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We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging

technology. While the last decade laid foundation to such promise, it also paved the way for a large number

of new techniques and systems, got many new people involved, and triggered stronger association of weakly

related fields. In this article, we survey almost 300 key theoretical and empirical contributions in the current

decade related to image retrieval and automatic image annotation, and in the process discuss the spawning of

related subfields. We also discuss significant challenges involved in the adaptation of existing image retrieval

techniques to build systems that can be useful in the real world. In retrospect of what has been achieved so

far, we also conjecture what the future may hold for image retrieval research.
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1. INTRODUCTION

What exactly Niels Henrik David Bohr meant when he said “never express yourself
more clearly than you are able to think” is anybody’s guess. In light of the current
discussion, one thought that this well-known quote evokes is that of subtle irony; There
are times and situations when we imagine what we desire, but are unable to express
this desire in precise wording. Take, for instance, a desire to find the perfect portrait
from a collection. Any attempt to express what makes a portrait “perfect” may end up
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undervaluing the beauty of imagination. In some sense, it may be easier to find such a
picture by looking through the collection and making unconscious “matches” with the
one drawn by imagination, than to use textual descriptions that fail to capture the very
essence of perfection. One way to appreciate the importance of visual interpretation of
picture content for indexing and retrieval is this.

Our motivation to organize things is inherent. Over many years we learned that this
is a key to progress without the loss of what we already possess. For centuries, text in
different languages has been set to order for efficient retrieval, be it manually in the
ancient Bibliotheke, or automatically as in the modern digital libraries. But when it
comes to organizing pictures, man has traditionally outperformed machines for most
tasks. One reason which causes this distinction is that text is man’s creation, while
typical images are a mere replica of what man has seen since birth, concrete descriptions
of which are relatively elusive. Add to this the theory that the human vision system has
evolved genetically over many centuries. Naturally, the interpretation of what we see
is hard to characterize, and even harder to teach a machine. Yet, over the past decade,
ambitious attempts have been made to make computers learn to understand, index,
and annotate pictures representing a wide range of concepts, with much progress.

Content-based image retrieval (CBIR), as we see it today, is any technology that
in principle helps to organize digital picture archives by their visual content. By this
definition, anything ranging from an image similarity function to a robust image an-
notation engine falls under the purview of CBIR. This characterization of CBIR as a
field of study places it at a unique juncture within the scientific community. While we
witness continued effort in solving the fundamental open problem of robust image un-
derstanding, we also see people from different fields, such as, computer vision, machine
learning, information retrieval, human-computer interaction, database systems, Web
and data mining, information theory, statistics, and psychology contributing and be-
coming part of the CBIR community [Wang et al. 2006]. Moreover, a lateral bridging
of gaps between some of these research communities is being gradually brought about
as a by-product of such contributions, the impact of which can potentially go beyond
CBIR. Again, what we see today as a few cross-field publications may very well spring
into new fields of study in the foreseeable future.

Amidst such marriages of fields, it is important to recognize the shortcomings of CBIR
as a real-world technology. One problem with all current approaches is the reliance on
visual similarity for judging semantic similarity, which may be problematic due to the
semantic gap [Smeulders et al. 2000] between low-level content and higher-level con-
cepts. While this intrinsic difficulty in solving the core problem cannot be denied, we
believe that the current state-of-the-art in CBIR holds enough promise and maturity
to be useful for real-world applications if aggressive attempts are made. For example,
GoogleTM and Yahoo!® are household names today primarily due to the benefits reaped
through their use, despite the fact that robust text understanding is still an open prob-
lem. Online photo-sharing has become extremely popular with Flickr [Flickr 2002],
which hosts hundreds of millions of pictures with diverse content. The video-sharing
and distribution forum YouTube has also brought in a new revolution in multimedia
usage. Of late, there is renewed interest in the media about potential real-world ap-
plications of CBIR and image analysis technologies, as evidenced by publications in
Scintific American [Mirsky 2006], Discovery News [Staedter 2006] and on CNN [2005].
We envision that image retrieval will enjoy a success story in the coming years. We also
sense a paradigm shift in the goals of the next-generation CBIR researchers. The need
of the hour is to establish how this technology can reach out to the common man in
the way text retrieval techniques have. Methods for visual similarity, or even semantic
similarity (if ever perfected), will remain techniques for building systems. What the
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average end-user can hope to gain from using such a system is a different question
altogether. For some applications, visual similarity may in fact be more critical than
semantic. For others, visual similarity may have little significance. Under what scenar-
ios a typical user feels the need for a CBIR system, what the user sets out to achieve
with the system, and how she expects the system to aid in this process are some key
questions that need to be answered in order to produce a successful system design.
Unfortunately, user studies of this nature have been scarce so far.

Comprehensive surveys exist on the topic of CBIR [Aigrain et al. 1996; Rui et al.
1999; Smeulders et al. 2000; Snoek and Worring 2005], all of which deal primarily
with work prior to the year 2000. Surveys also exist on closely related topics such as
relevance feedback [Zhou and Huang 2003], high-dimensional indexing of multimedia
data [Bohm et al. 2001], face recognition [Zhao et al. 2003] (useful for face-based image
retrieval), applications of CBIR to medicine [Muller et al. 2004], and applications to art
and cultural imaging [Chen et al. 2005]. Multimedia information retrieval as a broader
research area covering video-, audio-, image-, and text analysis has been extensively
surveyed [Sebe et al. 2003; Lew et al. 2006]. In our current survey, we restrict the
discussion to image-related research only.

One of the reasons for writing this survey is that CBIR, as a field, has grown tremen-
dously after the year 2000 in terms of the people involved and the papers published. Lat-
eral growth has also occurred in terms of the associated research questions addressed,
spanning various fields. To validate the hypothesis about growth in publications, we
conducted a simple exercise. We searched for publications containing the phrases “Im-
age Retrieval” using Google Scholar [Google Scholar 2004] and the digital libraries of
ACM, IEEE, and Springer, within each year from 1995 to 2005. In order to account
for: (a) the growth of research in computer science as a whole, and (b) Google’s yearly
variations in indexing publications, the Google Scholar results were normalized using
the publication count for the word “computer” for that year. A plot on another young
and fast-growing field within pattern recognition, support vector machines (SVMs),
was generated in a similar manner for comparison. The results can be seen in Figure 1.
Not surprisingly, the graph indicates similar growth patterns for both fields, although
SVM has had faster growth. These trends indicate, given the implicit assumptions,
a roughly exponential growth in interest in image retrieval and closely related top-
ics. We also observe particularly strong growth over the last five years, spanning new
techniques, support systems, and application domains.

In this article, we comprehensively survey, analyze, and quantify current progress
and future prospects of image retrieval. A possible organization of the various facets of
image retrieval as a field is shown in Figure 2. Our article follows a similar structure.
Note that the treatment is limited to progress mainly in the current decade, and only
includes work that involves visual analysis in part or full. For the purpose of complete-
ness, and better readability for the uninitiated, we have introduced key contributions of
the earlier years in Section 1.1. Image retrieval purely on the basis of textual metadata,
Web link structures, or linguistic tags is excluded. The rest of this article is arranged
as follows: For a CBIR system to be useful in the real world, a number of issues need to
be taken care of. Hence, the desiderate of real-world image retrieval systems, including
various critical aspects of their design, are discussed in Section 2. Some key approaches
and techniques of the current decade are presented in detail, in Section 3. Core research
in CBIR has given birth to new problems, which we refer to here as CBIR offshoots.
These are discussed in Section 4. When distinct solutions to a problem as open-ended
as CBIR are proposed, a natural question that arises is how to make a fair comparison
among them. In Section 5, we present current directions in the evaluation of image
retrieval systems. We conclude in Section 6.
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Fig. 1. A study of post-1995 publications in CBIR. Top: Normalized trends in publications containing phrases
“image retrieval” and “support vector”. Bottom: Publisher, wise break-up of publication count on papers
containing “image retrieval”.
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Fig. 2. Our view of the many facets of image retrieval as a field of research. The view is reflected in the
structure of this article.

1.1. The Early Years

The years 1994–2000 can be thought of as the initial phase of research and develop-
ment on image retrieval by content. The progress made during this phase was lucidly
summarized at a high level in Smeulders et al. [2000], which has had a clear influence
on progress made in the current decade, and will undoubtedly continue to influence
future work. Therefore, it is pertinent that we provide a brief summary of the ideas,
influences, and trends of the early years (a large part of which originate in that survey)
before describing the same for the new age. In order to do so, we first quote the various
gaps introduced there that define and motivate most of the related problems.

—Sensory. The sensory gap is the gap between the object in the world and the informa-
tion in a (computational) description derived from a recording of that scene.

—Semantic. The semantic gap is the lack of coincidence between the information that
one can extract from the visual data and the interpretation that the same data has
for a user in a given situation.

While the former makes recognition from image content challenging due to limitations
in recording, the latter brings in the issue of a user’s interpretations of pictures and how
it is inherently difficult for visual content to capture them. We continue briefly sum-
marizing key contributions of the early years that deal with one or more of these gaps.

In Smeulders et al. [2000], the domains for image search were classified as narrow
and broad, and to-date this remains an extremely important distinction for the purpose
of system design. As mentioned, narrow image domains usually have limited variability
and better-defined visual characteristics (e.g., aviation-related pictures [Airliners.Net
2005]), which makes content-based image search a tad bit easier to formulate. On the
other hand, broad domains tend to have high variability and unpredictability for the
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same underlying semantic concepts (e.g., Web images), which makes generalization
much more challenging. As recently noted in Huijsmans and Sebe [2005], narrow and
broad domains pose a problem in image search evaluation as well, and appropriate
modifications must be made to standard evaluation metrics for consistency. The survey
also lists three broad categories of image search: (1) search by association, where there
is no clear intent at a picture, but instead the search proceeds by iteratively refined
browsing; (2) aimed search, where a specific picture is sought; and (3) category search,
where a single picture representative of a semantic class is sought, for example, to
illustrate a paragraph of text, as introduced in Cox et al. [2000]. Also discussed are dif-
ferent kinds of domain knowledge that can help reduce the sensory gap in image search.
Notable among them are concepts of syntactic, perceptual, and topological similarity.
The overall goal therefore remains to bridge the semantic and sensorial gaps using
the available visual features of images and relevant domain knowledge to support the
varied search categories, ultimately to satiate the user. We discuss and extend some of
these ideas from new perspectives in Section 2.

In the survey, extraction of visual content from images is split into two parts, namely
image processing and feature construction. The question to ask here is what features
to extract that will help perform meaningful retrieval. In this context, search has been
described as a specification of minimal invariant conditions that model the user intent,
geared at reducing the sensory gap due to accidental distortions, clutter, occlusion, etc.
Key contributions in color, texture, and shape abstraction have then been discussed.
Among the earliest use of color histograms for image indexing was that in Swain and
Ballard [1991]. Subsequently, feature extraction in systems such as QBIC [Flickner
et al. 1995], Pictoseek [Gevers and Smeulders 2000], and VisualSEEK [Smith and
Chang 1997b] are notable. Innovations in color constancy, that is, the ability to per-
ceive the same color amidst environmental changes, were made by taking specular
reflection and shape into consideration [Finlayson 1996]. In Huang et al. [1999] color
correlograms were proposed as enhancements to histograms, that take into considera-
tion spatial distribution of colors as well. Gabor filters were successfully used for local
shape extraction geared toward matching and retrieval in Manjunath and Ma [1996].
Daubechies’ wavelet transforms were used to improve color layout feature extraction in
the WBIIS system [Wang et al. 1998]. Viewpoint- and occlusion-invariant local features
for image retrieval [Schmid and Mohr 1997] received significant attention as a means
to bridge the sensorial gap. Work on local patch-based salient features [Tuytelaars and
van Gool 1999] found prominence in areas such as image retrieval and stereo matching.
Perceptual grouping of images, important as it is for identifying objects in pictures, is
also a very challenging problem. It has been categorized in the survey as strong/weak
segmentation (data-driven grouping), partitioning (data-independent grouping, e.g.,
fixed-image blocks), and sign location (grouping based on a fixed template). Signifi-
cant progress had been made in field of image segmentation, for example, Zhu and
Yuille [1996], where snake- and region growing ideas were combined within a prin-
cipled framework, and Shi and Malik [2000], where spectral graph partitioning was
employed for this purpose. From segments come shape and shape matching needs.
In Del Bimbo and Pala [1997], elastic matching of images was successfully applied
to sketch-based image retrieval. Image representation by multiscale contour models
was studied in Mokhtarian [1995]. The use of graphs to represent spatial relationships
between objects, specifically geared toward medical imaging, was explored in Petrakis
and Faloutsos [1997]. In Smith and Chang [1997a], 2D-strings [Chang et al. 1987] were
employed for characterizing spatial relationships among regions. A method for auto-
matic feature selection was proposed in Swets and Weng [1996]. In Smeulders et al.
[2000], the topic of visual content description was concluded with a discussion on the
advantages and problems of image segmentation, along with approaches that can avoid
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strong segmentation while still characterizing image structure well enough for image
retrieval. In the current decade, many region-based methods for image retrieval have
been proposed that do not depend on strong segmentation. We discuss these and other
new innovations in feature extraction in Section 3.1.

Once image features were extracted, the question remained as to how they could be
indexed and matched against each other for retrieval. These methods essentially aimed
to reduce the semantic gap as much as possible, sometimes reducing the sensorial gap
as well in the process. In Smeulders et al. [2000], similarity measures were grouped as
feature-based matching (e.g., Swain and Ballard [1991]), object-silhouette-based match-
ing (e.g., Del Bimbo and Pala [1997]), structural feature matching (i.e., hierarchically
ordered sets of features, e.g., Wilson and Hancock [1997]), salient feature matching
(e.g., geometric hashing Wolfson and Rigoutsos [1997]), matching at the semantic level
(e.g., Fagin [1997]), and learning-based approaches for similarity matching (e.g., Wu
et al. [2000] and Webe et al. [2000]). Closely tied to the similarity measures are how
they emulate the user needs, and, more practically, how they can be modified step-wise
with feedback from the user. In this respect, a major advance made in the user interac-
tion technology for image retrieval was relevance feedback (RF). Important early work
that introduced RF into the image retrieval domain included Rui et al. [1998], which
was implemented in their MARS system [Rui et al. 1997]. Methods for visualization
of image query results were explored, for example, in Flickner et al. [1995] and Chang
et al. [1997]. Content-based image retrieval systems that gained prominence in this
era were, for example, IBM QBIC [Flickner et al. 1995], VIRAGE [Gupta and Jain
1997], and NEC AMORE [Mukherjea et al. 1999] in the commercial domain, and MIT
Photobook [Pentland et al. 1994], Columbia VisualSEEK and WebSEEK [Smith and
Chang 1997b], UCSB NeTra [Ma and Manjunath 1997], and Stanford WBIIS [Wang
et al. 1998] in the academic domain. In Smeulders et al. [2000], practical issues such
as system implementation and architecture, as well as their limitations and how to
overcome them, the user in the loop, intuitive result visualization, and system evalua-
tion were discussed, and suggestions made. Innovations of the new age based on these
suggestions and otherwise are covered extensively in our survey in Sections 2, 3, and 5.

2. IMAGE RETRIEVAL IN THE REAL WORLD

Invention of the digital camera has given the common man the privilege to capture his
world in pictures, and conveniently share them with others. One can today generate
volumes of images with content as diverse as family get-togethers and national park
visits. Low-cost storage and easy Web hosting has fueled the metamorphosis of common
man from a passive consumer of photography in the past to a current-day active pro-
ducer. Today, searchable image data exists with extremely diverse visual and semantic
content, spanning geographically disparate locations, and is rapidly growing in size.
All these factors have created innumerable possibilities and hence considerations for
real-world image search system designers.

As far as technological advances are concerned, growth in content-based image re-
trieval has been unquestionably rapid. In recent years, there has been significant effort
put into understanding the real world implications, applications, and constraints of the
technology. Yet, real-world application of the technology is currently limited. We devote
this section to understanding image retrieval in the real world and discuss user expec-
tations, system constraints and requirements, and the research effort to make image
retrieval a reality in the not-too-distant future.

Designing an omnipotent real-world image search engine capable of serving all cat-
egories of users requires understanding and characterizing user-system interaction
and image search, from both user and system points-of-view. In Figure 3, we propose
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Fig. 3. Our views of image retrieval from user and system perspectives.
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one such dual characterization, and attempt to represent all known possibilities of
interaction and search. From a user perspective, embarking on an image search, jour-
ney involves considering and making decisions on the following fronts: (1) clarity of the
user about what she wants, (2) where she wants to search, and (3) the form in which the
user has her query. In an alternative view from an image retrieval system perspective,
a search translates to making arrangements as per the following factors: (1) how does
the user wish the results to be presented, (2) where does the user desire to search, and
(3) what is the nature of user input/interaction. These factors, with their respective
possibilities, form our axes for Figure 3. In the proposed user and system spaces, real-
world image search instances can be considered as isolated points or point clouds, and
search sessions can consist of trajectories while search engines can be thought of as
surfaces. The intention of drawing cubes versus free 3D Cartesian spaces is to empha-
size that the possibilities are indeed bounded by the size of the Web, the nature of user,
and ways of user-system interaction. We believe that the proposed characterization will
be useful for designing context-dependent search environments for real-world image
retrieval systems.

