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Abstract The top-k dominating query returns k data objects
which dominate the highest number of objects in a dataset.
This query is an important tool for decision support since it
provides data analysts an intuitive way for finding significant
objects. In addition, it combines the advantages of top-k and
skyline queries without sharing their disadvantages: (i) the
output size can be controlled, (ii) no ranking functions need
to be specified by users, and (iii) the result is independent of
the scales at different dimensions. Despite their importance,
top-k dominating queries have not received adequate atten-
tion from the research community. This paper is an exten-
sive study on the evaluation of top-k dominating queries.
First, we propose a set of algorithms that apply on indexed
multi-dimensional data. Second, we investigate query evalua-
tion on data that are not indexed. Finally, we study a relaxed
variant of the query which considers dominance in dimensio-
nal subspaces. Experiments using synthetic and real datasets
demonstrate that our algorithms significantly outperform a
previous skyline-based approach. We also illustrate the appli-
cability of this multi-dimensional analysis query by studying
the meaningfulness of its results on real data.
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1 Introduction

Consider a dataset D of points in a d-dimensional space Rd .
Given a (monotone) ranking function F : Rd → R, a top-k
query [9,14] returns k points with the smallest F value. For
example, Fig. 1a shows a set of hotels modeled by points in
the 2D space, where the dimensions correspond to (prefe-
rence) attribute values; traveling time to a conference venue
and room price. For the ranking function F = x+y, the top-2
hotels are p4 and p6. An obvious advantage of the top-k query
is that the user is able to control the number of results (through
the parameter k). On the other hand, it might not always be
easy for the user to specify an appropriate ranking function.
In addition, there is no straightforward way for a data analyst
to identify the most important objects using top-k queries,
since different functions may infer different rankings.

A skyline query [2] retrieves all points which are not domi-
nated by any other point. Assuming that smaller values are
preferable to larger at all dimensions, a point p dominates
another point p′ (i.e., p � p′) when

(∃ i ∈ [1, d], p[i] < p′[i]) ∧ (∀ i ∈ [1, d], p[i] ≤ p′[i])
where p[i] denotes the coordinate of p in the i th dimension.
Continuing with the example in Fig. 1a, the skyline query
returns points p1, p4, p6, and p7. Börzsönyi et al. [2] sho-
wed that the skyline contains the top-1 result for any mono-
tone ranking function; therefore, it can be used by decision
makers to identify potentially important objects to some data-
base users. A key advantage of the skyline query is that it does
not require the use of a specific ranking function; its results
only depend on the intrinsic characteristics of the data. Fur-
thermore, the skyline is not affected by potentially different
scales at different dimensions (monetary unit or time unit in
the example of Fig. 1a); only the order of the dimensional
projections of the objects is important. On the other hand,
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Fig. 1 Features of hotels

the size of the skyline cannot be controlled by the user and it
can be as large as the data size in the worst case. As a result,
the user may be overwhelmed as she may have to examine
numerous skyline points manually in order to identify the
ones that will eventually be regarded as important. In fact,
the skyline may not be used as an informative and concise
summary for the dataset. It is well known that [2]: for a fully
correlated dataset, the skyline contains exactly 1 point, which
is not informative about the distribution of other data points;
for a totally anti-correlated dataset, the skyline is the whole
dataset, which is definitely not a concise data summary.

To summarize, top-k queries do not provide an objective
order of importance for the points, because their results are
sensitive to the preference function used. Skyline queries, on
the other hand, only provide a subset of important points,
which may have arbitrary size. To facilitate analysts, who
may be interested in a natural order of importance, accor-
ding to dominance, we propose the following intuitive score
function:

τ(p) = | { p′ ∈ D | p � p′ } | (1)

In words, the score τ(p) is the number of points dominated
by point p. The following monotone property holds for τ :

∀ p, p′ ∈ D, p � p′ ⇒ τ(p) > τ(p′) (2)

Based on the τ function, we can define a natural ordering
of the points in the database. Accordingly, the top-k domina-
ting query returns k points in D with the highest score. For
example, the top-2 dominating query on the data of Fig. 1a
retrieves p4 (with τ(p4) = 3) and p5 (with τ(p5) = 2). This
result may indicate to a data analyst (i.e., conference orga-
nizer) the most popular hotels to the conference participants
(considering price and traveling time as selection factors).
Here the popularity of a hotel p is defined based on over how
many other hotels would p be preferred, for any preference
function.

As another example on how the τ function is related to
popularity, consider a dataset with 54 hotels, as shown in
Fig. 1b. 50 of these points are not shown explicitly; the figure
only illustrates a rectangle which includes all of them. The

top-2 dominating points in this case are p1 (with τ(p1) = 51)
and p2 (with τ(p2) = 50). Even though p2 is not a skyline
point, it becomes important after the top-1 hotel p1 has been
fully booked. The reason is that p2 is guaranteed to be better
than at least 50 points, regardless of any monotone preference
ranking function considered by individual conference parti-
cipants. On the other hand, skyline point p3 may not provide
such guarantee; in the worst case, all conference participants
may just be looking for cheap hotels, so p3 is no good at all.
A similar observation holds for the skyline point p4.

The above examples illustrate that a top-k dominating
query is a powerful decision support tool, since it identi-
fies the most significant objects in an intuitive way. From
a practical perspective, top-k dominating queries combine
the advantages of top-k queries and skyline queries without
sharing their disadvantages. The number of results can be
controlled without specifying any ranking function. In addi-
tion, data normalization is not required; the results are not
affected by different scales or data distributions at different
dimensions.

The top-k dominating query was first introduced by
Papadias et al. [24] as an extension of the skyline query.
However, the importance and practicability of the query was
not identified there. This paper is an extensive study of this
analysis query. We note that the R-tree (used in [24]) may
not be the most appropriate index for this query; since com-
puting τ(p) is in fact an aggregate query, we can replace the
R-tree by an aggregate R-tree (aR-tree) [17,23]. In addition,
we observe that the skyline-based approach proposed in [24]
may perform many unnecessary score countings, since the
skyline size could be much larger than k.

Motivated by these observations, our first contribution
includes two specialized and very efficient methods for eva-
luating top-k dominating queries on a dataset indexed by
an aR-tree. We propose (i) a batch counting technique for
computing scores of multiple points simultaneously, (ii) a
counting-guided search algorithm for processing top-k domi-
nating queries, and (iii) a priority-based tree traversal algo-
rithm that retrieves query results by examining each tree node
at most once. We enhance the performance of (ii) with light-
weight counting, which derives relatively tight upper bound
scores for non-leaf tree entries at low I/O cost. Furthermore,
to our surprise, the intuitive best-first traversal order [13,24]
turns out not to be the most efficient for (iii) because of poten-
tial partial dominance relationships between visited entries.
Thus, we perform a careful analysis on (iii) and propose a
novel, efficient tree traversal order for it. Extensive experi-
ments show that our methods significantly outperform the
skyline-based approach of [24].

The above algorithms have been published in the prelimi-
nary version of this paper [31], where we also propose top-k
dominating query variants such as aggregate top-k domina-
ting queries and bichromatic top-k dominating queries; these
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Multi-dimensional top-k dominating queries 697

extensions are not further investigated here. Instead, in this
paper, we examine two alternative topics relevant to top-k
dominating queries. The first is the processing of top-k domi-
nating queries on non-indexed data. In certain scenarios (e.g.,
dynamically generated data), it is not always reasonable to
assume an existing aR-tree index for them a priori. In view
of this, we propose a method that evaluates top-k dominating
queries by accessing the (unordered) data only a few times.
As we demonstrate experimentally, this method significantly
outperforms the best index-based method, which requires the
bulk-loading an aR-tree index before evaluation. Our second
extension over [31] is the proposal and study of a relaxed
form of the top-k dominating query. In this query variant,
the τ(p) score is defined by the number of dimensional sub-
spaces where point p dominates another point p′. As we
demonstrate, this query derives more meaningful results than
the basic top-k dominating query.

The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 discusses the proper-
ties of top-k dominating search and proposes optimizations
for the existing solution in [24]. We then propose eager/lazy
approaches for evaluating top-k dominating queries. Sec-
tion 4 presents an eager approach that guides the search
by deriving tight score bounds for encountered non-leaf tree
entries immediately. Section 5 develops an alternative, lazy
approach that defers score computation of visited entries and
gradually refines their score bounds when more tree nodes are
accessed. Section 6 presents techniques for processing top-k
dominating queries on non-indexed data. Section 7 intro-
duces the relaxed top-k dominating query and discusses its
evaluation. In Sect. 8, experiments are conducted on both real
and synthetic datasets to demonstrate that the proposed algo-
rithms are efficient and also top-k dominating queries return
meaningful results to users. Section 9 summarizes our expe-
rimental findings and discusses the case of high dimensional
data. Finally, Sect. 10 concludes the paper.

2 Related work

Top-k dominating queries include a counting component, i.e.,
multi-dimensional aggregation; thus, we review related work
on spatial aggregation processing. In addition, as the domi-
nance relationship is relevant to skyline queries, we survey
existing methods for computing skylines.

2.1 Spatial aggregation processing

R-trees [12] have been extensively used as access methods
for multi-dimensional data and for processing spatial queries,
e.g., range queries, nearest neighbors [13], and skyline que-
ries [24]. The aggregate R-tree (aR-tree) [17,23] augments
to each non-leaf entry of the R-tree an aggregate measure of
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Fig. 2 aR-tree example

all data points in the subtree pointed by it. It has been used to
speed up the evaluation of spatial aggregate queries, where
measures (e.g., number of buildings) in a spatial region (e.g.,
a district) are aggregated.

Figure 2a shows a set of points in the 2D space, indexed by
the COUNT aR-tree in Fig. 2b. Each non-leaf entry stores the
COUNT of data points in its subtree. For instance, in Fig. 2b,
entry e17 has a count 10, meaning that the subtree of e17

contains 10 points. Suppose that a user asks for the number
of points intersecting the region W , shown in Fig. 2a. To
process the query, we first examine entries in the root node
of the tree. Entries that do not intersect W are pruned because
their subtree cannot contain any points in W . If an entry is
spatially covered by W (e.g., entry e19), its count (i.e., 10)
is added to the answer without accessing the corresponding
subtree. Finally, if a non-leaf entry intersects W but it is not
contained in W (e.g., e17), search is recursively applied to
the child node pointed by the entry, since the corresponding
subtree may contain points inside or outside W . Note that
the counts augmented in the entries effectively reduce the
number of accessed nodes. To evaluate the above example
query, only 10 nodes in the COUNT aR-tree are accessed but
17 nodes in an R-tree with the same node capacity would be
visited.

2.2 Skyline computation

Börzsönyi et al. [2] were the first to propose efficient exter-
nal memory algorithms for processing skyline queries. The
BNL (block-nested-loop) algorithm scans the dataset while
employing a bounded buffer for tracking the points that can-
not be dominated by other points in the buffer. A point is
reported as a result if it cannot be dominated by any other
point in the dataset. On the other hand, the DC (divide-
and-conquer) algorithm recursively partitions the dataset
until each partition is small enough to fit in memory. After
the local skyline in each partition is computed, they are mer-
ged to form the global skyline. The BNL algorithm was later
improved to SFS (sort-filter-skyline) [8] and LESS (linear
elimination sort for skyline) [11] in order to optimize the
average-case running time.
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698 M. L. Yiu, N. Mamoulis

The above algorithms are generic and applicable for
non-indexed data. On the other hand, [16,24,28] exploit data
indexes to accelerate skyline computation. The state-of-the
-art algorithm is the BBS (branch-and-bound skyline) algo-
rithm [24], which is shown to be I/O optimal for computing
skylines on datasets indexed by R-trees.

