Optimizing Query Performance
with Inverted Cache in Metric Spaces

Matej Antol and Vlastislav Dohnal

Faculty of Informatics, Masaryk University,
Botanicka 68a, Brno, Czech republic
{xantol,dohnal}@fi.muni.cz
https://www.fi.muni.cz

Abstract. Similarity searching has become widely available in many
on-line archives of multimedia content. Querying such systems starts
with either a query object provided by user or a random object provided
by the system, and proceeds in more iterations to improve user’s satis-
faction with query results. This leads to processing many very similar
queries by the system. In this paper, we analyze performance of two rep-
resentatives of metric indexing structures and propose a novel concept
of reordering search queue that optimizes access to data partitions for
repetitive queries. This concept is verified in numerous experiments on
real-life image dataset.

Keywords: similarity search, nearest-neighbors query, metric space, in-
verted cache, query optimization

1 Introduction

Multimedia retrieval systems have been becoming more and more applied to or-
ganize various data archives of unstructured content, for example, photo stocks.
Such systems provide content-based retrieval of data objects (e.g., images), so a
user may find visually similar images to a given one. If he or she is not satisfied
with the result, clicking on an interesting image in the answer may give better
answer. This is called browsing. In another retrieval scenario, users may not have
any particular search intent, but they rather like to inspect a multimedia collec-
tion. Here, a query-by-example search is not suitable in the first phases, because
the user may not have any query object. Even-though the user got one, further
relations among retrieved data objects are not considered nor visualized. In this
scenario, the user would prefer a categorized view of data and then to dive into
categories via regular query-by-example search to explore the collection. This
is called multimedia exploration [3,16]. Both such scenarios exhibit the prop-
erty that many queries issued to the system are alike, so search algorithms may
optimize such repeated queries to save computational resources.

In common database technology, the query efficiency is typically supported
by various indexing structures [25], storage layouts [6] and disk caching/buffering
techniques [11]. So the number of disk I/Os needed to answer a query is greatly

2 M. Antol, V. Dohnal

reduced. In modern retrieval systems, analogous approaches are used too. How-
ever, to handle more complex and unstructured data, they are extended to high-
dimensional spaces or even distance spaces where no implicit coordinate system is
defined [20]. The problem of dimensionality curse then often appears [5]. In par-
ticular, it states that indexing structures stop exhibiting logarithmic complexity
in query evaluation but rather become linear [7,8]. This is typically attributed
to the fact that many data partitions must be visited by an indexing mechanism
due to high overlaps among them. Efficiency is then improved by further filtering
conditions and optimized node-splitting strategies in the indexing structures [23,
9] or by sacrificing precision in query results (approximate querying) [1,14,13].

In this paper, we study the issue of evaluating repeated queries and propose a
solution that prioritize data partitions during query evaluation to deliver query
results earlier. Instead of caching answers to particular queries, our proposal
stores usefulness of data partitions and localizes such information to increase
effectiveness of accessing data partitions during evaluation of new queries. More-
over, this concept is generally applicable to any metric indexing structure [26].

The paper is structured as follows. In the next section, we summarize related
work. The necessary background of similarity searching and indexing is given
in Section 3. Analysis of performance of current indexes that motivates our
work is presented in Section 4. The proposal of so-called Inverted Cache Index
is described in Section 5 and its evaluation in Section 6. Contributions of this
paper and possible future extensions are summarized in Section 7.

2 Related work

There are many approaches [26, 8] for indexing metric spaces that were developed
as generally applicable to a large variety of domains. To process large datasets,
they are designed as disk oriented. The data partitioning principles are typi-
cally based on (i) hierarchical clustering (e.g. M-tree [9]), where each subtree
is covered by a preselect data object (pivot) and a covering radius; (ii) voronoi
partitioning (e.g. M-index [18]), where subtrees are formed by assigning objects
to the closest pivot; and (iii) precomputed distances (e.g. LAESA [24]), where no
explicit structure is built, but rather distances among data objects are stored.
Optimizations of query-evaluation algorithms are based on extending a hier-
archical structure with additional precomputed distance to strengthen filtering
capabilites, e.g. M*-tree [22], cutting local pivots [19]; or on exploiting large
number of pivots in a very compact and reusable way, e.g. permutation prefix
index [12]. These techniques, however, does not analyze the stored data and
accesses to them, but rather constrain data partitions as much as possible.
Another way to make query evaluation much faster is to trade accuracy —
approximate searching. There are many approaches that apply early-termination
and relaxed-branching strategies to stop searching when query result does im-
prove marginally. A recent approach called spatial approximation sample hier-
archy [14] builds an approximated near-neighbor graph and does not exploit

