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Abstract—In a typical content-based image retrieval (CBIR)
system, target images (images in the database) are sorted by feature
similarities with respect to the query. Similarities among target
images are usually ignored. This paper introduces a new technique,
cluster-based retrieval of images by unsupervised learning (CLUE),
for improving user interaction with image retrieval systems by
fully exploiting the similarity information. CLUE retrieves image
clusters by applying a graph-theoretic clustering algorithm to a
collection of images in the vicinity of the query. Clustering in CLUE
is dynamic. In particular, clusters formed depend on which images
are retrieved in response to the query. CLUE can be combined
with any real-valued symmetric similarity measure (metric or
nonmetric). Thus, it may be embedded in many current CBIR sys-
tems, including relevance feedback systems. The performance of an
experimental image retrieval system using CLUE is evaluated on a
database of around 60,000 images from COREL. Empirical results
demonstrate improved performance compared with a CBIR system
using the same image similarity measure. In addition, results on
images returned by Google’s Image Search reveal the potential of
applying CLUE to real-world image data and integrating CLUE as
a part of the interface for keyword-based image retrieval systems.

Index Terms—Content-based image retrieval (CBIR), image
classification, similarity measure, spectral graph clustering, unsu-
pervised learning.

I. INTRODUCTION

CONTENT-BASED image retrieval (CBIR) aims at de-
veloping techniques that support effective searching and

browsing of large image digital libraries based on automatically
derived imagery features. It is a rapidly expanding research area
situated at the intersection of databases, information retrieval,
and computer vision. Although CBIR is still immature, there
has been abundance of prior work. Due to space limitations,
we only review work most related to ours, which by no means
represents the comprehensive list. Readers are referred to [33]
for additional references.
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A. Previous Work

From a computational perspective, a typical CBIR system
views the query image and images in the database (target im-
ages) as a collection of features and ranks the relevance be-
tween the query image and any target image in proportion to
a similarity measure calculated from the features. In this sense,
these features, or signatures of images, characterize the content
of images. According to the scope of representation, features
roughly fall into two categories: global features and local fea-
tures. The former category includes texture histogram, color his-
togram, color layout of the whole image, and features selected
from multidimensional discriminant analysis of a collection of
images [8], [11], [34], [36]. While color, texture, and shape fea-
tures for subimages [24], segmented regions [3], [4], [21], [40],
or interest points [30] belong to the latter category.

As a key issue in CBIR, similarity measure quantifies the re-
semblance in contents between a pair of images [28]. Depending
on the type of features, the formulation of the similarity measure
varies greatly. The Mahalanobis distance [12] and intersection
distance [35] are commonly used to compute the difference be-
tween two histograms with the same number of bins. When the
number of bins are different, the Earth mover’s distance (EMD)
[26] applies. The EMD is computed by solving a linear pro-
gramming problem. Moments [18], the Hausdorff metric [14],
elastic matching [2], and decision trees [16] have been pro-
posed for shape comparison. In [23], a similarity measure is de-
fined from subjective experiments and multidimensional scaling
(MDS) based upon the model of human perception of color pat-
terns. Barnard et al. [1] presented a probability-based similarity
measure that combines the information provided by text and the
visual information provided by image features. Li et al. [20] pre-
sented an integrated region matching scheme for region-based
image retrieval. Recently, a similarity measure using fuzzified
region features is introduced in [4]. It is shown to be robust to
segmentation-related uncertainties.

In one way or another, the aforementioned similarity mea-
sures capture certain facets of image content, named the simi-
larity-induced semantics. Nonetheless, the meaning of an image
is rarely self evident. Similarity-induced semantics usually does
not coincide with the high-level concept conveyed by an image
(semantics of the image). This is referred to as the semantic
gap [33], which reflects the discrepancy between the relatively
limited descriptive power of low-level visual features and high-
level concepts. Many approaches have been proposed to re-
duce the semantic gap. They generally fall into two classes de-
pending on the degree of user involvement in the retrieval: rele-
vance feedback and image database preprocessing using statis-
tical classification.
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Relevance feedback is a powerful technique originally used
in the traditional text-based information retrieval systems. In
CBIR, a relevance feedback-based approach allows a user to
interact with the retrieval algorithm by providing the informa-
tion of which images he or she thinks are relevant to the query
[6], [27], [42]. Based on user feedback, the model of similarity
measure is dynamically updated to give a better approximation
of the perception subjectivity. There are also works that com-
bine relevance feedback with supervised learning [38]: Binary
classifiers are trained on the fly based on user feedback. Empir-
ical results demonstrate the effectiveness of relevance feedback
for certain applications. Nonetheless, such a system may add
burden to a user especially when more information is required
than just Boolean feedback (relevant or nonrelevant).

Statistical classification methods group images into seman-
tically meaningful categories using low-level visual features so
that semantically adaptive searching methods applicable to each
category can be applied [19], [31], [39], [40]. For example,
the SemQuery system [31] categorizes images into different
set of clusters based on their heterogeneous features. Vailaya
et al. [39] organize vacation images into a hierarchical struc-
ture. At the top level, images are classified as indoor or outdoor.
Outdoor images are then classified as city or landscape that is
further divided into sunset, forest, and mountain classes. SIM-
PLIcity system [40] classifies images into graph, textured photo-
graph, or nontextured photograph and, thus, narrows down the
searching space in a database. ALIP system [19] uses catego-
rized images to train hundreds of statistical models each corre-
sponding to a semantic category. Although these classification
methods are successful in their specific domains of application,
the simple ontologies built upon them could not incorporate the
rich semantics of a sizable image database.

