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Abstract

We focus on improving the effectiveness of similarity
search in 3D object repositories from a system-oriented per-
spective. Motivated by an effectiveness evaluation of sev-
eral individual 3D retrieval methods, we research a selec-
tion heuristic, called purity, for choosing retrieval methods
based on query-dependent characteristics. We show that the
purity selection method significantly improves the search ef-
fectiveness compared to the best single methods. We then
show that retrieval effectiveness can be further boosted
by considering combinations of multiple retrieval methods
to perform the search. We propose to use a dynamically
weighted combination of feature vectors based on the pu-
rity concept, and we experimentally show that the search
effectiveness of our combined methods by far exceeds the
effectiveness of our best implemented single method.

Keywords: 3D objects, information retrieval, query by
content, effectiveness, feature selection.

1. Introduction

The development of effective content-based multimedia
search systems is an important research issue due to the
growing amount of digital audio-visual information. In the
case of images and video, the growth of digital data has
been observed since the introduction of 2D capture devices.
A similar development is expected for 3D data, as acquisi-
tion and dissemination technology is constantly improving.
In digital libraries, it is possible to search using annotation
information, which describes the content of an object in tex-
tual form, or using the multimedia data itself, the so-called
content-based search. The latter is the more promising ap-
proach, because in general textual descriptions are manually
created, which is prohibitively expensive, and they are sub-
ject to the opinion of the person who creates them. In con-
trast, content-based search algorithms allow an implemen-
tation of fully automatic retrieval systems.

There are many practical applications of similar-
ity search in 3D libraries. In medicine, the detection of
similar organ deformations can be used for diagnostic pur-
poses. In the manufacturing industry, the search for similar
standard parts can help to reduce costs. There are also ap-
plications in the entertainment industry, e.g., film produc-
tion and video games. Figure 1 illustrates the concept of
content-based 3D similarity search.

Figure 1. Example of a similarity query in a
3D object database, showing a query object
(q) and a set of possibly relevant objects (a).

In this paper, we experimentally compare a range of dif-
ferent 3D feature vectors (FVs), and we propose methods
for improving the effectiveness of the 3D similarity search
process. Our new method, called purity selection, deter-
mines which one of the available FVs should be engaged de-
pending on the query object. This leads to a significant im-
provement in retrieval effectiveness compared with the best
single FV. Also, we propose to use combinations of FVs,
which leads to further significant improvements of the ef-
fectiveness of the search system. Our experimental results
show that the relative ordering of FVs by retrieval effective-
ness depends on the query point, which means that no sin-
gle FV outperforms all other FVs on all queries, and that
linear combinations of multiple FVs provide a significant
improvement of the retrieval effectiveness compared to the
best single FV.
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2. Similarity search of 3D objects

2.1. Feature-based approach to 3D retrieval

Usually, a feature vector approach is adopted for per-
forming similarity search in multimedia databases. The ba-
sic idea is to derive a vector of numerical (real) values for
each of the objects in the repository, extracting those prop-
erties of the 3D objects that best support an application-
dependent notion of similarity. For a given feature extrac-
tion technique, it is usually possible to generate FVs of dif-
ferent dimensionality by setting the resolution with which
the FV extraction proceeds. FVs describing 3D objects may
be derived from object geometry and/or other attributes and
should be invariant to changes in the orientation (transla-
tion, rotation and reflection) and scale of 3D models. Good
FVs should also be robust with respect to small changes in
the level-of-detail, geometry and topology of the models.

Given the FVs for all of the objects in a database and
for a query point, the retrieval of similar objects is per-
formed by returning the k nearest neighbors (k-NN) of
the query point. To this end, a metric in the vector space
IRd (for dimensionality d depending on parameterization
of the FV extraction method at hand), is used, e.g., the
unweighted Minkowski (lp) distance, given by lp (�x, �y) =(∑

1≤i≤d |xi − yi|p
)1/p

, p ≥ 1. More sophisticated met-

rics for vector spaces, e.g., quadratic forms [2], exist, but
their applicability depends on the FV definition and compu-
tational efficiency considerations.