Recently, the research focus has been shifted to the study
of queries based on variants of the dominance relationship.
[22] aims at extracting from the skyline points a k-sized
subset such that it dominates the maximum number of data
points; in other words, the result set cannot contain any non-
skyline point. Li et al. [20] proposes a data cube structure
for speeding up the evaluation of queries that analyze the
dominance relationship of points in the dataset. However,
incremental maintenance of the data cube over updates has
not been addressed in [20]. Clearly, it is prohibitively expen-
sive to recompute the data cube from scratch for dynamic
datasets with frequent updates. Chan et al. [6] identifies the
problem of computing top-k frequent skyline points, where
the frequency of a point is defined by the number of dimensio-
nal subspaces. Chan et al. [5] studies the k-dominant skyline
query, which is based on the k-dominance relationship. A
point p is said to k-dominate another point p′ if p dominates
p′ in at least one k-dimensional subspace. The k-dominant
skyline contains the points that are not k-dominated by any
other point. When k decreases, the size of the k-dominant
skyline also decreases. Observe that [5,6,20,22] cannot be
directly applied to evaluate top-k dominating queries studied
in this paper.

Finally, [25–27,32] study the efficient computation of sky-
lines for every subspace; Tao et al. [29] proposes a technique
for retrieving the skyline for a given subspace; Balke et al.
[1], Huang et al. [15] investigate skyline computation over
distributed data; Chaudhuri et al. [7] and Godfrey [10] deve-
lop techniques for estimating the skyline cardinality; Lin
et al. [21] studies continuous maintenance of the skyline
over a data stream; and [4] addresses skyline computation
over datasets with partially-ordered attributes.

3 Preliminary

In this section, we discuss some fundamental properties of
top-k dominating search, assuming that the data have been
indexed by an aR-tree. In addition, we propose an optimized
version for the existing top-k dominating algorithm [24] that
operates on aR-trees.

3.1 Score bounding functions

Before presenting our top-k dominating algorithms, we first
introduce some notation that will be used in this paper. For
an aR-tree entry e (i.e., a minimum bounding box) whose
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Fig. 3 Dominance relationship among aR-tree entries

projection on the i th dimension is the interval [e[i]−, e[i]+],
we denote its lower corner e− and upper corner e+ by

e− = (e[1]−, e[2]−, . . . , e[d]−)
e+ = (e[1]+, e[2]+, . . . , e[d]+)
Observe that both e− and e+ do not correspond to actual data
points but they allow us to express dominance relationships
among points and minimum bounding boxes conveniently.
As Fig. 3 illustrates, there are three cases for a point to domi-
nate a non-leaf entry. Since p1 � e−

1 (i.e., full dominance),
p1 must also dominate all data points indexed under e1. On
the other hand, point p2 dominates e+

1 but not e−
1 (i.e., par-

tial dominance), thus p2 dominates some, but not all data
points in e1. Finally, as p3 � e+

1 (i.e., no dominance), p3

cannot dominate any point in e1. Similarly, the cases for an
entry to dominate another entry are: (i) full dominance (e.g.,
e+

1 � e−
3 ), (ii) partial dominance (e.g., e−

1 � e+
4 ∧e+

1 � e−
4 ),

(iii) no dominance (e.g., e−
1 � e+

2 ).
Given a tree entry e, whose sub-tree has not been visi-

ted, τ(e+) and τ(e−) correspond to the tightmost lower and
upper score bounds respectively, for any point indexed under
e. As we will show later, τ(e+) and τ(e−) can be computed
by a search procedure that accesses only aR-tree nodes that
intersect e along at least one dimension. These bounds help
pruning the search space and defining a good order for visi-
ting aR-tree nodes. Later in Sects. 4 and 5, we replace the tight
bounds τ(e+) and τ(e−) with loose lower and upper bounds
for them (τ l(e) and τ u(e), respectively). Bounds τ l(e) and
τ u(e) are cheaper to compute and can be progressively refi-
ned during search, therefore trading-off between computa-
tion cost and bound tightness. The computation and use of
score bounds in practice will be further elaborated there.

3.2 Optimizing the skyline-based approach

Papadias et al. [24] proposed a Skyline-Based Top-k Domi-
nating Algorithm (STD) for top-k dominating queries, on
data indexed by an R-tree. They noted that the skyline is
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guaranteed to contain the top-1 dominating point, since a
non-skyline point has lower score than a skyline point that
dominates it (see Eq. 2). Thus, STD retrieves the skyline
points, computes their τ scores and outputs the point p with
the highest score. It then removes p from the dataset, incre-
mentally finds the skyline of the remaining points, and repeats
the same process.

Consider for example a top-2 dominating query on the
dataset shown in Fig. 4. STD first retrieves the skyline points
p1, p2, and p3 (using the BBS skyline algorithm of [24]). For
each skyline point, a range query is issued to count the num-
ber of points it dominates. After that, we have τ(p1) = 1,
τ(p2) = 4, and τ(p3) = 1. Hence, p2 is reported as the top-1
result. We now restrict the region of searching for the next
result. First, Eq. 2 suggests that the region dominated by the
remaining skyline points (i.e., p1 and p3) needs not be exa-
mined. Second, the region dominated by p2 (i.e., the previous
result) may contain some points which are not dominated by
the remaining skyline points p1 and p3. It suffices to retrieve
the skyline points (i.e., p4 and p5) in the constrained (gray)
region M shown in Fig. 4. After counting their scores using
the tree, we have τ(p4) = 2 and τ(p5) = 1. Finally, we com-
pare them with the scores of retrieved points (i.e., p1 and p3)
and report p4 as the next result.

In this section, we present two optimizations that greatly
reduce the I/O cost of the above solution by exploiting
aR-trees. Our first optimization is called batch counting. Ins-
tead of iteratively applying separate range queries to compute
the scores of the skyline points, we perform them in batch.
Algorithm 1 shows the pseudo-code of this recursive batch
counting procedure. It takes two parameters: the current aR-
tree node Z and the set of points V , whose τ scores are to
be counted. Initially, Z is set to the root node of the tree
and τ(p) is set to 0 for each p ∈ V . Let e be the current
entry in Z to be examined. As illustrated in Sect. 3.1, if e
is a non-leaf entry and there exists some point p ∈ V such
that p � e+ ∧ p � e−, then p may dominate some (but not
guaranteed to dominate all) points indexed under e. Thus,
we cannot immediately decide the number of points in e

dominated by p. In this case, we have to invoke the algo-
rithm recursively on the child node pointed by e. Otherwise,
for each point p ∈ V , its score is incremented by COUNT(e)
when it dominates e−. BatchCount correctly computes the τ
score for all p ∈ V , at a single tree traversal.

Algorithm 1 Batch Counting
algorithm BatchCount(Node Z , Point set V )

1: for all entries e ∈ Z do
2: if Z is non-leaf and ∃p ∈ V, p � e+ ∧ p � e− then
3: read the child node Z ′ pointed by e;
4: BatchCount(Z ′, V );
5: else
6: for all points p ∈ V do
7: if p � e− then
8: τ(p):=τ(p)+COUNT(e);

Algorithm 2 is a pseudo-code of the Iterative Top-k Domi-
nating Algorithm (ITD), which optimizes the STD algorithm
of [24]. Like STD, ITD computes the top-k dominating points
iteratively. In the first iteration, ITD computes in V ′ the sky-
line of the whole dataset, while in subsequent iterations, the
computation is constrained to a region M . M is the region
dominated by the reported point q in the previous iteration,
but not any point in the set V of retrieved points in past ite-
rations. At each loop, Lines 6–8 compute the scores for the
points in V ′ in batches of B points each (B ≤ |V ′|). By
default, the value of B is set to the number of points that can
fit into a memory page. Our second optimization is that we
sort the points in V ′ by a space-filling curve (Hilbert orde-
ring) [3] before applying batch counting, in order to increase
the compactness of the MBR of a batch. After merging the
constrained skyline with the global one, the object q with
the highest τ score is reported as the next dominating object,
removed from V and used to compute the constrained skyline
at the next iteration. The algorithm terminates after k objects
have been reported.

For instance, in Fig. 4, q corresponds to point (0, 0) and
V = ∅ in the first loop, thus M corresponds to the whole
space and the whole skyline {p1, p2, p3} is stored in V ′,
the points there are sorted and split in batches and their τ
scores are counted using the BatchCount algorithm. In the
beginning of the second loop, q = p2, V = {p1, p3}, and M
is the gray region in the figure. V ′ now becomes {p4, p5} and
the corresponding scores are batch-counted. The next point
is then reported (e.g., p4) and the algorithm continues as long
as more results are required.

4 Counting-guided search

The skyline-based solution becomes inefficient for datasets
with large skylines as τ scores of many points are computed.
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Algorithm 2 Iterative Top-k Dominating Algorithm (ITD)
algorithm ITD(Tree R, Integer k)

1: V :=∅; q:=origin point;
2: for i := 1 to k do
3: M :=region dominated by q but by no point in V ;
4: V ′:=skyline points in M ;
5: sort the points in V ′ by Hilbert ordering;
6: for all batches Vc of (B) points in V ′ do
7: initialize all scores of points in Vc to 0;
8: BatchCount(R.root ,Vc);
9: V :=V ∪ V ′;
10: q:=the point with maximum score in V ;
11: remove q from V ;
12: report q as the i th result;

In addition, not all skyline points have large τ scores. Moti-
vated by these observations, we study algorithms that solve
the problem directly, without depending on skyline compu-
tations. This section presents an eager approach for the eva-
luation of top-k dominating queries, which traverses the aR-
tree and computes tight upper score bounds for encountered
non-leaf tree entries immediately; these bounds determine
the visiting order for the tree nodes. We discuss the basic
algorithm, develop optimizations for it, and investigate by
an analytical study the improvements of these optimizations.

4.1 The basic algorithm

Recall from Sect. 3.1 that the score of any point p indexed
under an entry e is upper-bounded by τ(e−). Based on this
observation, we can design a method that traverses aR-tree
nodes in descending order of their (upper bound) scores. The
rationale is that points with high scores can be retrieved early
and accesses to aR-tree nodes that do not contribute to the
result can be avoided.

Algorithm 3 shows the pseudo code of the Simple
Counting-Guided Algorithm (SCG), which directs search by
counting upper bound scores of examined non-leaf entries.
A max-heap H is employed for organizing the entries to be
visited in descending order of their scores. W is a min-heap
for managing the top-k dominating points as the algorithm
progresses, while γ is the kth score in W (used for pru-
ning). First, the upper bound scores τ(e−) of the aR-tree root
entries are computed in batch (using the BatchCount algo-
rithm) and these are inserted into the max-heap H . While the
score τ(e−) of H ’s top entry e is higher than γ (implying
that points with scores higher than γ may be indexed under
e), the top entry is deheaped, and the node Z pointed by e is
visited. If Z is a non-leaf node, its entries are enheaped, after
BatchCount is called to compute their upper score bounds. If
Z is a leaf node, the scores of the points in it are computed in
batch and the top-k set W (also γ ) is updated, if applicable.

As an example, consider the top-1 dominating query on
the set of points in Fig. 5. There are 3 leaf nodes and their

Algorithm 3 Simple Counting Guided Algorithm (SCG)
algorithm SCG(Tree R, Integer k)

1: H :=new max-heap; W :=new min-heap;
2: γ :=0; � the kth highest score found so far
3: BatchCount(R.root ,{e− | e ∈ R.root});
4: for all entries e ∈ R.root do
5: enheap(H, 〈e, τ (e−)〉);
6: while |H | > 0 and H ’s top entry’s score > γ do
7: e:=deheap(H);
8: read the child node Z pointed by e;
9: if Z is non-leaf then
10: BatchCount(R.root ,{e−

c | ec ∈ Z});
11: for all entries ec ∈ Z do
12: enheap(H, 〈ec, τ (e−

c )〉);
13: else � Z is a leaf
14: BatchCount(R.root ,{p | p ∈ Z});
15: update W and γ , using 〈p, τ (p)〉,∀p ∈ Z
16: report W as the result;
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corresponding entries in the root node are e1, e2, and e3.
First, upper bound scores for the root entries (i.e., τ(e−

1 ) = 3,
τ(e−

2 ) = 7, τ(e−
3 ) = 3) are computed by the batch counting

algorithm, which incurs 3 node accesses (i.e., the root node
and leaf nodes pointed by e1 and e3). Since e2 has the highest
upper bound score, the leaf node pointed by e2 will be acces-
sed next. Scores of entries in e2 are computed in batch and
we obtain τ(p1) = 5, τ(p2) = 1, τ(p3) = 2. Since p1 is a
point and τ(p1) is higher than the scores of remaining entries
(p2, p3, e1, e3), p1 is guaranteed to be the top-1 result.