Optimizing Query Performance 3

triangle inequality to filter out irrelevant data partitions. This was further im-
proved and combined with cover trees to design Rank Cover Tree [13].

Distance-Cache [21] is a main-memory structure that maintains dynamic in-
formation to determine tight lower- and upper-bounds of distances between data
objects. This information is collected based on previous querying and is applied
to newly posed queries. So it is applicable to any metric indexing structure,
which is the resemblance with the approach proposed in this paper.

3 Background

We assume unstructured data modeled in metric space and corresponding in-
dexing techniques organizing such data here. Before presenting experience with
metric structures that motivated our work, we summarize the necessary back-
ground.

3.1 Metric space and Similarity Queries

The metric space M is defined as a pair (D, d) of a domain D representing data
objects and a pair-wise distance function d : D x D +— R. The distance function
satisfies the following postulates:

Ve,y € D,d(z,y) >0 non-negavity
Ve,y € D,d(z,y) = d(y, x) symmetry

Ve, y e D,x =y < d(z,y) =0 identity

Va,y,z € D,d(z,z) < d(z,y) + d(y, 2) triangle inequality

The distance function is used to measure similarity between two objects. The
shorter the distance is, the more similar the objects are. Consequently, a sim-
ilarity query can be defined. There are many query types [10] but the range
query and k-nearest neighbor query are most important ones. The range query
R(q,r) specifies all database objects within the distance of r from ¢. In partic-
ular, R(q,r) = {olo € X,d(q,0) < r}, where X C D is the database to search
in. In this paper, we primarily focus on k-nearest neighbors query since it is
more convenient for users. The user wants to retrieve k most similar objects to

a query: kNN(q) = A, |A|=kAVoe A;pe X — A, d(q,0) <d(q,p).

3.2 Indexing and Query Evaluation

To organize a database to answer similarity queries efficiently, many indexing
structures have been proposed [26]. Their principles are twofold: (i) recursively
applied data partitioning/clustering defined by a preselected data object called
pivot and a distance threshold, and (ii) in effective object filtering using lower-
bounds on distance between a database object and a query object. These prin-
ciples are firstly surveyed in [8].

4 M. Antol, V. Dohnal

20 @® @@@ @@@@ [0060]

\++ﬁ+}+ |+ +++] Té\\-\ /ﬁl\l*}m’:%‘}_‘ +4][[+][+

Fig. 1: Partitioning principles of M-tree (left) and M-index (right).

In this paper, we use a traditional index M-tree [9] and a more recent tech-
nique M-index [18]. Both these structures create an internal hierarchy of nodes
partitioning data space into many buckets — an elementary object storage. Please
refer to Fig. 1 for principles of their organization. M-tree organizes data objects
in compact clusters created in the bottom-up fashion, where each cluster is rep-
resented by a pivot and a covering radius, i.e. distance from the pivot to the
farthest object in the cluster. On the other hand, M-index applies Voronoi-like
partitioning using a predefined set of pivots in top-down way. In this case, the
clusters are formed by objects that have the cluster’s pivot as the closest one.
On next levels, the objects are reclustered using the other pivots, i.e. eliminating
the pivot that formed the current cluster.