2.2. Related work and studied feature vectors

The last few years have seen a strongly increasing inter-
est in content-based retrieval of 3D models, and its popular-
ity may be expected to eventually approach the popularity of
similarity search in image databases. Algorithms have been
proposed to extract FVs based on many different 3D object
characteristics. Statistical FVs include geometric moments
[21, 16, 14, 19], and histograms of measures like the dis-
tribution of distances between points on an object’s surface
[15]. Some of the extention-based methods treat 3D objects
as functions defined on spheres, and describe the objects in
terms of samples taken from these functions [25, 20, 13].
Many algorithms derive object descriptions from certain
space partitioning schemes [1, 10, 22, 5, 18, 12]. Further-
more, the curvature of an object’s surface may be consid-
ered as in [26]. FVs may also be obtained from 2D ren-
derings of the objects as in [7, 4]. There also exist non-FV
approaches to 3D retrieval, which rely on topological [8]
or skeletal descriptions of the models [17]. Considering the
specific problem of securing rotation invariance of the de-
scription, there exists an ongoing discussion whether this
should be achieved by the application of an rotation normal-

ization step prior to feature calculation [20], or by the def-
inition of FVs that are implicitly rotational invariant [11].
In our work, we consider FVs that rely on rotation normal-
ization by using a variant of the Principal Component Anal-
ysis (PCA) [25], as we believe it is stable in many cases,
and able to contribute valuable information to the object de-
scription.

While we have implemented many different FVs from
our own as well as other researchers work in our 3D sim-
ilarity search system, for clarity reasons we focus the re-
mainder of this paper to a set of six algorithms which be-
long to the FVs providing the best retrieval precision in our
experiments. Specifically, we consider two FVs based on
the Fourier transformation of rendered silhouettes and Z-
buffers of the 3D models, resulting in the silhouette and
depth buffer FVs respectively, as presented in [7]. Also,
we consider the spherical harmonics transform of samples
taken from model extention, as well as samples taken from
a combination of model extention and surface orientation
properties, resulting in the ray-based and the complex FVs
respectively, as introduced in [24]. Furthermore, we include
in this study a FV based on the discretization of model sur-
face into a voxel grid (the voxel FV, as introduced in [23]),
and our implementation of the implicitly rotation invariant
algorithm introduced in [5] which is based on the spheri-
cal harmonics transform of concentric functions defined on
the voxelization of models, and that we would like to call
the harmonics 3D FV in this paper.

3. Measuring retrieval effectiveness

3.1. Description of the experiments and the effec-
tiveness measures

The database used for retrieval experiments contains
1,837 3D objects collected from the Internet 1. From this
set, 472 objects were classified by shape into 55 differ-
ent model classes, yielding the ground truth, and the rest
of them were left as “unclassified”. Each classified object
was used as a query object, and the objects belonging to the
same model class, excluding the query, were considered rel-
evant to it.

Table 1 gives a partial description (first 20 classes) of
the classified objects of the database. The first column indi-
cates the class identification number. The second column
describes the 3D class models. The last column lists the
number of objects per model class.

For comparing the effectiveness of the search algorithms,
we use precision vs. recall figures, a standard evaluation
technique for retrieval systems [3]. Precision is the frac-

1 The database is available for downloading at http://-
merkur01.inf.uni-konstanz.de/CCCC/
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Class id # Description # of models

1 ants 6
2 rabbits 4
3 cows 7
4 dogs 4
5 sea animals 13
6 bees 5
7 CPU’s 4
8 keyboards 8
9 cans 4
10 bottles 14
11 bowls 4
12 pots 4
13 cups 8
14 wine glasses 9
15 teapots 4
16 biplanes 5
17 helicopters 9
18 missiles 16
19 jet planes 18
20 fighter jet planes 26

Table 1. Partial description of the classified
set of our 3D object database.

tion of the retrieved objects which are relevant to a given
query, and recall is the fraction of the relevant objects which
have been retrieved from the database. In addition, we also
consider the widely used R-precision measure [3]. It is de-
fined as the precision when retrieving as many objects as
there are relevant answers in the database, w.r.t. the query.
We average these measures over all queries that belong to
one of the predefined query classes. As the metric of choice
we employ the l1 (Manhattan) distance, as we experimen-
tally found this gives us the best retrieval results compared
to other Minkowski distances (l1 was slightly but consis-
tently better than l2 in our experiments).

3.2. Results using single feature vectors

In our first experiments, we compared the retrieval per-
formance of six FVs using our ground truth. To first as-
sess the influence of FV resolution, we evaluated a range of
FV dimensionality settings. Figure 2 shows the effect of the
FV dimensionality on the overall effectiveness of the FVs,
measured in terms of R-precision. The figure shows that
the effectiveness improvement rate diminishes quickly for
roughly more than 64 dimensions for most FVs. It is inter-
esting to note that the saturation effect is reached at roughly
the same dimensionality level. This is not an expected re-
sult, considering that the different FVs describe different

characteristics of the 3D objects.
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Figure 2. R-precision as a function of the di-
mensionality of the feature vectors.