B. Our Approach

All current CBIR techniques assume certain mutual infor-
mation between the similarity measure and the semantics of
the images. A typical CBIR system ranks target images ac-
cording to the similarities with respect to the query and neglects
the similarities between target images. Can we improve the
performance of a CBIR system by including the similarity
information between target images? This is the question we
attempt to address in this work. We propose a new technique
for improving user interaction with image retrieval systems
by fully exploiting the similarity information. The technique,
which is named cluster-based retrieval of images by unsuper-
vised learning (CLUE), retrieves image clusters instead of a
set of ordered images: The query image and neighboring target
images, which are selected according to a similarity measure,
are clustered by an unsupervised learning method and returned
to the user. In this way, relations among retrieved images are
taken into consideration through clustering and may provide
for the users semantic relevant clues as to where to navigate.

CLUE has the following characteristics.

• It is a similarity-driven approach that can be built upon
virtually any symmetric real-valued image similarity
measure. Consequently, our approach could be combined
with many other image retrieval schemes including the
relevance feedback approach with dynamically updated

Fig. 1. Diagram of a cluster-based image retrieval system. The arrows with
dotted lines may not exist for some systems.

models of similarity measure. Moreover, as shown in
Section V-D, it may also be used as a part of the interface
for keyword-based image retrieval systems.

• It uses a graph-theoretic algorithm to generate clusters.
In particular, a set of images is represented as a weighted
undirected graph: nodes correspond to images; an edge
connects two nodes; and the weight on an edge is re-
lated to the similarity between the two nodes (or images).
Graph-based representation and clustering sidestep the
restriction of a metric space. This is crucial for nonmetric
image similarity measures (many commonly used simi-
larity measures are indeed nonmetric [15]).

• The clustering is local and dynamic. In this sense, CLUE
is similar to the scatter/gather method proposed for doc-
ument (or text) retrieval [13]. The clusters are created de-
pending on which images are retrieved in response to the
query. Consequently, the clusters have the potential to be
closely adapted to characteristics of a query image. This
is in contrast to current image database statistical clas-
sification methods [31], [39], [40], in which the image
categories are derived for the whole database in a prepro-
cessing stage and, therefore, are global, static, and inde-
pendent of the query.

C. Outline of the Paper

The remainder of the paper is organized as follows. Section II
describes the general methodology of CLUE. A summary of
the algorithm and computational issues are discussed in Sec-
tion III. An image retrieval system using CLUE is introduced in
Section IV. Section V presents the experimental results. Finally,
we conclude in Section VI, together with a discussion of future
work.

II. RETRIEVAL OF SIMILARITY-INDUCED IMAGE CLUSTERS

In this section, we first present an overview of a cluster-based
image retrieval system. We then describe in detail the major
components of CLUE, namely, neighboring image selection and
image clustering.

A. System Overview

From a data-flow viewpoint, a cluster-based image retrieval
system can be characterized by the diagram in Fig. 1. The
retrieval process starts with feature extraction for a query
image. The features for target images (images in the database)
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are usually precomputed and stored as feature files. Using
these features together with an image similarity measure, the
resemblance between the query image and target images are
evaluated and sorted. Next, a collection of target images that are
“close” to the query image are selected as the neighborhood of
the query image. A clustering algorithm is then applied to these
target images. Finally, the system displays the image clusters
and adjusts the model of similarity measure according to user
feedback (if relevance feedback is included).

The major difference between a cluster-based image retrieval
system and CBIR systems lies in the two processing stages, se-
lecting neighboring target images and image clustering, which
are the major components of CLUE. A typical CBIR system
bypasses these two stages and directly outputs the sorted results
to the display and feedback stage. Fig. 1 suggests that CLUE
can be designed independent of the rest of the components be-
cause the only information needed by CLUE is the sorted simi-
larities. This implies that CLUE may be embedded in a typical
CBIR system regardless of the image features being used, the
sorting method, and whether there is feedback or not. The only
requirement is a real-valued similarity measure satisfying the
symmetry property. As a result, in the following subsections, we
focus on the discussion of general methodology of CLUE, and
assume that a similarity measure is given. An introduction of
a specific cluster-based image retrieval system, which we have
implemented, will be given in Section IV.

B. Neighboring Target Images Selection

To mathematically define the neighborhood of a point, we
need to first choose a measure of distance. As for images, the
distance can be defined by either a similarity measure (a larger
value indicates a smaller distance) or a dissimilarity measure
(a smaller value indicates a smaller distance). Because simple
algebraic operations can convert a similarity measure into a dis-
similarity measure, without loss of generality, we assume that
the distance between two images is determined by a symmetric
dissimilarity measure and name the
distance between images and to simplify the notation.

Next, we propose two simple methods to select a collection
of neighboring target images for a query image .

1) Fixed-radius method (FRM) takes all target images
within some fixed radius with respect to . For a given
query image, the number of neighboring target images is
determined by .

2) Nearest-neighbors method (NNM) first chooses NN of
as seeds. The NN for each seed are then found. Finally,
the neighboring target images are selected to be all the
distinct target images among seeds and their NN, i.e.,
distinct target images in target images. Thus, the
number of neighboring target images is bounded above
by .