An algorithm to evaluate a kNN query constructs a priority queue of nodes
to access. The priority is defined in terms of a lower bound on distance between
the node and the query object. So a probability of node to contain relevant
data objects is estimated this way. In detail, the algorithm starts with inserting
the root node of hierarchy. Then it repeatedly pulls the head of priority queue
until the queue is empty. The algorithm terminates immediately, if the head’s
lower bound is greater than the distance of current k' neighbor to the query
object. If the pulled element represents a leaf node, its bucket is accessed and all
data objects stored in there are checked against the query, so query’s answer is
updated. If it is a non-leaf node, all its children are inserted into the queue with
correct lower bounds estimated. M-tree defines the lower bound for a node (p, 7€)
and a query object ¢ as the distance d(q,p) — r¢. For space constraints, we do
not include additional M-tree’s node filtering principles as well as the M-index’s
approach, which is elaborate too.

4 Index Structure Effectiveness

Interactivity of similarity queries is the main driving force to make content-
based information retrieval widely used [15]. In the era of Big Data, near real-
time execution of similarity queries over massive data collections is even more
important, because it allows various analytics to be implemented [4]. In this

Optimizing Query Performance 5

w
=]
<]

600

N
%
=]

500

N
o
S

400

300

Frequency

=
o
=]

200

[
o

100

Occurrence of given query
[
w
o

o

0 100 200 300 400 500 600 700 800 S00 0

Unique queries ordered by frequency Distance

Fig. 2: Distribution of top-1000 unique Fig. 3: Density of distances among top-
queries ordered by their appearances. 1000 query objects.

section, we present motivating arguments based on experience with a real-life
content-based retrieval system.

4.1 Query Statistics

From Google Analytics, we have obtained statistics about queries processed in
a demonstration application [17]. This application implements content-based
retrieval on the CoPhIR data-set [2] consisting of 100 million images. The appli-
cation’s web interface! shows similar images to a query image chosen randomly
from 100 preselected images. Then the user may browse the collection by clicking
“Visually similar”, or obtain a new query by a regular keyword search. Thus this
application fits our motivating browsing and exploring scenarios perfectly.

Figure 2 shows absolute frequencies of individual top-1000 queries that were
executed during the application’s life time (launched in Nov. 2008). This power-
law like distribution is attributed to the way of presenting an initial search to
a new website visitor. Figure 3 depicts the density of distances among these
queries, so the reader may observe that there are very similar query objects as
well as distinct ones. This proves that the users were also browsing the data
collection.

4.2 Indexing Structure Performance

The main drawbacks of indexing structures in metric spaces are a high amount of
overlaps of their substructures, and not very precise estimation of lower bounds
on distances between data objects and a query object. So the kNN-query eval-
uation algorithm often accesses large portion of indexing structure’s buckets to
obtain precise answer to a query. In Figure 4, we present the progress of recall
while constraining the number of accessed buckets.

The selected indexing structure representatives were populated with 1 mil-
lion data objects from the CoPhIR dataset and 30NN queries for the top-1000
query objects were evaluated. The figures present average values of recall of such

! http://mufin.fi.muni.cz/imgsearch/similar

6 M. Antol, V. Dohnal

9} g 50
© 40 < 40
30 30
20 -e-original mtree 200 20

10 0 -e-original mtree 2000

0 1000 2000 3000 4000 5000 6000 7000 8000

0 100 200 300 400 500 600 700 800 900
Accessed buckets

Accessed buckets

(a) M-tree 200 (b) M-tree 2000
100 100
90 El]
80 80
70 70
= 60 = 60
3 50 350
= 40 = 40
30 30

20 -e-original mindex 200 20 -e-original mindex 2000
10 10
0 0
0 5000 10000 15000 20000 25000 30000 0 500 1000 1500 2000 2500 3000
Accessed buckets Accessed buckets
(¢) M-index 200 (d) M-index 2000

Fig.4: Recall of 30NN for increasing number of accessed buckets of M-tree and
M-index and different bucket capacities (200 and 2,000).

queries. We have tested two configurations for both M-tree and M-index. The
capacity of buckets was constrained to 200 and 2,000 objects to have bushier
and more compact structures. Table 1 summarizes information about them. To
this end, M-index’s building algorithm was initialized with 128 pivots picked at
random from the dataset and the maximum depth of M-index’s internal hier-
archy was limited to 8. From the statistics, we can see that M-tree can adapt
to data distribution better than M-index and does not create very low occupied
buckets, so M-tree is more compact data structure.