2.1. User Intent

We augment the search-type-based classification proposed in Smeulders et al. [2000]
with a user-intent-based classification. When users search for pictures, their intent or
clarity about what they desire may vary. We believe that clarity of intent plays a key
role in a user’s expectation from a search system and the nature of her interaction. It
can also act as a guideline for system design. We broadly characterize a user by clarity
of her intent as follows.

—Browser. This is a user browsing for pictures with no clear end-goal. A browser’s
session would consist of a series of unrelated searches. A typical browser would jump
across multiple topics during the course of a search session. Her queries would be
incoherent and diverse in topic.

—Surfer. A surfer is a user surfing with moderate clarity of an end-goal. A surfer’s
actions may be somewhat exploratory in the beginning, with the difference that sub-
sequent searches are expected to increase the surfer’s clarity of what she wants from
the system.

—Searcher. This is a user who is very clear about what she is searching for in the
system. A searcher’s session would typically be short, with coherent searches leading
to an end-result.

A typical browser values ease of use and manipulation. A browser usually has plenty
of time at hand and expects surprises and random search hints to elongate her session
(e.g., picture of the day, week, etc.). On the other hand, a surfer would value a search
environment which facilitates clarity of her goal. A surfer planning a holiday would
value a hint such as “pictures of most popular destinations”. At the other extreme,
the searcher views an image retrieval system from a core utilitarian perspective. Com-
pleteness of results and clarity of representation would usually be the most important
factors. The impact of real-world usage from the user viewpoint has not been exten-
sively studied. One of the few studies categorizes users as experts and novices and
studies their interaction patterns with respect to a video library [Christel and Conescu
2005]. In Armitage and Enser [1997], an analysis of user needs for visual information
retrieval was conducted. In the cited work, a categorization schema for user queries
was proposed, with a potential to be embedded in the visual information retrieval
system.
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Discussion. In the end, all that matters to an end-user is her interaction with the
system, and the corresponding response. The importance of building human-centered
multimedia systems has been expressed lately [Jaimes et al. 2006]. In order to gain wide
acceptance, image retrieval systems need to acquire a human-centered perspective as
well.

2.2. Data Scope

Understanding the nature and scope of image data plays a key role in the complexity
of image search system design. Factors such as the diversity of user-base and expected
user traffic for a search system also largely influence the design. Along this dimension,
we classify search data into the following categories.

—Personal Collection. This consists of a largely homogeneous collection generally small
in size, accessible primarily to its owner, and usually stored on a local storage media.

—Domain-Specific Collection. This is a homogeneous collection providing access to con-
trolled users with very specific objectives. The collection may be large and hosted on
distributed storage, depending upon the domain. Examples of such a collection are
biomedical and satellite image databases.

—Enterprise Collection. We define this as a heterogeneous collection of pictures acces-
sible to users within an organization’s intranet. Pictures may be stored in many dif-
ferent locations. Access may be uniform or nonuniform, depending upon the Intranet
design.

—Archives. These are usually of historical interest and contain large volumes of struc-
tured or semi-structured homogeneous data pertaining to specific topics. Archives
may be accessible to most people on the Internet, with some control of usage. Data is
usually stored in multiple disks or large disk arrays.

—Web. World Wide Web pictures are accessible to practically everyone with an Internet
connection. Current WWW image search engines such as Google and Yahoo! images
have a key crawler component which regularly updates their local database to reflect
on the dynamic nature of the Web. Image collection is semi-structured, nonhomoge-
neous, and massive in volume, and is usually stored in large disk arrays.

An image retrieval system designed to serve a personal collection should focus on fea-
tures such as personalization, flexibility of browsing, and display methodology. For
example, Google’s Picasa system [Picasa 2004] provides a chronological display of im-
ages taking a user on a journey down memory lane. Domain-specific collections may
impose specific standards for presentation of results. Searching an archive for content
discovery could involve long user search sessions. Good visualization and a rich query
support system should be the design goals. A system designed for the Web should be able
to support massive user traffic. One way to supplement software approaches for this
purpose is to provide hardware support to the system architecture. Unfortunately, very
little has been explored in this direction, partly due to the lack of agreed-upon indexing
and retrieval methods. The notable few applications include an FPGA implementa-
tion of a color-histogram-based image retrieval system [Kotoulas and Andreadis 2003],
an FPGA implementation for subimage retrieval within an image database [Nakano
and Takamichi 2003], and a method for efficient retrieval in a network of imaging
devices [Woodrow and Heinzelman 2002].

Discussion. Regardless of the nature of the collection, as the expected user-base
grows, factors such as concurrent query support, efficient caching, and parallel and dis-
tributed processing of requests become critical. For future real-world image retrieval
systems, both software and hardware approaches to address these issues are essential.

ACM Computing Surveys, Vol. 40, No. 2, Article 5, Publication date: April 2008.



Image Retrieval: Ideas, Influences, and Trends of the New Age 5:11

More realistically, dedicated specialized servers, optimized memory and storage sup-
port, and highly parallelizable image search algorithms to exploit cluster computing
powers are where the future of large-scale image search hardware support lies.

2.3. Query Modalities and Processing

In the realm of image retrieval, an important parameter to measure user-system in-
teraction level is the complexity of queries supported by the system. From a user per-
spective, this translates to the different modalities she can use to query a system. We
describe next the various querying modalities, their characteristics, and the system
support required thereof.

—Keywords. This is a search in which the user poses a simple query in the form of a
word or bigram. This is currently the most popular way to search images, for example,
the Google and Yahoo! image search engines.

—Free-Text. This is where the user frames a complex phrase, sentence, question, or
story about what she desires from the system.

—Image. Here, the user wishes to search for an image similar to a query image. Using
an example image is perhaps the most representative way of querying a CBIR system
in the absence of reliable metadata.

—Graphics. This consists of a hand-drawn or computer-generated picture, or graphics
could be presented as query.

—Composite. These are methods that involve using one or more of the aforesaid modal-
ities for querying a system. This also covers interactive querying such as in relevance
feedback systems.

The aforementioned query modalities require different processing methods and/or sup-
port for user interaction. The processing becomes more complex when visual queries
and/or user interactions are involved. We next broadly characterize query processing
from a system perspective.

—Text-Based. Text-based query processing usually boils down to performing one or more
simple keyword-based searches and then retrieving matching pictures. Processing a
free text could involve parsing, processing, and understanding the query as a whole.
Some form of natural language processing may also be involved.

—Content-Based. Content-based query processing lies at the heart of all CBIR systems.
Processing of query (image or graphics) involves extraction of visual features and/or
segmentation and search in the visual feature space for similar images. An appropri-
ate feature representation and a similarity measure to rank pictures, given a query,
are essential here. These will be discussed in detail in Section 3.

—Composite. Composite processing may involve both content- and text-based process-
ing in varying proportions. An example of a system which supports such processing
is the story picturing engine [Joshi et al. 2006b].

—Interactive-Simple. User interaction using a single modality needs to be supported
by a system. An example is a relevance-feedback-based image retrieval system.

—Interactive-Composite. The user may interact using more than one modality (e.g.,
text and images). This is perhaps the most advanced form of query processing that
is required to be performed by an image retrieval system.

Processing text-based queries involves keyword matching using simple set-theoretic
operations, and therefore a response can be generated very quickly. However, in very
large systems working with millions of pictures and keywords, efficient indexing meth-
ods may be required. Indexing of text has been studied in database research for decades
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now. Efficient indexing is critical to the building and functioning of very large text-
based databases and search engines. Research on efficient ways to index images by
content has been largely overshadowed by research on efficient visual representation
and similarity measures. Most of the methods used for visual indexing are adopted from
text-indexing research. In Petrakis et al. [2002], R-trees are used for indexing images
represented as attributed relational graphs (ARGs). Retrieval of images using wavelet
coefficients as image representations and R∗-trees for indexing has been studied in
Natsev et al. [2004]. Visual content matching using graph-based image representa-
tion and an efficient metric indexing algorithm has been proposed in Berretti et al.
[2001]. More details of techniques for content-based indexing of pictures can be found
in Marsicoi et al. [1997] and Del Bimbo [1999].

Composite querying methods provide the users with more flexibility for expressing
themselves. Some recent innovations in querying include sketch-based retrieval of color
images [Chalechale et al. 2005]. Querying using 3D models [Assfalg et al. 2002] has
been motivated by the fact that 2D image queries are unable to capture the spatial
arrangement of objects within the image. In another interesting work, a multimodal
system involving hand gestures and speech for querying and relevance feedback was
presented in Kaster et al. [2003]. Certain new interaction-based querying paradigms
which statistically model the user’s interest [Fang et al. 2005], or help the user refine
her queries by providing cues and hints [Jaimes et al. 2004; Nagamine et al. 2004],
have been explored for image retrieval.

Use of mobile devices has become widespread lately. Mobile users have limited query-
ing capabilities due to inherent scrolling and typing constraints. Relevance feedback
has been explored for quickly narrowing down search to such user needs. However,
mobile users can be expected to provide only limited feedback. Hence, it becomes nec-
essary to design intelligent feedback methods to cater to users with small displays.
The performance of different relevance feedback algorithms for small devices has been
studied and compared in Vinay et al. [2005, 2004]. In the cited work, a tree-structured
representation for all possible user-system actions was used to determine an upper
bound on the performance gains that such systems can achieve.

Discussion. A prerequisite for supporting text-based query processing is the pres-
ence of reliable metadata with pictures. However, pictures rarely come with reliable
human tags. In recent years, there has been effort put into building interactive, public-
domain games for large-scale collection of high-level manual annotations. One such
game (the ESP game) has become very popular and has helped accumulate human
annotations for about a hundred thousand pictures [von Ahn and Dabbish 2004]. Col-
lection of manual tags for pictures has the dual advantage of: (1) facilitating text-based
querying, and (2) building reliable training datasets for content-based analysis and
automatic annotation algorithms. As explored in Datta et al. [2007], it is possible to ef-
fectively bridge the paradigms of keyword- and content-based search through a unified
framework to provide the user the flexibility of both, without losing out on the search
scope.

2.4. Visualization

Presentation of search results is perhaps one of the most important factors in the
acceptance and popularity of an image retrieval system. We characterize common vi-
sualization schemes for image search as follows.

—Relevance-Ordered. The most popular way to present search results is relevance-
ordered, as adopted by Google and Yahoo! for their image search engines. Results are
ordered by some numeric measure of relevance to the query.
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—Time-Ordered. In time-ordered image search, pictures are shown in a chronological
ordering rather than by relevance. Google’s Picasa system [Picasa 2004] for personal
collections provides an option to visualize a chronological timeline using pictures.

—Clustered. Clustering of images by their metadata or visual content has been an
active research topic for several years (discussed in Section 3). Clustering of search
results, besides being an intuitive and desirable form of presentation, has also been
used to improve retrieval performance [Chen et al. 2005].

—Hierarchical. If metadata associated with images can be arranged in tree order (e.g.,
WordNet topical hierarchies [Miller 1995]), it can be a very useful aid in visualization.
Hierarchical visualization of search results is desirable for archives, especially for
educational purposes.

—Composite. Combining consists of mixing two or more of the preceding forms of visu-
alization scheme, and is used especially for personalized systems. Hierarchical clus-
tering and visualization of concept graphs are examples of composite visualizations.

In order to design interfaces for image retrieval systems, it helps to understand factors
like how people manage their digital photographs [Rodden and Wood 2003] or frame
their queries for visual art images Cunningham et al. [2004]. In Rodden et al. [2001],
user studies on various ways of arranging images for browsing purposes are conducted,
and the observation is that both visual-feature-based and concept-based arrangements
have their own merits and demerits. Thinking beyond the typical grid-based arrange-
ment of top matching images, spiral and concentric visualization of retrieval results
have been explored in Torres et al. [2003]. For personal images, innovative arrange-
ments of query results based on visual content, time-stamps, and efficient use of screen
space add new dimensions to the browsing experience [Huynh et al. 2005].

Portable devices such as personal digital assistants (PDAs) and vehicle communica-
tion and control systems are becoming very popular as client-side systems for querying
and accessing remote multimedia databases. A portable-device user is often constrained
in the way she can formulate her query and interact with a remote image server. There
are inherent scrolling and browsing constraints which can constrict user feedback.
Moreover, there are bandwidth limitations which need to be taken into consideration
when designing retrieval systems for such devices. Some additional factors which be-
come important here are size and color depth of display. Personalization of search for
small displays by modeling interaction from the gathered usage data has been proposed
in Bertini et al. [2005]. An image attention model for adapting images based on user
attention for small displays has been proposed in Chen et al. [2003]. Efficient ways of
browsing large images interactively, such as those encountered in pathology or remote
sensing, using small displays over a communication channel are discussed in Li and
Sun [2003]. User-log-based approaches to smarter ways of image browsing on mobile
devices have been proposed in Xie et al. [2005].

Image transcoding techniques, which aim at adapting multimedia (image and video)
content to the capabilities of the client device, have been studied extensively in the
last several years [Shanableh and Ghanbari 2000; Vetro et al. 2003; Bertini et al.
2003; Cucchiara et al. 2003]. A class of methods known as semantic transcoding aims
at designing intelligent transcoding systems which can adapt semantically to user
requirements [Bertini et al. 2003; Cucchiara et al. 2003]. For achieving this, classes
of relevance are constructed and transcoding systems are programmed differently for
different classes.

Discussion. Study of organizations which maintain image management and retrieval
systems has provided useful insights into system design, querying, and visualization.
In Tope and Enser [2000], case studies on the design and implementation of many

ACM Computing Surveys, Vol. 40, No. 2, Article 5, Publication date: April 2008.



5:14 R. Datta et al.

different electronic retrieval systems have been reported. The final verdict of accep-
tance/rejection for any visualization scheme comes from end-users. While simple, in-
tuitive interfaces such as grid-based displays have become acceptable to most search
engine users, advanced visualization techniques could still be in the making. It becomes
critical for visualization designers to ensure that the added complexity does not become
an overkill.

2.5. Real-World Image Retrieval Systems

Not many image retrieval systems are deployed for public usage, save for Google Image
Search or Yahoo! Image Search (which are based primarily on surrounding metadata
such as filenames and HTML text). Recently, a public-domain search engine called Riya
(see Figure 4) has been developed, which incorporates image retrieval and face recog-
nition for searching pictures of people and products on the Web. It is also interesting
to note that CBIR technology is being applied to domains as diverse as family album
management, botany, astronomy, mineralogy, and remote sensing [Zhang et al. 2003;
Wang et al. 2002; Csillaghy et al. 2000; Painter et al. 2003; Schroder et al. 2000]. A
publicly available similarity search tool [Wang et al. 2001] is being used for an online
database of over 800, 000 airline-related images [Airliners.Net 2005; Slashdot 2005]
(again see Figure 4), the integration of similarity search functionality to a large col-
lection of art and cultural images [GlobalMemoryNet 2006], and the incorporation of
image similarity to a massive picture archive [Terragalleria 2001] of the renowned
travel photographer Q.-T. Luong.

Automatic Linguistic Indexing of Pictures—Real-Time (ALIPR), an automatic image
annotation system [Li and Wang 2006a; 2008], has been recently made public for people
to try to have their pictures annotated. As mentioned earlier, presence of reliable tags
with pictures is necessary for text-based image retrieval. As part of the ALIPR search
engine, an effort to automatically validate computer generated tags with human-given
annotation is being used in an attempt to build a very large collection of searchable
images (see Figure 5). Another work-in-progress is a Web image search system [Joshi
et al. 2006a] that exploits visual features and textual metadata, using state-of-the-art
algorithms, for a comprehensive search experience.

Discussion. Image analysis and retrieval systems have received widespread public
and media interest of late [Mirsky 2006; Staedter 2006; CNN 2005]. It is reasonable to
hope that in the near future, the technology will diversify to many other domains. We
believe that the future of real-world image retrieval lies in exploiting both text- and
content-based search technologies. While the former is considered more reliable from a
user viewpoint, there is immense potential in combining the two to build robust image
search engines that would make the “hidden” part of the Web images accessible. This
endeavor will hopefully be actualized in the years to come.

3. IMAGE RETRIEVAL TECHNIQUES: ADDRESSING THE CORE PROBLEM

Despite the effort made in the early years of image retrieval research (Section 1.1), we
do not yet have a universally acceptable algorithmic means of characterizing human
vision, more specifically in the context of interpreting images. Hence, it is not surprising
to see continued effort in this direction, either building up on prior work or exploring
novel directions. Considerations for successful deployment of CBIR in the real world
are reflected by the research focus in this area.

