the structure of PVPGs and the
rules for value propagation over them. For space reasons, we
focus on a high-level description. The full formalism can be
found in Appendices B and C. The input to the analysis is
a Java-like managed base language in static single assign-
ment form.

Structure of a PVPG. A PVPG models the flow of both
primitive values and objects interprocedurally. Vertices in
a PVPG are called flows to clearly distinguish them from
the instructions in the base language. The flows represent
values of method parameters, variables, and fields read or
written by a particular instruction (each instruction reading
or writing to a variable produces a fresh flow); method calls,
which also represent the returned value in the caller; and
values to be returned from a method call back to the caller.
Further, flows represent values of various conditions present
in the code (including their negated and inverted versions as
explained later); values resulting from joining the values of

SkipFlow: Improving the Precision of Points-to Analysis using Primitive Values and Predicate Edges CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

other flows (results of 𝜙 instructions); 𝜙𝑝𝑟𝑒𝑑 flows for joining
predicates; and, finally, the always enabled predicate predon.
Each flow keeps a reference to the underlying base language
element it represents. The analysis computes the value state
of each flow representing a conservative overapproximation
of the values that can be assigned to the given flow during
the runtime of the program.

Flows can be connected via three types of edges described
below.

A use edge represents a def-use dependency between flows.
If there is a use edge between flows s and t, denoted by
s ⇝𝑢𝑠𝑒 t, the value state of t has to be at least as big as the
value state of s in terms of the underlying lattice provided
that 𝑠 is executable and no filtering is applied (the semantics
of filtering is explained later).
A predicate edge represents a control-flow dependency.

A predicate edge between flows s and t, denoted by s ⇝𝑝𝑟𝑒𝑑 t,
defines that if s is executable and has a non-empty value state,
t is also executable. Every flow is the target of an incoming
predicate edge, apart from pred

on, which is always enabled
and therefore does not need an incoming edge. A 𝜙𝑝𝑟𝑒𝑑 flow
has multiple incoming predicate edges. In that case, it suffices
that any of its predicates has a non-empty state to enable
the execution of the target flow.
An observe edge represents an additional flow-specific

dependency. An observe edge between flows s and t, denoted
as s ⇝𝑜𝑏𝑠 t, defines that t has access to the value state of s,
and t is notified when the state changes to perform some
flow-specific task such as a field update or method resolution
and linking (discussed more below).

Creating a PVPG. This paragraph describes how the PVPG
can be created for a given method. A formalization of the
algorithm is presented in Appendix B. Basic blocks of the
method are processed in reverse postorder, and the instruc-
tions within each basic block are processed sequentially top
to bottom. During the traversal, flows are created for the
encountered instructions and memory locations.
The traversal maintains a state for each basic block con-

sisting of: (1) A mapping from variables to previously created
flows, which is used to connect flows with their dependen-
cies, e.g. to establish a use edge between the flow representing
x and the subsequently created filtering flow x != 0, and
(2) a reference denoted as pred that is continuously updated
to refer to the last encountered predicate. The predicate ref-
erenced by pred is used to establish predicate edges. At the
beginning of a method, when no suitable flow is available
yet, the special predon flow is used, which is always enabled,
i.e. the initial flows inside methods are always enabled.

When processing a branching instruction, the branching
condition is handled separately for the then and else branch.
For the then branch, the condition is used as is; for the else
branch, it has to be negated, e.g. x < 10 becomes x >= 10.
These conditions are used to filter the values of their tested

≠

Invoke isVirtual() 0

pthread

pthis

LoadField virtualThreads

Invoke remove()

pthis

instanceof T !instanceof T

1 0
𝜙𝑝𝑟𝑒𝑑

𝜙

Return

Figure 7. The PVPG for the methods onExit (on the left) and
isVirtual (on the right) from the JDK motivating example
in Figure 2. Full lines represent use edges, dashed lines repre-
sent predicate edges, and dotted lines represent observe edges.
In the instanceof check, T stands for BaseVirtualThread.
Note that the two pthis flows each represent the implicit this
parameter in their corresponding method.

variables within the scope of the successor branches, which
is done using the filtering flows described in Section 3. Inside
each branch, the following happens. If the condition tests
a single variable only, for example a nullcheck or a typecheck,
a single filtering flow is created. If the condition is a compar-
ison of two variables, e.g. x < y, two flows are created, each
representing one variable1. The filtering flows serve as new
definitions for the variables they test. In our example, we
have a new flow for x whose value is less than y, and a new
flow for y, whose value is greater than x.

Running Example. Figure 7 shows the PVPG for the meth-
ods onExit (on the left) and isVirtual (on the right) from
the JDK motivating example in Figure 2. To make the graph
more compact, we omit the always-enabled predicate predon.
A flow that does not have any incoming predicate edge in the
graph is predicated by pred

on. The condition that invokes
isVirtual() and that guards the then branch containing
the Invoke remove() leads to the filtering flow denoted as ’≠’.
Recall that boolean values are represented as integers, thus
the condition becomes if (thread.isVirtual() != 0),
which is encoded explicitly in the graph. The flow represent-
ing the Invoke isVirtual() is the predicate of ’≠’ (Indeed,
the method must be first invoked and only then the test
may be executed), which in turn is the predicate of the flow
representing the load field virtualThreads and the flow
representing the remove() invocation.
Furthermore, note that pthread is connected via observe

edge with the Invoke isVirtual(), because the invocation
may need to link new call targets every time a new type
appears in the value state of pthread. The same applies to the

1Note that, here, we assume a base language with conditions involving at
most two variables as compound expressions can be broken into chains of
simpler ones without loss of generality.

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA David Kozak, Codrut Stancu, Tomas Vojnar, and Christian Wimmer

chain of observe edges from pthis through the load field of
virtualThreads to the Invoke remove(). Every time a new
type appears in the value state of pthis, a new field may be
connected with the load field instruction, which in turn may
add more types to the value state of the load field, possibly
triggering a new method linking for the Invoke remove().

The filtering flow ’≠’ is connected via a use edge with the
Invoke isVirtual(), whose values it filters and propagates.
Further, it also has an observe edge from the constant zero,
because it needs to access its value state to perform the
filtering (in this case, the value is constant, but it does not
have to be in general).

In the isVirtual()method (on the right), the type check
leads to two filtering flows, each of which is the predicate
for their corresponding returned values.

Value propagation throughPVPGs. This section describes
the rules for value propagation in a PVPG. A formalization
is given in Appendix C. Each flow maintains a value state
representing the set of values that can be assigned to the
corresponding base language element at runtime. Primitive
values are modelled using the lattice P discussed in Section 3.
Objects are modelled using a subset lattice over types. Fol-
lowing the work ofWimmer et al. [60], we do not distinguish
individual allocation sites to improve scalability.
Each flow, except from pred

on, is initially disabled, not
propagating any values. At the beginning of the analysis,
pred

on enables all the flows to which it is directly connected
via a predicate edge. Once a flow becomes enabled, it propa-
gates its own value state along the use edges. If a flow has
multiple incoming use edges, its value state is the join of all
the incoming values. Additionally, filtering flows filter their
incoming values based on their conditions, e.g. a type check
allows only subtypes to flow through it, x < 10 allows only
values smaller than 10 to flow on, etc. Once a value state

of any enabled flow becomes non-empty, it enables all the
flows to which it is connected via predicate edges, possibly
triggering more value propagation.
Method invocations are handled by linking, i.e. creating

use edges from the arguments in the caller to the formal
parameters of the callee, and from the return in the callee
back to the invoke flow in the caller (the invoke flow also
represents the returned value). For virtual invokes, the link-
ing is done for every possible target method obtained by
inspecting the value state r of the receiver (with which the
invoke is connected via an observe edge) and performing
method resolution

2 for each type 𝑡 ∈ 𝑟 .
Since the elements used in value states form a lattice with

a finite height and all our filtering and join operators are
monotone, the analysis is guaranteed to eventually reach
a fixed point and terminate.

2The virtual method resolution is done as defined by the JVM specifica-
tion [31].

≠

Invoke isVirtual() 0

pthread

pthis

LoadField virtualThreads

Invoke remove()

pthis

instanceof T !instanceof T

1 0
𝜙𝑝𝑟𝑒𝑑

𝜙

Return
VS(Return) = {0}

VirtualThread ∉ VS(p
thread

)

Figure 8. The PVPG for the methods onExit (on the left)
and isVirtual (on the right) from the JDK motivating ex-
ample in Figure 2 after the analysis reaches a fixed-point.
Full lines represent use edges, dashed lines represent predi-
cate edges, and dotted lines represent observe edges. Enabled
flows are coloured in red, and disabled flows in grey. In
the instanceof check, T stands for BaseVirtualThread. The
method onExit is linked from some caller, but its pthread
never receives any VirtualThread (VS stands for value state).
Note that the two pthis flows each represent the implicit this
parameter in their corresponding method.

Running Example. Figure 8 shows the state of the PVPG
for the JDK motivating example after the analysis reaches
the fixed point. The following steps produce this state: First,
the method onExit() is linked from some already reachable
method m. Then, the PVPG of onExit() is created and its
pthread is linked with the flow in m representing the corre-
sponding argument. The flows pthread, Invoke isVirtual(),
the flow representing the constant 0, and pthis from the
onExit()method get immediately enabled because they are
guarded by pred

on.
Once the value state of pthread is non-empty, the Invoke

isVirtual() is notified via its observe edge, which leads
to a creation of the PVPG for the isVirtual() method
and to linking the callee and the caller. During the linking,
pthread in onExit() is linked with pthis in isVirtual(),
and the Return from isVirtual() is linked with the In-
voke isVirtual() in onExit(), since the value state of the
flow representing the invocation represents the returned
value in the caller. So far, the value state of the Return in
isVirtual() is still empty. In isVirtual(), the only en-
abled flows after the creation are pthis and both filtering
flows representing the type check. Assume that no virtual
thread is created in the analyzed application, so the value
state of pthread only contains non-virtual thread types. Con-
sequently, only the filtering flow for the else branch in
isVirtual() receives a non-empty value state after filter-
ing, which enables the flow holding the constant 0. This

SkipFlow: Improving the Precision of Points-to Analysis using Primitive Values and Predicate Edges CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

value is propagated back into onExit() through the 𝜙 and
the Return flows.
The value state of the Invoke isVirtual() is now non-

empty and enables the filtering flow ’≠’. However, the value
state of the Invoke isVirtual() contains zero only, which
is filtered out by ≠ with another zero, so the value state of
’≠’ remains empty, never enabling the rest of the flows in
onExit. Therefore, the Invoke remove() is not enabled, and
consequently, the remove() method is not processed.

5 Implementation Details
This section presents various details that are more tied to
our specific implementation than the general algorithm pre-
sented above. We also discuss how we handle dynamic parts
of Java including Reflection and JNI.

Handling Exceptions. While it is possible to track the
propagation of exceptions from callees back into callers, we
have not observed enough precision improvement in our
experiments to justify the overhead. Therefore, to improve
the scalability of the analysis, we assume that any instanti-
ated exception can flow out of any exception handler with
matching types.

Exception handling provides another use case for method

invokes as predicates. Certain methods may never return and
instead always throw exceptions. Such a behaviour can either
be intentional, e.g., Assert.fail() and similar methods, or
accidental, for example when the arguments passed into
a method are invalid, e.g., null is passed as an argument
that should be non-null. In such cases, SkipFlow can prove
that the code after the method invocation is unreachable.

BooleanValues. Consistentwith the JVMSpecification [31],
we model boolean values true and false as 1 and 0, respec-
tively. Consequently, the type boolean does not exist from
the point of view of the analysis. Recall that predicate edges
are always triggered when the value state becomes non-
empty, which is different from the value state becoming 0, i.e.
false. When a value state becomes 0, it is non-empty, so the
value propagation is triggered. Figure 7 of the running ex-
ample showed how conditions are converted to comparisons
with the constants 1 and 0.

