DIVINE

Characteristics

Keywords: fast, reliable, general purpose, easy-to-use

Useful for verification of large systems (as opposed to
sequentional model checkers - problems with space
explosion) - uses effective space-reduction techniques
(Partial Order Reduction, Path Compression)

Supports implementations of a majority of POSIX thread
APIs (pthread.h) - enables verification of multithreaded
programs

Model checking of LTL properties, also suitable for a model
checking algorithms development or experimental
comparisions/evaluations.

I Characteristics Il

 Verification of models in DVE language
I Verification via LLVM

« UPAAL timed automata
- LTL model checking
— Deadlock detection
- Implements Upaal Time Automata Parser Library, DBM library
and interpreter for timed automata
- Accepts .xml

e MurPHI models
- Implemented compiler that generates native code
- Distributed and parallel state-space analysis, deadlock
detection

Characteristics — state space compression

L ossless

Based on tree compression
— Effective on large models

Can achieve 90% compression ratio
Time of comprimation is negligible
Supported by all algorithms
--compression or —compression=tree

Also supported in parallel verification, but it's recommended
to use shared memory

Characteristics — Windows version

 From 2.1 version provides GUI

* Windows version supports parallel systems with shared
memory only

e Doesn't support verification of C/C++ code via LLVM

GUI

Unix version — uses Qt
One click verification
Graphic simulator (counterexample generation)

Graphic debugger (variables check, steps, random run)

Installation | - requirements

« HW: 2GB disk space, at least 4GB RAM
e For Windows: 32bit system, MinGW compiler, CMake
e For Unix:
- GNU C++ (4.7.3) or clang (3.2)
- Cmake
- Other:
* LLVM (3.2)
» Clang (3.2)
e Qt (4.5) — GUI
e Boost
o [ibxml2
* Pandoc (+ pdflatex/bibtex)
 MPI (OpenMPI)
e flex, byacc

Extract tar to a folder

Jconfigure
— Check compatibility

make
make check

make install

Installation I

Commands

* divine - -version
- Displays list of options available in installed version of the
program (depends on which plugins it was compiled with)

e divine info <model>
- Displays information about given model - list of properties
that can be checked (you can use this information in
other commands) - for example deadlock, assert or LTL

Commands Il - combine

divine combine [-f <formula file>] <model file>

Some languages have inner support of LTL properties - in
this case are verified properties available automatically
(verify --property). If you verify DVE model, is necessary to
specify LTL properties in separate .ltl. file

divine combine [-f formula.ltl] [-p N] [-0] [-q] model.dve
divine combine [-f ...] [...] model.mdve [P1=VAL] [P2=VAL] ..
Combine command translates LTL on Blchi automata and

Includes it in DVE file. For every LTL property is created one
separate .dve file

LTL - overview

Model checking using linear temporal logic formulas

We create a formal model M of a given system (system is a
set of infinite runs), that we want to verify and the subject of
verification we express using LTL formula

We express ¢ using LTL and decide if M |= @ (e.g. If M is
model of @)

2 different runs are equal if their interpretation of atomic
propositions matches

¢ Is evaluated over one run and express validity of atomic
propositions in states of a run

LTL - overview - operators

Fo - (future) — somewhere in the run @ is valid
Go - (globally) — @ in valid during whole run

oUW - (until) — somewhere in the run W is valid, and until
then @ Is valid

X@ - (next) — in the next state ¢ is valid

eWW - (weak until) — like ,until“, but Y doesn't necessarily
becomes valid

PRW - (release) - W is valid until (%Y AND o) is valid, after
that none of those is valid (+also (WY AND ¢) does not
necessarily have to become valid)

LTL - syntax

#define atl (Procesl.vStaveX)
#define at2 (Proces2.vStaveY)
#define at3 (premennal == 100)

#property F (atl && at2)
#property G atl
#property 'F at3

» #define — assigns symbolic name for atomic proposition
« #property — specifies an LTL formula

Commands Il - metrics

divine metrics <flags> <model>
--reduce=R]

--no-reduce]

--fair]

--report[=<report format>] | -r]
--property=N]