If the distance is metric, both methods would generate sim-
ilar results under proper parameters ( , , and ). However, for
nonmetric distances, especially when the triangle inequality is
not satisfied, the set of target images selected by two methods
could be quite different regardless of the parameters. This is due
to the violation of the triangle inequality: The distance between

two images could be high even if both of them are very close
to a query image. Compared with the FRM, our empirical re-
sults show that, with proper choices of and , NNM tends
to generate more structured collection of target images under
a nonmetric distance. In this work, we use NNM because the
image similarity measure of our experimental retrieval system
is not metric. A detailed discussion of computational issues (in-
cluding parameters selection) will be covered in Section III.

C. Weighted Graph Representation of a Collection of Images

Data representation is typically the first step to solve any clus-
tering problem. In the field of computer vision, two types of rep-
resentations are widely used [15]. One is called the geometric
representation, in which data items are mapped to some real
normed vector space. The other is referred to as the graph repre-
sentation emphasizing the pairwise relationship. When working
with images, the geometric representation has a major limita-
tion: It requires that the images be mapped to points in some
real normed vector space. Overall, this is a very restrictive con-
straint because many distances defined for images are nonmetric
for reasons given in [15]. Therefore, this paper adopts a graph
representation of neighboring target images.

A set of images is represented by a weighted undirected
graph : The nodes represent
images, the edges are formed between
every pair of nodes, and the nonnegative weight of an edge

, indicating the similarity between two nodes, is a function
of the distance (or similarity) between nodes (images) and .
Given a distance between images and , we define

(1)

where is a scaling parameter that needs to be tuned to get a suit-
able locality. The choice of exponential decay is based on sup-
port from psychological studies provided by [10]. The weights
can be organized into a matrix , named the affinity matrix,
with the th entry given by . Although (1) is a relatively
simple weighting scheme, our experimental results (Section V)
have shown its effectiveness. The same weighting scheme has
been used in [10], [32], [41].

D. Spectral Graph Partitioning

Under a graph representation, clustering can be naturally for-
mulated as a graph partitioning problem. Among many graph-
theoretic algorithms, spectral graph partitioning methods [5],
[29], [32], [41] have been successfully applied to many areas in
computer vision including motion analysis [5], image segmenta-
tion [32], [41], and object recognition [29]. In this paper, we use
one of the techniques, the normalized cut (Ncut) method [32],
for image clustering. Compared with many other spectral graph
partitioning methods, such as average cut and average associa-
tion, the Ncut method is empirically shown to be relatively ro-
bust in generating balanced clusters [32], [41]. Next, we present
a brief review of the Ncut method based on Shi and Malik’s
work [32]. More exhaustive treatments can be found in [32] and
[41].

Roughly speaking, a graph partitioning method attempts to
organize nodes into groups so that the within-group similarity is
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high, and/or the between-groups similarity is low. Given a graph
with affinity matrix , a simple way to quantify

the cost for partitioning nodes into two disjoint sets and
( and ) is the total weights of the edges
that connecting the two sets. In graph theory, this cost is called
a cut

cut (2)

which can also be viewed as a measure of the between-groups
similarity.

Finding a bipartition of the graph that minimizes this cut
value is known as the minimum cut problem. There exist effi-
cient algorithms for solving this problem. However, the min-
imum cut criterion favors grouping small sets of isolated nodes
in the graph [32] because the cut defined in (2) does not contain
any within-group information. In other words, the minimum cut
usually yields over-clustered results when it is recursively ap-
plied. This motivates several modified graph partition criteria
including the Ncut

Ncut
cut
cut

cut
cut

An unbalanced cut would generate a large Ncut value.
Finding a bipartition with minimum Ncut value is an

NP-complete problem. Shi and Malik proposed an approxi-
mated solution by solving a generalized eigenvalue problem
[32]

(3)

where is an affinity matrix, is
a diagonal matrix with . Generalized eigen-
vector corresponding to the second smallest generalized eigen-
value (or in short the second smallest generalized eigenvector)
is then used to partition the graph.

The Ncut method can be recursively applied to get more than
two clusters, but this leads to the following questions: 1) Which
subgraph should be divided? 2) When should the process stop?
In this paper, we use a simple heuristic. The subgraph with the
maximum number of nodes is recursively partitioned (random
selection is used for tie breaking). The process terminates when
the bound on the number of clusters is reached or the Ncut value
exceeds some threshold.

E. Finding a Representative Image for a Cluster

Ultimately, the system needs to present the clustered target
images to the user. Unlike a typical CBIR system, which dis-
plays certain numbers of top matched target images to the user,
a cluster-based image retrieval system should be able to provide
an intuitive visualization of the clustered structure in addition
to all the retrieved target images. For this reason, we propose a
two-level display scheme. At the first level, the system shows
a collection of representative images of all the clusters (one for
each cluster). At the second level, the system displays all target
images within the cluster specified by a user.

Nonetheless, two questions still remain: 1) How do we orga-
nize these clusters? 2) How do we find a representative image

Fig. 2. Tree generated by four Ncuts that are applied to V with 200 nodes.
The numbers denote the size of the corresponding clusters.

for each cluster? The organization of clusters will be described
in Section III-B. For the second question, we define a represen-
tative image of a cluster to be the image that is most similar to
all images in the cluster. This statement can be mathematically
illustrated as follows. Given a graph representation of images

with affinity matrix , let the collection of image
clusters be , which is also a partition of ,
i.e., for and . Then, the rep-
resentative node (image) of is

(4)

Basically, for each cluster, we pick the image that has the max-
imum sum of within cluster similarities.