Reflection, JNI, Unsafe. The Java Virtual Machine Speci-
fication [31] contains many dynamic features that are hard
to analyse statically [24], for example, the Reflection API,
JNI, and Unsafe. While soundness is in practice sometimes
replaced with soundiness [33], our analysis is meant to be
embedded in a compiler, thus we have to handle all of these
dynamic features soundly. Otherwise, incorrect code would
be generated. On the other hand, allowing any method to be
called in a way opaque to the analysis defeats the purpose
of the analysis, as everything would be reachable.

Therefore, we require a configuration file specifyingwhich
methods and fields are accessed via Reflection or JNI. We

inherit this design decision from GraalVM Native Image [59],
upon which the prototype of SkipFlow is implemented. One
might argue that such an approach could lead to unsound
results if incomplete configuration is provided. However,
we believe that this approach is still sound with respect
to the semantics of GraalVM Native Image, which relies
on these configuration files anyway. We do not claim any
contributions in the area of reflection handling, and SkipFlow
could be easily adjusted to use a different policy.

To help creating the configuration, we provide a tool sim-
ilar to [8]: a tracing agent that monitors the application at
runtime. For methods designated as invoked via Reflection
or JNI, we mark them as root methods and assume that the
value states of their parameters can contain any instanti-
ated subtype of their declared type. Similarly, the value state
of any field accessed via Reflection or JNI can contain any
instantiated subtype of its declared type.
For Unsafe, we conservatively assume that any input of

any unsafe write or normal write into an unsafe-accessed
field can flow out of any unsafe load.

6 Evaluation
We have implemented our approach in the Native Image [59]
component of GraalVM, which produces standalone binaries
for Java applications that contain the application along with
all its dependencies, as well as the necessary runtime compo-
nents such as the garbage collector. We base our branch on
a recent commit in master3. In the experiments, which were
done on top of Oracle GraalVM, we compare our analysis
(depicted as SkipFlow), with the points-to analysis (depicted
as PTA) used by default in Native Image (type-based flow-
insensitive context-insensitive analysis) [60]. That is the con-
figuration shown in [60] to be the most suitable when the
analysis results are used for compilation, i.e., when a fully
sound analysis is needed.

A comparison between PTA and other commonly used call
graph construction algorithms, namely, Rapid Type Analysis
(RTA) [5] and Variable Type Analysis (VTA) [54], was already
presented in [60] (their context-insensitive without saturation
configuration is essentially a VTA). The remaining typical
call graph construction algorithm, Class Hierarchy Analysis
(CHA) [14], is expected to be even less precise than RTA.
Since the precision of RTA is already too low, a CHA is not
implemented in GraalVM Native Image at the moment.

All the experiments were executed with Java 244. We run
all the benchmarks 10 times and report the average of the
runs. The benchmarks were executed on a dual-socket In-
tel Xeon E5-2630 v3 running at 2.40 GHz with 8 physical /
16 logical cores per socket, 128 GByte main memory, running
Oracle Linux Server release 7.3. The benchmark execution

3Commit id: 𝑑82𝑎349401𝑒5𝑐 𝑓 𝑒𝑏7𝑑4523𝑑𝑑16810𝑏𝑓 𝑎𝑎28𝑏60𝑏7.
4We chose to present the data using a cutting edge release, but we have also
experimented with Java 21, producing similar results.

https://github.com/oracle/graal/commit/d82a349401e5cfeb7d4523dd16810bfaa28b60b7

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA David Kozak, Codrut Stancu, Tomas Vojnar, and Christian Wimmer

was pinned to one of the two CPUs, and TurboBoost was
disabled to avoid instability. The number of threads used by
the analysis was set to 16. We use a server configuration for
benchmarking because that allows us to provide stable and
reproducible numbers. However, we deliberately selected an
old configuration similar to a current developer laptop.

We use three benchmark suites: DaCapo 9.12 [7], Renais-
sance 0.15.0 [41], and microservices. DaCapo is a benchmark
suite that consists of client-side Java benchmarks, trying to
exercise the complex interactions between the architecture,
compiler, virtual machine and running application. Renais-
sance is a benchmark suite that consists of real-world, con-
current, and object-oriented workloads that exercise various
concurrency primitives of the JVM. In both Renaissance and
DaCapo, we use a subset of the benchmark suite because
some benchmarks are not compatible with the Native Image
Ahead-of-Time compilation. However, we decided to include
the benchmarks als, chi-square, dec-tree, and log-regression

from Renaissance, which are not yet fully supported in Native
Image. In particular, their analysis already finishes success-
fully, but the compiled application does not run because
class definitions at runtime are used, which are not yet fully
supported.

Microservices is our own set of microservice applications.
We use the three most frequently used modern frameworks
for Java web services in our evaluation: Spring, Micronaut,
and Quarkus. In order not to be biased towards a single
framework, we selected multiple representative applications
for each of them. All the applications perform different func-
tions. Under no circumstances can our evaluation be seen as
a comparison and ranking of the frameworks against each
other.

In particular, the microservices benchmark suite consists
of the following applications:
• Micronaut Helloworld: A helloworld application writ-
ten with the Micronaut framework.
• MicronautMuShopOrder, Payment, and User [39]: Three
microservices of a large demo application using the
Micronaut framework.
• Quarkus Helloworld: A helloworld application written
with the Quarkus framework.
• Quarkus Registry [42]: A large real-world application
using the Quarkus framework. It is used to host the
Quarkus extension registry.
• Quarkus Tika: A demo application written with the
Quarkus framework.
• Spring Helloworld: A helloworld application written
using the Spring framework.
• Spring PetClinic [56]: A large demo application for the
Spring framework.

For each benchmark, we collect the following metrics:
• Analysis Time: The time it takes to run the analysis,
measured in milliseconds.

• Reachable Methods: The number of methods marked
reachable by the analysis.
• Counter Metrics: We count specific instructions in all
reachable methods that cannot be removed or sim-
plified using the results of the analysis. In particular,
we count three types of branching instructions: Type
Checks, Null Checks, Primitive Checks, and the number
of virtual method calls that could not be devirtualized,
denoted as PolyCalls.
• Total Time: The time it takes to run the whole Native
Image compilation, measured in milliseconds.
• Binary Size: The size of the resulting binary file, mea-
sured in MB.

In the discussions below, we focus mainly on the first four
metrics, which we consider analysis-oriented. The total time

and binary size are added to demonstrate the effect on the
whole Native Image compilation.

Detailed Results. Table 1 presents the results for all the
benchmarks. Note that due to the rounding to seconds, the
analysis time in the table sometimes looks identical, but
the actual values in terms of milliseconds are still slightly
different. This can be observed for example for the DaCapo
luindex benchmark.
The first block in the table presents the DaCapo bench-

marks. The most interesting example in this category is the
Sunflow benchmark, in which the size of the application is
reduced by 52.3%. The reason for such a radical reduction is
that fact that our analysis successfully removed the AWT and
Swing GUI libraries, as explained in the motivating example
in Section 2. The least impacted benchmark is lusearch,
reduced by 3.5%. lusearch is also the smallest benchmark
in this category, thus offering fewer program points where
the precision can be improved. On average, the number of
reachable methods is reduced by 13.3%. The counter metrics
follow a similar trend.
The most prominent case for Microservices is Quarkus

Tika, whose size is reduced by 9.2%, followed by the biggest
benchmark in this category, Spring Petclinic, which is re-
duced by 8.1%. The least impacted benchmark is Micronaut
Helloworld, reduced by 3.3%, again being at the same time
the smallest benchmark in this category. On average, the
number of reachable methods is reduced by 6.3%.

For Renaissance, the biggest reduction is achieved on the
chi-square benchmark, which is reduced by 17.2%. The other
Spark benchmarks als, dec-tree, and log-regression are re-
duced by at least 15%. The least impacted benchmark is
reactors, reduced by 3.7%, again being also one of the small-
est in this category. In general, the whole suite is reduced
by 8.4%.

Overall, we can observe that bigger applications generally
offer more potential for optimizations, because they have
more libraries out of which only subsets are used and thus
the remainder can be removed. Nevertheless, there are some

SkipFlow: Improving the Precision of Points-to Analysis using Primitive Values and Predicate Edges CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Table 1. Results for all bench suites. For all metrics, lower is better. The best result in reachable methods for each bench suite is
in yellow , the worst is in grey . Even for the grey rows, SkipFlow still improves over the baseline in all metrics apart from
analysis time.

Bench
Suite Benchmark Conguration Analysis

Time [s]
Total

Time [s]
Reach.

Methods
Type

Checks
Null

Checks
Prim

Checks
Poly
Calls

Binary
Size [MB]

D
a
C
a
p
o

fop

h2

jython

luindex

lusearch

pmd

sunflow

xalan

M
i
c
r
o
s
e
r
v
i
c
e
s

Micronaut Helloworld

Micronaut MuShop Order

Micronaut MuShop Payment

Micronaut MuShop User

Quarkus Helloworld

Quarkus Registry

Quarkus Tika

Spring Helloworld

Spring Petclinic

R
e
n
a
i
s
s
a
n
c
e

akka-uct

als

chi-square

dec-tree

finagle-chirper

finagle-http

fj-kmeans

future-genetic

log-regression

mnemonics

par-mnemonics

philosophers

reactors

rx-scrabble

scala-doku

scala-kmeans

scala-stm-bench7

scrabble

PTA 27 179 96.1k 39.2k 129.4k 137.8k 31.4k 136
SkipFlow 28 +1.3% 171 -4.6% 89.3k -7.1% 35.9k -8.4% 117.8k -8.9% 125.4k -9.0% 28.9k -8.0% 129 -5.2%
PTA 15 96 43.3k 21.7k 49.3k 59.5k 10.3k 65

SkipFlow 15 93 40.0k -7.6% 19.1k -11.8% 44.3k -10.2% 54.6k -8.3% 9.4k -9.2% 61 -5.8%
PTA 24 373 74.9k 26.7k 91.2k 77.5k 33.2k 253

SkipFlow 22 -7.1% 365 -2.2% 70.5k -6.0% 24.4k -8.7% 83.4k -8.5% 66.6k -14.1% 31.9k -3.8% 249 -1.6%
PTA 8 57 31.2k 9.4k 29.7k 45.2k 6.0k 44

SkipFlow 8 +5.3% 56 -1.5% 30.0k -3.9% 9.0k -4.3% 28.1k -5.4% 43.3k -4.1% 5.7k -5.8% 43 -2.6%
PTA 11 73 29.2k 9.0k 25.9k 42.6k 5.1k 40

SkipFlow 12 +4.1% 72 -1.2% 28.2k -3.5% 8.7k -3.9% 24.8k -4.2% 41.0k -3.7% 4.9k -4.7% 39 -1.6%
PTA 20 128 64.0k 33.6k 85.3k 95.3k 18.6k 91

SkipFlow 20 -0.4% 121 -4.9% 58.1k -9.3% 29.6k -11.8% 74.1k -13.2% 84.1k -11.7% 16.3k -12.4% 85 -7.1%
PTA 19 124 56.7k 20.3k 72.0k 92.2k 13.4k 65

SkipFlow 12 -35.4% 79 -36.0% 27.1k -52.3% 8.3k -58.9% 25.4k -64.7% 44.4k -51.9% 4.4k -67.3% 32 -50.5%
PTA 16 109 49.0k 22.9k 64.1k 76.4k 14.9k 63

SkipFlow 16 -0.5% 99 -8.8% 40.6k -17.0% 18.8k -17.8% 50.5k -21.2% 63.3k -17.2% 11.3k -23.9% 55 -13.2%
PTA 21 131 76.0k 33.7k 76.5k 79.7k 22.9k 73