From the query evaluation point of view, which is the main point of interest
of this paper, both the structures need to access large amounts of buckets to
obtain 100% recall. M-tree needs to check objects in 8,100 (70%) and 1,000 (89%)

Indexing bucket|buckets|avg. bucket|hierarchy|internal node
structure capacity|in total| occupation| height capacity
M-tree 200 200(11,571 43% 4 50
M-tree 2000 2,000{ 1,124 44% 3 100
M-index 200 200| 62,049 8% 8| not defined
M-index 2000| 2,000| 10,943 4.6% 8| not defined

Table 1: Structure details of tested indexing techniques.

Optimizing Query Performance 7

buckets for 200 and 2,000 bucket capacities, respectively. M-index visits 30,000
(47%) and 6,500 (58%) buckets for 200 and 2,000 bucket capacities, respectively.
To complete 95% recall, the requirements are lower — 40% and 53% for M-tree
versus 12% and 13% for M-index. From these results, we can conclude that
both the structures are not very effective in accessing buckets with relevant data
early. M-index’s principle of partitioning, however, is much more effective in early
stages of searching because it can get 50% of correct objects within 1 percent of
accessed buckets. M-tree locates only about 15% of correct objects within the
same ratio. In M-tree with 2,000 bucket size, the average number of leaf nodes
containing 30 nearest neighbors is 17.

5 Inverted Cache Index

In this section, we propose a technique for prioritizing nodes in indexing hier-
archies to locate relevant data objects earlier. This technique is based on ex-
ploiting knowledge of accessing data partitions during query evaluation. So, a
query evaluation algorithm can adaptively re-order its priority queue with re-
spect to usefulness of the current node, i.e. the node’s chance to contribute to
query result. We call this technique Inverted Cache Index (ICI), since it does
not record the queries processed so far, but rather the number of times a given
partition/bucket (or even data object) contributed to the final result of such
queries.

Each object and node in an indexing structure has a memory of its historical
accesses. This memory is used for storing ICI value. After completing evaluation
of a query, its final answer is checked and ICI value is increased for each object
as well as for the object’s leaf node and all its ancestors. ICI values are later
used to update estimated lower bounds in the priority queue in the algorithm.
This procedure is captured in pseudo-code in Algorithm 1.

In the following, we propose two different procedures to apply ICI to the
estimates of distances between a node and a query. General principle of such
procedures is to create local attractive force to make accessed data parts closer
to the query or repulsive force for unaccessed or distant data. In addition, we
evaluate two ways of incrementing ICI in the experiments.

5.1 Naive ICI
To modify priorities of individual nodes in algorithm’s priority queue, we propose
a naive solution that mitigates influence of highly accesses data but still respects

the original distance:

log[C’I = logbase(ICI + base) (1)

doriginal (2)

drcr = ;i
ogicr

8 M. Antol, V. Dohnal

Algorithm 1 Algorithm for kNN query evaluation incorporating ICI.

Input: a query @ = k-NN(g), an indexing structure hierarchy root
Output: List of objects satisfying the query Q.res
Q.res < () {init query result}
PQ <+ {(root,0)} {init priority queue with root and zero as the lower bound}
while P(Q is not empty do
e < PQ.poll {get the first element from the priority queue}
if Q.res[k].distance > e.lower Bound then
break {terminate if e cannot contain objects closer than k" neighbor}
end if
for all a € e.children {check all children nodes} do
if a is leaf then
update @) with a.objects
else
d < get estimate of distance between a and @
{e.g. M-tree’s original alg. uses (d(Q.gq, a.pivot) — a.radius) here}
insert (a,d) into PQ
end if
end for
sort PQ by ICI of each element in it
end while
for all o € Q.res {increment ICI of object, its leaf node and all parents } do
incr 0.ICT
incr o.leaf and its parents
end for
return res

To make the values of logarithm always positive, we add the value of base to ICI
(which is zero for unaccessed data). It is also the only parameter of this method.
Finally, the value of d;¢cy is then used to sort the priority queue.

This procedure however does not create the necessary attractive/repulsive
forces with respect to distance. In particular, the shrinking factor applied on
distance is constant for constant ICI. An example is given in Figure 5.