III. ALGORITHMIC VIEW

This section starts with an algorithmic summary of CLUE.
We then introduce the organization of clusters, followed by
a discussion of computational complexity and parameters
selection.

A. Outline of the Algorithm

The inputs for CLUE include a query image, and
needed by NNM for neighboring target images selection, max-
imum number of clusters , and threshold for the Ncut
value required by the recursive Ncut process.
CLUE first selects a collection of neighboring target images for
a query image using NNM. Next, it constructs a weighted undi-
rected graph containing the query image and its neighboring
target images. It then applies the Ncut algorithm recursively to
the graph or the largest subgraph until the number of clusters is
equal to or the Ncut value is greater than . Finally, the rep-
resentative images for the clusters are found according to (4).

B. Organization of Clusters

The recursive Ncut partition is essentially a hierarchical divi-
sive clustering process that produces a tree. For example, Fig. 2
shows a tree generated by four recursive Ncuts. The first Ncut
divides into and . Since has more nodes than ,
the second Ncut partitions into and . Next, is fur-
ther divided because it is larger than and . The fourth Ncut
is applied to , and gives the final five clusters (or leaves): ,

, , , and .
The above example suggests trees as a natural organization of

clusters. In data visualization, displaying a tree is a commonly
used technique. However, the tree organization here may not be
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useful to a user because there is no guarantee of any correspon-
dence between the tree and the semantic structure of images. For
example, Fig. 6 shows clusters and the associated tree generated
by CLUE for a query image of food. Note that food and horses
are leaf nodes of the same parent, but the semantic meaning of
their parent node is not clear. Thus, it may be extremely difficult
to find representative images for parent nodes. Moreover, those
representative images of parent nodes may be misleading to a
user. So, in this work, we employ a simple linear organization
of clusters called traversal ordering: Arrange the leaves in the
order of a binary tree traversal (left child goes first). For the ex-
ample in Fig. 2, it yields a sequence: , , , , and .
However, the order of two clusters produced by an Ncut bipar-
tition iteration is still undecided, i.e., which one should be the
left child and which one should be the right child. This can be
solved by enforcing an arbitration rule: 1) Let and be two
clusters generated by an Ncut on and be the minimal
distance between the query image and all images in . 2)
If , then is the left child of ; otherwise, is the
left child.

The traversal ordering and arbitration rule have the following
properties.

• The query image is in the leftmost leaf ( in Fig. 2) since
a cluster containing the query image will have a minimum
distance ( or ) of 0 and, thus, will always be assigned
to the left child (note that includes the query image).

• We can view (or ) as a distance from a query image
to a cluster of images. In this sense, for any parent node,
its left child is closer to the query image than its right
child.

• In the traversal, the leaves of the left subtree of any parent
node appear before the leaves of its right subtree.

Therefore, the resulting linear organization of clusters considers
not only the distances to a query image, but also the hierar-
chical structure that generates the clusters. To this end, it may
be viewed as a structured sorting of clusters in ascending order
of distances to a query image. For the sake of consistency, im-
ages within each cluster are also organized in ascending order
of distances to the query.

C. Computational Complexity

The computational complexity of a cluster-based image re-
trieval system is higher than that of a typical CBIR system due
to the added computation of clustering. The time complexity of
CLUE is the sum of the complexity of NNM and the complexity
of the recursive Ncut.

Since NNM needs to find NN for all seeds, a straight-
forward implementation, which treats each seed as a new query,
would make the whole process very slow when the size of image
database is large. Two methods can be applied to reduce the time
cost of NNM. One method is to parallelize NNM because NN
for all seeds can be selected simultaneously. The other method
utilizes the fact that all seeds are images in the database. Thus,
similarities can be computed and sorted in advance. So the time
needed by NNM does not scale up by the number of seeds. Nev-
ertheless, it then requires storing the sorting results with every
image in the database as a query image. The space complexity
becomes where is the size of the database. However,

the space complexity can also be reduced because NNM only
needs NN, which leads to a space complexity of . The
locality constraint guarantees that is very small compared with

. In our implementation, only the ID numbers of 100 NN for
each image are stored . The second method is
used in our experimental system. We argue that this method
is practical even if the database is very large. Because com-
puting and sorting similarities for all target images may be very
time-consuming, this process is required only once. Moreover,
the process can also be parallelized for each target image. If new
images are added to the database, instead of redoing the whole
process, we can merely compute those similarities associated
with new images and update previously stored sorting results
accordingly.

The time needed by the recursive Ncut process consists of
two parts: graph construction and the Ncut algorithm. For graph
construction, one needs to evaluate entries of the
affinity matrix where is the number of nodes
(query image and all its neighboring target images). Thus, the
time complexity is . Each Ncut iteration can be solved by
the Lanczos algorithm [9, ch. 9] in [32]. As the number
of clusters is bounded by , the total time complexity for the
recursive Ncut process is (because ).

D. Parameters Selection

Several parameters need to be specified to implement CLUE.
These include and for NNM, for affinity matrix evaluation,
and and for recursive Ncut. Three requirements are con-
sidered when deciding and . First, we want the neighboring
images to be close to the query image so that the assumption
of a locally clustered structure is valid. Second, we need suffi-
cient number of images to provide an informative local visual-
ization of the image database to the user. Third, computational
cost should be kept within the tolerance of real-time applica-
tions. It is clear that the second constraint favors large and ,
while the other two constraints need and to be small. Finding
a proper tradeoff is application dependent.