SkipFlow 21 +2.2% 127 -3.6% 73.5k -3.3% 32.2k -4.5% 73.2k -4.3% 76.2k -4.4% 21.8k -4.7% 70 -3.1%
PTA 38 236 167.0k 79.1k 168.0k 139.7k 51.3k 144

SkipFlow 38 +0.2% 225 -4.8% 154.9k -7.3% 73.4k -7.3% 153.5k -8.6% 127.2k -8.9% 46.8k -8.8% 136 -5.5%
PTA 15 96 83.0k 35.6k 78.1k 76.0k 27.0k 73

SkipFlow 15 +2.4% 94 -2.0% 79.5k -4.2% 34.0k -4.7% 73.9k -5.4% 72.2k -5.0% 25.6k -5.4% 70 -3.7%
PTA 27 165 113.0k 53.6k 121.5k 111.8k 38.1k 106

SkipFlow 27 +0.8% 159 -3.5% 105.4k -6.7% 49.7k -7.2% 111.6k -8.2% 102.7k -8.1% 35.1k -7.7% 100 -5.6%
PTA 18 107 59.6k 25.0k 55.1k 64.7k 15.6k 54

SkipFlow 18 +2.3% 105 -1.2% 56.0k -6.0% 23.4k -6.4% 51.5k -6.6% 59.9k -7.4% 14.6k -6.9% 52 -4.0%
PTA 29 182 134.2k 63.4k 133.0k 107.8k 46.4k 118

SkipFlow 24 -18.6% 174 -4.3% 125.1k -6.8% 59.2k -6.7% 122.4k -8.0% 100.2k -7.0% 40.6k -12.5% 112 -4.8%
PTA 30 181 109.1k 42.2k 111.1k 125.7k 30.3k 123

SkipFlow 30 -0.8% 177 -2.5% 99.1k -9.2% 37.9k -10.3% 99.2k -10.8% 115.1k -8.5% 25.4k -16.3% 118 -4.5%
PTA 23 143 85.2k 39.5k 99.1k 95.0k 22.5k 81

SkipFlow 23 -0.7% 138 -3.3% 80.4k -5.6% 36.7k -7.0% 91.7k -7.4% 89.7k -5.6% 20.0k -10.9% 77 -4.7%
PTA 44 284 210.2k 112.3k 240.1k 187.7k 73.5k 202

SkipFlow 44 +0.7% 273 -4.0% 193.3k -8.1% 105.7k -5.9% 221.5k -7.7% 173.6k -7.5% 66.2k -9.9% 191 -5.3%
PTA 12 79 38.8k 10.2k 27.4k 34.7k 6.9k 31

SkipFlow 12 -1.1% 76 -3.4% 36.3k -6.4% 9.0k -12.0% 24.8k -9.5% 31.9k -8.0% 6.5k -5.9% 30 -5.4%
PTA 83 475 381.6k 143.4k 317.2k 220.6k 95.2k 313

SkipFlow 86 +3.0% 431 -9.3% 321.1k -15.8% 121.2k -15.4% 261.2k -17.7% 177.6k -19.5% 76.3k -19.9% 269 -13.8%
PTA 43 286 217.8k 76.8k 192.4k 164.2k 50.0k 179

SkipFlow 40 -8.2% 253 -11.5% 180.3k -17.2% 61.8k -19.5% 156.6k -18.6% 135.3k -17.6% 39.1k -21.9% 151 -16.0%
PTA 86 492 385.4k 147.0k 320.4k 221.1k 96.9k 316

SkipFlow 90 +5.2% 446 -9.5% 324.9k -15.7% 124.6k -15.2% 264.3k -17.5% 178.3k -19.3% 77.7k -19.7% 272 -13.8%
PTA 22 138 94.9k 31.3k 76.0k 74.4k 24.8k 79

SkipFlow 20 -7.8% 127 -8.1% 82.8k -12.7% 23.8k -23.8% 60.3k -20.7% 60.5k -18.7% 19.9k -19.7% 67 -14.2%
PTA 22 138 93.9k 31.2k 76.3k 74.9k 24.7k 77

SkipFlow 21 -7.1% 128 -7.6% 81.9k -12.8% 23.7k -24.0% 60.6k -20.7% 61.0k -18.6% 19.8k -19.9% 66 -15.0%
PTA 11 64 28.0k 7.1k 19.6k 29.7k 4.5k 24

SkipFlow 10 -1.8% 62 -2.1% 26.4k -5.5% 6.6k -5.8% 18.3k -6.5% 27.9k -6.0% 4.2k -8.0% 23 -3.7%
PTA 10 64 28.8k 7.2k 20.1k 30.0k 4.7k 24

SkipFlow 10 62 27.2k -5.6% 6.8k -6.1% 18.8k -6.5% 28.2k -6.1% 4.3k -8.1% 24 -3.8%
PTA 90 516 394.7k 147.4k 327.5k 233.0k 99.7k 324

SkipFlow 87 -4.2% 457 -11.4% 334.2k -15.3% 125.2k -15.0% 271.5k -17.1% 190.0k -18.4% 80.8k -18.9% 280 -13.5%
PTA 10 63 28.2k 7.2k 20.0k 29.8k 4.7k 24

SkipFlow 10 +1.1% 63 +1.2% 26.6k -5.5% 6.8k -5.7% 18.7k -6.3% 28.1k -5.9% 4.3k -7.6% 23 -3.6%
PTA 10 63 28.2k 7.3k 20.0k 29.8k 4.7k 24

SkipFlow 10 +0.4% 64 +1.7% 26.7k -5.5% 6.9k -5.8% 18.7k -6.3% 28.1k -5.9% 4.3k -7.6% 23 -3.6%
PTA 7 48 30.9k 8.0k 21.1k 29.2k 4.9k 25

SkipFlow 8 +2.4% 51 +6.2% 29.6k -4.1% 7.7k -4.4% 19.9k -5.9% 27.5k -6.1% 4.6k -6.0% 25 -2.6%
PTA 11 64 31.4k 7.8k 20.9k 29.0k 5.2k 26

SkipFlow 11 +3.1% 62 -2.2% 30.2k -3.7% 7.5k -4.6% 19.7k -5.7% 27.3k -5.9% 4.9k -5.7% 25 -2.8%
PTA 10 63 29.0k 7.3k 20.3k 30.2k 4.8k 33

SkipFlow 10 -1.0% 61 -3.5% 27.5k -5.2% 6.9k -5.7% 19.1k -6.0% 28.4k -5.9% 4.4k -7.9% 32 -3.0%
PTA 10 64 29.0k 7.4k 20.1k 30.0k 4.6k 25

SkipFlow 11 +2.5% 63 -1.7% 27.5k -5.5% 7.0k -5.7% 18.8k -6.6% 28.2k -5.9% 4.3k -7.4% 24 -5.2%
PTA 10 62 27.9k 7.0k 19.6k 29.6k 4.5k 24

SkipFlow 10 +1.0% 60 -2.5% 26.4k -5.5% 6.6k -5.8% 18.3k -6.5% 27.8k -6.0% 4.1k -8.1% 23 -3.8%
PTA 11 66 32.8k 8.4k 22.5k 30.0k 5.5k 27

SkipFlow 11 +2.7% 67 +1.6% 31.4k -4.0% 8.0k -4.4% 21.2k -5.8% 28.1k -6.1% 5.2k -5.4% 26 -4.6%
PTA 10 63 28.3k 7.3k 20.0k 29.8k 4.7k 33

SkipFlow 10 -1.7% 64 +0.7% 26.7k -5.5% 6.9k -5.8% 18.7k -6.4% 28.1k -5.9% 4.3k -7.6% 32 -2.6%

0.0% -3.2%

0.0% -2.5%

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA David Kozak, Codrut Stancu, Tomas Vojnar, and Christian Wimmer

significant outliers, for example, the DaCapo Sunflow bench-
mark, suggesting that our analysis works especially well if
specific code patterns are used, such as a method call within
a provably unreachable branch or a not needed default value
for an optional argument presented in Section 2.
In Figure 9, we present all the metrics normalized to the

baseline points-to analysis to provide a quick overview com-
plementing the detailed Table 1. Using the charts, we can
quickly notice the already discussed DaCapo Sunflow out-
lier and also the general trend of 9% reduction in reachable

methods across all the benchmarks.

Impact on Analysis Time. Interestingly, we can also ob-
serve that the analysis time does not increase for most bench-
marks. On the contrary, the average analysis time is even
reduced by 1.6%, suggesting we can actually have a free lunch
and use a more precise analysis without negatively impact-
ing the analysis time. Indeed, even though our analysis is
more complex compared to the baseline points-to analysis,
it is also more precise, leading to fewer methods marked as
reachable. Fewer reachable methods mean less work for the
analysis, but also for the compilation that follows, which can
be seen on the total time metric, being reduced by 4.4% on
average.
There is a tipping point after which the cost of a more

precise analysis outweighs the reduction due to fewer reach-
able methods. We believe our analysis is a good spot in the
design space, providing enough precision improvement to
make a difference without impacting the analysis time.

Impact on Compiler Optimizations. There are numer-
ous optimizations that can benefit from the facts proved by
SkipFlow, including but not limited to: (1) Dead code elimina-

tion – flows that remain disabled until the end of the analysis
correspond to instructions that can never be executed, so
we can safely remove them. If a filtering flow has an empty
value state after the analysis, the entire branch for which the
given flow was generated is proved unreachable and can be
removed; (2) Intraprocedural constant folding – if a method
parameter is proved to be a constant value, it allows more in-
traprocedural constant folding after the analysis; (3) Method

inlining –Due to the dead code elimination and constant fold-
ing, methods become smaller, making them more amendable
to inlining, which can unlock further optimizations.
Our current evaluation focuses mainly on reducing the

set of reachable methods. The counter metrics show that
SkipFlow also reduces the number of type checks, null checks,
primitive checks, and virtual invokes in the methods that
remain reachable, but more work is needed to evaluate the
impact of SkipFlow on runtime performance.

Impact on Binary Size. The reduction of reachable meth-
ods propagates to the binary size of the resulting applications.
We can observe a significant reduction in this metric as well,

more precisely max 5.6%, min 3.1%, avg 4.6% for microser-
vices, max 16.0%, min 2.6%, avg 7.3% for Renaissance, max
50.5%, min 1.6% avg 11.0% for DaCapo, and 7.4% on average
across all the benchmarks. In general, the binary size reduc-
tion follows a similar trend to the reduction in reachable
methods.

Discussion. Overall, we conclude that while SkipFlow can
also remove more type checks, null checks, primitive checks,
and devirtualize more virtual calls, the biggest benefit com-
pared to the baseline is reducing the total number of reachable

methods without increasing the overhead in terms of analysis

time, even reducing the analysis time in many cases. Reduc-
ing the number of reachable methods not only speeds up
the analysis itself, but it also reduces the workload of the
compilation phase that follows the analysis, which can be
observed on the total time being 4.4% smaller on average.
On top of that, fewer methods also mean less code to in-
clude in the compiled binary, thus reducing the binary size
by 7.4% on average. We believe these properties make our
analysis a suitable extension for a points-to analysis used in
optimizing compilers.
The increased precision of SkipFlow can also improve

the results of any subsequent client interprocedural static
analysis, such as a taint analysis, data-flow analysis or ab-
stract interpretation, as removing spurious edges from the
call graph can lead to fewer false alarms.