5.2 Extended ICI

This procedure is inspired by the gravitation law and general dynamics of forces
between physical objects. In this scenario, the value of ICI can be understood
as a mass of an object/node, which determines an attraction force that pulls it
to a query. The strength of it is straightforwardly updated with the power of
distance. In naive ICI, this force is constant regardless the distance to query.
Extended ICI is defined as follows:

_ logrct
bowerjcr = ——— (3)
(original)pwr +1
Ao
dICI _ original (4)

powerrcr’

Optimizing Query Performance 9

-
IS

12 -e-Original 30

() .
210 -+Naive IC| 70
£ g ExtendedliCl — 60 _
© S 5o -e-original mtree 200
26 & 20 -=mtree 200 Ib
's—; 4 30 ——mtree 200 qd

2 = 20 mtree 200 qdg

10 ——mtree 200 qdg-freq
0 0

o 1 2 3 4 5 6 7 8 9 10 0 1000 2000 3000 4000 5000 6000 7000 8000
Distance after ICl computation Accessed buckets

Fig.5: Comparison of naive and ex- Fig.6: Progress of recall for different
tended ICI=20 for increasing original strategies to order priority queue.
distance.

where log;cr is defined in Eq. 1 and d;,4, stands for the maximum distance in
metric space (for CoPhIR dataset, it is 10).

This procedure introduces a new parameter pwr, which is subject to exper-
imenting, but it brings necessary flexibility when different indexing structure is
used. The behavior of Extended ICI is exampled in Figure 5.

6 Experiments

In this section, we provide an extensive experimental comparison of the proposed
ICI techniques with standard algorithm for evaluating precise kNN queries, i.e.
no approximation was used.

The dataset used in experiments is a l-million-object subset of CoPhIR
dataset, where each object is formed by five MPEG-7 global descriptors (282
dimensional vector) and the distance function is a weighted sum of L; and Lo
metrics, for short. Please refer to [2] for complete description.

Since we focus on repeated queries, we used queries issued in the on-line image
retrieval demo (see Section 4.1) during the year of 2009 and queries executed
during January, 2010. The first set (Qy2009) contains 993 query objects and is
used as the learning set to adapt ICI values. The second set (Qm1y2010) is the
testing set to analyze the performance of metric indexing structures. In this set,
there are 1000 query objects, where about 10% queries appear in the learning set
and the remaining 90% queries are unique. All tests were performed for different
settings and structures to evaluate precise 30NN queries:

— M-tree with capacities of leaf/non-leaf nodes set to 200/50, 400/100 and
2,000/100 objects;

— M-index built over 128 pivots and maximum tree depth of 8, node capacities
set to 200 and 2,000 objects;

— nailve and extended ICI with different bases (5, 10) in logrcr and exponents
(2, 5, 10) in pwricy.

Further statistics about the structures are given in Section 4.2.

10 M. Antol, V. Dohnal

6.1 Different Query Ordering Strategies

The first group of experiments focuses on determining the best setting of d;cy
distance measure. We used M-tree with leaf node capacity fixed to 200 only and
the other parameters fixed to log base 10 and to power of 2. We studied the
progress of recall at particular number of accessed nodes (buckets). The results
are depicted in Figure 6, where the following approaches where compared:

original — M-tree’s algorithm for precise kNN evaluation (search queue order
by lower-bound distance (d(g, pivot) — reovering);

Ib — naive ICI on doriginai = d(q, pivot) — T'eovering;

qd - naive ICI on dorigina = d(q, pivot);

qdg - extended ICI on doriginas = d(g, pivot) ignoring query repetition;

qdg-freq — extended ICI computed as “qdg”, respecting query repetitions.

The results show that the concept of ICI is valid as the query recall rises
faster. However, the original lower bound on distance must be replaced with
the real distance between the query object and a pivot (node’s representative).
The best results are exhibited by the extended ICI strategy with values of ICI
incremented for every query executed, i.e. including repeated queries. We will
examine this strategy thoroughly in the following sections.