For the cluster-based image retrieval system described in the
next section, and are obtained from a simple tuning strategy.
We randomly pick 20 query images from the image database.
For each pair of and , where and

, we manually examine the semantics of im-
ages generated by NNM using each of the 20 query images, and
record the average number of distinct semantics. Next, all pairs
of and corresponding to the median of the above recorded
numbers are found. We pick the pair with minimal value,
which gives and for our system. As a byproduct,

(maximum number of clusters) in recursive Ncut is set to
be 8, which is the integer closest to the median. Note that our
criteria on distinct semantics may be very different from the cri-
teria of a system user. However, we observed that the system is
not sensitive to and .

The parameter in (1) reflects the local scale on distances.
Thus, it should be adaptive to the query image and its neigh-
boring target images. In our system, where is the
standard deviation of all the pairwise distances used to construct
the affinity matrix. The threshold is chosen to make the me-
dian of the number of clusters generated by recursive Ncuts on
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Fig. 3. Two snapshots of the user interface displaying query results for a query image with ID 6275. (a) List of image cluster thumbnails. (b) Images in Cluster 1.
Below each thumbnail in (a) are cluster ID and the number of images in the cluster. There are two numbers below images in (b). The underlined number is image
ID. The other number is the cluster ID.

the 20 collections of images, which are used in and tuning
process, equal or close to . A proper value is found to
be 0.9.

IV. CONTENT-BASED IMAGE CLUSTERS RETRIEVAL SYSTEM

The system uses the same feature extraction scheme and simi-
larity measure as those in [4] and [40]. So only a brief introduc-
tion is presented here. From the viewpoint of image features,
the system is a region-based system. It applies image segmen-
tation to decompose an image into regions, and defines simi-
larities via region matching. To segment an image, our system
first partitions the image into blocks with 4 4 pixels. A fea-
ture vector, consisting of six features, is then extracted for each
image block. Among the six features, three of them are the av-
erage color (in the LUV color space) of the corresponding block.
The other three represent energy in the high-frequency bands
of a one-level Daubechies-4 wavelet transform [7] applied to
the L component of the image block, that is, the square root of
the second-order moment of wavelet coefficients in the LH (low
high), HL, and HH bands. The -means algorithm is then used
to group the feature vectors into several classes with every class
corresponding to one region in the segmented image.

Each region is then associated with a fuzzy feature (defined
by a membership function) describing the color, texture, and
shape properties of the region. The membership functions of
fuzzy sets naturally characterize the gradual transition between
regions within an image. To that end, they characterize the blur-
ring boundaries due to imprecise segmentation. A fuzzy simi-
larity measure is used to describe the resemblance of two re-

gions. Finally, a convex combination scheme synthesizes the
region-level similarities into an image similarity measure, uni-
fied feature matching (UFM) measure, which is demonstrated
to be very robust to segmentation-related uncertainties [4]. In
order to compute the affinity matrix according to (1), UFM mea-
sure is converted to a distance by a simple linear transformation

UFM .
The system has a very simple CGI-based query interface. It

provides a random option that will give a user a random set of
images from the image database to start with. In addition, users
can either enter the ID of an image as the query or submit any
image on the Internet as a query by entering the URL of the
image. The system is capable of handling any standard image
format from anywhere on the Internet and reachable by our
server via the HTTP protocol. Once a query image is received,
the system displays a list of thumbnails each of which repre-
sents an image cluster. The thumbnails are found according to
(4), and sorted using the algorithm in Section III-B. Fig. 3(a)
shows eight clusters corresponding to a query image with ID
6275. Below each thumbnail are cluster ID and the number of
images in that cluster. A user can start a new query search by
submitting a new image ID or URL, get a random set of images
from the image database, or click a thumbnail to see all images
in the associated cluster. The contents of Cluster 1 are displayed
in Fig. 3(b). From left to right and top to bottom, the images
are listed in ascending order of distances to the query image.
The underlined numbers below the images are image IDs. The
other numbers are cluster IDs. The image with a border around
it is the representative image for the cluster. Again, a user has
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Fig. 4. Image clusters and the associated tree structure generated by CLUE. (a) Birds. (b) Car. (c) Food. (d) Historical building. (e) Soccer game.

three options: enter a new image ID or URL, get a random set
of images from the database, or click an image to submit it as
a query.

V. EXPERIMENTS

Our system1 is implemented with a general-purpose image
database (from COREL), which includes about 60 000 images
stored in JPEG format with size 384 256 or 256 384. In Sec-
tion V-A, we provide several query results on the COREL data-
base to intuitively illustrate the performance of the system. Sec-
tion V-B presents systematic evaluations of CLUE algorithm

1A demonstration system is available at http://wang.ist.psu.edu/IMAGE/clue.

in terms of the goodness of image clustering and retrieval accu-
racy. Numerical comparisons with the SIMPLIcity system using
UFM similarity measure [4] are also given. In Section V-C, the
speed of CLUE is compared with that of a typical CBIR system
using UFM similarity measure. Section V-D presents results on
images returned by Google’s Image Search.