4.2 Optimizations

Now, we discuss three optimizations that can greatly reduce
the cost of the basic SCG. First, we utilize encountered data
points to strengthen the pruning power of the algorithm. Next,
we apply a lazy counting method that delays the counting
for points, in order to form better groups for batch coun-
ting. Finally, we develop a lightweight technique for deriving
upper score bounds of non-leaf entries at low cost.
The pruner set. SCG visits nodes and counts the scores of
points and entries, based only on the condition that the upper
bound score of their parent entry is greater than γ . However,
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we observe that points which have been counted, but have
scores at most γ can also be used to prune early other entries
or points, which are dominated by them. 1 Thus, we main-
tain a pruner set F , which contains points that (i) have been
counted exactly (i.e., at Line 15), (ii) have scores at most γ ,
and (iii) are not dominated by any other point in F . The third
condition ensures that only minimal information is kept in F .
2 We perform the following changes to SCG in order to use
F . First, after deheaping an entry e (Line 7), we check whe-
ther there exists a point p ∈ F , such that p � e−. If yes, then
e is pruned and the algorithm goes back to Line 6. Second,
before applying BatchCount at Lines 10 and 14, we eliminate
any entries or points that are dominated by a point in F .

Lazy counting. The performance of SCG is negatively affec-
ted by executions of BatchCount for a small number of points.
A batch may have few points if many points in a leaf node are
pruned with the help of F . In order to avoid this problem, we
employ a lazy counting technique, which works as follows.
When a leaf node is visited (Line 13), instead of directly per-
forming batch counting for the points p, those that are not
pruned by F are inserted into a set L , with their upper bound
score τ(e−) from the parent entry. If, after an insertion, the
size of L exceeds B (the size of a batch), then BatchCount is
executed for the contents of L , and all W , γ , F are updated.
Just before reporting the final result set (Line 16), batch coun-
ting is performed for potential results p ∈ L not dominated
by any point in F and with upper bound score greater than γ .
We found that the combined effect of the pruner set and lazy
counting lead to 30% I/O cost reduction of SCG, in practice.

Lightweight upper bound computation. As mentioned in
Sect. 3.1, the tight upper score bound τ(e−) can be replaced
by a looser, cheaper to compute, bound τ u(e). We propose
an optimized version of SCG, called Lightweight Counting
Guided Algorithm (LCG). Line 10 of SCG (Algorithm 3) is
replaced by a call to LightBatchCount, which is a variation of
BatchCount. In specific, when bounds for a set V of non-leaf
entries are counted, the algorithm avoids expensive accesses
at aR-tree leaf nodes, but uses entries at non-leaf nodes to
derive looser bounds.

LightBatchCount is identical to Algorithm 1, except that
the recursion of Line 2 is applied when Z is at least two
levels above leaf nodes and there is a point in V that partially
dominates e; thus, the else statement at Line 5 now refers to
nodes one level above the leaves. In addition, the condition
at Line 7 is replaced by p � e+; i.e., COUNT(e) is added to
τ u(p), even if p partially dominates entry e.

1 Suppose that a point p satisfies τ(p) ≤ γ . Applying Eq. 2, if a point
p′ is dominated by p, then we have τ(p′) < γ .
2 Note that F is the skyline of a specific data subset.

As an example, consider the three root entries of Fig. 5. We
can compute loose upper score bounds for V = {e−

1 , e−
2 , e−

3 },
without accessing the leaf nodes. Since, e−

2 fully dominates
e2 and partially dominates e1, e3, we get τ u(e2) = 9. Simi-
larly, we get τ u(e1) = 3 and τ u(e3) = 3. Although these
bounds are looser than the respective tight ones, they still
provide a good order of visiting the entries and they can be
used for pruning and checking for termination. In Sect. 8, we
demonstrate the significant computation savings by this light-
weight counting (of τ u(e)) over exact counting (of τ(e−))
and show that it affects very little the pruning power of the
algorithm. Next, we investigate its effectiveness by a theore-
tical analysis.

4.3 Analytical study

Consider a dataset D with N points, indexed by an aR-tree
whose nodes have an average fanout f . Our analysis is based
on the assumption that the data points are uniformly and inde-
pendently distributed in the domain space [0, 1]d , where d is
the dimensionality. Then, the tree height h and the number
of nodes ni at level i (let the leaf level be 0) can be estimated
by h = 1 + �log f (N/ f )� and ni = N/ f i+1. Besides, the
extent (i.e., length of any 1D projection) λi of a node at the
i th level can be approximated by λi = (1/ni )

1/d [30].
We now discuss the trade-off of lightweight counting over

exact counting for a non-leaf entry e. Recall that the exact
upper bound score τ(e−) is counted as the number of points
dominated by its lower corner e−. On the other hand, light-
weight counting obtains τ u(e); an upper bound of τ(e−). For
a given e−, Fig. 6 shows that the space can be divided into
three regions, with respect to nodes at level i . The gray region
M2 corresponds to the maximal region, covering nodes (at
level i) that are partially dominated by e−. While compu-
ting τ(e−), only the entries which are completely inside M2

need to be further examined (e.g., eA). Other entries are pru-
ned after either disregarding their aggregate values (e.g., eB ,
which intersects M1), or adding these values to τ(e−) (e.g.,
eC , which intersects M3).

Thus, the probability of accessing a (i th level) node can
be approximated by the area of M2, assuming that tree nodes
at the same level have no overlapping. To further simplify
our analysis, suppose that all coordinates of e− are of the
same value v. Hence, the aR-tree node accesses required for
computing the exact τ(e−) can be expressed as:3

NAexact(e
−)=

h−1∑

i=0

ni · [(1−v+λi )
d−(1−v−λi )

d ] (3)

3 For simplicity, the equation does not consider the boundary effect
(i.e., v is near the domain boundary). To capture the boundary effect,
we need to bound the terms (1 − v + λi ) and (1 − v − λi ) within the
range [0, 1].
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Fig. 6 I/O cost of computing upper bound

In the above equation, the quantity in the square brackets
corresponds to the volume of M2 (at level i) over the volume
of the universe (this equals to 1), capturing thus the proba-
bility of a node at level i to be completely inside M2. The
node accesses of lightweight computation can also be captu-
red by the above equation, except that no leaf nodes (i.e., at
level 0) are accessed. As there are many more leaf nodes than
non-leaf nodes, lightweight computation incurs significantly
lower cost than exact computation.

Now, we compare the scores obtained by exact computa-
tion and lightweight computation. The exact score τ(e−) is
determined by the area dominated by e−:

τ(e−) = N · (1 − v)d (4)

In addition to the above points, lightweight computation
counts also all points in M2 for the leaf level into the upper
bound score:

τ u(e) = N · (1 − v + λ0)
d (5)

Summarizing, three factors N , v, and d affect the relative
tightness of the lightweight score bound over the exact bound.

− When N is large, the leaf node extent λ0 is small and
thus the lightweight score is tight.

− If v is small, i.e., e− is close to the origin and has high
dominating power, then λ0 becomes less significant in
Eq. 5 and the ratio of τ u(e) to τ(e−) is close to 1 (i.e.,
lightweight score becomes relatively tight).

− As d increases (decreases), λ0 also increases (decreases)
and the lightweight score gets looser (tighter).

In practice, during counting-guided search, entries close
to the origin have higher probability to be accessed than other
entries, since their parent entries have higher upper bounds
and they are prioritized by search. As a result, we expect that
the second case above will hold for most of the upper bound
computations and lightweight computation will be effective.

5 Priority-based traversal

In this section, we present a lazy alternative to the
counting-guided method. Instead of computing upper bounds
of visited entries by explicit counting, we defer score compu-
tations for entries, but maintain lower and upper bounds for
them as the tree is traversed. Score bounds for visited entries
are gradually refined when more nodes are accessed, until
the result is finalized with the help of them. For this method
to be effective, the tree is traversed with a carefully-designed
priority order aiming at minimizing I/O cost. We present the
basic algorithm, analyze the issue of setting an appropriate
order for visiting nodes, and discuss its implementation.

5.1 The basic algorithm

Recall that counting-guided search, presented in the previous
section, may access some aR-tree nodes more than once
due to the application of counting operations for the visited
entries. For instance in Fig. 5, the node pointed by e1 may be
accessed twice; once for counting the scores of points under
e2 and once for counting the scores of points under e1. We
now propose a top-k dominating algorithm which traverses
each node at most once and has reduced I/O cost.

Algorithm 4 shows the pseudo-code of this Priority-Based
Tree Traversal Algorithm (PBT). PBT browses the tree, while
maintaining (loose) upper τ u(e) and lower τ l(e) score
bounds for the entries e that have been seen so far. The nodes
of the tree are visited based on a priority order. The issue of
defining an appropriate ordering of node visits will be elabo-
rated later. During traversal, PBT maintains a set S of visited
aR-tree entries. An entry in S can either: (i) lead to a poten-
tial result, or (ii) be partially dominated by other entries in S
that may end up in the result. W is a min-heap, employed for
tracking the top-k points (in terms of their τ l scores) found
so far, whereas γ is the lowest score in W (used for pruning).

First, the root node is loaded, and its entries are inserted
into S after upper score bounds have been derived from infor-
mation in the root node. Then (Lines 8–18), while S contains
non-leaf entries, the non-leaf entry ez with the highest priority
is removed from S, the corresponding tree node Z is visited
and (i) the τ u (τ l ) scores of existing entries in S (partially
dominating ez) are refined using the contents of Z , (ii) τ u (τ l )
values for the contents of Z are computed and, in turn, inser-
ted to S. Note that for operations (i) and (ii), only information
from the current node and S is used; no additional accesses to
the tree are required. Updates and computations of τ u scores
are performed incrementally with the information of ez and
entries in S that partially dominate ez . W is updated with
points/entries of higher τ l than γ . Finally (Line 20), entries
are pruned from S if (i) they cannot lead to points that may be
included in W , and (ii) are not partially dominated by entries
leading to points that can reach W .
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Algorithm 4 Priority-Based Tree Traversal Algorithm (PBT)
algorithm PBT(Tree R, Integer k)

1: S:=new set; � entry format in S: 〈e, τ l (e), τ u(e)〉
2: W :=new min-heap; � k points with the highest τ l

3: γ :=0; � the kth highest τ l score found so far
4: for all ex ∈ R.root do
5: τ l (ex ):=

∑
e∈R.root∧e+

x �e−COUNT(e);
6: τ u(ex ):=

∑
e∈R.root∧e−

x �e+COUNT(e);
7: insert ex into S and update W ;
8: while S contains non-leaf entries do
9: remove ez : non-leaf entry of S with the highest priority;
10: read the child node Z pointed by ez ;
11: for all ey ∈ S such that e+

y � e−
z ∧ e−

y � e+
z do

12: τ l (ey):=τ l (ey)+ ∑
e∈Z∧e+

y �e−COUNT(e);

13: τ u(ey):=τ l(ey)+ ∑
e∈Z∧e+

y �e−∧e−
y �e+COUNT(e);

14: Sz :=Z ∪ {e ∈ S | e+
z � e− ∧ e−

z � e+};
15: for all ex ∈ Z do
16: τ l (ex ):=τ l (ez)+ ∑

e∈Sz∧e+
x �e−COUNT(e);

17: τ u(ex ):=τ l(ex )+ ∑
e∈Sz∧e+

x �e−∧e−
x �e+COUNT(e);

18: insert all entries of Z into S;
19: update W (and γ ) by e′ ∈ S whose score bounds changed;
20: remove entries em from S where τ u(em) < γ and ¬∃e ∈

S, (τ u(e) ≥ γ ) ∧ (e+ � e−
m ∧ e− � e+

m );
21: report W as the result;

It is important to note that, at Line 21 of PBT, all non-leaf
entries have been removed from the set S, and thus (result)
points in W have their exact scores found.