6.2 Influence of Indexing Structure Bushiness

We focus on different leaf-node capacities of M-tree here. In particular, all three
configurations (200, 400, and 2,000) are compared in Figure 7. Results clearly
show that the extended ICI with query frequency (blue curves in the figure) can
outperform the original queue ordering regardless the number of leaf nodes. In
addition, we have compared to variants of incrementing ICI values:

or each node’s ICI value is increased by the normalized number of objects in the
final query answer that were found in the node’s subtree; the normalization
is done by the cardinality of query answer, which is 30 in our scenario;

qc ICI value incremented by one in each node on the path from bucket to root.

The variant gc apparently leads to very high values of ICI in nodes closer to
the root node, which misleadingly attracts irrelevant nodes too near the query
object. It has shown as ineffective in overall progress of recall. The variant or
has a good property of having the sum of ICI values over all nodes on the same
level equal to the number of processed queries, so we use it in all experiments if
not stated otherwise.

6.3 Varying Parameters of Extended ICI

The last group of experiments examines the parameter of extended ICI, namely
the base of logarithm and the exponent of power. In Figure 8, the progress of
recall is presented for both M-tree and M-index with leaf node capacities 200 and

Optimizing Query Performance

100

100

90 90

80 80

70 70

= 60 = 60
g 50 § 50
& 40 -e-original mtree 200 = 40
30 ——log 10 pwr 2 or 30

20 —=-log 10 pwr 2 qc 20

10 10

0 0

0

1000 2000 3000 4000 5000 6000 7000 8000
Accessed buckets

(a) M-tree 200

100
90
80
70
60
50
40
30
20
10

0

Recall

-0

0

100 200 300 400 500 6

——log 10 pwr 2 or
-=-log 10 pwr 2 qc

11

-e-original mtree 400
——log 10 pwr 2 or

—=-log 10 pwr 2 qc

1000 2000 3000

Accessed buckets

(b) M-tree 400

4000

riginal mtree 2000

00 700 800 900

Accessed buckets

(c¢) M-tree 2,000

Fig. 7: Progress of recall for different M-

100
90
80
70
60
50
40
30
20
10

-e-original mtree 200

—=-log 5 pwr 5 or

——log 10 pwr 2 or
log 10 pwr 5 or

Recall

——log 10 pwr 10 or

0 1000 2000 3000 4000 5000 6000 7000 8000

Accessed buckets

(a) M-tree 200

-e-original mindex 200
-=-log 10 pwr 2

Recall

—-log 10 pwr 5
log 10 pwr 10

5000 10000 15000 20000 25000 30000

Accessed buckets

(c) M-index 200

tree configurations (qdg-freq).

-e-original mtree 2000
-=log 5 pwr 5 or
—+-log 10 pwr 2 or

log 10 pwr 5 or
——log 10 pwr 10 or

0 100 200 300 400 500 600 700 800 S00

Accessed buckets

(b) M-tree 2,000

-e-original mindex 2000
—=-log 10 pwr 2
——log 10 pwr 5

log 10 pwr 10

500 1000 1500 2000

Accessed buckets

(d) M-index 2,000

2500 3000

Fig.8: Progress of recall while varying parameters of extended ICI (qdg-freq).

12 M. Antol, V. Dohnal

setup information 50% query completion 95% query completion
indexing best original |nodes total original [nodes total
structure setup nodes needed |improve- ||[nodes needed |improve-
(log-pwr) ||needed ment needed ment
M-tree 200 |5-5 1600 1000 37,5% 4600 4200 8,7%
M-tree 2000 |10-2 210 160 23.8% 590 470 20,5%
M-index 200 |10-5 600 800 -33% 8000 6000 25%
M-index 2000 |10-5 100 130 -30% 1500 950 37%

Table 2: Improvement in query costs for 50% and 95% recall.

2,000 objects. From the large number of combinations of log base and exponent,
we selected 5/5, 10/2, 10/5 and 10/10 only, because such settings were able to
exceed the performance of original kNN algorithm. As for M-tree, the results
quite clearly support the configurations 5/5 and 10/2 for 200 and 2,000 bucket
capacities, respectively. The results for M-index look very similar to the original
kNN algorithm in the figure. But we can still see higher efficiency for higher
values of recall. In particular, starting from 80% recall, the extended ICI queue
ordering can access promising buckets earlier. Here, the best configuration is
10/5.