By the nature of its task, the CBIR technology boils down to two intrinsic problems:
(a) how to mathematically describe an image, and (b) how to assess the similarity
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Fig. 4. Real-world use of content-based image retrieval using color, texture, and shape matching. Top:
http://airliners.net is a photo-sharing community with more than a million airplane-related pictures.
Bottom: http://riya.com is a collection of several million pictures.
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Fig. 5. Real-world use of automatic image annotation from http://alipr.com. The screenshot shows a
random set of uploaded pictures and with annotations given both by ALIPR (shown in dark and light gray)
and by users (shown in medium gray and printed at the end of each block).

between a pair of images based on their abstracted descriptions. The first issue arises
because the original representation of an image which is an array of pixel values, cor-
responds poorly to our visual response, let alone semantic understanding of the image.
We refer to the mathematical description of an image, for retrieval purposes, as its sig-
nature. From the design perspective, the extraction of signatures and the calculation of
image similarity cannot be cleanly separated. The formulation of signatures determines
to a large extent the realm for definitions of similarity measures. On the other hand,
intuitions are often the early motivating factors for designing similarity measures in a
certain way, which in turn puts requirements on the construction of signatures.

In comparison with earlier, pre-2000 work in CBIR, a remarkable difference of recent
years has been the increased diversity of image signatures. Advances have been made
in both the derivation of new features (e.g., shape) and the construction of signatures
based on these features, with the latter type of progress being more pronounced. The
richness in the mathematical formulation of signatures grows alongside the invention
of new methods for measuring similarity. In the rest of this section, we will first address
the extraction of image signatures, and then the methods for computing image simi-
larity based on the signatures. In terms of methodology development, a strong trend
which has emerged in recent years is the employment of statistical and machine learn-
ing techniques in various aspects of the CBIR technology. Automatic learning, mainly
clustering and classification, is used to form either fixed or adaptive signatures, to
tune similarity measures, and even to serve as the technical core of certain searching
schemes, for example, relevance feedback. We thus not only discuss the influence of
learning while addressing fundamental issues of retrieval, but also devote a subsec-
tion on clustering and classification in the context of CBIR. Finally, we review different
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Fig. 6. An overview of image signature formulation.

paradigms of searching with emphasis on relevance feedback. An actively pursued di-
rection in image retrieval is to engage humans in the searching process, that is, to
include a human in the loop. Although in the very early days of CBIR, several systems
were designed with detailed user-preference specifications, the philosophy of engaging
users in recent work has evolved toward more interactive and iterative schemes by
leveraging learning techniques. As a result, the overhead for a user, in specifying what
she is looking for at the beginning of a search, is much reduced.

3.1. Extraction of Visual Signature

Most CBIR systems perform feature extraction as a preprocessing step. Once obtained,
visual features act as inputs to subsequent image analysis tasks, such as similarity
estimation, concept detection, or annotation. Figure 6 illustrates the procedure of gen-
erating image signatures and the main research problems involved. Following the order
typical in feature extraction and processing, we present in the following the prominent
recent innovations in visual signature extraction. The current decade has seen great
interest in region-based visual signatures, for which segmentation is the quintessential
first step. While we begin the discussion with recent progress in image segmentation,
we will see in the subsequent section that there is significant interest in segmentation-
free techniques to feature extraction and signature construction.

Image Segmentation. To acquire a region-based signature, a key step is to segment im-
ages. Reliable segmentation is especially critical for characterizing shapes within im-
ages, without which the shape estimates are largely meaningless. We described earlier
a widely used segmentation approach based on k-means clustering. This basic approach
enjoys a speed advantage, but is not as refined as some recently developed methods.
One of the most important new advances in segmentation employs the normalized cuts
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criterion [Shi and Malik 2000]. The problem of image segmentation is mapped to a
weighted graph partitioning problem, where the vertex set of the graph is composed
of image pixels and the edge weights represent some perceptual similarity between
pixel pairs. The normalized cut segmentation method in Shi and Malik [2000] is also
extended to textured image segmentation by using cues of contour and texture differ-
ences [Malik et al. 2001], and to incorporate known partial grouping priors by solving
a constrained optimization problem [Yu and Shi 2004]. The latter has potential for in-
corporating real-world application-specific priors, such as the location and size cues of
organs in pathological images.

Searching of medical image collections has been an increasingly important re-
search problem of late, due to the high-throughput, high-resolution, and high-
dimensional imaging modalities introduced. In this domain, 3D brain magnetic res-
onance (MR) images have been segmented using hidden Markov random fields and the
expectation-maximization (EM) algorithm [Zhang et al. 2001], and the spectral clus-
tering approach has found some success in segmenting vertebral bodies from sagittal
MR images [Carballido-Gamio et al. 2004]. Among other recent approaches proposed
are segmentation based on the mean shift procedure [Comaniciu and Meer 2002], mul-
tiresolution segmentation of low-depth-of-field images [Wang et al. 2001], a Bayesian-
framework-based segmentation involving the Markov chain Monte Carlo technique [Tu
and Zhu 2002], and an EM-algorithm-based segmentation using a Gaussian mixture
model [Carson et al. 2002], forming blobs suitable for image querying and retrieval.
A sequential segmentation approach that starts with texture features and refines seg-
mentation using color features is explored in Chen et al. [2002]. An unsupervised ap-
proach for segmentation of images containing homogeneous color/texture regions has
been proposed in Deng and Manjunath [2001].

While there is no denying that achieving good segmentation is a major step toward
image understanding, some issues plaguing current techniques are computational com-
plexity, reliability of good segmentation, and acceptable segmentation quality assess-
ment methods. In the case of image retrieval, some strategies for getting around this
problem have been to reduce dependence on reliable segmentation [Carson et al. 2002],
to involve every generated segment of an image in the matching process to obtain soft
similarity measures [Wang et al. 2001], or to characterize spatial arrangement of color
and texture using block-based 2D multiresolution hidden Markov models (MHMMs) [Li
et al. 2000; Li and Wang 2003]. Another alternative is to use perceptual grouping prin-
ciples to hierarchically extract image structures [Iqbal and Aggarwal 2002]. In Datta
et al. [2007], probabilistic modeling of class-wise color segment interactions has been
employed for the purpose of image categorization and retrieval, to reduce sensitivity to
segmentation.

Major Types of Features. A feature is defined to capture a certain visual property of
an image, either globally for the entire image or locally for a small group of pixels.
The most commonly used features include those reflecting color, texture, shape, and
salient points in an image, each of which will be discussed shortly. In global extraction,
features are computed to capture the overall characteristics of an image. For instance,
in a color layout approach, an image is divided into a small number of subimages and
the average color components (e.g., red, green, and blue intensities) are computed for
every subimage. The overall image is thus represented by a vector of color components
where a particular dimension of the vector corresponds to a certain subimage location.
The advantage of global extraction is its high speed for both extracting features and
computing similarity. However, as evidenced by the rare use of color layout in recent
work, global features are often too rigid to represent an image. Specifically, they can be
oversensitive to location and hence fail to identify important visual characteristics. To
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increase the robustness to spatial transformation, the second approach to form signa-
tures is by local extraction and an extra step of feature summarization.

In local feature extraction, a set of features are computed for every pixel using its
neighborhood (e.g., average color values across a small block centered around the pixel).
To reduce computation, an image may be divided into small, nonoverlapping blocks, and
features are computed individually for every block. The features are still local because
of the small block size, but the amount of computation is only a fraction of that for
obtaining features around every pixel. Let the feature vectors extracted at block or
pixel location (i, j ) be xi, j , 1 ≤ i ≤ m, 1 ≤ j ≤ n, where the image size m × n can
vary. To achieve a global description of an image, various ways of summarizing the
dataset {xi, j , 1 ≤ i ≤ m, 1 ≤ j ≤ n} have been explored, leading to different types of
signature. A common theme of summarization is to derive a distribution for xi, j based
on the dataset.

Exploration of color features was active in nascent CBIR, with emphasis on exploiting
color spaces (e.g., LUV) that seem to coincide better with human vision than the basic
RGB color space. In recent years, research on color features has focused more on the
summarization of colors in an image, that is, the construction of signatures out of colors.
A set of color and texture descriptors tested for inclusion in the MPEG-7 standard, and
well suited to natural images and video, is described in Manjunath et al. [2001]. These
include histogram-based descriptors, spatial color descriptors, and texture descriptors
suited for retrieval.

Texture features are intended to capture the granularity and repetitive patterns of
surfaces within in a picture. For instance, grassland, brick walls, teddy bears, and flower
petals differ in texture, by smoothness as well as patterns. Their role in domain-specific
image retrieval, such as in aerial imagery and medical imaging, is particularly vital
due to their close relation to the underlying semantics in these cases. Texture features
have long been studied in image processing, computer vision, and computer graph-
ics [Haralick 1979], such as multiorientation filter banks [Malik and Perona 1990] and
wavelet transforms [Unser 1995]. In image processing, a popular way to form texture
features is by using the coefficients of a certain transform on the original pixel values,
or, more sophisticatedly, by statistics computed from these coefficients. Examples of
texture features using the wavelet transform and the discrete cosine transform can be
found in Do and Vetterli [2002] and Li et al. [2000]. In computer vision and graphics,
advances have been made in fields such as texture synthesis, where Markov statistical
descriptors based on pairs of wavelet coefficients at adjacent location/orientation/scale
in the images are used [Portilla and Simoncelli 2000]. Among the earliest work on the
use of texture features for image retrieval is Manjunath and Ma [1996]. Texture de-
scriptors apt for inclusion in the MPEG-7 were broadly discussed in Manjunath et al.
[2001]. Such descriptors encode significant, general visual characteristics into standard
numerical formats that can used for various higher-level tasks. A thesaurus for texture,
geared toward aerial image retrieval, has been proposed in Ma and Manjunath [1998].
The texture extraction part of this thesaurus building process involves the application
of a bank of Gabor filters [Jain and Farrokhnia 1990] to the images, to encode statistics
of the filtered outputs as texture features. Advances in textured region descriptors have
been made, such as affine- and photometric-transformation-invariant features that are
also robust to the shape of the region in question [Schaffalitzky and Zisserman 2001].
While the target application is the more traditional stereo matching, it has been shown
to have potential for textured image matching and for segmentation as well. Advances
in affine-invariant texture feature extraction, designed for texture recognition, have
been made in Mikolajczyk and Schmid [2004], with the use of interest point detection
for sparsity. Texture features at a point in the image are meaningful only as a function
of its neighborhood, and the (effective) size of this neighborhood can be thought of as a
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scale at which these features are computed. Because a choice of scale is critical to the
meaningfulness of such features, it has been explored as an automatic scale selection
problem in Carson et al. [2002], specifically to aid image retrieval.

Shape is a key attribute of segmented image regions, and its efficient and robust
representation plays an important role in retrieval. Synonymous with shape represen-
tation is the way in which such representations are matched with each other. Here we
discuss both shape representations and the particular forms of shape similarities used
in each case. In general, over the years we have seen a shift from global shape repre-
sentations (e.g., in Flickner et al. [1995]) to more local descriptors (e.g., in Mehrotra
and Gary [1995], Berretti et al. [2000], and Petrakis et al. [2002]) due to the typical
modeling limitations. Representation of shape using discrete curve evolution to sim-
plify contours is discussed in Latecki and Lakamper [2000]. This contour simplification
helps to remove noisy and irrelevant shape features from consideration. A new shape
descriptor for similarity matching, referred to as shape context, is proposed, which is
fairly compact yet robust to a number of geometric transformations [Belongie et al.
2002]. In Berretti et al. [2000], curves are represented by a set of segments, or tokens,
whose feature representations (curvature and orientation) are arranged into a metric
tree [Ciaccia et al. 1997] for efficient shape matching and shape-based image retrieval.
A dynamic programming (DP) approach to shape matching is proposed in Petrakis et al.
[2002], where shapes are approximated as sequences of concave and convex segments.
One problem with this approach is that the computation of Fourier descriptors and
moments is slow, although precomputation may help produce real-time results. Con-
tinuing with Fourier descriptors, exploitation of both the amplitude and phase, as well
as the use of dynamic time warping (DTW) distance instead of Euclidean distance, is
shown an accurate shape matching technique in Bartolini et al. [2005]. The rotational
and starting point invariance otherwise obtained by discarding the phase information
is maintained here by adding compensation terms to the original phase, thus allowing
its exploitation for better discrimination.

Closely associated with these methods are approaches that model spatial relations
among local image entities for retrieval. Much of the approaches to spatial modeling
and matching have been influenced by earlier work on iconic indexing Chang et al.
[1987, 1988] based on the theory of symbolic projections. Here, images are represented
based on orthogonal projections of constituent entities, by encoding the corresponding
bidirectional arrangement on the two axes as a 2D string of entities and relationships.
This way, image matching is effectively converted from a spatial matching problem to
a 1D matching one. Many variants of the 2D-string model have been proposed since. In
recent years, extensions such as 2D-Be-string [Wang 2003] have been proposed, where
the symbolic encoding has been extended to represent entity locations more precisely,
thus avoiding cutting the entities along their bounding rectangles, for improved com-
plexity. Another work on iconic indexing can be found in Petraglia et al. [2001], where a
symbolic representation of real images, termed as a virtual image, is proposed, consist-
ing of entities and the binary spatial relations among them. Compared to traditional
iconic representations and their variants, this approach allows more explicit scene rep-
resentation and more efficient retrieval, once again without requiring the entities to
be cut. In Berretti et al. [2003], a novel alternative to the previously discussed class of
spatial models, weighted walkthroughs, is proposed. This representation allows quanti-
tative comparison (which is challenging for purely Boolean relationships) of entities, by
incorporating the spatial relationships among each pair of pixels from the two entities.
These quantitative relations allow images to be represented by attributed relational
graphs (ARGs), which essentially makes the retrieval problem one of graph compari-
son, resulting in improved retrieval performance over other representations. This idea
has been extended to spatial modeling of 3D objects in Berretti and Del Bimbo [2006].
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Other image models that capture spatial arrangements between local features, such as
interest points, are discussed in the following paragraph.

Features based on local invariants such as corner points or interest points, tradi-
tionally used for stereo matching, are being used in image retrieval as well. Scale-
and affine-invariant interest points that can deal with significant affine transfor-
mations and illumination changes have been shown effective for image retrieval
[Mikolajczyk and Schmid 2004]. Along similar lines, wavelet-based salient points have
been used for retrieval [Tian et al. 2001]. In more recent work, the earth mover’s dis-
tance [Rubner et al. 2000] has been used for matching locally invariant features in
Grauman and Darrell [2005], for the purpose of image matching. The significance of
such special points lies in their compact representation of important image regions,
leading to efficient indexing and good discriminative power, especially in object-based
retrieval. In this domain, there has been a paradigm shift from global feature repre-
sentations to local descriptors, as evidenced by a large number of recent publications.
Typically, object categories or visual classes are represented by a combination of local
descriptors and their spatial distributions, sometimes referred to collectively as part-
based models. Variations usually arise out of the “prior” on the geometry imposed on the
spatial relationship between the local parts, with extremes being fully independent (bag
of features, each representing a part or region) and fully connected (constellation model
[Fergus et al. 2003]). A fully connected model essentially limits the number of parts
that can be modeled, since the algorithm complexity grows exponentially with it. As a
compromise, sparser topologies have been proposed, such as the star topology [Fergus
et al. 2005], a hierarchy with the lowest levels corresponding to local features [Bouchard
and Triggs 2005], and a geometry where local features are spatially dependent on their
nearest neighbors [Carneiro and Lowe 2006]. The model learning and categorization
performance achieved in Fergus et al. [2003] has been improved upon, particularly in
learning time, using contextual information and boosting in Amores et al. [2005, 2004].
A recent work [Zhang et al. 2006] uses segmentation to reduce the number of salient
points for enhanced object representation. A discussion on the pros and cons of differ-
ent types of color interest points used in image retrieval can be found in Gouet and
Boujemaa [2002], while a comparative performance evaluation of the various proposed
interest point detectors is reported in Mikolajczk and Schmid [2003]. The application
of salient point detection for related feature extraction has also been explored. For ex-
ample, interest point detectors have been employed for sparse texture representation,
for the purpose of texture recognition, in Lazebnik et al. [2003].