Figure 3 shows the database-average effectiveness per-
formance (precision vs. recall curves and R-precision val-
ues) of the six FVs when using their best dimensionality pa-
rameterization, respectively. The best performing FV on av-
erage is the image-based depth buffer FV. Between the 1st

and the 3rd best FV, the performance differences are small,
implying that in practice all these FVs have similar retrieval
capabilities.
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Figure 3. Average precision vs. recall fig-
ures for all feature vectors (the legend in-
cludes the optimal dimensionality and the R-
precision values).

Next, we present the results obtained for two specific
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model classes. Figure 4 shows the average precision vs. re-
call figures for the Formula 1 cars model class. In this case,
the best effectiveness is obtained with the depth buffer and
the harmonics 3D FVs. Note that the best FV for this model
class is also the best FV on average. The R-precision value
is also given for each FV.
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Figure 4. Average precision vs. recall figures
and R-precision values for the F-1 cars model
class.

Figure 5 shows the average precision vs. recall figure for
the sea animals model class. For this class, the best FVs are
the silhouette and the ray-based spherical harmonics FVs.
This result shows that for some model classes the best aver-
age FV (depth buffer) does not perform well. Moreover, the
best three FVs for this class are different from the best three
FVs of the F-1 cars model class.

In general, we observed that for many query classes, the
respective ranking of FVs by retrieval precision differs from
the average ranking. It follows that an appropriate selec-
tion of the FV used for the similarity search, depending on
the query object, will improve the overall retrieval effective-
ness as compared with the standard policy of always choos-
ing a certain default FV.

4. Purity-based feature selection

The previous results indicate the need for appropriate
feature selection, based on the query to be evaluated. At our
disposal is a set of FVs, but how can we automatically esti-
mate the quality of the result when choosing one of them?
Note that we want to support similarity queries. In classifi-
cation, feature selection refers to choosing the features that
optimize an objective function (usually, classification accu-
racy). For similarity search, we first need to find such an ob-
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Figure 5. Average precision vs. recall figures
and R-precision values for the sea animals
model class.

jective function estimating the quality of a similarity rank-
ing.

4.1. Query dependent selection of features

Let X be the universe of valid 3D objects, U ⊆ X the
3D database, and Q ⊆ U a set of classified objects, that is,
Q =

⊎m
i=1 Qi, where Qi is a model class (i.e., a set of simi-

lar objects), and Q is the disjoint union of m model classes.

Definition 1 Given a set of � FVs {f1, . . . , f�}, a 3D query
object q ∈ X , and a constant value k ∈ IN+, we gener-
ate � object rankings, one for each FV, consisting of the dis-
tances between q and every object of Q sorted in ascend-
ing order. Let Rj

qk be the first k positions of the ranking us-

ing fj , and let Sj
i = Rj

qk∩Qi. The purity of fj for the query
q is defined as:

purity(fj , q, k) = max
1≤i≤m

(|Sj
i |)

The purity value indicates the maximum number of ob-
jects that belong to a same model class in the first k posi-
tions of each ranking. The FV that has the maximum pu-
rity is selected for performing the search. In case of ties,
we select the FV that has the best average R-precision, us-
ing the values of Figure 3 as reference. This purity selection
method tries to measure the “coherence” of the retrieved ob-
jects in the first positions of the ranking. Our hypothesis is
that a good FV will rank objects from the same model class
at the first positions of the ranking. On the other hand, if
a FV ranks objects from different model classes in the first
positions, then one can assume that the answer is not coher-
ent and hence the FV is not suitable for this query.

Figure 6 shows a comparison between the purity selec-
tion technique and the best FVs, using the set of classified
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objects as the set Q for the purity computation. We tested
values for k from 3 up to 10, noticing only small varia-
tions in the results (in the figure, we show the results us-
ing k = 7). With the purity selection method, we obtained
an improvement of 21% in R-precision compared to the best
average single FV, which is a significant gain in retrieval ef-
fectiveness.
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Figure 6. Comparison between the purity se-
lection method and the best feature vectors.

To discard that the selection of the model classes
could have some influence on the obtained results, we
qualitatively validated the obtained results running a
cross-validation test [6]. We divided a subset of the classi-
fied objects into two equally sized groups: A query set and
a test set. The query set was used as in the described ex-
perimental framework. For computing the purity val-
ues we only used the test set, which was considered to be
“out” of the database. That is, the test set was not con-
sidered for computing the effectiveness of the search
system. Partitioning of the classified set was randomly per-
formed, and we average over 100 random partitions. The
results of the cross-validation test confirm the signifi-
cant improvement of our purity selection method.