7 Related Work
Points-to Analysis. Points-to analysis (PTA) has been ap-
plied in many areas including compilers [59], security analy-
sis [4, 35], bug hunting [17, 32], heap allocation analysis [51],
escape analysis [37], call graph construction [1, 43], and pro-
gram understanding [16, 30]. Typically, PTA is implemented
using inclusion-based constraint solving [2, 6], type system
based unification [52], or via reduction to a graph reachabil-
ity problem [28].
The frameworks implementing PTA essentially fall into

three different categories: 1) imperative, e.g., Spark [26],
WALA [21], and Qilin [18] (written purely in Java), 2) declar-
ative, e.g., DOOP [9] (written in Datalog), 3) hybrid, e.g.,
Paddle [27] (with a declarative core in Datalog and the rest
of the infrastructure in Java). SkipFlow is implemented on
top of an existing imperative points-to analysis framework,
is parallel, utilizes inclusion based-solving, and its formal
presentation is inspired by the works of He et al. [18].

Context-sensitivity. A well-researched property of points-
to analysis, and in general any interprocedural analysis, is
context-sensitivity, which allows each method in the pro-
gram to be analyzed under different contexts [29]. Different
types of context-sensitivity have been studied in the past [22,
38, 47, 50, 55], e.g., call-site-sensitivity using method call-
sites [47] and object-sensitivity using allocation sites [38].

SkipFlow: Improving the Precision of Points-to Analysis using Primitive Values and Predicate Edges CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

ak
ka

-uct als

ch
i-s

quare

dec
-tr

ee

fin
ag

le-
ch

irp
er

fin
ag

le-
http

fj-k
mea

ns

future-
gen

eti
c

log-re
gres

sio
n

mnem
onics

par-
mnem

onics

philo
so

phers

rea
cto

rs

rx-
sc

rab
ble

sc
ala

-doku

sc
ala

-km
ea

ns

sc
ala

-st
m-ben

ch
7

sc
rab

ble

Analysis Time Total Time Reach. Methods Type Checks Null Checks Prim Checks Poly Calls Binary Size Threshold

(a) Renaissance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

fop
h2

jyt
hon

luindex

luse
arc

h

pmd

su
nflo

w
xa

lan

(b) DaCapo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

M. H
ell

oworld

M. O
rd

er

M. P
ay

men
t

M. U
se

r

Q. H
ell

oworld

Q. R
eg

ist
ry

Q. T
ika

S. H
ell

oworld

S Petc
lin

ic

(c) Microservices

Figure 9. Normalized metrics per bench suite. Lower is better, anything below 1.0 is an improvement. SkipFlow consistently
improves all the metrics apart from analysis time, where the results are inconclusive. Nevertheless, even for analysis time the
average is still slightly better (-1.6%) for SkipFlow.

While a lot of effort has been made to improve the scal-
ability of context-sensitive analysis [6, 36, 55], it still often
scales poorly for large applications [60]. As the analysis time
is an important metric for optimizing compilers, our imple-
mentation of SkipFlow is context-insensitive. However, the
approach can be applied in a context-sensitive analysis too.
Partial Flow-sensitivity. Roy et al. proposed partial flow-
sensitivity [45], which maintains flow-sensitivity only for
a specific set of program points. However, their approach
expected the user to provide a set of program points, requir-
ing a manual step before the analysis and thus rendering it
unsuitable for optimizing compilers.

Wei et al. [58] presented a partially flow-sensitive points-
to analysis for Javascript using a State Preserving Block

Graph, a transformed control-flow graph whose blocks are
aggregated into region nodes according to whether or not
they contain a state-update statement, i.e., a property write
or delete. Nevertheless, their approach still increased the
overhead of the analysis compared to the baseline analysis.
The ideas of partial flow-sensitivity are arguably close

to the principles of our analysis. SkipFlow could perhaps
be seen as another representative of this category. How-
ever, it is not only fully automated and capable of increasing
precision but it also keeps the same overhead as a baseline
flow-insensitive analysis.
Value Flow Analysis. Value flow analysis has been success-
fully applied to finding many types of source-sink problems
including null pointer derefences [20], memory leaks [11],

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA David Kozak, Codrut Stancu, Tomas Vojnar, and Christian Wimmer

buffer overruns [34], the usage of uninitialized variables [61],
and concurrency issues [10]. Sui et al. [53] presented a scal-
able and precise interprocedural static value flow analysis
for C programs. Livshits et al. introduced IPSSA [34], extend-
ing SSA with def-use relationships due to pointer derefer-
ences and procedure calls. Shi at al. presented Pinpoint [48],
a sparse value flow analysis using a holistic approach in
which the underlying points-to analysis is aware of the high-
level properties being checked and computes only points-to
sets that are relevant to checking these properties. However,
such an on-demand approach cannot be directly utilized in
optimizing compilers where the goal is to compute informa-
tion about all program locations.
Most value flow analysis implementations rely on SMT

solving [48, 49]. Formulas representing individual program
paths are constructed and used to determine path feasibil-
ity [11]. In our approach, thanks to filtering flows and predi-

cate edges, we can obtain better precision compared to the
baseline analysis without constructing any formulas.

Dataflow Analysis. Dataflow analysis is a framework that
can be utilized for a wide range of tasks, including points-to
analysis or constant propagation [46]. Often, dataflow anal-
ysis can also be reduced to a graph problem [44]. Fischer et
al. [15] presented predicates in dataflow analysis using pred-

icated lattices which partition the program state according
to a set of predicates and track a lattice element for each
partition. The most distinguishing feature of SkipFlow com-
pared to classical dataflow analysis is the usage of predicate
edges instead of predicate latttices, allowing us to keep using
a simple lattice.

Gated SSA form. Our approach bears a certain resemblance
to the gated SSA form defined by Ottenstein et al. [40]. Con-
trary to the Gated SSA, we do not extend the 𝜙 nodes and
instead use predicate edges to capture the impact of branching
conditions.

Sparse Conditional Constant Propagation. Sparse Con-
ditional Constant Propagation (SCCP) [12, 57] is a compiler
optimization that propagates constants while taking into
account the control flow of the program and the reachability
of individual instructions. It has been traditionally applied
only intraprocedurally on a single compilation unit (one
root method and possibly many inlined callees), which leads
to low precision especially when programs are built from
many small functions, as is common in languages such as
Java or C#. While we presented our work as a static analy-
sis method, it can also be seen as a novel Whole Program
Sparse Conditional Constant Propagation. While existing
SCCP implementations also operate on a lattice of values,
we are not aware of an implementation that uses a complex
lattice for object values that would be comparable to a points-
to-set. Within a single compilation unit, SCCP cannot handle
complex operations on types. Instead, existing SCCP usually

focuses on primitive values, using a lattice for primitive val-
ues that is more complicated than our simple constants-only
representation of primitive values.

8 Conclusions
In this paper, we presented SkipFlow that can be viewed
as an extension of a flow-insensitive points-to analysis that
models primitive values and maintains flow-sensitivity for
local variables and simple branching instructions only, while
falling back to the flow-insensitive analysis for the rest, thus
increasing the precision without significantly increasing
the analysis overhead. We implemented our analysis in the
GraalVM Native Image and evaluated it on a wide range
of benchmarks including DaCapo, Renaissance, and a set
of microservice applications. Overall, our analysis reduces
the number of reachable methods by 9% on average without
negatively impacting the analysis time, in fact even reducing
it in many cases. We believe our analysis is a sweet spot in
the design space, improving the precision of the analysis
without negatively impacting analysis time.

In the future, one can think whether the amount of infor-
mation considered by the analysis can be extended further
without hurting the scalability.

Acknowledgments
We thank all members of the GraalVM team at Oracle Labs
and the Institute for System Software at the Johannes Kepler
University Linz for their support and contributions. This
workwas supported by the Czech Science Foundation project
23-06506S and the FIT BUT internal project FIT-S-23-8151.
Oracle and Java are registered trademarks of Oracle and/or its
affiliates. Other names may be trademarks of their respective
owners.

A Artifact Appendix
The Docker image that replicates our experiments [23], the
results of which are presented in Section 6, particularly in
Table 1 and Figure 9, is available on Zenodo for artifact
evaluation. For more details, we refer to the artifact itself,
which contains a detailed README file.

References
[1] Karim Ali and Ondřej Lhoták. 2012. Application-Only Call Graph

Construction. In Proceedings of the European Conference on Object-

Oriented Programming. Springer-Verlag, 688–712. https://doi.org/10.
1007/978-3-642-31057-7_30

[2] Lars Ole Andersen. 1994. Program Analysis and Specialization for the

C Programming Language. Ph. D. Dissertation. University of Copen-
hagen.

[3] Lars Ole Andersen and Carsten K. Gomard. 1992. Speedup Analysis
in Partial Evaluation: Preliminary results. In Partial Evaluation and

Semantics-Based Program Manipulation (PEPM’92).
[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-

dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick

https://doi.org/10.1007/978-3-642-31057-7_30
https://doi.org/10.1007/978-3-642-31057-7_30

SkipFlow: Improving the Precision of Points-to Analysis using Primitive Values and Predicate Edges CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-
Sensitive and Lifecycle-Aware Taint Analysis for Android Apps. In
Proceedings of the ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation. ACM Press, 259–269. https:
//doi.org/10.1145/2594291.2594299

[5] David F. Bacon and Peter F. Sweeney. 1996. Fast Static Analysis of
C++ Virtual Function Calls. SIGPLAN Not. 31, 10 (oct 1996), 324–341.
https://doi.org/10.1145/236338.236371

[6] Mohamad Barbar and Yulei Sui. 2021. Compacting Points-to Sets
through Object Clustering. Proceedings of the ACM on Programming

Languages 5, OOPSLA (2021), 159. https://doi.org/10.1145/3485547
[7] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang,

Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking,
Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. 2006. The DaCapo Benchmarks: Java Benchmarking Devel-
opment and Analysis. In Proceedings of the ACM SIGPLAN Conference

on Object-Oriented Programming Systems, Languages, and Applications.
ACM Press, 169–190. https://doi.org/10.1145/1167473.1167488

[8] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira
Mezini. 2011. Taming Reflection: Aiding Static Analysis in the Pres-
ence of Reflection and Custom Class Loaders. In Proceedings of the

International Conference on Software Engineering. ACM Press, 241–250.
https://doi.org/10.1145/1985793.1985827

[9] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative
Specification of Sophisticated Points-to Analyses. In Proceedings of the

ACM SIGPLAN Conference on Object-Oriented Programming Systems,

Languages, and Applications. ACM Press, 243–262. https://doi.org/10.
1145/1640089.1640108

[10] Yuandao Cai, Peisen Yao, and Charles Zhang. 2021. Canary: practical
static detection of inter-thread value-flow bugs. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation. ACM Press, 1126–1140. https://doi.org/10.1145/3453483.
3454099

[11] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. 2007. Prac-
tical memory leak detection using guarded value-flow analysis. In
Proceedings of the ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation. ACM Press, 480–491. https:
//doi.org/10.1145/1250734.1250789

[12] Cliff Click and Keith D. Cooper. 1995. Combining analyses, combining
optimizations. ACM Trans. Program. Lang. Syst. 17, 2 (mar 1995),
181–196. https://doi.org/10.1145/201059.201061

[13] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. 1991. Efficiently Computing Static Single As-
signment Form and the Control Dependence Graph. ACM Transac-

tions on Programming Languages and Systems 13, 4 (1991), 451–490.
https://doi.org/10.1145/115372.115320

[14] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization
of Object-Oriented Programs Using Static Class Hierarchy Analysis
(ECOOP ’95). Springer-Verlag, Berlin, Heidelberg, 77–101.