Table 2 presents details on the number of accessed buckets needed to obtain
50% and 95% recall of 30NN queries. It can be seen that the best results are
dependent on the indexing structure setup (bucket capacity), which is mainly
evident from the data concerning M-tree. High performance of original M-index’s
algorithm in early stages of query processing causes performance declination for
50% recall. However, the improvement is eminent while considering higher values
of recall, which calls for applying our method to approximate kNN evaluation.
From the data, we can generally state that better results are obtained for M-
index than for M-tree. It is also noticeable that greater bucket sizes increases
the improvement achieved by ICI.

To sum up all the experiments, the concept of reordering priority queue with
respect to previous usefulness of data partitions proved as valid. Since disk-
oriented indexing structures prefer larger bucket capacities, the extended ICI
with log base of 10 and exponent in power of 5 is a good and universal choice.

7 Conclusion and Future Work

We have presented a new approach to query answering optimization in metric
spaces called Inverted Cache Index (ICI). Previous accesses to data partitions
are recorded and their participation on query answering is later used to give
search preference to such partitions. However, it is not blindly applied, but rather
the distance values in metric space are reflected to create proper attractive or
repulsive forces correspondingly.

Application of ICI presents multidimensional complexity as it is needed to
analyze behavior on different datasets, different indexing structures, and differ-

Optimizing Query Performance 13

ent parameters of extended ICI formula. We have shown that more than 35%
improvement is achieved to obtain 95% recall for a state-of-the-art indexing
structure — M-index. We consider this to be the greatest contribution of this
paper.

Since the whole concept is applicable to any hierarchical organization, we plan
to investigate it further. Additionally, ICI’s optimization of approximate query
evaluation is straightforward and we will investigate it in the future. Another
issue to study is to vary the amount of historical bucket-access recordings to take
into consideration. Its implementation is easy, but new findings may be obtained.
The ultimate goal would be a definition of procedure that could automatically
swap search queue ordering between ICI and the original priority depending on
current data distribution.

References

1. Giuseppe Amato, Fausto Rabitti, Pasquale Savino, and Pavel Zezula. Region prox-
imity in metric spaces and its use for approximate similarity search. ACM Trans-
actions on Information Systems (TOIS 20083), 21(2):192-227, April 2003.

2. Michal Batko, Fabrizio Falchi, Claudio Lucchese, David Novak, Raffaele Perego,
Fausto Rabitti, Jan Sedmidubsky, and Pavel Zezula. Building a web-scale image
similarity search system. Multimedia Tools and Applications, 47(3):599-629, 2009.

3. C. Beecks, M. S. Uysal, P. Driessen, and T. Seidl. Content-based exploration of
multimedia databases. In Content-Based Multimedia Indexing (CBMI), 2018 11th
International Workshop on, pages 59-64, June 2013.

4. Christian Beecks, Tomas Skopal, K. Schoffmann, and Thomas Seidl. Towards large-
scale multimedia exploration. In Proc. 5th International Workshop on Ranking in
Databases (DBRank 2011), Seattle, WA, USA, pages 31-33, 2011.

5. Christian Béhm, Stefan Berchtold, and Daniel A. Keim. Searching in high-
dimensional spaces: Index structures for improving the performance of multimedia
databases. ACM Comput. Surv., 33(3):322-373, September 2001.

6. S. D. Carson. A system for adaptive disk rearrangement. Softw. Pract. Exper.,
20(3):225-242, March 1990.

7. Edgar Chéavez, José L. Marroquin, and Gonzalo Navarro. Overcoming the curse
of dimensionality. In Procedings of the European Workshop on Content-Based
Multimedia Indexing (CBMI 1999), Toulouse, France, October 25-27, 1999, pages
57-64, 1999.

8. Edgar Chévez, Gonzalo Navarro, Ricardo A. Baeza-Yates, and José Luis Mar-
roquin. Searching in metric spaces. ACM Computing Surveys (CSUR 2001),
33(3):273-321, September 2001.

9. Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access method
for similarity search in metric spaces. In Matthias Jarke, Michael J. Carey, Klaus R.
Dittrich, Frederick H. Lochovsky, Pericles Loucopoulos, and Manfred A. Jeusfeld,
editors, Proceedings of the 23rd International Conference on Very Large Data Bases
(VLDB 1997), Athens, Greece, August 25-29, 1997, pages 426-435. Morgan Kauf-
mann, 1997.

10. P. Deepak and M. D. Prasad. Operators for Similarity Search: Semantics, Tech-
niques and Usage Scenarios. Springer, 2015.

14

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

M. Antol, V. Dohnal

Wolfgang Effelsberg and Theo Haerder. Principles of database buffer management.
ACM Trans. Database Syst., 9(4):560-595, December 1984.

Andrea Esuli. Use of permutation prefixes for efficient and scalable approximate
similarity search. Inf. Process. Manage., 48(5):889-902, September 2012.

M. E. Houle and M. Nett. Rank-based similarity search: Reducing the dimensional
dependence. IEEE Transactions on Pattern Analysis and Machine Intelligence,
37(1):136-150, Jan 2015.

M. E. Houle and Jun Sakuma. Fast approximate similarity search in extremely
high-dimensional data sets. In Proceedins of 21st International Conference on Data
Engineering (ICDE), pages 619-630, April 2005.

Michael S. Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain. Content-based
multimedia information retrieval: State of the art and challenges. ACM Trans.
Multimedia Comput. Commun. Appl., 2(1):1-19, February 2006.

Juraj Mosgko, Jakub Loko¢, Tomas GroSup, Pfemysl Cech, Tom4as Skopal, and Jan
Lansky. MLES: multilayer exploration structure for multimedia exploration. In
Proceedings of Conference on New Trends in Databases and Information Systems
(ADBIS), Poitiers, France, September 8-11, 2015., pages 135-144, Cham, 2015.
Springer International Publishing.

David Novak, Michal Batko, and Pavel Zezula. Generic similarity search engine
demonstrated by an image retrieval application. In Proceedings of the 32nd In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 840-840, New York, NY, USA, 2009. ACM.

David Novak, Michal Batko, and Pavel Zezula. Metric index: an efficient and scal-
able solution for precise and approximate similarity search. Information Systems,
36, 2011.

Paulo H. Oliveira, Caetano Traina, and Daniel S. Kaster. Improving the pruning
ability of dynamic metric access methods with local additional pivots and anticipa-
tion of information. In Proceedings of 19th East European Conference on Advances
in Databases and Information Systems (ADBIS), Poitiers, France, September 8-11,
2015, pages 18-31, Cham, 2015. Springer International Publishing.

Hanan Samet. Foundations of Multidimensional And Metric Data Structures. The
Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, 2006.
T. Skopal, J. Lokoc, and B. Bustos. D-cache: Universal distance cache for metric ac-
cess methods. IEEE Transactions on Knowledge and Data Engineering, 24(5):868—
881, May 2012.

Tomas Skopal and David Hoksza. Improving the performance of m-tree family by
nearest-neighbor graphs. In Yannis Ioannidis, Boris Novikov, and Boris Rachev, ed-
itors, Proceedings of 11th Fast European Conference on Advances in Databases and
Information Systems (ADBIS), Varna, Bulgaria, September 29-October 3, 2007,
pages 172-188, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

Tom4s Skopal, Jaroslav Pokorny, and Vaclav Snéasel. Nearest neighbours search us-
ing the PM-Tree. In Proceedings of the 10th International Conference on Database
Systems for Advanced Applications (DASFAA), Beijing, China, April 17-20, 2005,
volume 3453 of Lecture Notes in Computer Science, pages 803—-815. Springer, 2005.
Juan Miguel Vilar. Reducing the overhead of the AESA metric-space nearest neigh-
bour searching algorithm. Information Processing Letters, 56(5):265-271, 1995.
Jeffrey Scott Vitter. External memory algorithms and data structures: Dealing
with massive data. ACM Comput. Surv., 33(2):209-271, June 2001.

Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Similarity
Search: The Metric Space Approach, volume 32 of Advances in Database Systems.
Springer, 2005.