5. Combinations of feature vectors

The retrieval performance analysis in Section 3.2 sug-
gests that there exist a number of FVs that achieve good
average retrieval performance on the majority of query
classes, but that there is no clear winner among them. In-
stead, the individual FVs have different strengths and weak-
nesses, and they represent complementary information re-
garding the description of 3D objects.

Because FVs capture different aspects and characteris-
tics of the models, we propose to use combinations of FVs
for further improving the retrieval effectiveness of the simi-
larity search, thus avoiding the disadvantages of using a sin-
gle feature, which captures only a single characteristic of an
object.

So, how can different FVs be combined in a search sys-
tem? A simple concatenation of all available FVs is not ad-
visable due to effectiveness and efficiency reasons [9]: Ef-
fectiveness would degrade with the inclusion of FVs irrel-
evant to the queries, and efficiency would also degrade be-
cause of the large dimensionality of the resulting FV, a prob-
lem known as the curse of dimensionality. Therefore, it is
an interesting problem to find whether there are combina-
tions of FVs that are better suited for performing similarity
search on certain object classes, or even if there are combi-
nations that dominate others for all types of queries.

We propose two methods for combining FVs: An un-
weighted combination method, and a weighted combination
method based on the purity concept.

5.1. Unweighted combinations of feature vectors

We ran retrieval experiments on all possible combina-
tions of all FVs, using their best dimensionality given by
Figure 3. This gives a total of

∑6
k=2

(
6
k

)
= 57 different

combinations of FVs. To construct the combinations, we
use the sum of the unweighted normalized distances.

Definition 2 The unweighted normalized combined dis-
tance dc is defined as:

dc(q, o) =
N∑

i=1

bci

di(q, o)
dmaxi(q)

where N is the total number of FVs, bci
is a binary vari-

able that indicates whether FV fi is included in combina-
tion c, di(q, o) is the distance of a query object q from an-
other object o under fi , and dmaxi(q) is the maximum dis-
tance of object q to any other object in the database as mea-
sured by fi.

As in the single FVs experiments, the combined distance
dc gives the ranking of objects w.r.t. a query q. The un-
weighted combination approach treats all FVs of the com-
bination as equally important in determining the ranking.

Table 2 shows the average effectiveness of the best com-
binations of FVs in terms of R-precision and combination
cardinality. The results confirm our assumption that there
exist FV combinations that significantly improve the re-
trieval performance over the best single FV (depth buffer) in
the average case. The maximum R-precision value reached
on average over all query classes by a combination amounts
to 42.89%, which is equal to an improvement of more than
33% compared to the performance of the depth buffer. This
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Comb. # R-precision Feature vectors
1 0.3220 Depth Buffer
2 0.3803 Voxel, Complex
3 0.4108 Depth Buffer, Voxel,

Complex
4 0.4200 Depth Buffer, Voxel,

Complex, Silhouette
5 0.4287 Depth Buffer, Voxel,

Complex, Silhouette,
Harmonics 3D

6 0.4289 All feature vectors

Table 2. Average R-precision for the best un-
weighted combinations of feature vectors.

best combination is composed of all six FVs. The largest
improvement occurs when changing from the single to the
2-combination case (voxel and complex). The improvement
increases further with combination cardinality, but the in-
crement becomes smaller as we add more FVs to the com-
bination. For the last one, the improvement in effectiveness
is negligible. Figure 7 shows the precision vs. recall curves
for the best unweighted combinations.
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Note that we also performed a much larger series of ex-
periments considering combinations of up to nine FVs. In
these experiments we found that the retrieval effectiveness
even starts to decrease when adding more FVs after a cer-
tain saturation point has been reached.

5.2. Weighted combination of feature vectors

A further improvement over the unweighted combina-
tion of FVs can be achieved by assigning weights to each
FV in the combined distance, because it is expected that not
all FVs are equally relevant to all queries, and using a non-
suitable FV can even lower the effectiveness of the search.
We tested all possible weightings for the combination of the
six FVs using three different weight values (0, 1, 2), result-
ing in 36 − 1 = 728 different combinations. We call this
approach fix-weighted combination, because each combina-
tion uses the same set of weight values w = {w1, . . . , w6}
for all queries. The weights are assigned to each FV in
the order given by Figure 3 (e.g., w1 corresponds to depth
buffer, w2 corresponds to voxel, and so on).

Definition 3 The fix-weighted combined distance is defined
as:

dfix-weighted(q, o) =
N∑

i=1

wi
di(q, o)

dmaxi(q)

The experimental results show that the set of weights
w∗ = {2, 1, 2, 0, 1, 1} provides the best performance. The
precision vs. recall plot is shown in Figure 8. While this
weight vector provides excellent retrieval performance, it is
expected to be highly correlated to our database. Thus, it
will probably not be useful for another 3D objects database,
because the optimal average weighting may be different.
Moreover, in a dynamic database, it is not possible to de-
termine the best weighting factors by experimentally ana-
lyzing all combinations of weighting factors for all possible
queries. All these negative attributes make this approach un-
practical for real-world applications.