‘engine options]

Determines state availability on the whole state space of a
given model

Prints out statistics - number of states, transitions, accepting
or deadlocks

Commands IV - draw

divine draw

--distance=N]
--trace=N,N,N...]
-l|--labels|--trace-labels]
--bfs-layout]

--reduce=R]

--no-reduce]

-f|--fair]

--render=<cmd>|-r <cmd>]
--compression]

Commands V - verify

divine verify <flags> <model>

[--reachability|--owcty|--map|--nested-dfs] — in case we want
to use a specific algorithm (otherwise there is automatically
chosen a suitable algorithm for model checking, according
to type of a property)

[--property=<name> | -p <name>] - specifies which property
we want to check. We can use divine info to display a list of
available properties

[--fair] — accepts only weakly fair runs. For now available
only for DVE models, suitable when using LTL

Commands V - verify cont.

[--reduce=<reduction>] - forces usage of heuristics that
ensmalls state space.

[--report[=<report format>] | -r] — generates report, format:
text, text:file, plain, etc.

[--no-counterexample | -n] — forbids generating of
counterexamples

[--display-counterexample | -d] — forces generating of
counterexamples

[engine options] — undocumented!

Commands VI - gen-explicit

divine gen-explicit

--fair]
--reduce=<reduction>]
--report[=<report format>]]
‘engine options]
--n0-save-states]

-0 <file> | --output=<file>]

Generates states space of a model into a file that can later
be used by DIVINE or other tool capable of working with
DIVINE Explicit Space Format

LLVM

Low Level Virtual Machine

Infrastructure for compiler (libraries and interfaces)
Written in C++

Used by Clang, and many other compilers for various
languages (Python, Haskell). Clang (but also GCC with

plugins)can generate optimized and unoptimized bitcode

Supports life long compilation model, including link-time,
install-time, run-time

DIVINE a LLVM

e You can use any code written in C/C++
- However, DIVINE has problems with 1/O operations

e Compiles with divine compile —llvm prog.c
« That will create whole runtime environment — prog.bc

e You can use divine info (and take a look at available
properties)

* Or divine metrics (number of states, transitions, accepting,
deadlocks)
- Keep in mind that deadlock in DIVINE is different than
deadlock in C. Deadlock in DIVINE can be also a state
without a successor.

DIVINE a LLVM

— Turning off the reductions — increases number of states and
transitions (reductions can be very demanding of
resources)

 Verification — divine verify prog.bc -p <property>, for
example assertion etc

* Also with -d

« With multithreaded programs, DIVINE checks all thread
Interactions systematically, on a bitcode instructions level.
That enables to prove absence of deadlock/assertion
violations, which is impossible with standard techniques

DVE |

Formalism for asynchronous systems modelling - protocols.

Partially derived from a modelling languages used for
Uppaal, but is mre concentrated on a model expressibility
that comfortable modelling

Creates an abstrack model - automata, resp. a set of
extended finite automatas

Synchronous/asynchronous mode - synchronous not yet
supported

DVE Il - syntax

Basic unit - process, which consists of variables, transitions,
states,...

Global/local variables - shared between processes

Communication via channels (typed/untyped,
buffered/unbuffered)

Transitions - sync, guard, effect
2 data types - Int, byte and also one dimensional arrays

Commited states, assertions

DVE Il - syntax example

Int glob_var = 0;

process P {

Int loc_var = 0O;

state s1, s2, s3;

Init s1;

trans

sl -> sl {guard glob_var<3; effect loc_var = loc_var +1;},
sl -> s2 {effect glob_var = glob_var +1;},

s2 -> s3 {};

}

system async;

	Snímka 1
	Snímka 2
	Snímka 3
	Snímka 4
	Snímka 5
	Snímka 6
	Snímka 7
	Snímka 8
	Snímka 9
	Snímka 10
	Snímka 11
	Snímka 12
	Snímka 13
	Snímka 14
	Snímka 15
	Snímka 16
	Snímka 17
	Snímka 18
	Snímka 19
	Snímka 20
	Snímka 21
	Snímka 22
	Snímka 23
	Snímka 24