[15] Jeffrey Fischer, Ranjit Jhala, and Rupak Majumdar. 2005. Joining
dataflow with predicates. In Proceedings of the 10th European Soft-

ware Engineering Conference Held Jointly with 13th ACM SIGSOFT

International Symposium on Foundations of Software Engineering. ACM
Press, 227–236. https://doi.org/10.1145/1081706.1081742

[16] R Fiutem, P Tonella, G Antoniol, and E Merlo. 1999. Points-to analysis
for program understanding. Journal of Systems and Software 44, 3
(1999), 213–227. https://doi.org/10.1016/S0164-1212(98)10058-4

[17] Samuel Z. Guyer and Calvin Lin. 2005. Error checking with client-
driven pointer analysis. Science of Computer Programming 58, 1 (2005),
83 – 114. https://doi.org/10.1016/j.scico.2005.02.005

[18] Dongjie He, Jingbo Lu, and Jingling Xue. 2022. Qilin: A New Frame-
work For Supporting Fine-Grained Context-Sensitivity in Java Pointer

Analysis. In Proceedings of the European Conference on Object-Oriented

Programming (Leibniz International Proceedings in Informatics (LIPIcs),

Vol. 222). Leibniz-Zentrum für Informatik, 30:1–30:29. https://doi.org/
10.4230/LIPIcs.ECOOP.2022.30

[19] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. 1999.
Interprocedural pointer alias analysis. ACM Trans. Program. Lang. Syst.

(1999), 848–894. https://doi.org/10.1145/325478.325519
[20] David Hovemeyer and William Pugh. 2007. Finding more null pointer

bugs, but not too many. In Proceedings of the 7th ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and Engi-

neering. ACM Press, 9–14. https://doi.org/10.1145/1251535.1251537
[21] IBM. 2020. WALA: T.J. Watson Libraries for Analysis. http://wala.

sourceforge.net/
[22] George Kastrinis and Yannis Smaragdakis. 2013. Hybrid Context-

Sensitivity for Points-to Analysis. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation.
ACM Press, 423–434. https://doi.org/10.1145/2491956.2462191

[23] David Kozak, Stancu Codrut, Christian Wimmer, and Tomas Vojnar.
2024. SkipFlow: Improving the Precision of Points-to Analysis using
Primitive Values and Predicate Edges - Artifact. https://doi.org/10.
5281/zenodo.10900903

[24] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. 2017.
Challenges for Static Analysis of Java Reflection: Literature Review
and Empirical Study. In Proceedings of the International Conference

on Software Engineering. IEEE Computer Society, 507–518. https:
//doi.org/10.1109/ICSE.2017.53

[25] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings

of the International Symposium on Code Generation and Optimization.
IEEE Computer Society, 75–86. https://doi.org/10.1109/CGO.2004.
1281665

[26] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java Points-to
Analysis Using SPARK. In Proceedings of the International Conference

on Compiler Construction. Springer-Verlag, 153–169. https://doi.org/
10.1007/3-540-36579-6_12

[27] Ondřej Lhoták and Laurie Hendren. 2008. Evaluating the Benefits of
Context-Sensitive Points-to Analysis Using a BDD-Based Implementa-
tion. ACM Transactions on Software Engineering and Methodology 18,
1, Article 3 (oct 2008). https://doi.org/10.1145/1391984.1391987

[28] Lian Li, Cristina Cifuentes, and Nathan Keynes. 2011. Boosting the
performance of flow-sensitive points-to analysis using value flow.
In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th

European Conference on Foundations of Software Engineering. ACM
Press, 343–353. https://doi.org/10.1145/2025113.2025160

[29] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018.
Precision-Guided Context Sensitivity for Pointer Analysis. Proceed-
ings of the ACM on Programming Languages 2, OOPSLA (2018), 141.
https://doi.org/10.1145/3276511

[30] Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. 2016. Program
Tailoring: Slicing by Sequential Criteria. In Proceedings of the Euro-

pean Conference on Object-Oriented Programming (Leibniz Interna-

tional Proceedings in Informatics (LIPIcs), Vol. 56). 15:1–15:27. https:
//doi.org/10.4230/LIPIcs.ECOOP.2016.15

[31] Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley, and Daniel
Smith. 2023. The Java Virtual Machine Specification, Java SE 21 Edition.
https://docs.oracle.com/javase/specs/jvms/se21/html/index.html

[32] Bozhen Liu and Jeff Huang. 2018. D4: Fast Concurrency Debugging
with Parallel Differential Analysis. In Proceedings of the ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion. ACM Press, 359–373. https://doi.org/10.1145/3192366.3192390
[33] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej

Lhoták, J. Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer,
Uday P. Khedker, Anders Møller, and Dimitrios Vardoulakis. 2015. In
defense of soundiness: a manifesto. Commun. ACM 58, 2 (2015), 44–46.

https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/236338.236371
https://doi.org/10.1145/3485547
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/3453483.3454099
https://doi.org/10.1145/3453483.3454099
https://doi.org/10.1145/1250734.1250789
https://doi.org/10.1145/1250734.1250789
https://doi.org/10.1145/201059.201061
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/1081706.1081742
https://doi.org/10.1016/S0164-1212(98)10058-4
https://doi.org/10.1016/j.scico.2005.02.005
https://doi.org/10.4230/LIPIcs.ECOOP.2022.30
https://doi.org/10.4230/LIPIcs.ECOOP.2022.30
https://doi.org/10.1145/325478.325519
https://doi.org/10.1145/1251535.1251537
http://wala.sourceforge.net/
http://wala.sourceforge.net/
https://doi.org/10.1145/2491956.2462191
https://doi.org/10.5281/zenodo.10900903
https://doi.org/10.5281/zenodo.10900903
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1145/1391984.1391987
https://doi.org/10.1145/2025113.2025160
https://doi.org/10.1145/3276511
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15
https://docs.oracle.com/javase/specs/jvms/se21/html/index.html
https://doi.org/10.1145/3192366.3192390

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA David Kozak, Codrut Stancu, Tomas Vojnar, and Christian Wimmer

https://doi.org/10.1145/2644805
[34] V. Benjamin Livshits and Monica S. Lam. 2003. Tracking point-

ers with path and context sensitivity for bug detection in C pro-
grams. In Proceedings of the 9th European Software Engineering Con-

ference Held Jointly with 11th ACM SIGSOFT International Sympo-

sium on Foundations of Software Engineering. ACM Press, 317–326.
https://doi.org/10.1145/940071.940114

[35] V. Benjamin Livshits and Monica S. Lam. 2005. Finding Security
Vulnerabilities in Java Applications with Static Analysis. In Proceedings
of the USENIX Security Symposium. USENIX.

[36] Jingbo Lu and Jingling Xue. 2019. Precision-Preserving yet Fast Object-
Sensitive Pointer Analysis with Partial Context Sensitivity. Proceedings
of the ACM on Programming Languages 3, OOPSLA (2019), 148. https:
//doi.org/10.1145/3360574

[37] Jonas Lundberg, Tobias Gutzmann, Marcus Edvinsson, and Welf Löwe.
2009. Fast and precise points-to analysis. Information and Software

Technology 51, 10 (2009), 1428–1439. https://doi.org/10.1016/j.infsof.
2009.04.012

[38] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2002. Pa-
rameterized Object Sensitivity for Points-to and Side-Effect Analy-
ses for Java. In Proceedings of the ACM SIGSOFT International Sym-

posium on Software Testing and Analysis. ACM Press, 1–11. https:
//doi.org/10.1145/566172.566174

[39] Oracle. 2023. Micronaut MuShop. https://github.com/oracle-
quickstart/oci-micronaut/

[40] Karl J. Ottenstein, Robert A. Ballance, and Arthur B. MacCabe. 1990.
The program dependence web: a representation supporting control-,
data-, and demand-driven interpretation of imperative languages. In
Proceedings of the ACM SIGPLANConference on Programming Language

Design and Implementation. ACM Press, 257–271. https://doi.org/10.
1145/93542.93578

[41] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Du-
boscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex
Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019.
Renaissance: Benchmarking Suite for Parallel Applications on the
JVM. In Proceedings of the ACM SIGPLAN Conference on Program-

ming Language Design and Implementation. ACM Press, 31–47. https:
//doi.org/10.1145/3314221.3314637

[42] Quarkus. 2023. Extension Registry Application. https://github.com/
quarkusio/registry.quarkus.io

[43] Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, and
Mira Mezini. 2016. Call Graph Construction for Java Libraries. In Pro-

ceedings of the ACM SIGSOFT International Symposium on Foundations

of Software Engineering. ACM Press, 474–486. https://doi.org/10.1145/
2950290.2950312

[44] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interpro-
cedural dataflow analysis via graph reachability. In Proceedings of the

ACM SIGPLAN Symposium on Principles of Programming Languages.
ACM Press, 49–61. https://doi.org/10.1145/199448.199462

[45] Subhajit Roy and YN Srikant. 2007. Partial flow sensitivity. In High

Performance Computing–HiPC 2007: 14th International Conference, Goa,

India, December 18-21, 2007. Proceedings 14. Springer, 245–256. https:
//doi.org/10.1007/978-3-540-77220-0_25

[46] Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise in-
terprocedural dataflow analysis with applications to constant prop-
agation. Theoretical Computer Science 167, 1 (1996), 131–170. https:
//doi.org/10.1016/0304-3975(96)00072-2

[47] Micha Sharir, Amir Pnueli, et al. 1978. Two approaches to interproce-
dural data flow analysis. New York University. Courant Institute of
Mathematical Sciences.

[48] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and
Charles Zhang. 2018. Pinpoint: fast and precise sparse value flow anal-
ysis for million lines of code. In Proceedings of the ACM SIGPLAN Con-

ference on Programming Language Design and Implementation. ACM

Press, 693–706. https://doi.org/10.1145/3192366.3192418
[49] Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles Zhang. 2021. Path-

sensitive sparse analysis without path conditions. In Proceedings of

the ACM SIGPLAN Conference on Programming Language Design and

Implementation. ACM Press, 930–943. https://doi.org/10.1145/3453483.
3454086

[50] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick
Your Contexts Well: Understanding Object-Sensitivity. In Proceedings

of the ACM SIGPLAN Symposium on Principles of Programming Lan-

guages. ACM Press, 17–30. https://doi.org/10.1145/1926385.1926390
[51] Codruţ Stancu, Christian Wimmer, Stefan Brunthaler, Per Larsen, and

Michael Franz. 2015. Safe and Efficient Hybrid Memory Management
for Java. In Proceedings of the ACM SIGPLAN International Symposium

on Memory Management. ACM Press, 81–92. https://doi.org/10.1145/
2754169.2754185

[52] Bjarne Steensgaard. 1996. Points-to Analysis in Almost Linear Time. In
Proceedings of the ACM SIGPLAN Symposium on Principles of Program-

ming Languages. ACM Press, 32–41. https://doi.org/10.1145/237721.
237727

[53] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-
flow analysis in LLVM. In Proceedings of the International Conference

on Compiler Construction. ACM Press, New York, NY, USA, 265–266.
https://doi.org/10.1145/2892208.2892235

[54] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja
Vallée-Rai, Patrick Lam, Etienne Gagnon, and Charles Godin. 2000.
Practical Virtual Method Call Resolution for Java. In Proceedings of

the 15th ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications (Minneapolis, Minnesota, USA)
(OOPSLA ’00). Association for Computing Machinery, New York, NY,
USA, 264–280. https://doi.org/10.1145/353171.353189

[55] Manas Thakur and V. Krishna Nandivada. 2020. Mix Your Contexts
Well: Opportunities Unleashed by Recent Advances in Scaling Context-
Sensitivity. In Proceedings of the International Conference on Compiler

Construction. ACM Press, 27–38. https://doi.org/10.1145/3377555.
3377902

[56] The Spring PetClinic Community. 2023. Open Source sample applica-
tions based on the Spring stack. https://spring-petclinic.github.io/

[57] Mark N. Wegman and F. Kenneth Zadeck. 1991. Constant propagation
with conditional branches. ACM Trans. Program. Lang. Syst. (1991),
181–210. https://doi.org/10.1145/103135.103136

