
DIVINE

Characteristics

● Keywords: fast, reliable, general purpose, easy-to-use

● Useful for verification of large systems (as opposed to
sequentional model checkers - problems with space
explosion) - uses effective space-reduction techniques
(Partial Order Reduction, Path Compression)

● Supports implementations of a majority of POSIX thread
APIs (pthread.h) - enables verification of multithreaded
programs

● Model checking of LTL properties, also suitable for a model
checking algorithms development or experimental
comparisions/evaluations.

Characteristics II

● Verification of models in DVE language

● Verification via LLVM

● UPAAL timed automata
– LTL model checking
– Deadlock detection
– Implements Upaal Time Automata Parser Library, DBM library

and interpreter for timed automata
– Accepts .xml

● MurPHI models
– Implemented compiler that generates native code
– Distributed and parallel state-space analysis, deadlock

detection

Characteristics – state space compression

● Lossless

● Based on tree compression
– Effective on large models

● Can achieve 90% compression ratio

● Time of comprimation is negligible

● Supported by all algorithms

● --compression or –compression=tree

● Also supported in parallel verification, but it's recommended
to use shared memory

Characteristics – Windows version

● From 2.1 version provides GUI

● Windows version supports parallel systems with shared
memory only

● Doesn't support verification of C/C++ code via LLVM

GUI

● Unix version – uses Qt

● One click verification

● Graphic simulator (counterexample generation)

● Graphic debugger (variables check, steps, random run)

Installation I - requirements

● HW: 2GB disk space, at least 4GB RAM
● For Windows: 32bit system, MinGW compiler, CMake
● For Unix:

– GNU C++ (4.7.3) or clang (3.2)
– Cmake
– Other:

● LLVM (3.2)
● Clang (3.2)
● Qt (4.5) – GUI
● Boost
● libxml2
● Pandoc (+ pdflatex/bibtex)
● MPI (OpenMPI)
● flex, byacc

Installation II

● Extract tar to a folder

● ./configure
– Check compatibility

● make

● make check

● make install

Commands

● divine - -version
– Displays list of options available in installed version of the

program (depends on which plugins it was compiled with)

● divine info <model>
– Displays information about given model - list of properties

that can be checked (you can use this information in
other commands) - for example deadlock, assert or LTL

Commands II - combine

● divine combine [-f <formula file>] <model file>

● Some languages have inner support of LTL properties - in
this case are verified properties available automatically
(verify --property). If you verify DVE model, is necessary to
specify LTL properties in separate .ltl. file

● divine combine [-f formula.ltl] [-p N] [-o] [-q] model.dve

● divine combine [-f ...] [...] model.mdve [P1=VAL] [P2=VAL] ..

● Combine command translates LTL on Büchi automata and
includes it in DVE file. For every LTL property is created one
separate .dve file

LTL - overview

● Model checking using linear temporal logic formulas

● We create a formal model M of a given system (system is a
set of infinite runs), that we want to verify and the subject of
verification we express using LTL formula

● We express φ using LTL and decide if M |= φ (e.g. if M is
model of φ)

● 2 different runs are equal if their interpretation of atomic
propositions matches

● φ is evaluated over one run and express validity of atomic
propositions in states of a run

LTL – overview - operators

● Fφ - (future) – somewhere in the run φ is valid

● Gφ - (globally) – φ in valid during whole run

● φUΨ - (until) – somewhere in the run Ψ is valid, and until
then φ is valid

● Xφ - (next) – in the next state φ is valid

● φWΨ - (weak until) – like „until“, but Ψ doesn't necessarily
becomes valid

● φRΨ - (release) - Ψ is valid until (Ψ AND φ) is valid, after
that none of those is valid (+also (Ψ AND φ) does not
necessarily have to become valid)

LTL - syntax

#define at1 (Proces1.vStaveX)
#define at2 (Proces2.vStaveY)
#define at3 (premenna1 == 100)

#property F (at1 && at2)
#property G at1
#property !F at3

● #define – assigns symbolic name for atomic proposition
● #property – specifies an LTL formula

Commands III - metrics

● divine metrics <flags> <model>
● [--reduce=R]
● [--no-reduce]
● [--fair]
● [--report[=<report format>] | -r]
● [--property=N]
● [engine options]