To comprehend the functionality of PBT consider again
the top-1 dominating query on the example of Fig. 5. For
the ease of discussion, we denote the score bounds of an
entry e by the interval τ�(e) = [τ l(e), τ u(e)]. Initially, PBT
accesses the root node and its entries are inserted into S after
their lower/upper bound scores are derived (see Lines 5–6);
τ�(e1) = [0, 3], τ�(e2) = [0, 9], τ�(e3) = [0, 3]. Assume for
now, that visited nodes are prioritized (Lines 9-10) based
on the upper bound scores τ u(e) of entries e ∈ S. Entry
e2, of the highest score τ u in S is removed and its child
node Z is accessed. Since e−

1 � e+
2 and e−

3 � e+
2 , the

upper/lower score bounds of remaining entries {e1, e3} in
S will not be updated (the condition of Line 11 is not satis-
fied). The score bounds for the points p1, p2, and p3 in Z are
then computed; τ�(p1) = [1, 7], τ�(p2) = [0, 3], and τ�(p3)

= [0, 3]. These points are inserted into S, and W = {p1} with
γ = τ l(p1)=1. No entry or point in S can be pruned, since
their upper bounds are all greater than γ . The next non-
leaf entry to be removed from S is e1 (the tie with e3 is
broken arbitrarily). The score bounds of the existing entries
S = {e3, p1, p2, p3} are in turn refined; τ�(e3) remains [0, 3]
(unaffected by e1), whereas τ�(p1) = [3, 6], τ�(p2) = [1, 1],
and τ�(p3) = [0, 3]. The scores of the points indexed by
e1 are computed; τ�(p4) = [0, 0], τ�(p5) = [0, 0], and
τ�(p6) = [1, 1] and W is updated to p1 withγ = τ l(p1) = 3.
At this stage, all points, except p1, are pruned from S, since
their τ u scores are at most γ and they are not partially domi-

nated by non-leaf entries that may contain potential results.
Although no point from e3 can have higher score than p1, we
still have to keep e3, in order to compute the exact score of
p1 in the next round.

5.2 Traversal orders in PBT

An intuitive method for prioritizing entries at Line 9 of PBT,
hinted by the upper bound principle of [19] or the best-first
ordering of [13,24], is to pick the entry ez with the highest
upper bound score τ u(ez); such an order would visit the
points that have high probability to be in the top-k domi-
nating result early. We denote this instantiation of PBT by
UBT (for Upper-bound Based Traversal).

Nevertheless a closer look into PBT (Algorithm 4) reveals
that the upper score bounds alone may not offer the best
priority order for traversing the tree. Recall that the pruning
operation (at Line 20) eliminates entries from S, saving signi-
ficant I/O cost and leading to the early termination of the
algorithm. The effectiveness of this pruning depends on the
lower bounds of the best points (stored in W ). Unless these
bounds are tight enough, PBT will not terminate early and S
will grow very large.

For example, consider the application of UBT to the tree
of Fig. 2. The first few nodes accessed are in the order: root
node, e18, e11, e9, e12. Although e11 has the highest upper
bound score, it partially dominates high-level entries (e.g.,
e17 and e20), whose child nodes have not been accessed yet.
As a result, the best-k score γ (i.e., the current lower bound
score of e11) is small, few entries can be pruned, and the
algorithm does not terminate early.

Thus, the objective of search is not only to (i) examine the
entries of large upper bounds early, which leads to early iden-
tification of candidate query results, but also (ii) eliminate
partial dominance relationships between entries that appear
in S, which facilitates the computation of tight lower bounds
for these candidates. We now investigate the factors affecting
the probability that one node partially dominates another and
link them to the traversal order of PBT. Let a and b be two
random nodes of the tree such that a is at level i and b is at
level j . Using the same uniformity assumptions and notation
as in Sect. 4.3, we can infer that the two nodes a and b not
intersect along dimension t with probability:4

Pr(a[t] ∩ b[t] = ∅) = 1 − (λi + λ j )

a and b have a partial dominance relationship when they
intersect along at least one dimension. The probability of

4 The current equation is simplified for readability. The probability
equals 0 when λi + λ j > 1.

123



704 M. L. Yiu, N. Mamoulis

being such is:

Pr

⎛

⎝
∨

t∈[1,d]
a[t] ∩ b[t] �= ∅

⎞

⎠ = 1 − (1 − (λi + λ j ))
d

The above probability is small when the sum λi +λ j is mini-
mized (e.g., a and b are both at low levels).

The above analysis leads to the conclusion that in order to
minimize the partially dominating entry pairs in S, we should
prioritize the visited nodes based on their level at the tree. In
addition, among entries at the highest level in S, we should
choose the one with the highest upper bound, in order to find
the points with high scores early. Accordingly, we propose
an instantiation of PBT, called Cost-Based Traversal (CBT).
CBT corresponds to Algorithm 4, such that, at Line 9, the
non-leaf entry ez with the highest level is removed from S
and processed; if there are ties, the entry with the highest
upper bound score is picked. In Sect. 8, we demonstrate the
advantage of CBT over UBT in practice.

5.3 Implementation details

A straightforward implementation of PBT may lead to very
high computational cost. At each loop, the burden of the
algorithm is the pruning step (Line 20 of Algorithm 4), which
has worst-case cost quadratic to the size of S; entries are
pruned from S if (i) their upper bound scores are below γ

and (ii) they are not partially dominated by any other entry
with upper bound score above γ . If an entry em satisfies (i),
then a scan of S is required to check (ii).

In order to check for condition (ii) efficiently, we use a
main-memory R-tree I (S) to index the entries in S having
upper bound score above γ . When the upper bound score
of an entry drops below γ , it is removed from I (S). When
checking for pruning of em at Line 20 of PBT, we only need
to examine the entries indexed by I (S), as only these have
upper bound scores above γ . In particular, we may not even
have to traverse the whole index I (S). For instance, if a non-
leaf entry e′ in I (S) does not partially dominate em , then we
need not check for the subtree of e′. As we verified expe-
rimentally, maintaining I (S) enables the pruning step to be
implemented efficiently. In addition to I (S), we tried addi-
tional data structures for accelerating the operations of PBT
(e.g., a priority queue for popping the next entry from S at
Line 9), however, the maintenance cost of these data struc-
tures (as the upper bounds of entries in S change frequently at
Lines 11–13) did not justify the performance gains by them.

6 Query processing on non-indexed data

This section examines the evaluation of top-k dominating
queries on non-indexed data, assuming that data points are
stored in random order in a disk file D.

As discussed in [31], a practically viable solution is to first
bulk-load an aR-tree (e.g., using the algorithm of [18]) from
the dataset and then compute top-k dominating points using
the algorithms proposed in Sects. 4 and 5. The bulk-loading
step requires externally sorting the points, which is known to
scale well for large datasets. However, external sorting may
incur multiple I/O passes over data.

Our goal is to compute the top-k dominating points with
only a constant number (3) of data passes, by adopting the
filter-refinement framework. The first pass is the counting
pass, which employs a memory grid structure to keep track
of point count in cells, while scanning over the data. This
structure is then used to derive lower/upper bound scores
of points in the next pass. The second pass is the filter pass,
which applies pruning rules to discard unqualified points and
keep the remaining ones in a candidate set. The refinement
pass, being the final pass, performs a scan over the data in
order to count the exact τ scores of all candidate points.
Eventually, the top-k dominating points are returned.

In Sect. 6.1, we present the details of the counting pass. We
investigate different techniques for the filter pass in Sects. 6.2
and 6.3; these techniques trade-off efficiency (i.e., CPU time
at the filter step) for filter effectiveness (i.e., size of the can-
didate set). Finally, Sect. 6.4 discusses the final, refinement
pass of the algorithm.

6.1 The counting pass

The first step of the algorithm defines a regular
multi-dimensional grid over the space and performs a linear
scan to the data to count the number of points in each grid
cell. Such a 2-dimensional histogram (with 4 × 4 cells) is
shown in Fig. 7a. To ease our discussion, each grid cell is
labeled as gi j . While scanning the points, we increase the
counters of the cells that contain them, but do not keep the
visited points in memory. In this example, at the end of scan,
we have COUNT(g11) = 0 and COUNT(g12) = 10. We adopt
the following convention so that each point contributes to the
counter of exactly one cell. In case a point (e.g., p1) falls on
the common border of multiple cells (e.g., g23 and g33), it
belongs to the cell (e.g., g33) with the largest coordinates.

After the counting pass, and before the filter pass begins,
we can derive lower/upper bound scores of the cells from
their point counts, by using the notations of Sect. 3.1. This
enables us to determine fast the cells that cannot contain top-
k dominating points. Given a grid cell g, its upper bound
score τ u(g) is the total point count of cells it partially or
fully dominates.

τ u(g) =
∑

gy∈G∧g−�g+
y

COUNT(gy)
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Fig. 7 Using the grid in the filter step, k = 2

In Fig. 7b, the cell g33 dominates g33, g43, g34, and g44, so
we have τ u(g33) = 40. The lower bound score τ l(g) of g is
the total point count of cells it fully dominates.

τ l(g) =
∑

gy∈G∧g+�g−
y

COUNT(gy)

For instance, g33 fully dominates g44 so we obtain τ l(g33) =
10 (not shown in the figure).

Besides score bounds, pruning can also be achieved with
the help of the dominance property. From Eq. 2, we observe
that, a point cannot belong to the result if it is dominated by
k other points. Thus, we define the dominated count g.φ of
the cell g as the total point count of cells fully dominating g.

g.φ =
∑

gy∈G∧g+
y �g−

COUNT(gy)

For example, g32 is fully dominated by g11 and g21, so we
get g32.φ = 0 + 10 = 10. Clearly, a cell with gi j .φ ≥ k
cannot contain any of the top-k results.

Let k = 2 in the example of Fig. 7b. We proceed to deter-
mine the cells that cannot contain query results. These include
cells with zero count (e.g., g11) and cells having gi j .φ ≥ k
(e.g., g23). In order to obtain the value γ (lower bound score
of top-k points), we enumerate the remaining cell(s) in des-
cending order of their τ l scores, until their total point count
reaches k. Since the cell g12 contains 10 (≥ k) points and
its τ l score is 60, we set γ = 60. Obviously, cells (e.g., g14)
whose upper score bounds below γ = 60 can be pruned. The

remaining cells (containing potential results) are colored as
gray in Fig. 7b.

6.2 Coarse-grained filter

During, the second (filter) pass, the algorithm scans the data
again and determines a set of candidate points for the top-k
dominating query. The first method we propose for the fil-
ter pass is called coarse-grained filter (CRS). CRS scans the
database and uses the score bounds of grid cells and the domi-
nance property (of Eq. 2) to prune points. CRS is described
by Algorithm 5. Each cell g is coupled with a candidate set
g.C , for maintaining candidate points that fall in g (this is
done only for cells g that are not pruned after the counting
pass). Initially, we have no information about the detailed
contents of the cells. However, using the lower score bounds
τ l of the cells and their cardinalities, we can initialize γ ; the
kth highest τ l score of the top-k dominating candidates. In
other words, we assume that each candidate has the maxi-
mum coordinates in its container cell g (worst case) and use
τ l(g) as its lower bound. The algorithm then performs a linear
scan over the dataset D at Lines 4–16. For the point p being
currently examined, we initialize its upper bound τ u(p) and
dominated count p.φ using the corresponding values of its
container cell gp.