Construction of Signatures from Features. In Figure 6, according to mathematical formu-
lations, we summarize the types of signature roughly into vectors and distributions.
As will be discussed in detail next, histograms and region-based signatures can both
be regarded as sets of weighted vectors, and when the weights sum up to one, these
sets are equivalent to discrete distributions (i.e., discrete in the sense that the support
is finite). Our discussion will focus on region-based signature and its mathematical
connection with histograms because it is the most exploited type of image signature.
We note, however, that the distributions extracted from a collection of local feature vec-
tors can be of other forms, for instance, a continuous density function [Do and Vetterli
2002], or even a spatial stochastic model [Li and Wang 2004]. A continuous density is
generally more precise in describing a collection of local feature vectors than a discrete
distribution with finitely many support vectors. A stochastic model moves beyond a
continuous density by taking into account the spatial dependence among local feature
vectors. For special kinds of images, we may need these sophisticated statistical models
to characterize them. For instance, in Li and Wang [2004], it is noted that the spatial
relationship among pixels is crucial for capturing Chinese ink painting styles. On the
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other hand, more sophisticated statistical models are computationally costly and less
intuitive, a probable reason for their limited usage.

In earlier work, a histogram was a widely used form of distribution. Suppose the
feature vectors are denoted by xi, j ∈ Rd , the d -dimensional Euclidean space. To

form a basic histogram, Rd is divided into fixed bins and the percentage of xi, j ’s
falling into each bin is calculated. Suppose there are k bins. A histogram can then
be treated as a k-dimensional vector ( f1, f2, . . . , fk)t , where fl is the frequency of the
lth bin. Improvements over the basic histogram signature have been actively pursued.
In Hadjidemetriou et al. [2004], a multiresolution histogram, together with its associ-
ated image matching algorithm, is shown effective in retrieving textured images. Com-
putation of histograms at multiple resolutions maintains the simplicity and efficiency
of ordinary histograms, but additionally captures spatial variations across images. In
Jeong et al. [2004], Gaussian mixture vector quantization (GMVQ) is used to extract
color histograms and shown to yield better retrieval than uniform- and vector quanti-
zation with squared error.

The disadvantages of treating histograms simply as vectors of frequencies are noted
in Rubner et al. [1999]. The main issue is that the vector representation ignores the
location of bins used to generate the histogram. For measuring the closeness of distri-
butions, the locations of histogram bins are vital. The earth movers distance (EMD) is
proposed in Rubner et al. [1999] to take into consideration bin locations. When EMD
is used, the histogram is mathematically a collection of feature vector and frequency
pairs: {(z1, f1), (z2, f2), . . . , (zk , fk)}, where zl ∈ Rd is the center or location of the lth
bin. It is shown in Levina and Bickel [2001] that EMD, when applied to probability fre-
quencies, is equivalent to the Mallows distance proposed in the early 1970’s [Mallows
1972], which is a true metric for general probability measures. A histogram is a special
distribution in the sense that it is discrete, that is, takes only countably many different
values (for practical interest, finitely many). Moreover, histograms for different images
are usually derived using a fixed set of bins.

Once the histogram is viewed as {(z1, f1), (z2, f2), . . . , (zk , fk)}, namely a weighted set
of vectors, a natural question to raise is why we have to employ a fixed set of bins located
at z1, . . . , zk . A direct extension from the histogram is to adpatively generate zl and fl
together and also let the number of bins k depend on the image being handled. This is
essentially the widely used region-based signature, as employed in Deng et al. [2001]
and Wang et al. [2001]. Consider the dataset {xi, j , 1 ≤ i, 1 ≤ j }. Applying a clustering

procedure, for example, k-means, to the dataset groups the feature vectors xi, j into k̃
clusters such that feature vectors in the same cluster tend to be tightly packed. Let
the mean of xi, j ’s in the same cluster l be z ′

l . We thus have acquired a summary of the
dataset: {(z ′

1, f ′
1), . . . , (z ′

k′ , f ′
k′ )}, where f ′

l is the percentage of xi, j ’s grouped into cluster
l . The collection of pixels (i, j ) for which xi, j ’s are in the same cluster forms a relatively
homogeneous region because the common cluster forces closeness between the visual
features in xi, j ’s. This is why clustering of local feature vectors is a widely used method
to segment images, and also why we call the signature {(z ′

1, f ′
1), . . . , (z ′

k′ , f ′
k′ )} region-

based.
With fixed bins, histograms of image feature vectors tend to be sparse in multi-

dimensional space. In comparison, the region-based signature provides more compact
description of images because it allows the representative vectors z ′

l to adapt to images.
In Deng et al. [2001] and Wang et al. [2001], it is argued that a region-based signature
is more efficient computationally for retrieval, and that it also gets around the draw-
backs associated with earlier proposals such as dimension reduction and color moment
descriptors. Strictly speaking, a region-based signature is not merely a dynamic his-
togram representation, and, despite the mathematical connections made before, is not
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necessarily motivated by the intention of generalizing histograms. The motivation for
using a region-based signature, as argued in Wang et al. [2001], is that a relatively ho-
mogeneous region of color and texture is likely to correspond to an object in an image.
Therefore, by extracting regions, we crudely obtain a collection of objects, and with the
objects in an image listed, it is easier to engage intuitions for defining similarity mea-
sures. Moreover, although we have z ′

l , namely the mean of xi, j ’s in region l as a natural
result of clustering, the description of the region can be expanded to include features
not contained in z ′

l , for instance, shape, which can only be meaningfully computed after
the region has been formed.

Adaptive Image Signature. It is quite intuitive that the same set of visual features
may not work equally well to characterize, say, computer graphics and photographs. To
address this issue, learning methods have been used to tune signatures either based on
images alone or by learning on-the-fly from user feedback. In Figure 6, we categorize
image signatures according to their adaptivity into static, image-wise adaptive, and
user-wise adaptive. Static signatures are generated in a uniform manner for all the
images.

Image-wise adaptive signatures vary according to the classification of images. The
term semantic-sensitive, coined in Wang et al. [2001], reflects such a mechanism to
adjust signatures, and is a major trait of the SIMPLIcity system in comparison to its
predecessors. Specifically, images are classified into several types first, and then signa-
tures are formed from different features for these types. Despite the appeal of semantic-
sensitive retrieval as a general framework, the classification conducted in SIMPLIcity
only involves a small number of preselected image types (graph versus photograph, tex-
tured versus nontextured). The classification method relies on prior knowledge rather
than training, and hence is not set-up for extension. More recently, semantic-sensitive
features have also been employed in a physics-motivated approach [Ng et al. 2005],
where images are distinguished as either photo-realistic rendering or photograph.

Care must be taken to ensure that the added robustness provided by heterogeneous
feature representation does not compromise on the efficiency of indexing and retrieval.
When a large number of image features are available, one way to improve generaliza-
tion and efficiency is to work with a feature subset, or to impose different weights on
the features. To avoid a combinatorial search, an automatic feature subset selection
algorithm for SVMs is proposed in Weston et al. [2000]. Some of the other recent, more
generic feature selection proposals involve boosting [Tieu and Viola 2004], evolutionary
searching [Kim et al. 2000], Bayes classification error [Carneiro and Vasconcelos 2005],
and feature dependency/similarity measures [Mitra et al. 2002]. An alternative way of
obtaining feature weights based on user logs has been explored in Muller et al. [2004].
A survey and performance comparison of some recent algorithms on the topic can be
found in Guyon and Elisseeff [2003].

Discussion. The various methods for visual signature extraction come with their
share of advantages and limitations. While global features give the “big picture,” lo-
cal features represent the details. Therefore, depending on the scale of the key con-
tent or pattern, an appropriate representation should be chosen. In this sense, hybrid
representations may sometimes be more attractive, but this may come at the cost of
additional complexity. While segmentation is intended to recognize objects in a scene,
precise segmentation still remains an open problem. Therefore, alternative approaches
to characterize structure may be more suitable. However, such a representation may
lose the charm of clear interpretability. Among different approaches to segmenta-
tion, there is often a tradeoff between quality and complexity which might lead to a
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difference in eventual search performance and speed. Hence, the choice of image sig-
nature to be used should depend on the desirability of the system.

In contrast with early years (Section 1.1), we have witnessed a major shift from
global feature representations for images, such as color histograms and global shape
descriptors, to local features and descriptors, such as salient points, region-based fea-
tures, spatial model features, and robust local shape characterizations. It is not hard
to imagine this shift to have been triggered by a realization that the image domain
is too deep for global features to reduce the semantic gap. Local features often cor-
respond with more meaningful image components, such as rigid objects and entities,
which make association of semantics with image portions straightforward. The future
in image feature- or signature representation resides both in theory and practice. Many
years of research has made it clear that emulating human vision is very challenging,
but that nonetheless, practical approaches can help to build useful systems. While the
endeavor to characterize vision will likely continue, particularly in the core field of
computer vision, practical approaches (e.g., fusion of local and global representations
for top-down as well as a bottom-up representations) will potentially improve retrieval
performance and user satisfaction in such systems. The availability of 3D and stereo
image data, whenever obtainable, should be exploited to extract features more coherent
to the human vision system. In summary, reducing the sensorial gap in tandem with
the semantic gap should continue be a goal for the future.

3.2. Image Similarity Using Visual Signature

Once a decision on the choice of image signatures is made, how to use them for accurate
image retrieval is the next concern. There has been a large number of fundamentally
different frameworks proposed in recent years. Some of the key motivating factors
behind the design of the proposed image similarity measures can be summarized as
follows:

—agreement with semantics;

—robustness to noise (invariant to perturbations);

—computational efficiency (ability to work in real time and in large scale);

—invariance to background (allowing region-based querying); and

—local linearity (i.e., following triangle inequality in a neighborhood).

The various techniques can be grouped according to design philosophy as follows:

—treating features as vectors, nonvector representations, or ensembles;

—using region-based similarity, global similarity, or a combination of both;

—computing similarities over linear space or nonlinear manifold;

—considering the role played by image segments in similarity computation;

—using stochastic, fuzzy, or deterministic similarity measures; and

—use of supervised, semi-supervised, or unsupervised learning.

Leaving out those methods discussed in Smeulders et al. [2000], here we focus on some
of the more recent approaches to image similarity computation.

Figure 7 shows the basic types of signature, distances (“dissimilarity measures”) ex-
ploited, and underlying techniques needed to calculate these distances. For each type
of signature, we also elucidate on its mathematical representation, which to a large ex-
tent determines the choice of distances and the employment of related methodologies.
We will start our discussion on the region-based signature, since its widespread use
is occurring in the current decade. The technical emphasis on region-based signature
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Fig. 7. Different types of image similarity measure, their mathematical formulations, and techniques for
computing them.

rests on the definition of distance between sets of vectors, which is not as obvious as
defining distance between single vectors. Research on this problem is further enriched
by the effort to optimally choose a subset of regions pertaining to users’ interests,
thereby increasing robustness against inaccurate segmentation. Although global fea-
ture vectors had already been extensively used in the early years of CBIR, advances
were achieved in recent years by introducing state-of-the-art learning techniques such
as manifold embedding. Research efforts have been made to search for nonlinear man-
ifolds in which the geodesic distances may better correspond to human perception. In-
stead of describing an image by a set of segmented regions, summaries of local feature
vectors such as codebook and probability density functions have been used as signa-
tures. Codebooks are generated by vector quantization, and the codewords are some-
times treated symbolically with application of text retrieval techniques. An effective
way to obtain a density estimation is by fitting a Gaussian mixture model [Hastie et al.
2001], and the Kullback-Leibler distance is often used to measure the disparity between
distributions.

First consider an image signature in the form of a weighted set of feature vectors
{(z1, p1), (z2, p2), . . . , (zn, pn)}, where zi ’s are the feature vectors and pi ’s are the corre-
sponding weights assigned to them. The region-based signature discussed previously
bears such a form, so a histogram can be represented in this way. Let us denote two sig-

natures by Im = {(z (m)
1 , p(m)

1 ), (z (m)
2 , p(m)

2 ), . . . , (z (m)
nm

, p(m)
nm

)}, m = 1, 2. A natural approach

to defining a region-based similarity measure is to match z (1)
i ’s with z (2)

i ’s and then to
combine the distances between these vectors as a distance between sets of vectors.

One approach to matching [Wang et al. 2001] is by assigning a weight to every pair

z (1)
i and z (2)

j , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, and the weight si, j indicates the significance of

associating z (1)
i with z (2)

j . One motivation for soft matching is to reduce the effect on

retrieval of inaccurate segmentation. The weights are subject to constraints, the most

common ones being
∑

i si, j = p(2)
j and

∑
j si, j = p(1)

i . Once the weights are determined,

the distance between I1 and I2 is aggregated from the pair-wise distances between
individual vectors. Specifically,

D(I1, I2) =
n1∑

i=1

n2∑
j=1

si, j d
(
z (1)

i , z (2)
j

)
, (1)
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where the vector distance d (·, ·) can be defined in diverse ways depending on the system.

Other matching methods include the Hausdorff distance, where every z (1)
i is matched

to its closest vector in I2, say z (2)
i′ , and the distance between I1 and I2 is the maximum

among all d (z (1)
i , z (2)

i′ ). The Hausdorff distance is symmetricized by additionally com-
puting the distance with the role of I1 and I2 reversed and choosing the larger of the
two distances.

DH (I1, I2) = max
(

max
i

min
j

d
(
z (1)

i , z (2)
j

)
, max

j
min

i
d

(
z (2)

j , z (1)
i

))
. (2)

The Hausdorff distance is used for image retrieval in Ko and Byun [2002].

One heuristic to decide the matching weights si, j for the pair (z (1)
i , z (2)

j ) is to seek si, j ’s

such that D(I1, I2) in Eq. (1) is minimized, subject to certain constraints on si, j . Suppose∑
i p(1)

i = 1 and
∑

j p(2)
j = 1. This can always be made true by normalization, as long as

there is no attempt to assign one image an overall higher signficance than the other.

In practice, p(1)
i ’s (or p(2)

j ’s) often correspond to probabilities and automatically yield

unit sum. Since p(1)
i indicates the significance of region z (1)

i and
∑

j si, j reflects the total

influence of z (1)
i in the calculation of D(I1, I2), it is natural to require

∑
j si, j = p(1)

i , for

all i, and similarly
∑

i si, j = p(2)
j , for all j . Additionally, we have the basic requirement

si, j ≥ 0 for all i, j . The definition of the distance is thus

D(I1, I2) = min
si, j

n1∑
i=1

n2∑
j=1

si, j d
(
z (1)

i , z (2)
j

)
, (3)

subject to
∑

j si, j = p(1)
i , for all i,

∑
i si, j = p(2)

j , for all j , and si, j ≥ 0 for all i, j . This

distance is precisely the Mallows distance in the case of discrete distributions [Mallows
1972].

The earth mover’s distance (EMD) [Rubner et al. 2000] proposed early in the decade
represents another soft matching scheme for signatures in the form of sets of vectors.
The measure treated the problem of image matching as one of moving components of
the color histograms of images from one to the other, with minimum effort, synony-
mous with moving earth piles to fill holes. When pi and p′

j are probabilities, EMD is

equivalent to the Mallows distance. Another useful matching-based distance is the IRM
(integrated region matching) distance [Li et al. 2000]. The IRM distance uses the most
similar highest priority (MSHP) principle to match regions. The weights si, j are subject
to the same constraints as in the Mallows distance, but D(I1, I2) is not computed by
minimization. Instead, the MSHP criterion entails that the pair of regions across two
images with the smallest distance among all region pairs ought to be given the highest
priority in matching, that is, to be assigned a maximum valid weight si, j . The match-
ing is conducted recursively until all the region weights are consumed, namely until∑

j si, j = p(1)
i and

∑
i si, j = p(2)

j have been achieved for all i and j . IRM is significantly

faster to compute than the Mallows distance and has been found to not inferior, if not
better than, the Mallows distance in terms of retrieval results.

Improvements over the basic matching idea have been made from different perspec-
tives. These include tuning features according to image type, choosing region weights
in more sophisticated ways, improving robustness against inaccurate segmentation,
and speeding-up retrieval. In the SIMPLIcity system [Wang et al. 2001], a preliminary
categorization (e.g., graph versus photograph, textured versus nontextured) is applied
to images and different sets of features are used for each category. Region-based image
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retrieval, under the assumption of a hidden semantic concept underlying image gen-
eration, is explored in Zhang and Zhang [2004]. Here, a uniform, sparse region-based
visual dictionary is obtained using self-organizing map (SOM)-based quantization, and
images/regions are assumed generated probabilistically, conditional on hidden or latent
variables that reflect on their underlying semantics. A framework for region-based im-
age retrieval, with particular focus on efficiency, is proposed in Jing et al. [2004a]. Here,
vector quantization (VQ) is employed to build a region codebook from training images,
each entry sparsely or compactly represented, with the distinct advantages of efficiency
and effectiveness in each case. To further speed-up retrieval, a tree-structured cluster-
ing is applied to images to narrow down the search range [Du and Wang 2001]. The
system first uses a relatively simple signature, specifically a vector, to decide which
cluster an image belongs to, and then uses the region-based signature and the IRM
distance to compare the query with images in the chosen cluster.