To overcome these problems, we propose another com-
bination technique. The purity-weighted combination uses a
dynamically determined weighting scheme based on the pu-
rity concept. The combined distance is defined as follows.

Definition 4 The purity-weighted combined distance is de-
fined as:

dp-weighted(q, o) =
N∑

i=1

(purity(fi, q, k) − 1)
di(q, o)

dmaxi(q)

Figure 8 shows the average precision versus recall fig-
ures for both weighted FV combination methods, and for
each single FV. For the purity value computation, we show
the results using k = 4 (results using values between 3 and
10 are all similar). For the fix-weighted combination, we
show the result of using w∗ as the fixed weighting scheme.
The improvement obtained with the weighted combinations
(38% improvement in R-precision compared with the best
single FV) is far superior to the improvement obtained when
switching from one single FV to the next best single FV.
Both weighting combination methods have almost the same
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effectiveness on average, but notice that in the case of the
fix-weighted combination we had to perform a brute force
search to find the best weighting values (which, proba-
bly, are not optimal w.r.t. a different database). In contrast,
the purity-weighting method automatically determines the
weights for each FV depending on the query object.
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Figure 8. Average precision vs. recall figures
for weighted combinations and its compo-
nents.

Figure 9 shows the average precision versus recall fig-
ures for the Formula 1 cars model class, where signifi-
cant improvements in retrieval effectiveness occur with the
purity-weighted combination of FVs over the best single FV
(39% in terms of R-precision). The method sustains a near-
perfect precision level for almost all recall levels, with just
a small degradation for the very high recall levels.

6. Conclusions and future work

In this paper, we described the challenges involved in the
implementation of a content-based 3D similarity search sys-
tem. Our first contribution is the proposal of a new selection
method based on our purity concept, which determines the
FV to be used for retrieval. The results show a significant ef-
fectiveness improvement over the best single FV. Secondly,
we established that combinations of FVs may be highly ben-
eficial for improving retrieval effectiveness in a 3D search
system. We proposed to use a dynamically weighted com-
bination of FVs based on the purity measure, thus avoiding
the disadvantages of using just a single FV for the search.
The experimental results show that the weighted combina-
tion of FVs further improves the retrieval effectiveness of
the search system, and this improvement is far superior to
the improvement obtained when switching from one type of
FV to another. Table 3 summarizes the improvements ob-
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Figure 9. Average precision vs. recall figures,
purity-weighted combination of feature vec-
tors, F-1 cars model class.

Method R-precision Improvement
Best single feature
vector

0.3220 0%

Purity selection 0.3894 21%
Best unweighted
combination

0.4289 33%

Best fix-weighted
combination

0.4415 37%

Purity-weighted
combination

0.4442 38%

Table 3. Improvements in effectiveness ob-
tained with the proposed techniques.

tained with the proposed techniques. Note that an improve-
ment of 38% in effectiveness is very significant compared to
the improvements of recently proposed FVs, which in most
cases is in the order of 5% over previous methods.

It is worth noting that the proposed techniques are gen-
eral and not restricted to 3D objects, and that they can be
used with any multimedia data type (images, audio, etc.)
on which a distance metric is defined. Future work involves
further researching query dependent feature selection and
combination methods for other types of multimedia data.
The final goal is to define a query processor that does not
need a classified set of objects but is still capable of deter-
mining a good combination of feature vectors given a query
object. It is also an open issue, how the efficiency of the
search system can be improved. The need for appropriate
indexing techniques, considering the very high dimension-
ality of the combined feature vectors (hundreds of dimen-
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sions) is obvious.
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[25] D. Vranić, D. Saupe, and J. Richter. Tools for 3D-object re-
trieval: Karhunen-Loeve transform and spherical harmonics.
In Proc. IEEE 4th Workshop on Multimedia Signal Process-
ing, pages 293–298, 2001.

[26] T. Zaharia and F. Prêteux. Three-dimensional shape-based
retrieval within the MPEG-7 framework. In Proc. SPIE Conf.
on Nonlinear Image Processing and Pattern Analysis XII,
volume 4304, pages 133–145, 2001.

Proceedings of the IEEE Sixth International Symposium on Multimedia Software Engineering (ISMSE’04) 

0-7695-2217-3/04 $20.00 © 2004 IEEE