[58] Shiyi Wei and Barbara G. Ryder. 2014. State-Sensitive Points-to Anal-
ysis for the Dynamic Behavior of JavaScript Objects. In Proceedings

of the European Conference on Object-Oriented Programming. 1–26.
https://doi.org/10.1007/978-3-662-44202-9_1

[59] Christian Wimmer, Codruţ Stancu, Peter Hofer, Vojin Jovanovic, Paul
Wögerer, Peter B. Kessler, Oleg Pliss, and Thomas Würthinger. 2019.
Initialize Once, Start Fast: Application Initialization at Build Time.
Proceedings of the ACM on Programming Languages 3, OOPSLA (2019),
184. https://doi.org/10.1145/3360610

[60] Christian Wimmer, Codrut Stancu, David Kozak, and Thomas
Würthinger. 2024. Scaling Type-Based Points-to Analysis with Sat-
uration. Proc. ACM Program. Lang. PLDI (2024), 24 pages. https:
//doi.org/10.1145/3656417

[61] Ding Ye, Yulei Sui, and Jingling Xue. 2018. Accelerating Dynamic
Detection of Uses of Undefined Values with Static Value-Flow Analysis.
In Proceedings of the International Symposium on Code Generation and

Optimization. ACM Press, 154–164. https://doi.org/10.1145/2544137.
2544154

[62] Jisheng Zhao, Michael G. Burke, and Vivek Sarkar. 2018. Parallel sparse
flow-sensitive points-to analysis. In Proceedings of the International

Conference on Compiler Construction. ACM Press, 59–70. https://doi.
org/10.1145/3178372.3179517

https://doi.org/10.1145/2644805
https://doi.org/10.1145/940071.940114
https://doi.org/10.1145/3360574
https://doi.org/10.1145/3360574
https://doi.org/10.1016/j.infsof.2009.04.012
https://doi.org/10.1016/j.infsof.2009.04.012
https://doi.org/10.1145/566172.566174
https://doi.org/10.1145/566172.566174
https://github.com/oracle-quickstart/oci-micronaut/
https://github.com/oracle-quickstart/oci-micronaut/
https://doi.org/10.1145/93542.93578
https://doi.org/10.1145/93542.93578
https://doi.org/10.1145/3314221.3314637
https://doi.org/10.1145/3314221.3314637
https://github.com/quarkusio/registry.quarkus.io
https://github.com/quarkusio/registry.quarkus.io
https://doi.org/10.1145/2950290.2950312
https://doi.org/10.1145/2950290.2950312
https://doi.org/10.1145/199448.199462
https://doi.org/10.1007/978-3-540-77220-0_25
https://doi.org/10.1007/978-3-540-77220-0_25
https://doi.org/10.1016/0304-3975(96)00072-2
https://doi.org/10.1016/0304-3975(96)00072-2
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/3453483.3454086
https://doi.org/10.1145/3453483.3454086
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/2754169.2754185
https://doi.org/10.1145/2754169.2754185
https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/353171.353189
https://doi.org/10.1145/3377555.3377902
https://doi.org/10.1145/3377555.3377902
https://spring-petclinic.github.io/
https://doi.org/10.1145/103135.103136
https://doi.org/10.1007/978-3-662-44202-9_1
https://doi.org/10.1145/3360610
https://doi.org/10.1145/3656417
https://doi.org/10.1145/3656417
https://doi.org/10.1145/2544137.2544154
https://doi.org/10.1145/2544137.2544154
https://doi.org/10.1145/3178372.3179517
https://doi.org/10.1145/3178372.3179517

SkipFlow: Improving the Precision of Points-to Analysis using Primitive Values and Predicate Edges CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

B Predicated Value Propagation Graph
This section formalizes the predicated value propagation graph
(PVPG), the core data structure upon which SkipFlow is exe-
cuted. First, we define the base language that serves as the
input to our analysis. Second, we define the lattice represent-
ing the values propagated through PVPGs. Third, we define
the structure of PVPGs. Finally, we present an algorithm for
creating a PVPG by a linear pass over a program written in
the base language. We show how a PVPG is used in SkipFlow
in Section C.

B.1 Base Language
For the formal definition of our analysis, we use the base
language presented in Figure 10 with instructions for object
instantiation, field access, method invocation, and control
flow using jump and if . The instructions within a method
are separated into blocks.
The base language is in SSA form, i.e., all variables have

one static definition, all variables are defined before their first
use, and all usages are dominated by the single definition.

Each method has exactly one start (𝑝0, ..., 𝑝𝑛) instruction,
at the beginning of the first block. This instruction explicitly
defines method parameters 𝑝0, ..., 𝑝𝑛 where 𝑝0 is the receiver
object. Without loss of generality, each method has only a
single return 𝑣 instruction.

Blocks starting with a merge [𝑢 ← 𝜙1 (𝑢1, ..., 𝑢𝑛), ..., 𝑣 ←
𝜙𝑘 (𝑣1, ..., 𝑣𝑛)] 𝑚 instruction represent control flow merges
and can form loops. A merge instruction has a label𝑚 ∈ 𝑀 ,
where 𝑀 is a set of labels. A merge instruction defines
a unique named location 𝑚 that is the target of 𝒋𝒖𝒎𝒑 in-
structions that use the same label. Furthermore, a merge
instruction defines a set {𝜙1, ..., 𝜙𝑘 } of 𝜙 instructions, one
for each variable that has multiple reaching definitions at
the control flow merge. Every 𝜙 instruction has as many
arguments as there are jump instructions to its merge.
A label 𝑙 instruction creates a unique named location

𝑙 ∈ 𝐿, where 𝐿 is a second set of labels disjoint from 𝑀 .
A label instruction marks the beginning of one of the two
branches of an if instruction using the same label. A block
ending with an if instruction always has two successor
blocks beginning with label instructions. A block beginning
with a label instruction always has a single predecessor
ending with if , i.e., it can never be the target of a jump
instruction.
The constraints above ensure that there are no critical

edges, i.e., control flow edges from a block with multiple
successors to a block with multiple predecessors. This is
without loss of generality as long as the language does not
have computed jump targets.
We explicitly support three types of conditions: 𝑣1 = 𝑣2,

𝑣1 < 𝑣2, and 𝑣 instanceof 𝑇 . Furthermore, nullcheck is cov-
ered implicitly by a 𝑣1 = 𝑣2 check where 𝑣2 ← null. Boolean

Method F Block*
Block F BlockBegin s* BlockEnd
BlockBegin F start (𝑝0, ..., 𝑝𝑛)

| merge [𝑢 ← 𝜙1 (𝑢1, ...,𝑢𝑛), ..., 𝑣 ← 𝜙𝑘 (𝑣1, ..., 𝑣𝑛)]𝑚
| label 𝑙

Statement 𝑠 F 𝑣 ← 𝑒

| 𝑣 ← 𝑟 .𝑥

| 𝑟 .𝑥 ← 𝑣

| 𝑣 ← 𝑣0 .𝑚 (𝑣1, .., 𝑣𝑛)
BlockEnd F return 𝑣

| jump𝑚
| if 𝑐 then 𝑙𝑡ℎ𝑒𝑛 else 𝑙𝑒𝑙𝑠𝑒

Cond 𝑐 F 𝑣1 = 𝑣2
| 𝑣1 < 𝑣2
| 𝑣 instanceof 𝑇

Expr 𝑒 F 𝑛

| Any
| new 𝑇

| null

Figure 10. The base language considered by the analysis.

{Any}

{A,B,null}

{A,B} {A,null} {B,null}

{}

{A} {B} {null}

... {-2} {-1} {0} {1} {2} ...

predicate

Figure 11. An example of the lattice L for T = {A, B, null}
and all the primitive values. The line denoted as predicate
indicates the fact that any non-empty value leads to the
triggering of predicate edges.

values are encoded as integers, and the truth test is then rep-
resented as a 𝑣1 = 𝑣2 check where 𝑣2 ← 1. Other conditions
are excluded from the formal base language for simplicity.
Having only < and = as comparisons is without loss of gen-
erality because >, ≤ ≥, and ≠ can be expressed by switching
the order of operands and/or the order of the then/else
blocks. The 𝑛 case in the Expr rule covers primitive literals.
Since we do not seek to model arithmetic computations, we
use the generic Any instruction instead, representing any
arithmetic.

B.2 The Lattice Domain of SkipFlow
In this section, we define the lattice L≤ whose values are
propagated through PVPGs. Figure 6 in Section 3 already
introduced our primitive value lattice P. To improve the
scalability, we model neither sets nor intervals of values.
The join of any two constant values results immediately
in Any. Following the work of Wimmer et al. [60], objects
are represented by their types only and modelled using the
subset lattice S = (2T, ⊆) over the set of program types T.
The nullness of a given value is modelled using the special
value null ∈ T.

Formally, L≤ = (L, ≤L) where L = {{𝑝} | 𝑝 ∈ P \
{Empty}}∪2T and ≤L is defined as the smallest relation such

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA David Kozak, Codrut Stancu, Tomas Vojnar, and Christian Wimmer

that (1) {𝑝} ≤L {𝑞} ⇔ 𝑝 ≤P 𝑞 for any 𝑝, 𝑞 ∈ P \ {Empty},
(2) 𝑆1 ≤L 𝑆2 ⇔ 𝑆1 ≤S 𝑆2 for any 𝑆1, 𝑆2 ∈ 2T, (3) {} ≤L
𝑆 ≤L {Any} for any 𝑆 ∈ 2T, and (4) {} ≤L {𝑝} ≤L {Any}
for any 𝑝 ∈ P \ {Empty}. Note that ⊤L = {⊤P} = {Any} and
⊥L = ⊥S = {}. In L≤ , the primitive values are wrapped into
1-element sets (apart from Empty which is replaced by the
empty set), allowing us to treat all the value states uniformly
as sets in the text that follows.
The lattice L≤ for T = {A, B, null} is given in Figure 11.

The line denoted as predicate indicates the fact that any
non-empty value leads to the triggering of predicate edges.

In the rest of the text, since we do not have to distinguish
between the lattice and its carrier set, we simply denote L≤
as L.

B.3 Structure of a PVPG
A PVPG models the flow of both primitive values and types
interprocedurally. Vertices in a PVPG are called flows to
clearly distinguish them from the instructions in the base
language. In particular, the flows represent:

• values of method parameters, variables, and fields read
or written by a particular instruction (each instruction
reading or writing to a variable produces a fresh flow),
• method calls, which also represent the returned value
in the caller,
• values to be returned from a method call back to the
caller,
• values of various conditions present in the code (includ-
ing their negated and inverted versions as explained
later),
• values resulting from joining the values of other flows
(results of 𝜙 instructions),
• 𝜙𝑝𝑟𝑒𝑑 flows for joining predicates,
• the always enabled predicate predon.

Each flow keeps a reference to the underlying base language
element it represents. In the algorithms and inference rules
below, we use the notation Flow(𝑖) to express the creation of
a new flow for a given base language element 𝑖 , where 𝑖 can
be either an instruction as a whole, a condition, or a fresh 𝜙
for the joining of values. Subsequently, 𝑓 : 𝐹𝑙𝑜𝑤 (𝑖) denotes
the flow 𝑓 created from 𝑖 .

The analysis computes the value state of each flow, which
represents a conservative overapproximation of the values
that can be assigned to the given flow during the runtime
of the program. Flows can be connected via three types of
edges described below.

A use edge represents a def-use dependency between flows.
If there is a use edge between flows s and t, denoted by
s ⇝𝑢𝑠𝑒 t, the value state of t has to be at least as big as the
value state of s in terms of the underlying lattice provided
that 𝑠 is executable and no filtering is applied (the semantics
of filtering is explained later).