A variation of IRM is attempted in Chen and Wang [2002] that employs fuzziness to
account for inaccurate segmentation, to a greater extent. A new representation for ob-
ject retrieval in cluttered images, without relying on accurate segmentation, is proposed
in Amores et al. [2004]. Here, image model learning and categorization are improved
upon using contextual information and boosting algorithms. A windowed search over
location and scale is shown more effective in object-based image retrieval than methods
based on inaccurate segmentation [Hoiem et al. 2004]. A hybrid approach involves the
use of rectangular blocks for coarse foreground/background segmentation on the user’s
query region-of-interest (ROI), followed by a database search using only the foreground
regions [Dagli and Huang 2004].

Without user input, image similarity measures usually attempt to take all the regions
in an image into consideration. This may not be the best practice when users’ interest
is more specifically indicated than an example query image. For instance, if the query is
a sketch drawn by a user, it may be meaningless to let the excluded areas of the sketch
affect image comparison. It can be more desirable to match the sketch only to a relevant
subset of regions automatically determined by the retrieval system, as explored in Ko
and Byun [2002].

Even if the user starts searching with an example query image, it is sometimes
assumed that he or she is willing to specify a portion of the image to be of interest.
This argument has led to the concept of region-based querying. The Blobworld system
[Carson et al. 2002], instead of performing image-to-image matching, lets users select
one or more homogeneous color-texture segments, or blobs, as region(s)-of-interest. For
example, if one or more segmented blobs identified by the user roughly correspond to
a typical “tiger,” then her search becomes equivalent to searching for the “tiger” object
within images. For this purpose, the pictures are segmented into blobs using the E-M
algorithm, and each blob bi is represented as a color-texture feature vector vi. Given a
query blob bi, and every blob bj in the database, the most similar blob has score

μi = max
j

exp

(
(vi − vj)

T�(vi − vj)

2

)
, (4)

where matrix � corresponds to user-adjustable weights on specific color and texture
features. The similarity measure is further extended to handle compound queries using
fuzzy logic. While this method can lead to more precise formulation of user queries and
can help users to better understand the computer’s responses, it also requires greater
involvement from and dependence on them. For finding images containing scaled or
translated versions of query objects, retrieval can also be performed without any explicit
involvement of the user [Natsev et al. 2004].
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As discussed previously, regions are obtained by segmenting images using local fea-
ture vectors. Roughly speaking, region-based signatures can be regarded as a result of
summarizing these feature vectors. Along the lines of using a summary of local feature
vectors as the signature, there are other approaches explored. For instance, in Iqbal and
Aggarwal [2002], primitive image features are hierarchically and perceptually grouped
and their interrelationships used to characterize structure [Iqbal and Aggarwal 2002].
Another approach is the use of vector quantization (VQ) on image blocks to generate
codebooks for representation and retrieval, taking inspiration from data compression
and text-based strategies [Zhu et al. 2000]. For textured images, segmentation is not
critical. Instead, distributions of the feature vectors are estimated and used as signa-
tures. Methods for texture retrieval using the Kullback-Leibler (K-L) divergence have
been proposed in Do and Vetterli [2002] and Mathiassen et al. [2002]. The K-L di-
vergence, also known as the relative entropy, is an asymmetric information-theoretic
measure of the difference between two distributions f (·) and g (·), defined as

K ( f , g ) =
∫ +∞

−∞
f (x)log

f (x)

g (x)
dx, K ( f , g ) =

∑
x

f (x)log
f (x)

g (x)
(5)

in the continuous and discrete cases, respectively. Fractal-block-code-based image his-
tograms have been shown effective in retrieval on texture databases [Pi et al. 2005].
The use of the MPEG-7 content descriptors to train self-organizing maps (SOMs) for
image retrieval is explored in Laaksonen et al. [2002].

When images are represented as single vectors, many authors note an apparent dif-
ficulty in measuring perceptual image distance by metrics in any given linear feature
space. One approach to tackle this issue is to search for a nonlinear manifold in which
the image vectors lie, and to replace the Euclidean distance by the geodesic distance.
The assumption here is that visual perception corresponds better with this nonlinear
subspace than with the original linear space. Computation of similarity may then be
more appropriate if performed nonlinearly along the manifold. This idea is explored
and applied to image similarity and ranking in He [2004], Vasconcelos and Lippman
[2005], He et al. [2004a, 2004b, 2004c], and Zhou et al. [2003]. Typical methods for
learning underlying manifolds, which essentially amounts to nonlinear dimension re-
duction, are locally-linear embedding (LLE), isomapping, and multidimensional scaling
(MDS) [de Silva and Tenenbaum 2003].

The different distance measures discussed so far have their own advantages and
disadvantages. While simple methods lead to very efficient computation, which in turn
makes image ranking scalables (a quality that greatly benefits real-world applications),
they often are not effective enough to be useful. Depending on the specific application
and image signatures constructed, a very important step in the design of an image
retrieval system is the choice of distance measure. Factors that differ across vari-
ous distance measures include type of input, method of computation, computational
complexity, and whether the measure is a metric. In Table I, we summarize distance
measures according to these factors, for ease of comparison.

In the previous subsection, we discussed tuning image signatures by categorizing
images or by learning from user preferences. A closely related issue is to tune image
similarity measures. It is, in fact, impossible to completely set apart the two types of
adaptivity, since tuning signatures ultimately results in a change of similarity. Refer-
ring a tuning method in one way or another is often merely a matter of whichever
is easier to understand. Automatic learning of image similarity measures with the
help of contextual information has been explored in Wu et al. [2005]. In the case that a
valid pair-wise image similarity metric exists despite the absence of an explicit vectored
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Table I. Popular Distance Measures Used for Similarity Computation in Image Retrieval
Distance
Measure Input Computation Complexity Metric Comments

Euclidean
(L2norm)

	X a, 	X b ∈ Rn

(vectors)

	X a · 	X b �(n) Yes Popular, fast, L1

also used

Weighted
Euclidean

	X a, 	X b ∈ Rn W
∈ Rn (vec. +
wts.)

	X T
a [W ] 	X b
[·] ←
diagonalize

�(n) Yes Allows features to
be weighted

Hausdorff Vector sets:
{ 	X (1)

a , . . , 	X (p)
a }

{ 	X (
b1), . . , 	X (q)

b }

See Eqn. 2 �(pqn)
(d (·, ·) ←
L2 norm)

Yes Sets corr. to image
segments

Mallows Vector sets:
{ 	X (1)

a , . . , 	X (p)
a }

{ 	X (
b1), . . , 	X (q)

b }
Signific.: S

See Eqn. 3 �(pqn) +
variable
part

Yes The EMD is its
special case

IRM Vector sets:
{ 	X (1)

a , . . , 	X (p)
a }

{ 	X (
b1), . . , 	X (q)

b }
Signific.: S

See Eqn. 3 �(pqn) +
variable
part

No Much faster than
Mallows
computation in
practise

K-L
divergence

	F , 	G ∈ Rm

(histograms)

∑
x F (x) log F (x)

G(x)
�(m) No Asymmetric,

compares
distributions

representation in some metric space, anchoring can be used for ranking images [Natsev
and Smith 2002]. Anchoring involves choosing a set of representative vantage images,
and using the similarity measure to map an image into a vector. Suppose there exists a
valid metric d (Fi, F j ) between each image pair, and a chosen set of K vantage images

{A1, . . . , AK }. A vantage space transformation V : F → RK then maps each image Fi
in the database to a vectored representation V (Fi) as follows.

V (Fi) =< d (Fi, A1), . . . , d (Fi, AK ) > (6)

With the resultant vector embedding, and after similarly mapping a query image in
the same space, standard ranking methods may be applied for retrieval. When images
are represented as ensembles of feature vectors, or underlying distributions of the low-
level features, visual similarity can be ascertained by means of nonparametric tests
such as Wald-Wolfowitz [Theoharatos et al. 2005] and K-L divergence [Do and Vetterli
2002]. When images are conceived as bags of feature vectors corresponding to regions,
multiple-instance learning (MIL) can be used for similarity computation [Zhang et al.
2002].

A number of probabilistic frameworks for CBIR have been proposed in the last
few years [Jin and Hauptmann 2002; Vasconcelos and Lippman 2000b]. The idea in
Vasconcelos and Lippman [2000b] is to integrate feature selection, feature representa-
tion, and similarity measures into a combined Bayesian formulation, with the objec-
tive of minimizing the probability of retrieval error. One problem with this approach is
the computational complexity involved in estimating probabilistic similarity measures.
The complexity is reduced in Vasconcelos [2004] using VQ to approximately model the
probability distribution of the image features.

Discussion. As shown in Figure 7, similarity computation can be performed with fea-
ture vectors, region-based signatures, or summarized local features. The main advan-
tage of a single vector representing an image is that algebraic and geometric operations
can be performed efficiently and in a principled fashion. However, many such represen-
tations lack the necessary detail to represent complex image semantics. For example,
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a picture of two cups on a plate by a windowsill cannot easily be mapped to a finite
vector representation, simply because the space of component semantics is extremely
large, in practice. Instead, if a concatenation of region descriptors is used to represent
a picture, it is more feasible to map the component semantics (e.g., cup, window) to
image regions. On the other hand, extracting semantically coherent regions is in itself
very challenging. Probabilistic representations can potentially provide an alternative,
allowing rich descriptions with limited parametrization.

The early years of research (Section 1.1) showed us the benefits as well as the lim-
itations of feature vector representations. They also paved the way for the new breed
of region-based methods, which have now become more standard than ever before. The
idea of region-based image querying also gained prominence in the last few years. Many
new salient-feature-based spatial models were introduced, particularly for recognizing
objects within images, building mostly on early, pre-2000 work. The idea that image
similarity is better characterized by geodesic distances over a nonlinear manifold em-
bedded in the feature space has improved upon earlier notions of a linear embedding
of images. A number of systems have also been introduced for public usage in recent
years. The future of image similarity measures lies in many different avenues. The
subjectivity in similarity needs to be incorporated more rigorously into image similar-
ity measures, to achieve what can be called personalized image search. This can also
potentially incorporate ideas beyond the semantics, such as aesthetics and personal
preferences in style and content. Extensions of the idea of nonlinear image manifolds
to incorporate the whole spectrum of natural images, and to allow adaptability for per-
sonalization, are avenues to consider. While development of useful systems continues to
remain critical, the ever-elusive problem of reducing the semantic gap needs concerted
attention.

3.3. Clustering and Classification

Over the years it has been observed that it is too ambitious to expect a single similarity
measure to produce robust, perceptually meaningful ranking of images. As an alterna-
tive, attempts have been made to augment the effort with learning-based techniques.
In Table II, for both clustering and classification, we summarize the augmentations to
traditional image-similarity-based retrieval, the specific techniques exploited, and the
limitations, respectively.

Image classification or categorization has often been treated as a preprocessing step
for speeding-up image retrieval in large databases and improving accuracy, or for per-
forming automatic image annotation. Similarly, in the absence of labeled data, unsuper-
vised clustering has often been found useful for retrieval speedup as well as improved
result visualization. While image clustering inherently depends on a similarity mea-
sure, image categorization has been performed by varied methods that neither require
nor make use of similarity metrics. Image categorization is often followed by a step of
similarity measurement, restricted to those images in a large database that belong to
the same visual class as predicted for the query. In such cases, the retrieval process is
intertwined, whereby categorization and similarity matching steps together form the
retrieval process. Similar arguments hold for clustering as well, due to which, in many
cases, it is also a fundamental “early” step in image retrieval.

In recent years, a considerable number of innovations have been accomplished for
both clustering and classification, with tremendously diverse target applications. It
is not our intention here to provide a general review of these technologies. We refer
to Hastie et al. [2001] for the basic principles and a more comprehensive review. We
will restrict ourselves to new methods and applications appearing in image retrieval
and closely related topics.
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Table II. Comparison of Three Different Learning Techniques in Their Application to Image Retrieval
Augmentation
(User Involvement) Purpose Techniques Drawbacks
Clustering (minimal) Meaningful result

visualization,
faster retrieval,
efficient storage

Side-information, kernel
mapping, k-means,
hierarchical, metric
learning [Chen and
Wang 2004] [Hastie et al.
2001] [Sebe et al. 2000]
[Wu et al. 2005]

Same low-level
features, poor
user adaptability

Classification
(requires prior
training data, not
interactive)

Pre-processing, fast/
accurate retrieval,
automatic
organization

SVM, MIL, statistical
models, Bayesian
classifiers, k-NN, trees
[Zhang et al. 2002]
[Hastie et al. 2001]
[Panda and Chang 2006]

Training introduces
bias, many classes
unseen

Relevance Feedback
(significant,
interactive)

Capture user and
query specific
semantics, refine
rank accordingly

Feature re-weighting,
region weighting, active
learning, memory/
mental retrieval,
boosting [Hastie et al.
2001] [Rui et al. 1998]
[Jaimes et al. 2004]
[Fang and Geman 2005]

Same low level
features,
increased user
involvement

Unsupervised clustering techniques are a natural fit when handling large, unstruc-
tured image repositories such as the Web. Figure 8 summarizes clustering techniques
according to the principles of clustering and shows the applicability of different methods
when the mathematical representation of learning instances varies. Again, we divide
the instances into three types: vectors, sets of vectors, and stochastic processes (in-
cluding distributions); these are consistent with the categorization of image signatures
discussed in the previous subsection. From the perspective of the application, cluster-
ing specifically for Web images has received particular attention from the multimedia
community, where metadata is often available for exploitation, in addition to visual
features [Wang et al. 2004a; Gao et al. 2005; Cai et al. 2004].

Clustering methods fall roughly into three types: pair-wise-distance-based, optimiza-
tion of an overall clustering quality measure, and statistical modeling. The pair-wise-
distance-based methods (e.g., linkage clustering and spectral graph partitioning) are of
general applicability, since the mathematical representation of the instances becomes
irrelevant. They are particularly appealing in image retrieval because image signatures
often have complex formulation. One disadvantage, however, is the high computational
cost because we need to compute an order of n2 pair-wise distances, where n is the size
of the dataset. In Zheng et al. [2004], a locality-preserving spectral clustering technique
is employed for image clustering in such a way that unseen images can be placed into
clusters more easily than with traditional methods. In CBIR systems, which retrieve
images ranked by relevance to the query image only, similarity information among the
retrieved images is not considered. In this respect, Chen et al. [2005] proposes the use of
a new spectral clustering- [Shi and Malik 2000] based approach to incorporate such in-
formation into the retrieval process. In particular, clusters are dynamically generated,
tailored specifically to the query image each time, to improve retrieval performance.

Clustering based on the optimization of an overall measure of clustering quality is a
fundamental approach explored since the early days of pattern recognition work. The
immensely popular, k-means clustering method is one example. In k-means, the merit
of a clustering result is measured by the sum of within-cluster distances between ev-
ery vector and its cluster centroid. This criterion ensures that the clusters generated
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Fig. 8. Paradigms of clustering methods and their scope of applications.

are tight, a generally accepted heuristic. Here, if the number of clusters is not spec-
ified, a simple method to determine this number is to gradually increase it until the
average distance between a vector and its cluster centroid is below a given thresh-
old. A more sophisticated way to determine the number of clusters is the competitive
agglomeration algorithm, with application to image clustering [Saux and Boujemaa
2002]. In Gordon et al. [2003], an unsupervised clustering approach for images has
been proposed using the information bottleneck (IB) principle. The proposed method
works for discrete (histograms) as well as for continuous (Gaussian mixture) image
representations. Clustering based on the IB principle [Tishby et al. 1999] can be sum-
marized as follows: Given two variables A (which we try to compress/cluster) and B
(which contains relevant information), and their joint distribution Pr(A, B), we seek to
perform soft partitioning of A by a probabilistic mapping V , namely, Pr(V |A), such that
the mutual information among A and V is minimized, while the relevant information
among B and V is maximized.

In k-means clustering, a centroid vector is computed for every cluster. This centroid
vector is chosen to minimize the sum of within-cluster distances. When the Euclidean
distance is used, it can easily be shown that the centroid ought to be the average of
the vectors in a cluster. For nonvector data, the determination of the centroid can be
challenging. The extension of k-means to instances represented by sets of weighted
vectors is made in Li and Wang [2008] by means of the D2-clustering algorithm. The
Mallows distance is used for region-based image signatures represented as sets of
weighted arbitrary vectors. When the weights assigned to the vectors are probabili-
ties, this representation is essentially a discrete distribution. The centroid for every
cluster is also a discrete distribution, for which both the probabilities and vectors in
the support domain need to be solved. Although D2-clustering uses the same intrinsic
clustering criterion of as k-means, computationally, it is much more complex due to
the complexity of the instances themselves. Large-scale linear programming is used
for the optimization in D2-clustering. Another algorithm for clustering sets of vectors
is developed using the IRM distance [Li 2005]. As compared with D2-clustering, this
algorithm is similar in principle and significantly faster, but has weaker optimization
properties.