A. Query Examples

To qualitatively evaluate the performance of the system over
the 60 000-image COREL database, we randomly pick five query
images with different semantics, namely, birds, car, food, histor-
ical buildings, and soccer game. The image clusters and the as-
sociated tree structure generated by CLUE are shown in Fig. 4,
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Fig. 5. Comparison of CLUE and UFM. The query image is the upper-left corner image of each block of images. The underlined numbers below the images
are the ID numbers of the images in the database. For the images in the left column, the other number is the cluster ID (the image with a border around it is the
representative image for the cluster). For images in the right column, the other two numbers are the value of UFM measure between the query image and the
matched image, and the number of regions in the image. (a) Birds. (b) Car. (c) Food. (d) Historical building. (e) Soccer game.

where each image thumbnail represents an image cluster. Below
each thumbnail are cluster ID and the number of images in the
cluster. For each query example, we examine the precision of the

query results depending on the relevance of the image seman-
tics. Here, only images in the first cluster, in which the query
image resides, are considered. This is because images in the first
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cluster can be viewed as sharing the same similarity-induced se-
mantics as that of the query image according to the clusters or-
ganization described in Section III-B. Performance issues about
the rest clusters will be covered in Section V-B. Since CLUE of
our system is built upon UFM similarity measure, query results
of a typical CBIR system, SIMPLIcity system using UFM simi-
larity measure [4] (we call the system UFM to simplify notation),
are also included for comparison. We admit that the relevance
of image semantics depends on standpoint of a user. Therefore,
our relevance criteria, specified in Fig. 5, may be quite different
from those used by a user of the system. Due to space limita-
tions, only the top 11 matches to each query are shown in Fig. 5.
We also provide the number of relevant images in the first cluster
(for CLUE) or among top 31 matches (for UFM).

Compared with UFM, CLUE provides semantically more
precise results for all query examples given in Fig. 5. This is
reasonable since CLUE utilizes more information about image
similarities than UFM does. CLUE groups images into clusters
based on pairwise distances so that the within-cluster similarity
is high and between-cluster similarity is low. The results seem
to indicate that a similarity-induced image cluster tends to
contain images of similar semantics. In other words, organizing
images into clusters and retrieving image clusters may help to
reduce the semantic gap even when the rest of the components
of the system, such as feature extraction and image similarity
measure, remain unchanged.

B. Systematic Evaluation

To provide a more objective evaluation and comparison,
CLUE (built upon UFM similarity measure) is tested on a
subset of the COREL database, formed by ten image cate-
gories, each containing 100 images. The categories are Africa
people and villages, beach, buildings, buses, dinosaurs, ele-
phants, flowers, horses, mountains and glaciers, and food with
corresponding Category IDs denoted by integers from 1 to 10,
respectively. Within this database, it is known whether two
images are of the same category (or semantics). Therefore,
we can quantitatively evaluate and compare the performance
of CLUE in terms of the goodness of image clustering and
retrieval accuracy. In particular, the goodness of image clus-
tering is measured via the distribution of images semantics in
the cluster, and a retrieved image is considered a correct match
if, and only if, it is the same category as the query image.
These assumptions are reasonable since the ten categories were
chosen so that each depicts a distinct semantic topic.

1) Measuring the Quality of Image Clustering: Ideally, a
cluster-based image retrieval system would be able to generate
image clusters each of which contains images of similar or even
identical semantics. The confusion matrix is one way to measure
clustering performance. However, to compute the confusion ma-
trix, the number of clusters needs to be equal to the number of
distinct semantics, which is unknown in practice. Although we
can force CLUE to always generate ten clusters in this particular
experiment, the experiment setup would then be quite different
to a real application. So, we use purity and entropy to measure
the goodness of image clustering.

Assume we are given a set of images belonging to dis-
tinctive categories (or semantics) denoted by (in this

Fig. 6. CLUE applies five Ncuts to a collection of 118 images neighboring
to a query image of food. Numbers within each node denote the size of the
corresponding clusters. Linguistic descriptor and numbers listed under each leaf
node are (from top to bottom): name of the dominant semantic category in the
leaf node (or cluster), purity of the cluster, and entropy of the cluster.

experiment, , depending on the collection of images gen-
erated by NNM) while the images are grouped into clusters

, . Cluster ’s purity can be defined as

(5)

where consists of images in that belong to category ,
and represents the size of the set. Each cluster may con-
tain images of different semantics. Purity gives the ratio of the
dominant semantic class size in the cluster to the cluster size it-
self. The value of purity is always in the interval with
a larger value means that the cluster is a “purer” subset of the
dominant semantic class. Entropy is another cluster quality mea-
sure, which is defined as follows:

(6)

Since entropy considers the distribution of semantic classes in
a cluster, it is a more comprehensive measure than purity. Note
that we have normalized entropy so that the value is between
0 and 1. Contrary to the purity measure, an entropy value near
0 means the cluster is comprised mainly of 1 category, while
an entropy value close to 1 implies that the cluster contains a
uniform mixture of all categories. For example, if half of the
images of a cluster belong to one semantic class and the rest
of the images are evenly divided into nine different semantic
classes, then the entropy is 0.7782 and the purity is 0.5. Fig. 6
shows clusters and the associated tree structure generated by
CLUE for a sample query image of food. Size of each cluster,
purity, and entropy of leaf clusters are also listed.

The following are some additional notations used in the per-
formance evaluation. For a query image : 1) denotes the
number of retrieved clusters; 2) is the average size of the re-
trieved clusters; 3) is the average purity of the retrieved
clusters, i.e., where is com-
puted according to (5); and 4) is the average entropy of
the retrieved clusters, i.e., , where

is computed according to (6).
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Fig. 7. Clustering performance in terms of purity and entropy. For mean P (i) and mean P , larger numbers indicate purer clusters. For meanH(i) and mean
H , smaller numbers denote better cluster quality.