A predicate edge represents a control-flow dependency.
A predicate edge between flows s and t, denoted by s ⇝𝑝𝑟𝑒𝑑 t,
defines that if s is executable and has a non-empty value state,
t is also executable. Every flow is the target of an incoming
predicate edge, apart from pred

on, which is always enabled
and therefore does not need an incoming edge. Flows that do
not have any suitable predicate are assigned a predicate edge
from pred

on. A 𝜙𝑝𝑟𝑒𝑑 flow has multiple incoming predicate

edges. In that case, it suffices that any of its predicates has
a non-empty state to enable the execution of the target flow.
Apart from pred

on and 𝜙𝑝𝑟𝑒𝑑 , flows representing conditions
and method calls can also be the sources of predicate edges.

An observe edge represents an additional flow-specific de-
pendency. An observe edge between flows s and t, denoted
as s ⇝𝑜𝑏𝑠 t, defines that t has access to the value state of s,
and t is notified when the state of s changes to perform some
flow-specific task such as a field update or method resolution
and linking (discussed more below). Observe edges are cre-
ated in three cases: (1) to link a flow representing a receiver
with subsequent flows representing instructions for calling
methods, (2) to link a flow representing an object with sub-
sequent flows representing instructions for loading/storing
fields, (3) to connect the second argument of a filtering flow
performing a binary comparison, i.e. the argument according
to whose value state the filtering is performed (more on that
later).

B.4 Creating a PVPG
In this section, we describe how the PVPG for a givenmethod
is created by a sequential pass over the method body. The
rules for value propagation are defined later in Appendix C.
The PVPG is created by traversing the basic blocks in re-
verse postorder. The instructions within each basic block
are processed sequentially from top to bottom. During the
traversal, flows are created for the encountered base lan-
guage elements. The traversal maintains a state for each
basic block consisting of: (1) A mapping m from variables
to previously created flows, which is used to connect flows
with their dependencies, e.g. to establish a use edge between
the flow representing x and a subsequently created filtering
flow x != 0, (2) a reference denoted as pred that is continu-
ously updated to refer to the last encountered predicate. The
predicate referenced by pred is used to establish predicate
edges. At the beginning of a method, when no suitable flow
is available yet, the special predon flow is used, which is al-
ways enabled, i.e. the initial flows inside methods are always
enabled.

Initially, the mapping m in each basic block is empty. The
𝑝𝑟𝑒𝑑 of each basic block is set depending on its initial instruc-
tion. For a start instruction, pred is set to pred

on . For each
basic block starting with a merge instruction, pred is set to
a fresh 𝜙𝑝𝑟𝑒𝑑 flow, which represents the merge of predicates
at the current program point (as discussed in Section 3). In-
tuitively, a basic block starting with a merge is reachable iff

SkipFlow: Improving the Precision of Points-to Analysis using Primitive Values and Predicate Edges CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

the end of any of its predecessors is. For a label instruction,
pred is set when processing the predecessor basic block as it
depends on the branching condition.
When processing an instruction, new flows and edges

are created and the basic block variables m and pred are
updated as described in Figure 12. When processing a start
instruction, flows for method parameters are created.merge
and label instructions do not require any treatment as the
state propagation between basic blocks is handled from the
ends of predecessors. Each 𝑣 ← 𝑒 instruction is handled
by creating a flow that represents 𝑣 and that is therefore
stored in the mapping 𝑏.𝑚. Next, each 𝑣 ← 𝑟 .𝑥 instruction is
handled similarly to 𝑣 ← 𝑒 , with an additional observe edge
from 𝑟 because the load needs to be notified every time the
value state of the object 𝑟 changes. Each 𝑟 .𝑥 ← 𝑣 instruction
has an additional use edge from 𝑣 throughwhich the values to
be assigned to 𝑟 .𝑥 flow. Each 𝑣 ← 𝑣0.𝑚(𝑣1, .., 𝑣𝑛) instruction
again needs an observe edge for the receiver 𝑣0. Note that
the call also represents the returned result 𝑣 , which may
be empty if the method never returns. To handle this case
precisely, 𝑣 ← 𝑣0.𝑚(𝑣1, .., 𝑣𝑛) becomes the new predicate.
jump instructions need to propagate the state of the cur-

rent basic block 𝑏 to the successor 𝑡 , which is done in the
auxiliary function propagate presented in Figure 13. First,
a predicate edge is established between the current predicate
in 𝑏 and the predicate of 𝑡 , encoding the fact that if the end of
𝑏 is reachable, so is the beginning of 𝑡 . Second, the content of
𝑏.𝑚 is propagated into 𝑡 .𝑚. Each variable 𝑣 ∈ 𝑏.𝑚 is handled
as follows (note that we use the notation for 𝑣 ∈ b.m to
denote an iteration over all the variables, i.e. keys, in the
mapping 𝑚). If 𝑡 does not yet have a mapping for 𝑣 , it is
inherited from 𝑏. Otherwise, we check if there is a collision,
i.e. 𝑏 and 𝑡 have different flows representing 𝑣 . If not, noth-
ing needs to be done. If there is a collision, the PVPG has
to be extended as follows. If the mapping for 𝑣 in 𝑡 is not a
representation of a 𝜙 instruction but just a value inherited
from some other predecessor, we create a new 𝜙 flow 𝑓 and
adjust the edges so that 𝑓 represents the joining of the values
from the predecessors. Otherwise, the 𝜙 flow has already
been created before, and we can simply add a new use edge
to it.
For if instructions, it is necessary to initialize the state

of both of their successor basic blocks. To do so, the helper
function initBlock is called, which dispatches to the initU-
nary and initBinary functions presented in Figure 14 based
on the type of the condition 𝑐 . Notice that the condition
is inverted when calling initBlock for the else branch. For
a unary condition (a type check), a new flow is created and
inserted into the PVPG to represent the value of the checked
variable 𝑥 after filtering it based on 𝑐 . For a binary condition,
both the left variable denoted as 𝑐.𝑙 and the right variable
denoted as 𝑐.𝑟 involved in the condition are filtered, with
the resulting flows stored into 𝑡 .𝑚[𝑐.𝑙] and 𝑡 .𝑚[𝑐.𝑟], respec-
tively. The filtering of 𝑐.𝑙 is similar to the handling of a unary

condition, with an additional observe edge for 𝑐.𝑟 because the
filtering flow needs to be notified in case any of its operands
change. The filtering of 𝑐.𝑟 is a mirrored version of the pro-
cess for 𝑐.𝑙 . Note that the condition is flipped, not inverted,
i.e. flip(<) = >, while inv(<) = ≥. This is because when
filtering 𝑦 with respect to 𝑥 < 𝑦, the filtering should only
allow values of 𝑦 strictly greater than 𝑥 . The predicates are
chained so that b.pred ⇝𝑝𝑟𝑒𝑑 𝑓𝑙 ⇝𝑝𝑟𝑒𝑑 𝑓𝑟 , where 𝑓𝑙 and
𝑓𝑟 are the flows created for the original condition and the
flipped version, respectively. Furthermore, 𝑓𝑟 becomes the
new predicate in 𝑡 , ensuring that 𝑡 is considered reachable
only iff the end of 𝑏 is reachable and the results of filtering
of both 𝑥 and 𝑦 are not empty.

C Value Propagation through PVPGs
This section presents the core analysis algorithm based on
the PVPG data structure. Given a PVPG, primitives and types
are propagated from source flows along the use edges. Each
flow has a value state describing the set of values that can
be assigned at runtime to the code element, e.g., a variable
or a field, represented by the given flow. Contrary to a typ-
ical pointer assignment analysis, values in PVPG are only
propagated by flows that are enabled by their predicate. The
values propagated through a PVPG are from the lattice L
described in Appendix B.2.

We now proceed by defining SkipFlow through a series of
inference rules precisely specifying the conditions for value
propagation. Let T, M, F, and N be pairwise disjoint sets
representing the domains of types (including null), methods,
field names, and PVPG flows, respectively. Two auxiliary
functions are used: LookUp : T × F ⇀ N, which returns
the flow representing the given field of the given type,
and Resolve : T ×M ⇀ M, which resolves a virtual method
invocation for the given type and method5.

The analysis computes the set of reachable methods R ⊆
M, the set of enabled flows Enabled ⊆ N, the input value
state of each flow VSin : N→ L, and the output value state
of each flow VSout : N→ L.
Note that we introduce a separation between input and

output value states. However, this concept is introduced
purely to simplify the definition of some of the inference
rules. The actual implementation uses one value state per
flow. All the sets above as well as all the value states are
initially empty. The analysis is started by inserting a set of
root methods into R and pred

on into Enabled. The set of root
methods contains the entry points from which the analysis
is started, e.g., the mainmethod. Recall that predon is used as
the special always-enabled predicate that is assigned to the
flows at the beginning of the first block in a method when
5Both LookUp and Resolve are partial, i.e. they only return values for valid
combinations of input parameters. We assume that the base language is
well-typed. Invalid code trying to access a non-existent field or calling a
non-existent method would be rejected by a type system prior to running
SkipFlow.

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA David Kozak, Codrut Stancu, Tomas Vojnar, and Christian Wimmer

Processed Instruction 𝑖 Created Flows Use Edges Observe Edges Modifications of m and pred

start (𝑝0, ..., 𝑝𝑛) ∀ 𝑗 ∈ [0, 𝑛] : 𝑓𝑗 ← Flow (𝑝 𝑗) ∀ 𝑗 ∈ [0, 𝑛] : b.m[𝑝 𝑗] ← 𝑓𝑗

merge, label
𝑣 ← 𝑒 𝑓 ← Flow (𝑖) b.m[𝑣] ← 𝑓

𝑣 ← 𝑟 .𝑥 𝑓 ← Flow (𝑖) b.m[𝑟] ⇝𝑜𝑏𝑠 𝑓 b.m[𝑣] ← 𝑓

𝑟 .𝑥 ← 𝑣 𝑓 ← Flow (𝑖) b.m[𝑣] ⇝𝑢𝑠𝑒 𝑓 b.m[𝑟] ⇝𝑜𝑏𝑠 𝑓

𝑣 ← 𝑣0 .𝑚 (𝑣1, .., 𝑣𝑛) 𝑓 ← Flow (𝑖) b.m[𝑣0] ⇝𝑜𝑏𝑠 𝑓 b.m[𝑣] ← 𝑓 , b.pred ← 𝑓

return 𝑣 𝑓 ← Flow (𝑖) b.m[𝑣] ⇝𝑢𝑠𝑒 𝑓

jump𝑚 propagate (𝑏,m.target)

if 𝑐 then 𝑙𝑡ℎ𝑒𝑛 else 𝑙𝑒𝑙𝑠𝑒 initBlock (𝑏, 𝑙𝑡ℎ𝑒𝑛, 𝑐), initBlock (𝑏, 𝑙𝑒𝑙𝑠𝑒 , inv (𝑐))

Figure 12. The effect of processing each instruction i when creating a PVPG. The current basic block is denoted as 𝑏.
Additionally, each flow 𝑓 is assigned a predicate edge b.pred ⇝𝑝𝑟𝑒𝑑 𝑓 upon its creation. Note that Flow is not a function in the
mathematical sense but rather a constructor creating a new flow upon every invocation. The notation ∀𝑗 ∈ [0, 𝑛] used in the
first line denotes that a set of flows indexed by integers 0 to n is handled uniformly.