Statistical modeling is another important paradigm for clustering. The general idea is
to treat every cluster as a pattern characterized by a relatively restrictive distribution,
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and the overall dataset is thus a mixture of these distributions. For continuous vec-
tor data, the most commonly used distribution of individual vectors is the Gaussian
distribution. By fitting a mixture of Gaussians to a dataset, usually by the EM algo-
rithm [McLachlan and Peel 2000], we estimate the means and covariance matrices
of the Gaussian components, which correspond to the center locations and shapes of
clusters. One advantage of the mixture modeling approach is that it not only provides
a partition of data, but also yields an estimated density, which sometimes is itself
desired [Do and Vetterli 2002]. The component in a mixture model is not always a
multivariate distribution. For instance, in Li and Wang [2004], the objects to be clus-
tered are large areas of images, and every cluster is characterized by a 2D MHMM. As
long as a probability measure can be set-up to describe a cluster, the mixture modeling
approach applies seamlessly. When it is difficult to form a probability measure in a
certain space, a mixture model can be established by clustering the data and mapping
each cluster to a distance-preserving Euclidean space [Li and Wang 2008]. In this case,
the mixture model is not used to yield clustering, but to better represent a dataset,
eventually resulting in better classification.

Image categorization (classification) is advantageous when the image database is
well specified, and labeled training samples are available. Domain-specific collections
such as medical image databases, remotely sensed imagery, and art and cultural im-
age databases are examples where categorization can be beneficial. Classification is
typically applied for either automatic annotation, or for organizing unseen images into
broad categories for the purpose of retrieval. Here we discuss the latter. Classifica-
tion methods can be divided into two major branches: discriminative and generative
modeling approaches. In discriminative modeling, classification boundaries or posterior
probabilities of classes are estimated directly, for example, SVM and decision trees. In
generative modeling, the density of data within each class is estimated and the Bayes
formula is then used to compute the posterior. Discriminative modeling approaches are
more direct when optimizing classification boundaries. On the other hand, generative
modeling approaches are easier to incorporate with prior knowledge and can be used
more conveniently when there are many classes.

Bayesian classification is used for the purpose of image retrieval in Vailaya et al.
[2001]. A textured/nontextured and graph/photograph classification is applied as pre-
processing to image retrieval in Wang et al. [2001]. Supervised classification based on
SVMs has been applied to images in Goh et al. [2001]. A more recent work describes
an efficient method for processing multimedia queries in an SVM-based supervised
learning framework [Panda and Chang 2006]. SVMs have also been used in an MIL
framework in Chen and Wang [2004]. In the MIL framework, a set of, say, l training im-
ages for learning an image category are conceived as labeled bags {(B1, y1), . . . , (Bl , yl )},
where each bag Bi is a collection of instances vij ∈ Rm. Each instance vij corresponds to
a segmented region j of a training image i, and yi ∈ {−1, +1} indicating a negative or
positive example with respect to the category in question. The key idea is to map these
bags into a new feature space where SVMs can be trained for eventual classification.
Image classification based on a generative model for the purpose of retrieval is explored
in Datta et al. [2007].

Discussion. Clustering is a hard problem with two unknowns, namely, the number
of clusters, and the clusters themselves. In image retrieval, clustering helps in visu-
alization and retrieval efficiency. The usual problems of clustering-based applications
appear here as well, whereby the clusters may not be representative enough or accurate
for visualization. While supervised classification is more systematic, the availability of
comprehensive training data is often scarce. In particular, the veracity of “ground truth”
in image data itself is a subjective question.
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Clustering and classification for the purpose of image retrieval received relatively less
attention in the early years of research. The spotlight was on feature extraction and
similarity computation. With the need for practical systems that scale well to billions
of images and millions of users, practical hacks such as preclustering and fast classifi-
cation have become critical. The popularization of new information-theoretic clustering
methods, as well as classification methods such as SVM and boosting, have led to their
extensive use in the image retrieval domain as well. New generative models such as
latent Dirichlet allocation (LDA) and 2D-MHMM have made their way into image mod-
eling and annotation. The future, in our opinion, lies in supervised and unsupervised
generative models for characterizing the various facets of images and metadata. There
is often a lot of structured and unstructured data available with the images that can be
potentially exploited through joint modeling, clustering, and classification. It is difficult
to guess how much these methods can help bridge the semantic or sensorial gap, but
one fact is unequivocal: System implementations can greatly benefit in various ways
from the efficiency that these learning-based methods can produce.

3.4. Relevance Feedback-Based Search Paradigms

The approach to search has an undeniable tie to the underlying core technology because
it defines the goals and the means to achieve them. One way to look at the types of
search is through modality (i.e., query by keyword/keyphrase, by example images, or
a combination of both, as discussed in Section 2). Other ways to characterize search is
by the nature and level of human and system interaction involved, and the user intent
(Section 2). In this section, we concentrate on the latter categorization, exploring the
different search paradigms that affect how humans interact and systems interpret/
respond.

Relevance feedback (RF) is a query modification technique which attempts to cap-
ture the user’s precise needs through iterative feedback and query refinement. It can
be thought of as an alternative search paradigm, complementing other paradigms such
as keyword-based search. Ever since its inception in the CBIR community [Rui et al.
1998], a great deal of interest in query modification has been generated. In the absence
of a reliable framework for modeling high-level image semantics and subjectivity of
perception, the user’s feedback provides a way to learn case-specific query semantics.
While a comprehensive review can be found in Zhou and Huang [2003], here we present
a short overview of recent work in RF, and the various ways in which these advances
can be categorized. We group them here based on the nature of the advancements
made, resulting in (possibly overlapping) sets of techniques that have pushed the fron-
tiers in a common domain. These include: (a) learning-based, (b) feedback specification,
(c) user-driven, (d) probabilistic, (e) region-based, and (f) other advancements.

Learning-Based Advancements. Based on the user’s relevant feedback, learning-based
approaches are typically used to appropriately modify the feature set or similarity mea-
sure. However, in practice, a user’s RF results in only a small number of labeled images
pertaining to each high-level concept. This obstacle, along with other unique challenges
pertiaining to RF, has generated interest in novel machine-learning techniques to solve
the problem, such as one-class learning, active learning, and manifold learning. To cir-
cumvent the problem of learning from small training sets, a discriminant-EM algorithm
is proposed to make use of unlabeled images in the database for selecting more discrimi-
nating features [Wu et al. 2000]. On the other hand, it is often the case that the positive
examples received due to feedback are more consistently located in the feature space
than are the negative examples, the latter of which may consist of any irrelevant image.
This leads to a natural formulation of one-class SVM for learning relevant regions in
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the feature space from feedback [Chen et al. 2002]. Let {v1, . . . , vn}, vi ∈ Rd be a set of
n positive training samples. The idea is to find a mapping �(vi) such that most samples
are tightly contained in a hypersphere of radius R in the mapped space, subject to
regularization. The primal form of the objective function is thus given by

min
R,e,c

(
R2 + 1

kn

∑
i

ei

)
subject to ‖�(vi) − c‖2 ≤ R2 + ei, ei ≥ 0, i ∈ {1, . . . , n}. (7)

Here, c is the hypersphere center in the mapped space, and k ∈ [0, 1] is a constant
that controls the tradeoff between radius of the sphere and number of samples it can
hold. Among other techniques, a principled approach to optimal learning from RF is
explored in Rui and Huang [2000]. We can also view RF as an active learning process,
where the learner chooses an appropriate subset for feedback from the user in each
round based on her previous rounds of feedback, instead of choosing a random subset.
Active learning using SVMs was introduced into RF in Tong and Chang [2001]. Ex-
tensions to active learning have also been proposed [Goh et al. 2004; He et al. 2004b].
In He et al. [2004b], it is conceived that image features reside on a manifold embedded
in the Euclidean feature space. Under this assumption, relevant images to the query
provided by RF, along with their nearest neighbors, are used to construct a subgraph
over the images. The geodesic distances, that is, the shortest path on the graph be-
tween pairs of vertices representing image pairs, are then used to rank images for
retrieval.

Feedback Specification Advancements. Traditionally, RF has engaged the user in mul-
tiple rounds of feedback, each round consisting of one set each of positive and negative
examples in relation to the intended query. However, recent work has introduced other
paradigms of query specification that have been found either more intuitive, or more
effective. Feedback based directly on an image semantics characterized by manually
defined image labels, appropriately termed semantic feedback, is proposed in Yang et al.
[2005b]. A well-known issue with feedback solicitation is that multiple rounds of feed-
back test the user’s patience. To circumvent this problem, user logs of earlier feedback
can be used in query refinement, thus reducing the user engagement in RF, as shown
in Hoi and Lyu [2004b]. Innovation has also come in the form of the nature by which
feedback is specified by the user. In Kim and Chung [2003], the notion of a multipoint
query, where multiple-image examples may be used as query and in the intermediate
RF step, is introduced. At each round of the RF, clusters of images found relevant based
on the previous feedback step are computed, whose representatives form the input for
the next round of RF. It is well known that there is generally an asymmetry between
the sets of positive and negative image examples presented by the user. In order to
address this asymmetry during RF when treating it as a two-class problem, a biased
discriminant-analysis-based approach has been proposed in Zhou and Huang [2001b].
While most algorithms treat RF as a two-class problem, it is often intuitive to consider
multiple groups of images as relevant or irrelevant [Hoi and Lyu 2004a; Nakazato
et al. 2003; Zhou and Huang 2001a]. For example, a user looking for “cars” can high-
light groups of blue and red cars as relevant, since it may not be possible to represent
the concept of “car” uniformly in a visual feature space. Another novelty in feedback
specification is the use of multilevel relevance scores to indicate varying degrees of
relevance [Wu et al. 2004].

User-Driven Methods. While many past attempts at RF have focused on the machine’s
ability to learn from user feedback, the user’s point-of-view in providing the feedback
has largely been taken for granted. Of late, there has been some interest in design RF
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paradigms aimed to help users. In some new developments, there have been attempts
at tailoring the search experience by providing the user with cues and hints for more
specific query formulation [Jaimes et al. 2004; Nagamine et al. 2004]. While the ap-
proach may still involve RF from the system point-of-view, it is argued that the human
memory can benefit from provided cues for better query formulation. A similar search
paradigm proposed in Fang and Geman [2005] and Fang et al. [2005] models succes-
sive user responses using a Bayesian, information-theoretic framework. The goal is to
“learn” a distribution over the image database representing the mental image of the
user, and to use this distribution for retrieval. Another well-known issue with a human
in the loop is that multiple rounds of feedback are often bothersome for the user. This
redundancy has been alleviated in Hoi and Lyu [2004b] by making use of logs that
contain earlier feedback given by that user. Recently, a manifold learning technique to
capture user preference over a semantic manifold from RF has been proposed in Lin
et al. [2005].

Probabilistic Methods. Probabilistic models, while popular in the early years of image
retrieval for tackling the basic problem, have found increasing patronage for perform-
ing RF in recent years. Probabilistic approaches have been taken in Cox et al. [2000], Su
et al. [2003], and Vasconcelos and Lippman [2000a]. In Cox et al. [2000], the PicHunter
system is proposed, where uncertainty about the user’s goal is represented by a distri-
bution over the potential goals, following which the Bayes’ rule helps in selecting the
target image. In Su et al. [2003], RF is incorporated using a Bayesian-classifier-based
reranking of the images after each feedback step. The main assumption used here is
that the features of positive examples, which potentially reside in the same seman-
tic class, are all generated by an underlying Gaussian density. The RF approach in
Vasconcelos and Lippman [2000a] is based on the intuition that the system’s belief at
a particular time about the user’s intent is a prior, while the subsequent user feedback
is new information obtained. Together, these concepts help to compute the new belief
about the intent, using the Bayes’ rule, which in turn becomes the prior for the next
feedback round.

Region-Based Methods. With an increased popularity of region-based image re-
trieval [Carson et al. 2002; Wang et al. 2001; Ko and Byun 2002], attempts have been
made to incorporate the region factor into RF. In Jing et al. [2004a], two different RF
scenarios are considered, and retrieval is tailored to support each of them through query
point modification and SVM-based classification, respectively. In this feedback process,
the region importance (RI) for each segmented region is learned, for successively bet-
ter retrieval. This core idea, namely that of integrating region-based retrieval with
relevance feedback, has been further detailed for the two RF scenarios in Jing et al.
[2004b].

Other Advancements. Besides the grouped sets of methods, there have been a number
of isolated advancements covering various aspects of RF. For example, methods for per-
forming RF, using visual as well as textual features (metadata) in unified frameworks,
have been reported in Lu et al. [2000], Zhou and Huang [2002], Amores et al. [2004],
and Jing et al. [2005]. A tree-structured SOM has been used as an underlying technique
for RF [Laaksonen et al. 2001] in a CBIR system [Laaksonen et al. 2002]. A well-known
RF problem regarding query specification is the fact that after each round of user in-
teraction, the top query results need to be recomputed following some modification. A
way to speed-up this nearest-neighbor search is proposed in Wu and Manjunath [2001].
The use of RF for helping to capture the relationship between low-level features and
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high-level semantics, a fundamental problem in image retrieval, has been attempted
using logs of user feedbacks in Han et al. [2005].

Discussion. Relevance feedback provides a compromise between a fully automated,
unsupervised system and one based on subjective user needs. While query refinement
is an attractive proposal when considering a very diverse user base, there is also the
question of how well the feedback can be utilized for refinement. Whereas a user would
prefer shorter feedback sessions, there is an issue as to how much feedback is enough
for the system to learn the user needs. One issue which has been largely ignored in
past RF research is that the user’s needs might evolve over the feedback steps, making
weaker the assumption of a fixed target. New approaches such as Jaimes et al. [2004]
and Fang and Geman [2005] have started incorporating this aspect of the user’s mind
in the RF process.

Relevance feedback was introduced into image retrieval at the end of the previous
decade (Section 1.1). Today, it is a more mature field, spanning many different subtopics
and addressing a number of practical concerns while keeping in mind the user in the
loop. While this progress is evident, the issue remains that, we do not see many real-
world implementations of the relevance feedback technology, either in the image or text
retrieval domains. This is potentially due to the feedback process that the users must
go through, which tests the users’ patience. New ideas such as memory retrieval, which
actually provide the user with benefits in the feedback process, may possibly be key to
popularizing RF. The future of this field clearly lies in its practical applicability, focusing
on how the user can be spared the greatest amount of effort in conveying the desired
semantics. The breaking-point and utility derived out of this process, at which the user
runs out of patience and at which she is satisfied with the response, respectively, must
be studied for better system design.

3.5. Multimodal Fusion and Retrieval

Media relevant to the broad area of multimedia retrieval and annotation includes, but
is not limited to, images, text, free text (unstructured, e.g., paragraphs), graphics, video,
and any conceivable combination of them. Thus far, we have encountered a multitude of
techniques for modeling and retrieving images, and text associated with these images.
While not covered here, the reader may be aware of equally broad spectrums of tech-
niques for text, video, music, and speech retrieval. In many cases, these independent,
media-specific methods do not suffice to satiate the needs of users who are seeking
what they can best describe only by a combination of media. Therein lies the need for
multimodal fusion as a technique for satisfying such user queries. We consider this as
one of the “core” techniques because in principal, it is distinct from any of the methods
we have discussed so far. Even with the very good retrieval algorithms available inde-
pendently for two different media, effectively combining them for multimodal retrieval
may be far from trivial. Research in fusion learning for multimodal queries therefore
attempts to learn optimal combination strategies and models.

Fortunately (for researchers) or unfortunately (for users), precious little multimodal
fusion has been attempted in the context of image retrieval and annotation. This opens
avenues for exploring novel user interfaces, querying models, and resulting visualiza-
tion techniques pertinent to image retrieval, in combination with other media. Having
said that, we must point out that multimodal fusion has indeed been attempted in
more obvious problem settings within video retrieval. With this field as an example,
we briefly expose readers to multimodal fusion, in the hope that it motivates image
retrieval research that takes advantage of these techniques. We believe that the need
for mutimodal retrieval in relation to images will soon grow in stature.
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When video data comes with closed-captions and/or associated audio track, these
components can prove to be useful items of metadata for retrieval as well. One of the
key problems faced in video retrieval research is therefore the combination or fusion of
responses from these multiple modalities. It has been observed and reported that multi-
modal fusion almost always enhances retrieval performance for video [Hauptmann and
Christel 2004]. Usually, fusion involves learning some kind of combination rules across
multiple decision streams (ranked lists or classifier responses) using a certain amount
of data with ground truth as a validation set. This is also referred to as late fusion.
Alternative approaches to fusion involve classifier retraining. In Wu et al. [2004], mul-
timodal fusion has been treated as a two-step problem. The first step involves finding
statistically independent modalities, followed by superkernel fusion to determine their
optimal combination. Fusion approaches have been found beneficial for important video
applications such as detection of documentary scene changes [Velivelli et al. 2004] and
story segmentation [Zhai et al. 2005]. Fusion learning has been found to outperform
naive fusion approaches, as well as the oracle (best performer) for the TRECVID 2005
query retrieval task [Joshi et al. 2007].