Algorithm 5 Coarse-grained Filter Algorithm (CRS-Filter)
algorithm CRS-Filter(Dataset D, Integer k, Grid G)

1: for all cell g ∈ G do
2: g.C :=new set; � candidate set of the cell
3: γ :=the kth highest τ l score of cells in G; � for each cell g ∈ G,

COUNT(g) instances of the score τ l (g) are considered
4: for all p ∈ D do � filter scan
5: let gp be the grid cell of p;
6: τ u(p):=τ u(gp); p.φ:=gp.φ;
7: for all cells gz ∈ G such that g−

z � g+
p ∧ g+

z � g−
p do

8: for all p′ ∈ gz .C such that p′ � p do
9: p.φ:=p.φ + 1;
10: if p.φ ≥ k then
11: ignore further processing for the point p;
12: for all cells gz ∈ G such that g−

p � g+
z ∧ g+

p � g−
z do

13: for all p′ ∈ gz .C such that p � p′ do
14: p′.φ:=p′.φ + 1;
15: if p′.φ ≥ k then
16: remove p′ from gz .C ;
17: if τ u(p) ≥ γ and p.φ < k then
18: insert p into gp .C ;

In the loop of Lines 7–11, we search for candidate points
p′ that dominate p and have already been read in memory.
For each such occurrence, the value p.φ is incremented. Due
to the presence of the dominated count gp.φ of the grid cell,
it suffices to traverse only the cells that partially dominate
the cell of p (as opposed to all cells). Whenever p.φ reaches
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k, p.φ needs not be incremented further (and the loop exits);
in this case p cannot be a top-k dominating result.

In the loop of Lines 12–16, we search for candidate points
p′ that are dominated by p and have already been read in
memory. The p′.φ of each such point p′ is incremented; and
the point is pruned from the candidate set when p′.φ reaches
k. Note that Lines 12–16 need not be executed when p.φ
is (at least) k. The reason is that any existing candidate p′
which is dominated by p must have also been dominated by
the k dominators of p and therefore already been pruned in
a previous iteration.

At Lines 17–18, we insert the current point p into the
candidate set gp.C of its cell gp, only when its τ u(p) score
is above γ and its p.φ value is less than k.

6.3 Fine-grained filter

CRS simply sets the score bounds of candidate points to
those of their cells. Since each cell may contain a large num-
ber of points, their score bounds are not tight, weakening
the filter effectiveness of CRS. In this section, we develop
a fine-grained solution (FN) that tightens the score bounds
of candidate points gradually. This way, more unqualified
points having low scores can be eliminated from the search
early.

Tightening the score bounds of points. Consider the filter step
during the processing of the top-2 dominating query (i.e.,
k = 2) on Fig. 7c. Suppose that, the points p4, p5, p6 are
existing candidates (they have already been read during the
filter pass), and the next point to be processed is p7.

The first technique is to tighten score bounds by using
the current point p7 and existing candidate points p4, p5,
p6. First of all, we set τ l(p7) = 40 and τ u(p7) = 90, by
using score bounds of p7’s cell g22. To tighten score bounds
of existing candidates, we traverse the cells (i.e., g12, g22,
g21) that partially dominate g22. Since p4 dominates p7, we
increment τ l(p4). On the other hand, p5 and p6 do not domi-
nate p7 so their τ u scores are decremented. To tighten score
bounds of the current point p7, we traverse the cells (e.g.,
g22, g32, g42, g23, g24) that are partially dominated by g22.
As p7 dominates p6, we increment τ l(p7). In addition, the
dominated count of p6 now becomes 2 (≥ k) so it is removed
from the local candidate set g22.C .

A second technique is to tighten score bounds by
utilizing bounds of candidate points that have not already
been pruned. Assume in Fig. 7d that, the point p17 is visi-
ted after points p11 and p14 (intermediate points like p12

have been pruned). In this case, τ l(p17) can be tightened to
max{τ l(p17), τ

l(p11), τ
l(p14)}. As another example, sup-

pose that the point p29 is visited after points p23 and p26.
Then, the upper bound score of p29 can be tightened to
min{τ u(p29), τ

u(p23), τ
u(p26)}.

Writing disk partitions. We observe that the pruning effecti-
veness of the algorithm can be significantly improved if we
are able to identify points with high scores early. To achieve
this, we modify the counting pass (described in Sect. 6.1) as
follows. Each grid cell g is allocated a memory partition (at
least one page) to store the accessed points that fall in the cell.
Whenever the memory becomes full, the largest memory par-
tition is flushed into its corresponding disk partition g.D (i.e.,
a sequential file). At the end of the counting pass, remaining
points in memory are flushed into their respective disk parti-
tions. This modification costs an additional writing pass over
the data, yet it permits us to access the disk partitions using
different orderings (in the subsequent filter and refinement
passes).

Algorithm. Algorithm 6 presents the details of our Fine-
grained Filter Algorithm (FN-Filter). A min-heap W is used
to keep track of k points with the highest τ l scores seen so far
and γ is set to the kth score in W . Like in the CRS-Filter, we
first determine the kth highest lower bound score γ from the
τ l scores and point counts of grid cells. Then, k dummy pairs
having the score γ are inserted into W . The set S contains
the grid cells whose disk partitions have yet to be visited.
Initially, all grid cells are inserted into S.

At Line 10, we pick the grid cell g from S with the highest
priority value, which will be elaborated shortly. In case the
cell has upper bound score τ u(g) below γ and it is not par-
tially dominated by any other grid cell gz with τ u(gz) ≥ γ ,
the disk partition g.D of g is ignored. The reason is that
(i) g may not contain any top-k point and (ii) its contribu-
tion to top-k candidates has already been captured in their
upper/lower bounds. Otherwise, at Lines 13–38, a scan is
performed over the points in g.D. At Line 14, we set the score
bounds and dominated count of the current point p to that of
its cell gp. At Lines 16–23, we traverse the candidates in the
cells that are partially dominating gp in order to update score
bounds. This is done only for cells whose partitions have
been loaded before. Similarly, at Lines 24–30, we traverse
the candidates in cells partially dominated by gp, in order
to tighten the score bounds of the current point p. Meanw-
hile, we record the value of: (i) δ.l, the maximum τ l score
of points dominated by p, (ii) δ.u, the minimum τ u score of
points dominating p, and (iii) δ.φ, the maximum dominated
count p′.φ of points p′ dominating p. These values are then
used to update the score bounds and the dominated count of
the current point p. In case τ l(p) is greater than γ , we update
the top-k points in W . If τ u(p) is at least γ , then we insert p
into the local candidate set of its grid cell. At Lines 37–38,
existing candidate points having τ l scores above γ are used
to update W , and points with τ u scores below γ are pruned.

Order of searching disk partitions. We now investigate
concrete orderings for accessing disk partitions, at Line 10 of
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Algorithm 6 Fine-grained Filter Algorithm (FN-Filter)
algorithm FN-Filter(Dataset D, Integer k, Grid G)

1: γ :=the kth highest τ l score of cells in G; � for each cell g ∈ G,
COUNT(g) instances of the score τ l (g) are considered

2: W :=new min-heap; � k points with the highest τ l

3: insert k dummy pairs 〈NU L L , γ 〉 into W ;
4: S:=new set; � set of grid cells
5: for all cell g ∈ G do
6: g.C :=new set; � candidate set of the cell
7: let g.D be the disk partition of g;
8: insert g into S;
9: while S is non-empty do
10: remove g: the cell in S with the highest priority;
11: if τ u(g) < γ and ¬∃gz ∈ G, (τ u(gz) ≥ γ ) ∧ (g+

z �
g− ∧ g−

z � g+) then
12: ignore further processing for the disk partition g.D;
13: for all p ∈ g.D do � scan over points in disk partition g.D
14: τ l (p):=τ l(g); τ u(p):=τ u(g); p.φ:=g.φ;
15: δ.l:=−1; δ.u:=|D|; δ.φ:=−1;
16: for all cell gz ∈ G such that g−

z � g+ ∧ g+
z � g− do

17: for all p′ ∈ gz .C do � existing candidates in memory
18: if p′ � p then
19: τ l (p′):=τ l(p′)+ 1; p.φ:=p.φ + 1;
20: δ.u:=min{ δ.u, τ u(p′) };
21: δ.φ:=max{ δ.φ, p′.φ };
22: else
23: τ u(p′):=τ u(p′)− 1;
24: for all cell gz ∈ G such that g− � g+

z ∧ g+ � g−
z do

25: for all p′ ∈ gz .C do � existing candidates in memory
26: if p � p′ then
27: τ l (p):=τ l (p)+ 1; p′.φ:=p′.φ + 1;
28: δ.l:=max{ δ.l, τ l (p′) };
29: else
30: τ u(p):=τ u(p)− 1;
31: τ l (p):=max{ τ l (p), δ.l }; τ u(p):=min{ τ u(p), δ.u };
32: p.φ:=max{ p.φ, δ.φ + 1 };
33: if τ l (p) > γ and p.φ < k then
34: update W (and γ ), by 〈p, τ l (p)〉;
35: if τ u(p) ≥ γ and p.φ < k then
36: insert p into g.C ;
37: update W (and γ ) by points whose τ l scores > γ ;
38: remove points p′′ ∈ gy .C (where gy ∈ G) satisfying the

condition p′′.φ ≥ k or τ u(p′′) < γ ;

the FN-Filter algorithm. We first suggest the scanline orde-
ring as a reference, which accesses cells g in ascending order
of the value: SLV (g) = ∑d

i=1(Ti (g) − 1) · Ai−1 where
A is the number of divisions per dimension and Ti (g) =
A · g[i]+/ς (assuming domain as [0, ς ]d ). For instance,
the value of A is 4 in Fig. 7a, and we have SLV (g31) =
(3 − 1) · 1 + (1 − 1) · 4 = 2. Disk partitions of cells are visi-
ted in the order: g11, g21, g31, g41, g12, g22, . . .. This ordering
is independent of score bounds of cells.

Another ordering we consider is the upper bound score
ordering, which visits the cells in descending order of their
upper bound scores. In the example of Fig. 7b, the cells will
be visited in the order: g11, g21, g12, g22, . . .. This ordering
allows us to identify early points with high scores. However,
it may delay accessing cells that have low upper bound, but
partially dominated by those with high upper bounds. This

delays the tightening of loose bounds and, in turn, the pruning
of points.

Finally, we investigate a partial dominance elimination
ordering, which takes partial dominance relationships among
the partitions into account. We pick the cell (say, ga) with
the highest upper bound score, that partially dominates some
unvisited cells. In case ga has not been visited before, we
access its disk partition. Then, we access partitions of all
unvisited cells gb that are partially dominated by ga , in des-
cending order of their upper bound scores. The above pro-
cedure repeats until the cells are exhausted. For instance, in
Fig. 7b, we first visit the cell g21, and then visit the cells
partially dominated by it in descending upper bound score
order: g22, g31, g23, g41, g24. Next, we visit the cell g12, and
unseen cells partially dominated by it: g13, g32, g14, g42.

According to these orderings, we denote the instantiations
of the fine-grained method as follows: FNS (with scanline
ordering), FNU (with upper bound score ordering), and FNP
(with partial dominance elimination ordering).

6.4 The refinement pass

After completing the filter pass, we obtain a set C of can-
didate points, which have potential to be the actual results.
In the refinement pass, a linear scan is performed over the
dataset D; each point p′ ∈ D is compared against each can-
didate p ∈ C and the score of p is incremented when p
dominates p′. This straightforward implementation requires
|D| · |C | dominance comparisons and becomes expensive
even for moderate-sized candidate set.