Every image in the 1000-image database is tested as a query.
The same set of parameters specified in Section III-D is used
here. For query images within one semantic category, the fol-
lowing statistics are computed: the mean of , the mean and
standard deviation (STDV) of , the mean of , and the
mean of . In addition, we calculate and for
each query, which are respectively the purity and entropy of the
whole collection of images generated by NNM, and the mean
of and for query images within one semantic cat-
egory. The results are summarized in Table I (second and third
columns) and Fig. 7. The third column of Table I shows that the
size of clusters does not vary greatly within a category. This is
because of the heuristic used in recursive Ncut: always dividing
the largest cluster. It should be observed from Fig. 7 that CLUE
provides good quality clusters in the neighborhood of a query
image. Compared with the purity and entropy of collections of
images generated by NNM, the quality of the clusters generated
by recursive Ncut is on average much improved for all image
categories except category 5, for which NNM generates quite
pure collections of images leaving little room for improvement.

2) Retrieval Accuracy: For image retrieval, purity and en-
tropy by themselves may not provide a comprehensive estimate
of the system performance even though they measure the quality
of image clusters, because what could happen is a collection of
semantically pure image clusters but none of them sharing the
same semantics with the query image. Therefore, one needs to
consider the semantic relationship between these image clusters
and the query image. For this purpose, we introduce the correct
categorization rate and average precision.

A query image is correctly categorized if the dominant cate-
gory in the query image cluster (first cluster of leftmost leaf) is
identical to the query category. The correct categorization rate

for image category indicates how likely the dominant se-
mantics of the query image cluster coincides with the query se-
mantics and is defined as the ratio of the number of correctly
categorized images in category to the size of category . The
fourth column of Table I lists estimations of for ten cate-
gories used in our experiments. Note that randomly assigning

TABLE I
STATISTICS OF THE AVERAGE NUMBER OF CLUSTERS m AND

THE AVERAGE CLUSTER SIZE v AND AN ESTIMATION

OF THE CORRECT CATEGORIZATION RATE C

a dominant category to the query image cluster will give a
value of 0.1. The results there indicate that CLUE has some dif-
ficulties in categorizing images about beaches (category 2) and
images about mountains and glaciers (category 9), even though
the performance is still four times better than random. A de-
tailed examination of the errors shows that most errors on these
two categories are errors between these two categories, i.e., a
beach query is categorized as mountains and glaciers, or con-
versely. The performance degradation on these two categories
seems understandable. Many images from these two categories
are visually similar. Fig. 8 presents 12 images from both cate-
gories of the 1000-image database. All beach images in Fig. 8
contain mountains or mountain-like regions, while all the moun-
tain images have regions corresponding to river, lake, or even
ocean. In addition, UFM measure may also mistakenly view a
glacier as clouds because both regions have similar white color
and shape. However, we argue that the performance may be im-
proved if a better similarity measure is used.
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Fig. 8. Some sample images taken from the 1000-image database. They belong to two categories: beach or mountains and glaciers.

Fig. 9. Comparing CLUE scheme with UFM method on the average precision.

From the standpoint of a system user, the correct categoriza-
tion rate may not be the most important performance index.
Even if the first cluster, in which the query image resides, does
not contain any images that are semantically similar to the query
image, the user can still look into the rest of the clusters. So
we use precision to measure how likely a user would find im-
ages belonging to the query category within a certain number of
top matches. Here, the precision is computed as the percentage
of images belonging to the category of the query image in the
first 100 retrieved images. The recall equals precision for this
special case since each category has 100 images. The param-
eter in NNM is set to be 30 to ensure that the number of neigh-
boring images generated is greater than 100. As mentioned in
Section III-B, the linear organization of clusters may be viewed
as a structured sorting of clusters in ascending order of distances
to a query image (recall that images within each cluster are or-
ganized in ascending order of distances to the query). Therefore,
the top 100 retrieved images are found according to the order of
clusters. The average precision for a category is then defined
as the mean of precision for query images in category . Fig. 9

compares the average precision given by CLUE with those ob-
tained by UFM. Clearly, CLUE performs better than UFM for
nine out of ten categories (they tie on the remaining one cate-
gory). The overall average precision for ten categories are 0.538
for CLUE and 0.477 for UFM. CLUE can be built upon any
real-valued symmetric similarity measure, not just UFM simi-
larity measure. The results here suggest that on average CLUE
scheme may improve the precision of a CBIR system.

C. Speed

The CLUE has been implemented on a Pentium III 700-MHz
PC running the Linux operation system. To compare the speed
of the CLUE with the UFM [4], which is implemented and tested
on the same computer, 100 random queries are issued to the
demonstration web sites. The CLUE takes on average 0.8 s per
query for similarity measure evaluation, sorting, and clustering,
while the UFM takes 0.7 s to evaluate similarities and sort the re-
sults. The size of the database is 60 000 for both tests. Although
the CLUE is slower than the UFM because of the extra compu-
tational cost for NNM and recursive Ncut, the execution time is
still well within the tolerance of real-time image retrieval.

D. Application of CLUE to Web Image Retrieval

To show the performance of CLUE on real world image data,
we provide some results using images from the Internet. The
images are obtained from Google’s Image Search (http://im-
ages.google.com), which is a keyword-based image retrieval
system. Due to space limitation, we only present the results
for two queries: “Tiger” and “Beijing.” Since there is no query
image, the neighboring image selection stage of CLUE is
skipped. Instead, for each query, the recursive Ncut is directly
applied to the top 200 images returned by Google. Fig. 10 lists
some sample images from the top four largest clusters for each
query. Each block of images are chosen to be the top 18 images
within a cluster that are closest to the representative image of
the cluster in terms of UFM similarity measure. The cluster
size is also specified below each block of images.