Discussion. Fusion learning is an offline process while fusion application at real time
is computationally inexpensive. Hence multimodal fusion is an excellent method to
boost retrieval performance at real time. However, special care needs to be taken to
ensure that the fusion rules do not overfit the validation set used for learning them.
Usually, data resampling techniques such as bagging are found to help avoid overfitting,
to some extent. Fusion techniques can also be used to leverage classifiers built for
numerous concepts with possible semantic coherence, whether the underlying data is
image or video.

Fusion for image retrieval is a fairly novel area, with very little achieved in the early
days of research. The ideas of fusion go hand-in-hand with practical, viable system
development, which is critical for the future of image retrieval research. We live in a
truly multimedia world, and we as humans always take the benefit of each media for
sensory interpretation (see, hear, smell, taste, touch). There is no reason why advantage
should not be taken of all available media (images, video, audio, text) for building useful
systems. The future lies in harnessing as many channels of information as possible, and
fusing them in smart, practical ways to solve real problems. Principled approaches to
fusion, particularly probabilistic ones, can also help provide performance guarantees
which in turn convert to quality standards for public-domain systems.

4. CBIR OFFSHOOTS: PROBLEMS AND APPLICATIONS OF THE NEW AGE

Smeulders and coauthors [Smeulders et al. 2000] surveyed CBIR at the end of what
they referred to as the early years of its study. The field was presented as a natural
successor to certain existing disciplines such as computer vision, information retrieval,
and machine learning. However, in the last few years, CBIR has evolved and emerged as
a mature research effort in its own right. A significant section of the research community
is now shifting attention to certain problems which are peripheral, yet of immense
significance to image retrieval systems, either directly or indirectly. Moreover, newly
discovered problems are being solved with tools intended for image retrieval. In this
section, we discuss such directions. Note that much of these peripheral ideas are in
their infancy, and have likelihood of breaking into adulthood if sufficiently nurtured
by the relevant research communities. Owing to the exploratory nature of the current
approaches to these problems, a discussion is necessary on where these subfields are
heading and what opportunities lie ahead for future innovation.
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4.1. Words and Pictures

While contemplating problem of understanding picture content, it was soon learned
that, in principle, associating those pictures with textual descriptions was only one
step ahead. This led to the formulation of a new, but closely associated problem called
automatic image annotation, often referred to as auto-annotation or linguistic indexing.
The primary purpose of a practical content-based image retrieval system is to discover
images pertaining to a given concept in the absence of reliable metadata. All attempts
at automated concept discovery, annotation, or linguistic indexing essentially adhere
to this objective. Annotation can facilitate image search through the use of text. If the
resultant automated mapping between images and words can be trusted, text-based
image searching can be semantically more meaningful than search in the absence of
any text. Here we discuss two different schools of thought which have been used to
address this problem.

4.1.1. Joint Word-Picture Modeling Approach. Many approaches to image annotation have
been inspired by research in the text domain. Ideas from text modeling have been suc-
cessfully imported to jointly model textual and visual data. In Duygulu et al. [2002],
the problem of annotation is treated as a translation from a set of image segments to a
set of words, in a way analogous to linguistic translation. A multimodal extension of a
well-known hierarchical text model is proposed. Each word, describing a picture, is be-
lieved to have been generated by a node in a hierarchical concept tree. This assumption
coheres with the hierarchical model for nouns and verbs adopted by Wordnet [Miller
1995]. This translation model is extended [Jin et al. 2005] to eliminate uncorrelated
words from among those generated, making use of the Wordnet ontology. In Blei and
Jordan [2003], the latent Dirichlet allocation (LDA) model is proposed for modeling
associations between words and pictures.

In all such approaches, images are typically represented by properties of each of their
segments, or blobs. Once all the pictures have been segmented, quantization can be used
to obtain a finite vocabulary of blobs. Thus, the pictures under such models are treated
as bags of words and blobs, each of which are assumed generated by aspects. Aspects are
hidden variables which spawn a multivariate distribution over blobs and a multinomial
distribution over words. Once the joint word-blob probabilities have been learned, the
annotation problem for a given image is reduced to a likelihood problem relating blobs to
words. The spatial relationships between blobs are not directly captured by the model.
However, this is expected to be implicitly modeled in the generative distribution. Most
of these techniques rely on precise segmentation, an issue which is still challenging.
Despite the limitations, such modeling approaches remain popular.

Cross-media relevance models have been used for image annotation in Jeon et al.
[2003] and Lavrenko et al. [2003]. A closely related approach involves coherent language
models, and exploits word-to-word correlations to strengthen annotation decisions [Jin
et al. 2004]. All the annotation strategies discussed so far model visual and textual
features separately prior to association. A departure from this trend is seen in Monay
and Gatica-Perez [2003], where probabilistic latent semantic analysis (PLSA) is used
on uniform vectored data consisting of both visual features and textual annotations.
This model is extended to a nonlinear latent semantic analysis for image annotation
in Liu and Tang [2005].

4.1.2. Supervised Categorization Approach. An alternative approach is to treat image
annotation as a supervised categorization problem. Concept detection through super-
vised classification, involving simple concepts such as city, landscape, and sunset, is
achieved with high accuracy in Vailaya et al. [2001]. More recently, image annotation
using both a novel structure-composition model and a WordNet-based word saliency
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measure has been proposed in Datta et al. [2007]. One of the earliest attempts at im-
age annotation can be found in Li and Wang [2003]. The system, ALIP (automatic lin-
guistic indexing of pictures) uses a 2D multiresolution hidden-Markov-models-based
approach to capture inter- and intrascale spatial dependencies of image features of
given semantic categories. Models for individual categories are learned independently
and stored. The annotation step involves calculating likelihoods of the query image,
given each learned model/category, and choosing annotations with bias toward statis-
tically salient words corresponding to the most likely categories. A real-time image an-
notation system ALIPR (automatic linguistic indexing of pictures—real time) has been
recently proposed in Li and Wang [2006]. ALIPR inherits its high-level learning archi-
tecture from ALIP. However, the modeling approach is simpler, hence leading to real-
time computations of statistical likelihoods. Being the first real-time image annotation
engine, ALIPR has generated considerable interest for real-world applications [Alipr
2006].

Learning concepts from user feedback in a dynamically changing image database
using Gaussian mixture models is discussed in Dong and Bhanu [2003]. An approach
to soft annotation, using Bayes point machines to give images a confidence level for
each trained semantic label, is explored in Chang et al. [2003]. This vector of confi-
dence labels can be exploited to rank relevant images in case of a keyword search.
A confidence-based dynamic ensemble of SVM classifiers is used for annotation in Li
et al. [2003]. Multiple-instance-learning-based approaches have been proposed for se-
mantic categorization of images [Chen and Wang 2004] and to learn the correspondence
between image regions and keywords [Yang et al. 2005a]. Concept learning based on
a fusion of complementary classification techniques with limited training samples is
proposed in Natsev et al. [2005]. Annotating images in dynamic settings (e.g., Yahoo!
Flickr), where images and publicly generated tags arrive into a system asynchronously
over time, has been explored using a metalearning framework in Datta et al. [2007].

Discussion. Automated annotation is widely recognized as an extremely difficult is-
sue. We humans segment objects better than machines, having learned to associate over
a long period of time, through multiple viewpoints, and literally through a “streaming
video” at all times. This partly accounts for our natural segmentation capability. The
association of words and blobs becomes truly meaningful only when blobs isolate objects
well. Moreover, how exactly our brains make this association is unclear. While biology
tries to answer this fundamental question, researchers in information retrieval tend
to take a pragmatic stand in that they aim to build systems of practical significance.
Ultimately, the desire is to be able to use keyword queries for all, images regardless of
any manual annotations that they may have. To this end, a recent attempt at bridging
the retrieval-annotation gap has been made [Datta et al. 2007].

4.2. Stories and Pictures

While the association between words and pictures is fairly well studied, deciding on
an appropriate picture set for a given story is a relatively new problem. Attempts at
tackling this problem are made in Barnard et al. [2003] and Joshi et al. [2006b]. By a
story, we refer to a descriptive piece of text suitable for illustration in a practical sense.
Possible applications of such systems could be automatic illustration of news articles
at news agencies, or educational story illustration in textbooks.

The problem, however, poses several challenges: (1) People might attach different lev-
els of importance to the ideas, concepts, and places discussed in a story. This subjectivity
is hard to quantify and may be a result of past experiences, dislikes, and prejudices.
(2) Any illustration system is constrained by the image repository from which the
system selects pictures. An automated system may misperform if relevant pictures
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are not present or poorly represented in the repository. (3) Certain concepts might be
overrepresented in the repository. Choosing a few representative pictures would then
require a ranking scheme to discriminate among relevant pictures by some means. It
is not easily perceived on what criteria this discrimination should be based.

A practical system which performs this task would require some way of identifying
relevant keywords in a story and using a ranking scheme to determine representative
pictures. In Barnard et al. [2003], the idea of auto-illustration is introduced as an
inverse problem of auto-annotation. In Joshi et al. [2006b], image importance with
respect to a story is quantified by the use of a mutual reinforcement principle. Given an
annotated image database, pair-wise reinforcement is based on both visual similarity
as well as Wordnet-based lexical similarity. This importance criteria are then used for
choosing ideal pictures to illustrate the story in question.

Discussion. Evidently, work in this direction has been very limited, even though
the problem is one of practical importance. One reason for this could be that the goals
of auto-illustration or story-picturing are not as clearly defined as CBIR or image an-
notation. This brings us to the question of evaluation. How do we differentiate good
illustrations from poor ones? The approach taken in Joshi et al. [2006b] is to exploit
user studies to determine the agreement between human preference and automatic
selection of pictures. Other, better approaches to evaluation may be possible. One thing
is clear. however: A concrete formulation to the problem and an acceptable evaluation
strategy for solutions are essentially two sides of the same coin.

4.3. Aesthetics and Pictures

Thus far, the focus of CBIR has been on semantics. There have been numerous discus-
sions on the semantic gap. Imagine a situation where this gap has been bridged. This
would mean, for example, finding all “dog” pictures in response to a “dog” query. In
text-based search engines, a query containing “dog” will yield millions of Web pages.
The smart search engine will then try to analyze the query to rank the best matches
higher. The rationale for doing so is that of predicting what is most desirable based on
the query. What, in CBIR, is analogous to such ranking, given that a large subset of the
images are determined to be semantically relevant? This question has been recently
addressed in Datta et al. [2006].

We conjecture that one way to distinguish among images of similar semantics is
by their quality. Quality can be perceived at two levels: one involving concrete image
parameters like size, aspect ratio, and color depth, and the other involving higher-level
perception, which we denote as aesthetics. While it is trivial to rank images based on
the former, the differences may not be significant enough to use as ranking criteria. On
the other hand, aesthetics concerns the kind of emotions a picture arouses in people.
Given this vague definition and the subjectivity associated with emotion, it is open to
dispute how to aesthetically distinguish pictures. In our opinion, modeling aesthetics
of images is an important open problem. Given a feasible model, a new dimension to
image understanding will be added, benefiting CBIR and allied communities.

Discussion. The question remains as to how this problem can be approached. Given
the high subjectivity of aesthetics, it may help to redefine the goal as a model that can
characterize aesthetics in general. One way to model aesthetics in general is to study
photo rating trends in public photo-sharing communities such as Photo.Net [1993], an
approach that has been followed in Datta et al. [2006]. The site supports peer-rating
of photographs based on aesthetics. This has generated a large database of ratings
corresponding to the over one million photographs hosted. A discussion on the signif-
icance of these ratings, and aesthetic quality in general, can be found in the Photo.Net
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RatingSystem page at PhotoNet [1993]. The idea of learning to assess visual aesthetics
from such training data has been further pursued, for the purpose of selecting high-
quality pictures and eliminating low-quality ones from image collections, in Datta et al.
[2007]. Nonetheless, there is one caveat: Uncontrolled publicly collected data is natu-
rally inclined to noise. When drawing conclusions about the data, this assumption must
be kept in mind. Alternatively, ways to get around the noisy portions must be devised.

4.4. Art, Culture, and Pictures

Art and culture have always played an important role in human lives. Over the cen-
turies, hundreds of museums and art galleries have preserved our diverse cultural
heritage and served as important sources of education and learning. However, of late,
concerns are being expressed to archive all ancient historical and cultural materials
in digital form for posterity [Chen et al. 2005]. This is particularly important for two
reasons, given next.

—Computers have become and will remain the primary medium for learning and ed-
ucation in the years to come. Hence, digital representation of cultural artifacts and
pictures is bound to increase their popularity. Moreover, accessing digital archives is
effortless and can practically be done from any corner of the world.

—As opposed to digital media, cultural artifacts and old paintings are subject to wear
with time, and are also prone to disasters and vandalism [Chen et al. 2005].

In such a scenario, a key application of CBIR technology is to help preserve and ana-
lyze our history in digital media form. Growing research interest in the field is evident
from the fact that in the year 2004, IEEE Transactions on Image Processing organized
a special issue to the discuss state-of-the-art in image processing applications for cul-
tural heritage [IEEE 2004]. The main focus of this issue is on modeling, retrieval, and
authentication of cultural heritage images. Besides facilitating search and retrieval
in large art/cultural image databases, statistical learning techniques have also been
proposed to capture properties of the brush strokes of painters [Melzer et al. 1998;
Sablatnig et al. 1998; Li and Wang 2004; Lyu et al. 2004; Berezhnoy et al. 2005;
Johnson et al. 2008]. Such techniques can potentially be used to study similarities
and differences among artists across countries, cultures, and time. Comprehensive sur-
veys on latest advances in art imaging research can be found in Martinez et al. [2002],
Maitre et al. [2001], Barni et al. [2005], and Chen et al. [2005].

Discussion. While it is impossible that automatic image analysis techniques can
match the experience of art connoisseurs, they can definitely be used to complement
human expertise. Statistical methods can sometime capture subtle characteristics of
art which even a human eye can miss [Lyu et al. 2004].

4.5. Web and Pictures

The Web connects systems to systems, systems to people, and people with other people.
Hosting a system on the Web is significantly different from hosting it in a private
network or on a single machine. What makes things different in the Web medium is
that we can no longer make assumptions about the users, nor their understanding of,
way of interacting with, contributions to, and expectations from the system. Moreover,
Web-based systems muster support of the masses only as long as they are useful to them.
Without support, there is no meaning to such a system. This makes the creation of Web-
based CBIR systems more challenging than the core questions of CBIR, aggravated
further by the fact that multimedia searching is typically more complex than generic
searching [Jansen et al. 2003]. Thankfully, the problem has recently received a lot
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of attention from the community, enough to have a survey dedicated specifically to
it [Kherfi et al. 2004].

While we cannot make assumptions about generic Web-based CBIR systems, those
designed while keeping in mind specific communities can afford some assumptions.
Web-based CBIR services for copyright protection, tourism, entertainment, crime pre-
vention, research, and education are some domain-specific possibilities, as reported
in Kherfi et al. [2004]. One of the key tasks of Web image retrieval is crawling images.
A smart Web crawler that attempts to associate captions with images to extract useful
metadata in the crawling process is reported in Rowe [2002].

There have been many algorithms proposed for image search based on surrounding
text, including those implemented in Google and Yahoo! image search. Here we discuss
work that exploits image content in part or in full for retrieval. One of the earlier sys-
tems for Web-based CBIR, iFind, incorporated relevance feedback and was proposed
in Zhang et al. [2000]. More recently, Cortina, a combined content- and metadata-based
image search engine has been made public [Quack et al. 2004]. Other approaches to
Web-based image retrieval include mutual reinforcement [Wang et al. 2004b], boot-
strapping for annotation propagation [Feng et al. 2004], and nonparametric density
estimation with application to an art image collection [Smolka et al. 2004]. Image group-
ing methods such as unsupervised clustering are extremely critical for heterogeneous
repositories such as the Web (as discussed in Section 3.3), and this is explored in Wang
et al. [2004a], Gao et al. [2005], Cai et al. [2004], and Jing et al. [2006]. More recently,
rank fusion for Web image retrieval from multiple online picture forums has been pro-
posed [Zhang et al. 2006]. Innovative interface designs for Web image search have been
explored in Yee et al. [2003] and Li et al. [2004]. The SIMPLIcity system [Wang et al.
2001] has been incorporated into popular Websites such as Airliners.net [2005], Global
Memory Net [2006], and Terragalleria [2001].