In order to accelerate the refinement pass, we take advan-
tage of the lower score bounds of grid cells. Suppose that p7

is a candidate point in Fig. 7c. Since it falls in the cell g22, we
set the lower bound score of p7 to τ l(p7) = τ l(g22) = 40.
While scanning over D in the refinement pass, we need not
compare each point p′ ∈ D with the candidate p7. Only
points p′ in cells that are partially dominated by g22 (i.e.,
g22, g32, g42, g23, g24) have to be compared with p7.

Algorithm 7 is the pseudo-code of the grid-based refi-
nement algorithm. G represents the grid obtained from the
counting pass. Each grid cell g ∈ G is associated with a local
candidate set g.C , for storing candidates (from the filter pass)
that falls into the cell g. The value γ is set to the kth highest τ l

score of all candidates (assuming that their score bounds are
obtained from the filter pass). At Line 3, we check if a cell g
has τ u score below γ and it is not partially dominated by any
cell gz having some candidate point. If so, the cell is marked
as irrelevant as it cannot influence the top-k result. At Line
5, the lower bound score τ l(p) of each candidate p ∈ g.C is
reset to τ l(g). Then, a scan is performed over the dataset D.
In case the cell gp′ of the current point p′ ∈ D is irrelevant,
the point p′ is discarded immediately without further pro-
cessing. At Lines 11–13, only the cells partially dominating
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p′ need to be considered. Every candidate p in such a cell is
compared with p′, and its score τ l(p) is incremented when p
dominates p′. Eventually, the k candidate points with highest
scores are returned as the query results.

Algorithm 7 Grid-based Refinement Algorithm
algorithm GridRefinement(Dataset D, Integer k, Grid G)

1: γ :=the kth highest τ l score of candidates in cells of G;
2: for all cell g ∈ G do
3: if τ u(g) < γ and ¬∃gz ∈ G, (|gz .C | > 0) ∧ (g+

z � g−∧g−
z �

g+) then
4: mark the cell g as irrelevant;
5: for all p ∈ g.C do
6: τ l (p):=τ l(g); � reset lower bound score
7: for all p′ ∈ D do
8: let gp′ be the grid cell of p′;
9: if gp′ is irrelevant then
10: ignore further processing for point p′;
11: for all cell g ∈ G such that g− � g+

p′ ∧ g+ � g−
p′ do

12: for all p ∈ g.C such that p � p′ do
13: τ l (p):=τ l(p)+ 1;
14: return k points in

⋃
g∈G g.C with the highest τ l scores;

The above refinement algorithm is generic in the sense
that it does not utilize disk partitions of cells (created in
FN-Filter). To optimize its performance, we replace the linear
scan at Line 7 by a promising order of accessing disk parti-
tions of cells (e.g., starting with partitions that are partially
dominated by the candidate with the highest upper bound
score). Nevertheless, this optimization technique cannot be
applied if the filter step is performed by the CRS-Filter, which
does not build disk partitions of points for cells.

7 Relaxed top-k dominating query

In this section, we study a relaxed variant of the top-k domi-
nating query. Section 7.1 presents the motivation and defini-
tion of this query. We discuss adaptations of our tree-based
algorithms for evaluating this query in Sects. 7.2, 7.3, 7.4.

7.1 Motivation

While the score τ(p)models nicely the intuitive importance
of a point p, the dominance requirement may be too strict
in particular data distributions, where all points may have
similar scores. Table 1 shows the coordinate values of three
points in the 3-dimensional space. Since each point does not
dominate any other point in the dataset, we obtain τ(p1) =
τ(p2) = τ(p3) = 0. In this case, we cannot identify the most
“important” point from the dataset.

To avoid this problem, we propose to relax the dominance
requirement as follows. Given two points p, p′ ∈ D, we
define the set ω(p, p′) of dimensions such that p is smaller
than (i.e., preferable to) p′ along these dimensions:

Table 1 Example of points in the
3-dimensional space

Point p p[1] p[2] p[3]
p1 1 2 3

p2 3 1 4

p3 4 3 2

ω(p, p′) = { i | i ∈ [1, d] ∧ p[i] < p′[i] } (6)

Then, we defineψ(p, p′) = 2|ω(p,p′)|−1 (i.e., the number of
non-empty dimensional subsets ofω(p, p′)). As p dominates
p′ with respect to each of theseψ(p, p′)dimensional subsets,
we define the relaxed score of a point p as:

τr (p) =
∑

p′∈D
ψ(p, p′)

The relaxed top-k dominating query returns k points in the
dataset D with the highest τr score.

As an example, we consider τr scores of points in Table 1.
By comparing p1 with other points, we get ω(p1, p2) =
{1, 3} andω(p1, p3) = {1, 2}. Thus, we have τr (p1) = (22−
1)+ (22 − 1) = 6. Similarly, we can obtain τr (p2) = (21 −
1)+(22−1) = 4 and τr (p3) = (21−1)+(21−1) = 2. Now,
we are able to rank the three points based on their dominance
scores (e.g., p1 is the top-1 point in the dataset). In Sect. 8, we
demonstrate that this relaxed query is appropriate for search
in datasets with missing values.

Regarding the definition of ψ(p, p′), we use the num-
ber 2|ω(p,p′)| − 1 of dimensional subsets, as opposed to the
number of dimensions in ω(p, p′). The rationale is that,
a point should be assigned a very high weight if it domi-
nates others in a large number of dimensions. For example,
consider two points p1 and p2, such that p1 dominates 10
points, each along 10 dimensions, and p2 dominates 9 points,
each along 11 dimensions. Intuitively, although p2 domi-
nates fewer points, p2 should have higher score than p1

because more combinations of dimensions are involved in
the dominance relationships. The score function ψ(p, p′)
captures exactly this intuition. On the other hand, if the value
|ω(p, p′)| is used as a replacement of ψ(p, p′) in the defi-
nition of τr (p), then p1 appears better than p2, violating the
above intuition.

It fell to our attention that the relaxed top-k dominating
query shares some similarities with the concept of top-k
frequent skyline points in dimensional subsets [6]. The major
difference of our work from [6] is that we do not consider
skyline points only. The dimensional subset ω(p, p′) contri-
butes to the relaxed score τr (p) of p, even when p is not
a skyline point in D with respect to ω(p, p′). In addition,
[6] emphasizes on approximate result computation but we
focus on exact evaluation of our relaxed query over aR-trees.
Unlike the k-dominant skyline query [5], our relaxed query
does not require any apriori value of the subspace size.
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7.2 Adaptation of skyline-based approach

In this section, we discuss the adaptation of the skyline-based
approach (in Sect. 3.2) for processing the relaxed top-k domi-
nating query. In particular, we study the modifications of the
followings: (i) the dominance property of Eq. 2, and (ii) the
BatchCount procedure (Algorithm 1), which counts the exact
scores for a set of points.

Monotone property for the relaxed score. First of all, we prove
that the monotone property holds for the relaxed score τr as
well. This property, expressed by Eq. 7, is not only essential
to the skyline-based approach, but also important for other
tree-based solutions.

∀ p, p′ ∈ D, p � p′ ⇒ τr (p) > τr (p
′) (7)

The proof is as follows. Consider any point a ∈ D such
that a �= p and a �= p′. Since p dominates p′, we have
ω(p′, a) ⊆ ω(p, a). As a result, a contributes to τr (p) at
least as much as it contributes to τr (p′). In addition to that,
p′ contributes zero to τr (p′) (because p′ does not dominate
itself in any dimension), but p′ contributes at least 1 to τr (p)
(i.e., |ω(p, p)| ≥ 1) because p � p′. As a result, we obtain
τr (p) > τr (p′).

Exact score counting. Next, we study how to compute the
exact τr score of a point, by using the aR-tree. We proceed
to present the relevant notations in the context of the relaxed
score. Given two (non-leaf) entries e, e′ of the tree, we define
ωl(e, e′) as the minimal set of dimensions such that e always
dominates e′, andωu(e, e′) as the maximal set of dimensions
such that e potentially dominates e′:

ωl(e, e′) = { i | i ∈ [1, d] ∧ e[i]+ < e′[i]− }
ωu(e, e′) = { i | i ∈ [1, d] ∧ e[i]− < e′[i]+ }
As a shorthand notation, we define ψ l(e, e′) and ψu(e, e′)
as (2|ωl (e,e′)| − 1) and (2|ωu(e,e′)| − 1) respectively. In our
subsequent discussion, these values are used to derive lower/
upper bound scores for e. Note that, ωl(e, e′) and ωu(e, e′)
are equal if and only if e does not intersect e′ along any dimen-
sion. Otherwise, ωl(e, e′) is a proper subset of ωu(e, e′).
Observe that the above notations are applicable for points
p and p′ as well, by replacing e by p (and e′ by p′).

We modify BatchCount (Algorithm 1) as follows so that
it can be used to compute the τr values of points (instead of
their τ values). First, the sub-condition p � e+ ∧ p � e−
at Line 2 is replaced by ψu(p, e) > ψ l(p, e). Second, Lines
7–8 are replaced by the statement

τr (p) := τr (p)+ ψ l(p, e) · COUNT(e)
As an example, we apply the above technique to compute
the τr score for the point p0 in Fig. 8a, which also shows the
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Entry Action on τr(p0)
p1 add 0
p2 add (21-1)
p3 add (22-1)
e2 add (21-1)COUNT(e2)
e3 add (22-1)COUNT(e3)
e4 visit its child node
e5 add (21-1)COUNT(e5)
e6 visit its child node

(a) The case of a point (b) Derivation of τr(p0)

Fig. 8 Exact computation of the τr value for a point

other points/entries to be visited in the aR-tree. Initially, the
value τr (p0) is set to zero. The detailed steps are elaborated
in Fig. 8b. When a point (say, p3) is encountered, we simply
increment τr (p0) byψ(p0, p3). The same is repeated for any
non-leaf entry (say, e2) satisfying ψ l(p0, e2)=ψu(p0, e2),
except that its count value COUNT(e2) is taken into account.
In case a non-leaf entry (say, e4) has different values for
ψ l(p0, e4) and ψu(p0, e4), its child node will be visited.

7.3 Adaptation of counting-guided search

We proceed to elaborate the adaptation of the counting-
guided search (e.g., SCG, LCG) for the relaxed query. Accor-
ding to Eq. 7, the monotone property still holds for the relaxed
score. This enables us to eliminate unqualified entries by
using the pruner set (see Sect. 4.2). In addition, the tech-
nique for counting exact τr scores of points (discussed in
Sect. 7.2) can be reused for SCG and LCG.

Recall that SCG computes upper bounds of non-leaf
entries (at Line 10). Due to the monotone property of Eq. 7,
the tight upper bound score of an entry e is taken as τr (e−).
In the example of Fig. 10a, the lower corner of e1 is e−

1 and
the value τr (e

−
1 ) is a tight upper bound score for any point

indexed under the subtree of e1. This value (i.e., τr (e
−
1 )) can

be obtained by applying the exact counting technique descri-
bed in Sect. 7.2.

Following the uniformity assumption and the notations
from Sect. 4.3, we now analyze the cost of computing the
exact τr (e−) value for a non-leaf entry e. With respect to tree
nodes at level i , the space is decomposed into two regions,
as shown in Fig. 9. The region M (in gray) fully contains the
nodes whose parent entries e′ satisfy the conditionψu(e, e′)>
ψ l(e, e′); whereas the white region intersects all other nodes.
By translating the area of M to the access cost, the aR-tree
node accesses for computing the exact τr (e−) can be expres-
sed as:

NArelax
exact(e

−) =
h−1∑

i=0

ni · [d(2λi )
d−1 − (d − 1)(2λi )

d ] (8)
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Fig. 9 I/O cost of computing upper bound
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Entry Action on τu
r (e1)

e1 add (22-1)COUNT(e1)
e2 add (21-1)COUNT(e2)
e3 add (22-1)COUNT(e3)
e4 add (22-1)COUNT(e4)
e5 add (21-1)COUNT(e5)
e6 add (21-1)COUNT(e6)

(a) The case of an entry (b) Derivation of τu
r (e1)

Fig. 10 Lightweight computation of the τ u
r value of an entry

Unlike Eq. 3, the cost in Eq. 8 is independent of the location
of e− is the space. Also, this cost is always greater than or
equal to the cost in Eq. 3.