As shown in Fig. 10, real-world images can be visually and
semantically quite heterogeneous, even when a very specific cat-
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Fig. 10. Some sample images of the top four largest clusters obtained by applying CLUE to images returned by Google’s Image Search with queries “Tiger”
(left column) and “Beijing” (right column). (a) Cluster 1 (75 images). (b) Cluster 2 (64 images). (c) Cluster 3 (32 images). (d) Cluster 4 (24 images). (e) Cluster 1
(61 images). (f) Cluster 2 (59 images). (g) Cluster 3 (43 images). (h) Cluster 4 (31 images).
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egory is under consideration. For example, the Tiger images re-
turned by Google’s Image Search contains images of cartoon
tiger (animal), real tiger (animal), Tiger Woods (golf player),
tiger tank, Crouching Tiger Hidden Dragon (movie), tiger shark,
etc. Images about Beijing include images of city maps, people,
buildings, etc. CLUE seems to be capable of providing visually
coherent image clusters with reduced semantic diversity within
each cluster.

• The images in Fig. 10(a) are mainly about cartoon tigers.
Half of the images in Fig. 10(d) contain people. Real
tigers appear more frequently in Fig. 10(b) and (c) than in
Fig. 10(a) and (b). Images in Fig. 10(c) have stronger tex-
tured visual effect than images of the other three blocks.

• As for images about “Beijing,” the majority of the im-
ages in Fig. 10(e) are city maps. Out of the 18 images in
Fig. 10(f), 11 contains people. The majority of images in
Fig. 10(g) are about Beijing’s historical buildings. There
also a lot of images of buildings in Fig. 10(h), but most
of them are modernbuilt.

These results demonstrate that, to some extent, CLUE is helpful
in disambiguating and refining image semantics and, hence,
improve the performance of a keyword-based image retrieval
system.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduces CLUE, a new image retrieval scheme
for improving user interaction with image retrieval systems.
CLUE retrieves image clusters rather than sorted single im-
ages as most CBIR systems do. Clustering is performed in
a query-dependent way. Therefore, CLUE generates clusters
that are tailored to characteristics of the query image. CLUE
employs a graph representation of images: Images are viewed
as nodes and similarities between images are denoted by
weights of the edges connecting the nodes. Clustering is then
naturally formulated as a graph partitioning problem, which is
solved by Ncut technique. Graph-theoretic clustering enables
CLUE to handle the metric and nonmetric similarity measures
in a uniform way. In this sense, CLUE is a general approach
that can be combined with any real-valued symmetric image
similarity measure and, thus, may be embedded in many cur-
rent CBIR systems. The application of CLUE to a database of
60 000 general-purpose images demonstrates that CLUE can
provide better semantically relevant clues to a system user than
an existing CBIR system using the same similarity measure.
Numerical evaluations on a 1000-image database show good
cluster quality and improved retrieval accuracy. Furthermore,
results on images returned by Google’s Image Search suggest
the potential of applying CLUE to real world image data and
integrating CLUE as a part of the interface for keyword-based
image retrieval systems.

CLUE has the following limitations.

• The current heuristic used in the recursive Ncut always
bipartitions the largest cluster. This is a low-complexity
rule and is computationally efficient to implement, but it
may divide a large and pure cluster into several clusters,
even when there exists a smaller and semantically more

diverse cluster. Bipartitioning the semantically most di-
verse cluster seems to be more reasonable, but the open
question is how to automatically and efficiently estimate
the semantic diversity of a cluster.

• The current method of finding a representative image for
a cluster does not always give a semantically representa-
tive image. For the example in Fig. 5(a), one would ex-
pect the representative image to be a bird image, but the
system picks an image of sheep (the third image). This
discrepancy is due to the semantic gap: An image that is
most similar to all images in the cluster in terms of a sim-
ilarity measure does not necessarily belong to the domi-
nant semantic class of the cluster.

• If the number of neighboring target images is large (more
than several thousand), sparsity of the affinity matrix be-
comes crucial to retrieval speed. The current weighting
scheme given by (1) does not lead to a sparse affinity ma-
trix. As a result, different weighting schemes should be
studied to improve the scalability of CLUE.

CLUE may be improved as follows.

• The quality of the clusters depends on the choice of the
partitioning algorithm. Although experiments show that
Ncut method produces robust clusters, other graph theo-
retic clustering techniques [22] need to be tested for pos-
sible performance improvement.

• As pointed out by a reviewer of the initial draft, the com-
putational overhead for the NNM technique could be re-
duced if an indexing technique, such as SR tree [17], is
used.

• CLUE relies heavily on the similarity measure employed.
If a similarity measure does not capture semantic rel-
evant information, clustering itself does not bridge the
gap between low-level features and high-level concepts.
Therefore, applying CLUE to the results of a semantic
search engine, such as a keyword-based image retrieval
system, like Google’s Image Search, may be helpful in
reducing the number of visually similar images a user
needs to browse through. As future work, we intend to
apply CLUE to search, browse, and learn concepts from
digital imagery for Asian art and cultural heritages.

• CLUE may be combined with nonlinear dimensionality
reduction techniques, such as the methods in [25] and
[37], to provide a global visualization together with a
local retrieval.
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