● Determines state availability on the whole state space of a
given model

● Prints out statistics - number of states, transitions, accepting
or deadlocks

Commands IV - draw

● divine draw
● [--distance=N]
● [--trace=N,N,N...]
● [-l|--labels|--trace-labels]
● [--bfs-layout]
● [--reduce=R]
● [--no-reduce]
● [-f|--fair]
● [--render=<cmd>|-r <cmd>]
● [--compression]

Commands V - verify

● divine verify <flags> <model>

● [--reachability|--owcty|--map|--nested-dfs] – in case we want
to use a specific algorithm (otherwise there is automatically
chosen a suitable algorithm for model checking, according
to type of a property)

● [--property=<name> | -p <name>] - specifies which property
we want to check. We can use divine info to display a list of
available properties

● [--fair] – accepts only weakly fair runs. For now available
only for DVE models, suitable when using LTL

Commands V – verify cont.

● [--reduce=<reduction>] - forces usage of heuristics that
ensmalls state space.

● [--report[=<report format>] | -r] – generates report, format:
text, text:file, plain, etc.

● [--no-counterexample | -n] – forbids generating of
counterexamples

●

● [--display-counterexample | -d] – forces generating of
counterexamples

● [engine options] – undocumented!

Commands VI - gen-explicit

● divine gen-explicit
● [--fair]
● [--reduce=<reduction>]
● [--report[=<report format>]]
● [engine options]
● [--no-save-states]
● [-o <file> | --output=<file>]

● Generates states space of a model into a file that can later
be used by DIVINE or other tool capable of working with
DIVINE Explicit Space Format

LLVM

● Low Level Virtual Machine

● Infrastructure for compiler (libraries and interfaces)

● Written in C++

● Used by Clang, and many other compilers for various
languages (Python, Haskell). Clang (but also GCC with
plugins)can generate optimized and unoptimized bitcode

● Supports life long compilation model, including link-time,
install-time, run-time

DIVINE a LLVM

● You can use any code written in C/C++
– However, DIVINE has problems with I/O operations

● Compiles with divine compile –llvm prog.c

● That will create whole runtime environment – prog.bc

● You can use divine info (and take a look at available
properties)

● Or divine metrics (number of states, transitions, accepting,
deadlocks)

– Keep in mind that deadlock in DIVINE is different than
deadlock in C. Deadlock in DIVINE can be also a state
without a successor.

DIVINE a LLVM

– Turning off the reductions – increases number of states and
transitions (reductions can be very demanding of
resources)

● Verification – divine verify prog.bc -p <property>, for
example assertion etc

● Also with -d

● With multithreaded programs, DIVINE checks all thread
interactions systematically, on a bitcode instructions level.
That enables to prove absence of deadlock/assertion
violations, which is impossible with standard techniques

DVE I

● Formalism for asynchronous systems modelling - protocols.

● Partially derived from a modelling languages used for
Uppaal, but is mre concentrated on a model expressibility
that comfortable modelling

● Creates an abstrack model - automata, resp. a set of
extended finite automatas

● Synchronous/asynchronous mode - synchronous not yet
supported

DVE II - syntax

● Basic unit - process, which consists of variables, transitions,
states,...

● Global/local variables - shared between processes

● Communication via channels (typed/untyped,
buffered/unbuffered)

● Transitions - sync, guard, effect

● 2 data types - int, byte and also one dimensional arrays

● Commited states, assertions

DVE II – syntax example

int glob_var = 0;

process P {
int loc_var = 0;
state s1, s2, s3;
init s1;
trans
s1 -> s1 {guard glob_var<3; effect loc_var = loc_var +1;},
s1 -> s2 {effect glob_var = glob_var +1;},
s2 -> s3 {};
}

system async;

	Snímka 1
	Snímka 2
	Snímka 3
	Snímka 4
	Snímka 5
	Snímka 6
	Snímka 7
	Snímka 8
	Snímka 9
	Snímka 10
	Snímka 11
	Snímka 12
	Snímka 13
	Snímka 14
	Snímka 15
	Snímka 16
	Snímka 17
	Snímka 18
	Snímka 19
	Snímka 20
	Snímka 21
	Snímka 22
	Snímka 23
	Snímka 24