Lightweight upper bound score counting. In contrast to SCG,
LCG utilizes a lightweight counting technique in order to
obtain upper bound scores of non-leaf entries with low cost
(see Sect. 4.2). We now present a modification of this tech-
nique for deriving an upper bound score τ u

r (e) for the entry
e such that: (i) the computation requires no accesses to leaf
nodes (thus saving significant cost), and (ii) τ u

r (e) always
upper bounds the exact τr (e−). The access cost of this light-
weight technique is given by Eq. 8, except that leaf nodes (at
level 0) are ignored.

Figure 10a, b exemplify how to obtain the value τ u
r (e1)

for the entry e1. The technique is the same as the one for
computing the exact τr (e

−
1 ) value, except that level-1 entries

(i.e., pointing to leaf nodes) are handled in another way. For
the sake of demonstration, suppose that all entries shown in
Fig. 10a are level-1 entries. For any encountered level-1 entry
(say, ez), we increment τ u

r (e1) by ψu(e1, ez) · COUNT(ez),
regardless of the ψ l(e1, ez) value.

7.4 Adaptation of priority-based traversal

In this section, we propose a priority-based traversal solution,
called RelaxedPBT (Algorithm 8), for processing the relaxed

query. The set S, the min-heap W , and the value γ have
the same interpretation as in PBT (Algorithm 4). The major
differences of RelaxedPBT from PBT are: (i) initialization
of score bounds (Line 4–7), (ii) adjustment of score bounds
(Lines 11–17), and (iii) elimination of unqualified entries
(Line 20). As we will see later, several operations of the
algorithm rely on the following property:

Property 1 Consider two (non-leaf) entries e and e′ of the
tree and a binding integer value α. Ifψ l(e, e′) = ψu(e, e′) =
α, then ψ(p, p′) = α for any p ∈ e, p′ ∈ e′.

Proof When ψ l(e, e′) equals to ψu(e, e′), ωl(e, e′) is iden-
tical to ωu(e, e′). In this case, e and e′ do not intersect along
any dimension. Combining this fact with the bounding pro-
perty of entries, we have ω(p, p′) = ωl(e, e′) = ωu(e, e′),
for any p ∈ e, p′ ∈ e′. As a result, we obtainψ(p, p′) = α.��

RelaxedPBT begins by examining entries in the root node
of the tree and deriving their lower/upper bound scores based
on only entries in the root node. In each iteration (of the
loop at Lines 8–20), a non-leaf entry ez is selected from S
according to a priority order (see Sect. 5.2). The child node
(say, Z ) of ez is then read from the disk.

At Lines 11–13, we update score bounds for existing
entries ey in S, by comparing them against ez . By Property 1,
we need not adjust the score bounds of ey whenψu(ey, ez) =
ψ l(ey, ez). In case of ψu(ey, ez) > ψ l(ey, ez), the score
contribution of ez to ey is replaced by those of entries in Z .
Based on the same logic, Lines 14–17 are used to adjust score
bounds of entries ex in Z .

Next, we insert entries of Z into the set S and update
the top-k results in W with entries (in S) having lower bound
score τ l

r (e) above γ . At Line 20, an entry em is removed from
S when (i) its upper bound score τ u

r (em) is below γ , and (ii)
it cannot be used to adjust score bounds of any other entry
in S with upper bound score above γ . The loop continues
until S does not contain any no non-leaf entries. Finally, W
is returned as the result.

8 Experimental evaluation

In this section, we experimentally evaluate the performance
of the proposed algorithms. All algorithms in Table 2 were
implemented in C++ and experiments were run on a Pen-
tium D 2.8 GHz PC with 1 GB of RAM. For fairness to
the STD algorithm [24], it is implemented with the spatial
aggregation technique (discussed in Sect. 2.1) for optimi-
zing counting operations on aR-trees. In Sect. 8.1 we present
an extensive experimental study for the efficiency of the
algorithms with synthetically generated data. Section 8.2
studies the performance of the algorithms on real data and
demonstrates the meaningfulness of top-k dominating points.
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Algorithm 8 Variant of PBT for the relaxed query
algorithm RelaxedPBT(Tree R, Integer k)

1: S:=new set; � entry format in S: 〈e, τ l
r (e), τ

u
r (e)〉

2: W :=new min-heap; � k points with the highest τ l
r

3: γ :=0; � the kth highest τ l
r score found so far

4: for all ex ∈ R.root do
5: τ l

r (ex ):=
∑

e∈R.root ψ
l (ex , e) · COUNT(e);

6: τ u
r (ex ):=

∑
e∈R.root ψ

u(ex , e) · COUNT(e);
7: insert ex into S and update W ;
8: while S contains non-leaf entries do
9: remove ez : non-leaf entry of S with the highest priority;
10: read the child node Z pointed by ez ;
11: for all ey ∈ S such that ψu(ey, ez) > ψ l (ey, ez) do
12: τ l

r (ey):=τ l
r (ey)−ψ l (ey, ez)·COUNT(ez)+∑

e∈Z ψ
l (ey, e)·

COUNT(e);
13: τ u

r (ey):=τ u
r (ey) − ψu(ey, ez) · COUNT(ez) +∑

e∈Z ψ
u(ey, e) · COUNT(e);

14: Sz :=Z ∪ { e ∈ S | ψu(ez, e) > ψ l (ez, e) };
15: for all ex ∈ Z do
16: τ l

r (ex ):=τ l
r (ez)−ψ l (ez, ez)·COUNT(ez)+∑

e∈Sz
ψ l (ex , e)·

COUNT(e);
17: τ u

r (ex ):=τ u
r (ez)−ψu(ez, ez)·COUNT(ez)+∑

e∈Sz
ψ l (ex , e)·

COUNT(e);
18: insert all entries of Z into S;
19: update W (and γ ) by e′ ∈ S whose score bounds changed;
20: remove entries em from S where τ u

r (em) < γ and ¬∃e ∈
S, (τ u

r (e) ≥ γ ) ∧ (ψu(e, em) > ψ l (e, em));
21: report W as the result;

Table 2 Description of the algorithms

Name Description

STD Skyline-Based Top-k Dominating Algorithm [24]

ITD Optimized version of STD (Sect. 3.2)

SCG Simple Counting Guided Algorithm (Sect. 4)

LCG Lightweight Counting Guided Algorithm (Sect. 4)

UBT Upper-bound Based Traversal Algorithm (Sect. 5)

CBT Cost-Based Traversal Algorithm (Sect. 5)

Section 8.3 investigates the efficiency of our solutions for
processing top-k dominating queries on non-indexed data.
Section 8.4 presents the experimental study for the relaxed
top-k dominating query.

8.1 Experiments with synthetic data

Data generation and query parameter values. We produced
three categories of synthetic datasets to model different sce-
narios, according to the methodology in [2]. UI contains data-
sets where point coordinates are random values uniformly
and independently generated for different dimensions. CO
contains datasets where point coordinates are correlated. In
other words, for a point p, its i th coordinate p[i] is close
to p[ j] in all other dimensions j �= i . Finally, AC contains
datasets where point coordinates are anti-correlated. In this
case, points that are good in one dimension are bad in one

Table 3 Range of parameter values

Parameter Values

Buffer size (%) 1, 2, 5, 10, 20

Data size, N (million) 0.25, 0.5, 1, 2, 4

Data dimensionality, d 2, 3, 4, 5

Number of results, k 1, 4, 16, 64, 256

or all other dimensions. Table 3 lists the range of parameter
values and their default values (in bold type). Each dataset
is indexed by an aR-tree with 4 KB page size. We used an
LRU memory buffer whose default size is set to 5% of the
tree size.

Lightweight counting optimization in Counting-Guided
search. In the first experiment, we investigate the perfor-
mance savings when using the lightweight counting heuristic
in the counting-guided algorithm presented in Sect. 4. Using
a default uniform dataset, for different locations of a non-leaf
entry e− (after fixing all coordinates of e− to the same value
v), we compare (i) node accesses of computing the exact
τ(e−) with that of computing a conservative upper bound
τ u(e) using the lightweight approach and (ii) the difference
between these two bounds. Figure 11a shows the effect of
v (i.e., location of e−) on node accesses of these two com-
putations. Clearly, the lightweight approach is much more
efficient than the exact approach. Their cost difference can
be two orders of magnitude when e− is close to the origin.
Figure 11b plots the effect of v on the value of upper bound
score. Even though lightweight computation accesses much
fewer nodes, it derives a score that tightly upper bounds the
exact score (τ u(e) is only 10% looser than τ(e−)). Summari-
zing, the lightweight approach is much more efficient than the
exact approach while still deriving a reasonably tight upper
bound score.

Orderings in priority-based traversal. In Sect. 5.2, we intro-
duced two priority orders for selecting the next non-leaf
entry to process at PBT: (i) UBT chooses the one with the
highest upper bound score, and (ii) CBT, among those with
the highest level, chooses the one with the highest upper
bound score. Having theoretically justified the superiority of
CBT over UBT (in Sect. 5.2), we now demonstrate this expe-
rimentally. For the default top-k dominating query on a UI
dataset, we record statistics of the two algorithms during their
execution. Figure 12a shows the value of γ (i.e., the best-k
score) for both UBT and CBT as the number of loops exe-
cuted. Note that in UBT/CBT, each loop (i.e., Lines 8–20 of
Algorithm 4) causes one tree node access. Since γ rises faster
in CBT than in UBT, CBT has higher pruning power and thus
terminates earlier. Figure 12b plots the size of S (i.e., number
of entries in memory) with respect to the number of loops.
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The size of S in CBT is much lower than that in UBT. Hence,
CBT requires less CPU time than UBT on book-keeping
the information of visited entries and negligible memory
compared to the problem size. Both figures show that our
carefully-designed priority order in CBT outperforms the
intuitive priority order in UBT by a wide margin.

Comparison of all algorithms and variants thereof. We now
compare all algorithms and their variants (STD, ITD, SCG,
LCG, UBT, CBT) for the default query parameters on UI,
CO, and AC datasets (Fig. 13). In this and subsequent experi-
ments, we compile the I/O and CPU costs of each algorithm,
by charging 10ms I/O time per page fault, and show their
I/O-CPU cost-breakdown. ITD performs much better than
the baseline STD algorithm of [24] (even though STD
operates on the aR-tree), due to the effectiveness of the batch
counting and Hilbert ordering techniques for retrieved
(constrained) skyline points. LCG and CBT significantly out-
perform ITD, as they need not compute the scores for the
whole skyline, whose size grows huge for AC data. Note that
the optimized version of counting-guided search (LCG) out-
performs the simple version of the algorithm that computes
exact upper bounds (SCG) by a wide margin. Similarly, for
priority-based traversal, CBT outperforms UBT because of
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the reasons explained in the previous experiment. Observe
that the best priority-traversal algorithm (CBT) has lower
I/O cost than optimized counting-guided search (LCG), since
CBT accesses each node at most once but LCG may access
some nodes more than once during counting operations.

In remaining experiments, we only compare the best
algorithms from each gender (ITD, LCG, and CBT), for a
wide range of query and system parameter values. First, we
study the effect of the buffer on the performance of the algo-
rithms. Figure 14 shows the cost of the algorithms as a func-
tion of buffer size (%). Observe that the costs of LCG and
CBT with the smallest tested buffer (1% of the tree size) are
still much lower than that of ITD with the largest buffer size
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(20%). Since CBT accesses each tree node at most once, its
cost is independent of the buffer. Clearly, CBT outperforms
its competitors for all tested buffer sizes. We note that the
memory usage (for storing visited tree entries) of ITD, LCG,
and CBT for UI data are 0.03, 0.02, 0.96% of the tree size,
respectively, and are further reduced by 30% for CO data.
For AC data the corresponding values are 2.72, 0.11, and
1.48%. Besides, their memory usage increases slowly with k
and rises sublinearly with N . Even at d = 5, their memory
usage is only two times of that at d = 3.