function propagate(b,t)
b.pred ⇝𝑝𝑟𝑒𝑑 t .pred

for 𝑣 ∈ b.m do ⊲ Iterate over all vars, i.e. keys, in 𝑏.𝑚
if 𝑣 ∉ t .m then ⊲ Is there a mapping for 𝑣 in 𝑡 .𝑚?
t .m[𝑣] ← b.m[𝑣]

else
𝑏𝑣 ← b.m[𝑣]
𝑡𝑣 ← t .m[𝑣]
if 𝑏𝑣 ≠ 𝑡𝑣 then ⊲ Is there a collision (two flows for the same 𝑣)?
if not isPhi (tv) then ⊲ No 𝜙 flow created yet?
t .m[𝑣] ← Flow (𝜙) ⊲ Create a fresh 𝜙 flow
t .pred ⇝𝑝𝑟𝑒𝑑 t .m[𝑣]
𝑏𝑣 ⇝𝑢𝑠𝑒 t .m[𝑣]
𝑡𝑣 ⇝𝑢𝑠𝑒 t .m[𝑣]

else
𝑏𝑣 ⇝𝑢𝑠𝑒 𝑡𝑣 ⊲ 𝜙 flow already created, just add a use edge

Figure 13. The propagate function handling jump instruc-
tions.

function initBlock(b,t,c)
if isUnary (c) then
initUnary (𝑏, 𝑡, 𝑐)

else
initBinary (𝑏, 𝑡, 𝑐)

function initUnary(b,t,c)
𝑓 ← Flow (𝑐)
b.pred ⇝𝑝𝑟𝑒𝑑 𝑓

b.m[c.x] ⇝𝑢𝑠𝑒 𝑓

t .m[𝑐.𝑥] ← 𝑓

t .pred ← 𝑓

function initBinary(b,t,c)
𝑓𝑙 ← Flow (𝑐)
b.pred ⇝𝑝𝑟𝑒𝑑 𝑓𝑙
b.m[c.l] ⇝𝑢𝑠𝑒 𝑓𝑙
b.m[c.r] ⇝𝑜𝑏𝑠 𝑓𝑙
t .m[𝑐.𝑙] ← 𝑓𝑙
𝑓𝑟 ← Flow (flip (𝑐))
𝑓𝑙 ⇝𝑝𝑟𝑒𝑑 𝑓𝑟

b.m[c.r] ⇝𝑢𝑠𝑒 𝑓𝑟

b.m[c.l] ⇝𝑜𝑏𝑠 𝑓𝑟

t .m[𝑐.𝑟] ← 𝑓𝑟

t .pred ← 𝑓𝑟

Figure 14. The initBlock, initUnary, and initBinary functions
handling if instructions. In the initBinary function, the no-
tation 𝑐.𝑙 and 𝑐.𝑟 is used to denote access to the left and the
right argument of the comparison 𝑐 , respectively.

no other predicate is available yet. The analysis adds transi-
tively reachable methods to R until a fixed point is reached.
The actual logic of the analysis is defined by the inference
rules presented in Figure 15.

The Source rule specifies the behaviour of a flow repre-
senting a 𝑣 ← 𝑒 instruction. Once enabled, the value state of
𝑓 contains the result of the evaluation of the expression 𝑒 .
The Propagate rule specifies the conditions for propagat-

ing values through a PVPG. Observe that ≤L is established
between the value states of 𝑓𝑠 and 𝑓𝑡 . This kind of formula is
used throughout the rules to model any type of value prop-
agation: Once the analysis reaches a fixed point, the value
state of 𝑓𝑡 has to be at least as big as the value state of 𝑓𝑠 in
terms of the lattice L.
The Predicate rule defines predicate handling. A flow

is enabled when its predicate is enabled and the predicate’s
value state is non-empty.
The Load and Store rules represent field manipulation.

Both rules operate on the flow 𝑟 representing the accessed
object and lookup the flows representing fields named 𝑥 on
all types 𝑡 in the value state of 𝑟 , denoted as 𝑓𝑡 .𝑥 . Recall that
𝐹𝑙𝑜𝑤 (𝑣 ← 𝑟 .𝑥) represents the joined value of all the given
fields 𝑥 for all the types in the value state of the receiver.
Therefore, the Load rule establishes ≤L between the VSout of
all the related 𝑓𝑡 .𝑥 and the VSin of the 𝐹𝑙𝑜𝑤 (𝑣 ← 𝑟 .𝑥) itself.
Similarly, the Store rule establishes ≤L between the VSout
of 𝐹𝑙𝑜𝑤 (𝑟 .𝑥 ← 𝑣) and the VSin of all the related 𝑓𝑡 .𝑥 .

The rules TypeCheck, Cond, and PassThrough define how
the VSin of each flow is mapped to VSout . If the given flow
represents a type check 𝑐 , which can be either an instanceof
check or its negated version, the VSout contains only the
types from VSin that pass the condition c. If the condition 𝑐
is a comparison, the auxiliary function Compare is used to
compute the VSout . If a flow does not have any condition, its
input is passed directly to its output without any filtering.
The auxiliary Compare function uses an operator cond,

and 𝑣𝑙 , 𝑣𝑟 as operands, returning the content of 𝑣𝑙 filtered
with respect to 𝑐 and 𝑣𝑟 . If at least one of the operands is
empty, we return an empty set because both operands are
needed to perform the filtering. If the operator is ’=’ and at
least one of the operands contains Any, then the result of the

SkipFlow: Improving the Precision of Points-to Analysis using Primitive Values and Predicate Edges CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

𝑓 : 𝐹𝑙𝑜𝑤 (𝑣 ← 𝑒), 𝑓 ∈ Enabled

VSin (𝑓) =


𝑛 for 𝑣 ← 𝑛

Any for 𝑣 ← Any
𝑇 for 𝑣 ← new 𝑇

𝑛𝑢𝑙𝑙 for 𝑣 ← null

[Source]
𝑓𝑠 ∈ Enabled, 𝑓𝑠 ⇝𝑢𝑠𝑒 𝑓𝑡

VSout (fs) ≤L VSin (ft)
[Propagate]

𝑓𝑠 ∈ Enabled, VSout (fs) ≠ {},
𝑓𝑠 ⇝𝑝𝑟𝑒𝑑 𝑓𝑡

𝑓𝑡 ∈ Enabled
[Predicate]

𝑓 : 𝐹𝑙𝑜𝑤 (𝑣 ← 𝑟 .𝑥), 𝑓 ∈ Enabled
𝑡 ∈ VSout (r), ft .x = LookUp (t, x)

VSout (ft .x) ≤L VSin (f)
[Load]

𝑓 : 𝐹𝑙𝑜𝑤 (𝑟 .𝑥 ← 𝑣), 𝑓 ∈ Enabled
𝑡 ∈ VSout (r), ft .x = LookUp (t, x)

VSout (f) ≤L VSin (ft .x)
[Store]

𝑓 : 𝐹𝑙𝑜𝑤 (𝑣 ← 𝑣0 .𝑚 (𝑣1, .., 𝑣𝑛))
𝑓 ∈ Enabled, 𝑡 ∈ VSout (v0)

𝑟 = Resolve (t,m)
𝑟 added to R, ∀𝑖 ∈ [0, 𝑛] : vi ⇝𝑢𝑠𝑒 p

r

i

retr ⇝𝑢𝑠𝑒 f

[Invoke]

𝑓 : 𝐹𝑙𝑜𝑤 (𝑐), 𝑓 ∈ Enabled, isTypeCheck (f)
𝑣𝑜𝑢𝑡 = {𝑡 | 𝑡 ∈ VSin (𝑓) ∧ c (t) }

𝑣𝑜𝑢𝑡 ≤L VSout (f)
[TypeCheck]

𝑓 : 𝐹𝑙𝑜𝑤 (𝑐), 𝑓 ∈ Enabled, isComparison(f)
𝑣𝑜𝑢𝑡 = Compare (c,VSout (c.l),VSout (c.r))

𝑣𝑜𝑢𝑡 ≤L VSout (f)
[Cond]

¬(isTypeCheck (f)),
¬(isComparison(f)),

𝑓 ∈ Enabled
VSin (f) ≤L VSout (f)

[PassThrough]

Compare (cond, vl , vr) =



{} if 𝑣𝑙 = {} ∨ 𝑣𝑟 = {}
minL (vl , vr) else if cond 𝒊𝒔 ’=’ ∧ (Any ∈ 𝑣𝑙 ∨ Any ∈ 𝑣𝑟)
𝑣𝑙 ∩ 𝑣𝑟 else if cond 𝒊𝒔 ’=’
𝑣𝑙 \ 𝑣𝑟 else if cond 𝒊𝒔 ’≠’
𝑣𝑙 else if Any ∈ 𝑣𝑙 ∨ Any ∈ 𝑣𝑟

{𝑙 | 𝑙 ∈ 𝑣𝑙 ∧ 𝑟 ∈ 𝑣𝑟 ∧ 𝑐𝑜𝑛𝑑 (𝑙, 𝑟) } otherwise

Figure 15. Inference rules used by SkipFlow. In the rules, the meaning of the notation 𝑓 : 𝐹𝑙𝑜𝑤 (𝑣 ← 𝑒) denotes that the flow
𝑓 was created from the base language instruction 𝑣 ← 𝑒 and similarly for the other instructions. Likewise, we use the notation
𝑓 : Flow(𝑐) to denote a fact that a flow was created from a condition 𝑐 . The helper functions isTypeCheck and isComparison

return true iff the flow was created from a type check or a comparison operator, respectively.

filtering is the lower value in terms of the Lattice L, e.g.:
Compare(’=’, {Any}, {5}) = {5},

Compare(’=’, {Any}, {Any}) = {Any}.
If the operator is ’=’, but none of the operands contains Any,
the result is the set intersection of its arguments, e.g.:

Compare(’=’, {A, B}, {B, C}) = {B},
Compare(’=’, {3}, {3}) = {3},
Compare(’=’, {3}, {5}) = {}.

If the operator is ’≠’, the result is a set difference:
Compare(’≠’, {A, B}, {B, C}) = {A}.

This again works on primitives as well:
Compare(’≠’, {0}, {0}) = {},
Compare(’≠’, {5}, {3}) = {5}.

The remaining cases are ’<’, ’≤’, and other relational opera-
tors apart from ’=’ and ’≠’ handled above. These operators
are defined on primitives only, and so we know that 𝑣𝑙 and
𝑣𝑟 are the 1-element sets containing some primitive value,
or Any. If one of the operands contains Any, we cannot do

any useful filtering, regardless of whether Any is in 𝑣𝑙 or 𝑣𝑟 .
If Any ∈ 𝑣𝑙 , we could only reduce 𝑣𝑙 to an interval (assuming
Any ∉ 𝑣𝑟), which we have decided not to use for scalability
purposes. If Any ∈ 𝑣𝑟 , we do not have enough information to
filter 𝑣𝑙 . Therefore, we simply return 𝑣𝑙 in both cases. Finally,
if none of the operands contains Any, we return the value
from 𝑣𝑙 if it passes the cond with respect to 𝑣𝑟 ; otherwise, we
return the empty set:

Compare(’<’, {3}, {5}) = {3},
Compare(’<’, {3}, {1}) = {}.

Finally, the Invoke rule specifies how methods are linked.
Every time a new type is added to the value state of the
receiver 𝑣0, it is passed to the Resolve function to determine
the callee 𝑟 . Each callee 𝑟 is added to the set of reachable
methods R and subsequently linked by creating a use edge
from the argument flows vi in the caller to the parameter
flows pr

i
of the callee, and from the return flow retr of the

callee to the invoke 𝑓 itself, which represents the returned
value in the caller.

Received 2024-09-09; accepted 2024-11-04

	Abstract
	1 Introduction
	2 Real-World Motivating Examples
	3 System Overview
	4 Predicated Value Propagation Graphs
	5 Implementation Details
	6 Evaluation
	7 Related Work
	8 Conclusions
	Acknowledgments
	A Artifact Appendix
	References
	B Predicated Value Propagation Graph
	B.1 Base Language
	B.2 The Lattice Domain of SkipFlow
	B.3 Structure of a PVPG
	B.4 Creating a PVPG

	C Value Propagation through PVPGs