Discussion. The impact of CBIR can be best experienced through a Web-based im-
age search service that gains popularity to the extent of its text-based counterparts.
Unfortunately, at the time of writing this survey, this goal is elusive. Having said that,
the significant progress in CBIR for the Web raises hopes for such systems in the coming
years.

4.6. Security and Pictures

The interactions between CBIR and information security had been nonexistent until
recently, when new perspectives emerged to strengthen the ties. Two such perspectives
are human interactive proofs (HIPs), and the enforcement of copyright protection.

While on the one hand we are constantly pushing the frontiers of science to design
intelligent systems that can imitate human capabilities, we cannot deny the inherent
security risks associated with extremely smart computer programs. One such risk is
when Web sites or public servers are attacked by malicious programs that request ser-
vice on massive scale. Programs can be written to automatically consume large amount
of Web resources or to bias results in online voting. HIPs, also known as CAPTCHAs,
are a savior in these situations. These are interfaces designed to differentiate between
humans and automated programs, based on responses to posed questions. The most
common CAPTCHAs use distorted text, as seen in public Web sites such as Yahoo!, MSN,
and PayPal. Recently, a number of OCR-based techniques have been proposed to break
text-based CAPTCHAs [Mori and Malik 2003]. This has paved the way for natural-
image-based CAPTCHAs, owing to the fact that CBIR is generally considered a much
more difficult problem than OCR. The first formalization of image-based CAPTCHAs
is found in Chew and Tygar [2004], where pictures chosen at random are displayed
and questions asked, such as what does the picture contain, which picture is the odd
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one out conceptually, etc. A problem with this approach is the possibility that CBIR
and concept learning techniques such as Barnard et al. [2003] and Li and Wang [2003]
can be used to attack image-based CAPTCHAs. This will eventually lead to the same
problem faced by text-based CAPTCHAs. To alleviate this problem, a CBIR system is
used as a validation technique in order to distort images before being presented to
users [Datta et al. 2005]. The distortions are chosen such that, probabilistically, CBIR
systems find it difficult to grasp the image concepts and hence are unable to simulate
human responses.

The second issue is image copy protection and forgery detection. Photographs taken
by one person and posted online are often copied and passed on as someone else’s
artistry. Logos and trademarks of well-established organizations have often been du-
plicated by lesser-known firms, with or without minor modification, and with a clear
intention to mislead patrons. While plagiarism of this nature is a world-wide phe-
nomenon today, protection of the relevant copyrights is a very challenging task. The use
of CBIR to help identify and possible enforce these copyrights is a relatively new field of
study. In the case of exact copies, detecting them is trivial: Extraction and comparison
of a simple file signature is sufficient. However, when changes to the pictures or logos
are made, image similarity measures such as those employed in CBIR are necessary.
The changes could be one or more of down-sampling, lowering of color depth, warping,
shearing, cropping, decolorizing, palette shifting, changing contrast/brightness, image
stamping, etc. The problem then becomes one of near-duplicate detection, in which case
the similarity measures must be robust to these changes. Interest point detectors for
generating localized image descriptors that are robust to such changes have been used
for near-duplicate detection in Ke et al. [2004]. A part-based image similarity measure
derived from the stochastic matching of attributed relational graphs is exploited for
near-duplicate detection in Zhang and Chang [2004].

Discussion. Much security research is on the anticipation of possible attack strate-
gies. While image-based CAPTCHA systems anticipate the use of CBIR for attacks,
near-duplicate detectors anticipate possible image distortion methods that a copyright
infringer may employ. Whether CBIR proves useful to security is yet to be seen, but
dabbling with problems of this nature certainly helps CBIR grow as a field. For exam-
ple, as noted in Zhang and Chang [2004], near-duplicate detection also finds application
in weaving news stories across diverse video sources for news summarization. The gen-
eration of new ideas as offshoots of (or in the process of) solving other problems is the
very essence of this section.

4.7. Machine Learning and Pictures

While more often than not, machine learning has been used to help solve the funda-
mental problem of image retrieval, there are instances where new and generic machine
learning and data mining techniques have been developed in attempts to serve this
purpose. The correspondence-LDA [Blei and Jordan 2003] model, proposed for joint
word-image modeling, has since been applied to problems in bioinformatics [Zheng
et al. 2006]. Probabilistic graphical models such as 2D multiresolution hidden Markov
models [Li and Wang 2003] and cross-media relevance models [Jeon et al. 2003], though
primarily used for image annotation applications, are contributions to machine learn-
ing research. Similarly, multiple-instance-learning research has benefited by work on
image categorization [Chen and Wang 2004]. Active learning using SVMs was proposed
for relevance feedback [Tong and Chang 2001] and helped to popularize active learning
in other domains as well.

Automatic learning of a similarity metric or distance from ground-truth data has
been explored for various tasks, such as clustering and classification. One way to achieve
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Table III. A Qualitative Requirement Analysis of Various CBIR Offshoots and Applications
Similarity Machine

Applications and Offshoots Measure User Feedback learning Visualization Scalability
Automatic annotation optional optional essential optional optional
Story illustration essential desirable essential desirable desirable
Image-based CAPTCHA essential essential optional essential essential
Copy detection essential desirable optional desirable essential
Visual aesthetics optional desirable essential desirable optional
Web image search essential optional optional essential essential
Art image analysis optional desirable essential desirable desirable

this is to learn a generalized Mahalanobis distance metric, such as the general-purpose
methods proposed in Xing et al. [2003] and Bar-Hillel et al. [2005]. On the other hand,
kernel-based learning of image similarity, using context information, with applications
to image clustering was explored in Wu et al. [2005]. This method could potentially
be used for more generic cases of metric learning when given side-information. In the
use of a Mahalanobis metric for distance computation, an implicit assumption is that
the underlying data distribution is Gaussian, which may not always be appropriate. An
important work uses a principled approach to determine appropriate similarity metrics
based on the nature of the underlying distributions, which is determined using ground-
truth data [Sebe et al. 2000]. In a subsequent work, a boosting approach to learning
a boosted distance measure (that is analogous to the weighted Euclidean norm) has
been applied to stereo matching and video motion tracking [Yu et al. 2006], as well as
classification/recognition tasks on popular datasets [Amores et al. 2006].

Discussion. In regard to recognizing pictures, even humans undergo a learning pro-
cess. So, it is not surprising to see the synergy between machine learning and image
retrieval when it comes to training computers to do the same. In fact, the challenges as-
sociated with learning from images have actually helped to push the scientific frontier
in machine learning research in its own right.

4.8. Epilogue

While Sections 2 and 3 discussed techniques and real-world aspects of CBIR, in this
section, we have described applications that employ these techniques. In Table III we
present a qualitative requirement analysis of the various applications, involving a map-
ping from the aspects (i.e., techniques and features) to these applications. The entries
are intended to be interpreted in the following manner.

—Essential. Essential aspects are those that are required in all scenarios.

—Optional. These are aspects that may or may not be critical, depending on the specific
goals.

—Desirable. These are aspects that are likely to add value to the application in all cases.

The distinction between classifying an aspect as “optional” or “desirable” can be un-
derstood by the following examples. Scalability for automatic annotation is termed
“optional” here because such an application can serve two purposes: (1) to be able to
quickly tag a large number of pictures in a short time; and (2) to be able to produce
accurate and consistent tags to pictures, or to refine existing noisy tags, perhaps as
an offline process. Because of the compromise made in achieving these two goals, their
scalability requirements may be different. As a second example, consider that in art
image analysis, having an expert user involved in every step of the analysis is highly
“desirable,” unlike in large-scale image annotation where a user validation at each step
may be infeasible.
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5. EVALUATION STRATEGIES

Whenever there are multiple competing products in the market, customers typically
resort to statistics, reviews, and public opinions in order to make a well-informed selec-
tion. A direct analogy can be drawn for CBIR. With the numerous competing techniques
and systems proposed and in operation, evaluation becomes a critical issue. Even from
the point-of-view of researchers, a benchmark for the evaluation of CBIR would al-
low choosing from many different proposed ideas and to test new approaches against
older ones. For any information retrieval system, a strategy for evaluation involves
determining the following aspects.

—An Appropriate Dataset for Evaluation. The dataset should be general enough to cover
a large range of semantics from a human point-of-view. Also, the dataset should be
large enough for the evaluation to be statistically significant.

—A Ground Truth for Relevance for the Problem at Hand. Ground truth is a very
subjective issue, especially for multimedia. Usually, people associate a given picture
with a wide range of high-level semantics.

—An Appropriate Metric and Criteria for Evaluating Competing Approaches. The evalu-
ation criteria should try to model human requirements from a population perspective.

Moreover, it is desirable to have a forum or gathering at regular intervals for discussing
different approaches, as well as their respective performance and shortcomings using
the evaluation strategy. The problem of CBIR evaluation, however, is very challenging.
The aforementioned points often make it very difficult to decide upon an evaluation
dataset and to obtain reliable ground truth for it. Deciding on a metric and evaluation
criteria is another difficult problem. An objective evaluation of results could be un-
fair and incomplete, since CBIR technology is eventually expected to satisfy the needs
of people who use it. In spite of these challenges, researchers have agreed upon cer-
tain evaluation datasets, benchmarks, and forums for multimedia retrieval evaluation.
These are described as follows.

5.1. Evaluation Metrics

CBIR is essentially an information retrieval problem. Therefore, evaluation metrics
have been quite naturally adopted from information retrieval research. Two of the
most popular evaluation measures are described next.

—Precision. This refers to the percentage of retrieved pictures that are relevant to the
query.

—Recall. This pertains to the percentage of all the relevant pictures in the search
database which are retrieved.

Notice that when the query in question is a picture, relevance is extremely subjective.
Information retrieval research has shown that precision and recall follow an inverse
relationship. Precision falls while recall increases as the number of retrieved pictures,
often termed as scope, increases. Hence, it is typical to have a high numeric value
for both precision and recall. Traditionally, results are summarized as precision-recall
curves or precision-scope curves. A criticism for precision stems from the fact that it
is calculated for the entire retrieved set and unaffected by the respective rankings of
relevant entities in the retrieved list.

A measure which addresses the aforesaid problem and that is very popular in CBIR
community is average precision (AP). In a ranked list of retrieved entities with respect
to a query, if precision is calculated at the depth of every relevant entity obtained, then
average precision is given as the mean of all the individual precision scores. Obviously,
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this metric is highly influenced by high-ranked relevant entities, and not so much by
those toward the bottom of the ranked list. The arithmetic mean of average preci-
sion calculated over a number of different queries is often reported as mean average
precision (MAP) and is one of the evaluation measures used by the TRECVID com-
munity [TRECVID 2001]. A comprehensive overview and discussion on performance
measures for CBIR has been presented in Huijsmans and Sebe [2005]. The authors of
the cited work discuss the influence of individual class sizes to these measures, in a
CBIR system. The importance of normalization of performance measures with respect
to scope and to class sizes has been emphasized.

5.2. Evaluation Criteria

As observed in Shirahatti and Barnard [2005], CBIR is meaningful only in its service to
human users. At the same time, it is difficult to quantify user requirements as objective
relevance-based scores. As discussed in Section 2, users may be classified into several
types based on their clarity of intent and search patterns. Depending upon the end-goal,
a user may value different features of a CBIR system.

An interesting user-driven evaluation criteria has been proposed in Shirahatti and
Barnard [2005]. The authors construct a mapping of various retrieval algorithm scores
to human assessment of similarity. As a consequence, different retrieval algorithms
can be evaluated against the same user-determined scale. Another work studies user
information needs with respect to image retrieval, using American memory photo
archives [Choi and Rasmussen 2002]. It has been observed that users of an image
retrieval system value several important criteria such as image quality, clarity, and
associated metadata, besides image semantics.

5.3. Evaluation Datasets and Forums

Traditionally, in the absence of benchmarks, Corel Stock Photos and Caltech101 [Cal-
tech101 2004] have been used for CBIR evaluation. The authors of Caltech101 have
released a new version of their dataset, called Caltech256, including 256 picture cat-
egories. The pitfalls of using Corel pictures have been discussed in Muller et al.
[2002], and a more rigorous CBIR benchmarking is suggested therein. The Benchathlon
Project [Benchathlon 2005; Gunther and Beratta 2001] was initiated to get the CBIR
community to come together for formulating evaluation strategies. ImageCLEF [Image-
CLEF 2006], a track as part of a cross-language evaluation forum, focuses on evaluation
strategies for CBIR. Another important effort in this direction is the ImagEVAL work-
shop [ImagEVAL 2005] where the importance of user-oriented evaluation has been
emphasized. The ImagEVAL effort stresses criteria such as the quality of user inter-
face, the response time, and adaptiveness of a CBIR system to a new domain. The
TRECVID benchmark is very popular in the CBIR community to validate their search
and retrieval algorithms [TRECVID 2001; Smeaton and Over 2003]. The TRECVID
workshop, conducted yearly by the National Institute of Science and Technology (NIST),
attracts research teams from all over the world for addressing competitive problems in
content-based video search and retrieval. A comprehensive overview of benchmarking
in CBIR can be found in Muller et al. [2001].

5.4. Discussion

From the current trends and the effort being put into benchmarking in CBIR, the
following design goals emerge.
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—Coverage. Benchmarks should ideally cover the entire spectrum of cases expected in
real-world scenarios. This should affect the choice of evaluation datasets.

—Unbiasedness. Benchmarks should not show any bias toward particular algorithms
or methodologies. In particular, factors such as accuracy, speed, compatibility,
and adaptiveness should be given as much importance as required for the target
application.

—User Focus. General-purpose CBIR applications are designed for use by human users.
A fair benchmark for such applications should adequately reflect user interest and
satisfaction.

Evaluation is critical for both CBIR as well as its offshoot research areas. Ideally,
evaluation should be subjective, context-specific, and community-based. For example,
Web-based image retrieval is best judged by a typical sampling of Internet users,
whereas evaluation of retrieval for biomedical applications will require users with do-
main knowledge and expertise. Automated annotation is best evaluated in the context
of what detail the systems are aiming at. Depending on application, it may or may not
be sufficient to label a rose as a flower. Illustration of stories can be best appreciated
by how readers receive them.

In summary, evaluation is a vital component of system design that needs to be per-
formed while keeping in mind the end-users. CBIR and its offshoots are no exceptions.
Developing user-centric benchmarks is a next-generation challenge for researchers in
CBIR and associated areas. However, it is important to maintain a balance between ex-
ploring new and exciting research problems and developing rigorous evaluation meth-
ods for the existing ones [Wang et al. 2006].

6. DISCUSSION AND CONCLUSIONS

We have presented a comprehensive survey highlighting current progress, emerging
directions, the spawning of new fields, and methods for evaluation relevant to the young
and exciting field of image retrieval. We have contrasted the early years of image re-
trieval with progress in the field in the current decade, and conjectured specific future
directions alongside. We believe that the field will experience a paradigm shift in the
foreseeable future, with the focus being more on application-oriented, domain-specific
work, generating considerable impact in day-to-day life.

As part of an effort to better understand the field of image retrieval, we compiled
research trends in image retrieval using Google Scholar’s search tool and its computed
citation scores. Graphs for publication counts and citation scores have been generated
for: (1) subfields of image retrieval, and (2) venues/journals relevant to image retrieval
research. Further analysis has been made on the impact of image retrieval on merging
interests among different fields of study, such as multimedia (MM), machine learning
(ML), information retrieval (IR), computer vision (CV), and human-computer interac-
tion (HCI). Firstly, the trends indicate that the field is extremely diverse, and can only
grow to be more so in the future. Second, we note that image retrieval has likely been
the catalyst in the closer association, of hitherto unrelated fields of research. Third,
interesting facts have emerged, such as: Most of the MM, CV, and AI work related to
image retrieval has been published in information-related venues and received high
citations. At the same time, AI-related work published in CV venues has generated
considerable impact. At a higher level, the trends indicate that while aspects includ-
ing systems, feature extraction, and relevance feedback have received a lot of attention,
application-oriented aspects such as interface, visualization, scalability, and evaluation
have traditionally received lesser consideration. We feel that for all practical purposes,
these latter aspects should also be considered as equally important. Due to the dynamic
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nature of this information, we have decided to host it externally, and to update it from
time to time, at http://wang.ist.psu.edu/ survey/analysis.

The quality (resolution and color depth), nature (dimensionality), and throughput
(rate of generation) of the images acquired have all been on an upward growth path in
recent times. With the advent of very large-scale images (e.g., Google and Yahoo! aerial
maps), biomedical and astronomical imagery have become typically of high resolu-
tion/dimension and are often captured at high throughput, posing yet new challenges to
image retrieval research. A long-term goal of research should therefore also include the
ability to make high-resolution, high-dimension, and high-throughput images search-
able by content. Meanwhile, we do hope that the quest for robust and reliable image
understanding technology will continue. The future of CBIR depends a lot on the col-
lective focus and overall progress in each aspect of image retrieval, and how much the
average individual stands to benefit from it.
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