We also investigated the effect of k on the cost of the
algorithms (see Fig. 15). In some tested cases of Fig. 15a,
the cost of ITD is too high for the corresponding bar to fit
in the diagram; in these cases the bar is marked with a “≈”
sign and the actual cost is explicitly given. Observe that LCG
and CBT outperform ITD in all cases. As k increases, ITD
performs more constrained skyline queries, leading to more
counting operations on retrieved points. CBT has lower cost
than LCG for UI data because CBT accesses each tree node at
most once. For CO data, counting operations in LCG become
very efficient and thus LCG and CBT have similar costs. On
the other hand, for AC data, there is a wide performance gap
between LCG and CBT.

Figure 16 plots the cost of the algorithms as a function of
the data dimensionality d. Again, ITD is inferior to its com-
petitors for most of the cases. As d increases, the number of
skyline points increases rapidly but the number of points exa-
mined by LCG/CBT increases at a slower rate. Again, CBT
has lower cost than LCG for all cases. Figure 17 investigates
the effect of the data size N on the cost of the algorithms.

When N increases, the number of skyline points increases
considerably and ITD performs much more batch counting
operations than LCG. Also, the performance gap between
LCG and CBT widens.

8.2 Experiments with real data

Datasets. We experimented with three real multi-dimensional
datasets: FC,5 NBA,6 and BASEBALL.7 FC contains 581,012
forest land cells (i.e., data objects), having four attributes:
horizontal distance to hydrology (hh), vertical distance to
hydrology (vh), horizontal distance to roadways (hr), and
horizontal distance to fire points (hf). For FC, small values
are preferable to large ones at all dimensions. NBA contains
regular season statistics of 19,112 NBA players (i.e., data
objects). In order for the query to be meaningful, only few
important attributes are selected for NBA players: games
played (gp), points (pts), rebounds (reb), and assists (ast).
BASEBALL consists of statistics of 36898 baseball pitchers
(i.e., data objects). Similarly, few important attributes are
chosen for baseball pitchers: wins (w), games (g), saves (sv),
and strikeouts (so). In the last two datasets, large values are
preferable for all dimensions and each player is uniquely
identified by his/her name and year.
Performance experiment. Table 4 shows the cost of the
algorithms on two largest datasets (FC and BASEBALL) for

5 Forest cover dataset, UCI KDD Archive. http://kdd.ics.uci.edu.
6 NBA Statistics v2.0. http://basketballreference.com.
7 The Baseball Archive v5.3. http://baseball1.com/statistics.
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Table 4 Query cost vs. k, real datasets

k Time (s)

FC BASEBALL

ITD LCG CBT ITD LCG CBT

1 262.3 162.0 62.0 4.6 13.0 0.9

4 413.0 166.6 69.7 9.4 16.5 1.8

16 814.2 204.2 78.9 22.8 18.4 2.5

64 2,772.7 282.2 99.4 69.7 22.8 3.5

256 9,942.1 523.0 176.4 271.1 38.6 5.9

different values of k, by fixing the buffer size to 5% of the
tree size. Observe that the cost of ITD becomes prohibitively
expensive at high values of k. Clearly, CBT has the lowest
cost and the performance gap between the algorithms widens
as k increases.

Meaningfulness of top-k dominating query results. Table 5
shows the dominating scores and the attribute values of the
top-5 dominating players in the NBA and BASEBALL data-
sets. Readers familiar with these sports can easily verify
that the returned results match the public view of super-star
players. Although the ranking of objects by their τ -scores
may not completely match with every personalized ranking
suggested by individuals, a top-k dominating query at least
enables them to discover some representative “top” objects
without any specific domain knowledge. In addition, we note
that some of the top-k results do not belong to the skyline.
For example, the NBA player “Kevin Garnett/2002” is the

Table 5 Top-5 dominating players

Score NBA Player/Year gp pts reb ast

18,585 Wilt Chamberlain/1967 82 1,992 1,952 702

18,299 Billy Cunningham/1972 84 2,028 1,012 530

18,062 Kevin Garnett/2002 82 1,883 1,102 495

18,060 Julius Erving/1974 84 2,343 914 462

17,991 Kareem Abdul-Jabbar/1975 82 2,275 1,383 413

Score BASEBALL Pitcher/Year w g sv so

34,659 Ed Walsh/1912 27 62 10 254

34,378 Ed Walsh/1908 40 66 6 269

34,132 Dick Radatz/1964 16 79 29 181

33,603 Christy Mathewson/1908 37 56 5 259

33,426 Lefty Grove/1930 28 50 9 209

top-3 result, even though he is dominated by the top-1 result
(i.e., not a skyline point). Similarly, the top-4 BASEBALL
pitcher is dominated by the top-2. These players could not
be identified by skyline queries.

In general, various approaches could be applied to mea-
sure the meaningfulness of query results. Yet, there is no stan-
dardized notion for capturing the meaningfulness of results.
We regard the τ score as a reasonable, obvious, and quantita-
tive measure of the result meaningfulness; due to the rationale
that, each individual top-k dominating player is guaranteed to
overqualify a large number of other players (in other teams).
However, we are not advocating the τ score as the best pos-
sible measure of result meaningfulness.
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As an alternative choice of result meaningfulness, we also
measure the number of distinct data points dominated by the
query result set [22], on real datasets. For the NBA dataset, the
top-1, top-2, and top-5 (dominating) query results dominate
respectively 97.24, 98.13, and 98.80% of distinct points in the
dataset. For the BASEBALL dataset, the top-1, top-2, and top-
5 (dominating) query results dominate respectively 93.93,
94.88, and 98.67% of data points. It turns out that, some
points in the result set are well separated from the others,
causing the overall result set to dominate a substantial number
of distinct data points.

8.3 Experiments with non-indexed data

In this section, we evaluate the performance of our proposed
solutions for top-k dominating queries on non-indexed data.
We use CRS to denote the version of our algorithm which
uses the CRS-filter in the filter pass. The version using the
FN-Filter has variants with different search orderings in the
filter step: (i) FNS, with the scanline ordering, (ii) FNU,
with the upper bound score ordering, and (iii) FNP, with
the partial-dominance reduction ordering. As a reference, we
compare these methods with CBT, which is the best aR-tree
based algorithm. In order to apply CBT, we need to bulk-load
the aR-tree from the data first, so we include the cost of the
tree creation in its overhead.

Note that the I/O accesses of our non-indexed solutions
(and the bulk-loading stage before CBT) are mostly sequen-
tial (with negligible random disk page accesses). Each
sequential page access is charged 1ms I/O time. For ins-
tance, CRS performs three full read passes over data. Each
fine-grained solution (i.e., FNS, FNU, FNP) performs one
full read pass and one full write pass in the counting pass,
and two partial read passes (i.e., some partitions are not acces-
sed in filter and refinement steps). For fairness to CBT, we
assume that the main memory is large enough for the aR-tree
bulk-loading stage to complete in two full read passes and
two full write passes.

Figure 18 illustrates the cost breakdown of our proposed
methods on non-indexed data, for default parameter values
on UI, CO, and AC datasets. Each bar is decomposed into
filter CPU time, refinement CPU time, and the total sequen-
tial I/O time (of all steps/passes). For CBT, sequential I/O
time indicates its cost in the bulk-loading stage, whereas its
filter time represents the total query evaluation time (i.e.,
CPU time and random I/O time) using the aR-tree. Due to
the bulk-loading stage, CBT is more expensive than most
of our non-indexed methods, especially for the UI dataset.
CRS is a coarse-grained solution so its filter step is cheap;
however, many candidates are produced and the refinement
step is expensive. In particular, its computational time is high
for the AC dataset, because of the huge candidate size. On
the other hand, the fine-grained solutions (FNS, FNU, FNP)
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Fig. 18 Query cost on non-indexed data (k = 16, N = 1 M, d = 3)

Table 6 Candidate size |C | and top-k score γ (k = 16, N = 1 M,
d = 3)

Method UI CO AC

|C | γ |C | γ |C | γ

CRS 616 669,651 522 841,191 34,575 10,773

FNS 411 821,608 125 991,319 135 91,530

FNU 466 762,140 154 990,137 2,864 89,452

FNP 16 960,650 93 992,488 48 123,315

Results 16 960,670 16 994,637 16 123,462

have robust performance across different data distributions
because they tighten score bounds of existing candidates
while reading new points in the filter step.

We proceed to examine the filter effectiveness of the
proposed non-indexed solutions. Specifically, we measure
the candidate size |C | and the top-k lower bound score γ
(known so far) at the end of the filter step. Both of them pro-
vide the user early insight about the results. Table 6 shows the
values of |C | and γ , obtained by our methods, on different
data distributions. As a comparison, we include into the last
row the number of results and the actual top-k score. In sum-
mary, FNP has the best filter effectiveness, followed by FNS,
FNU, and CRS. Since CRS relies mainly on the dominance
property to prune unqualified points, it can hardly reduce
the candidate size for the AC dataset. FNU is a fine-grained
solution and performs tightening of score bounds for candi-
date points in the filter step; thus, it is more effective than
CRS. However, FNU visits the disk partitions in descending
order of their upper bound scores, and it shares the same
drawback as its tree-based counterpart UBT (see Sect. 8.1).
Interestingly, the visiting order of FNS is independent of the
underlying data distributions, yet it is more effective than
FNU. The FNP method, with our carefully-designed visiting
order, leads to extremely low candidate sizes |C | and tight
top-k lower bound score γ . In particular, for the UI data, the
candidate set of FNP is exactly the same as the final result
set and γ is only 0.002% lower than the actual top-k score.
Therefore, we recommend FNP as the best non-indexed solu-
tion for top-k dominating queries.
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Fig. 19 Top-k score γ vs. time, N = 1 M, k = 16

We then investigate the progressiveness of our
non-indexed solutions. During the execution of an algorithm,
the top-k lower bound score γ (known so far) provides the
user an early and rough picture over the actual score.
Figure 19 plots the γ value of the algorithms (CBT, FNS,
FNP) as a function of time (including both I/O time and
CPU time). Observe that both FNS and FNP acquire high γ
value early at 10–15 s. Since the application of CBT on non-
indexed data requires aR-tree bulk-loading, it starts obtaining
high γ value only after 25 s. In summary, both FNS and FNP
allow the user to attain early a tight lower bound estimate of
the actual top-k score.

8.4 Experiments with the relaxed query

Performance experiment. Figure 20 shows the cost of our
algorithms for the relaxed top-k dominating query on UI,
CO, and AC datasets, with the default parameter values. In
general, CBT has the best performance and it is stable for
different data distributions. Since ITD and LCG access some
tree node multiple times (through different counting ope-
rations), they become expensive for processing the relaxed
query, especially on the AC dataset. In contrast, CBT reads
each tree node at most once and adjusts score bounds of exis-
ting entries incrementally.

Data analysis on real data with missing values. In real-life,
the data may have missing values, either inherently, or intro-
duced by the data owner in purpose. This may happen, for
example, in an attempt to avoid leakage of sensitive values.
Another example is that the data owner chooses to publish
a “trial” dataset with missing values and only reveals the
original dataset to the client upon purchase.

We now demonstrate the robustness of the relaxed query
on a real dataset with missing values. Specially, for each
tuple in the NBA dataset, an attribute is randomly chosen
and its value is set to NULL. The resulting dataset is cal-
led the NBAmiss dataset. Since our algorithms operate on
aR-tree indexed data,each NULL value in the tree needs to be
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Fig. 20 Query cost of relaxed query (k = 16, N = 1 M, d = 3)

replaced by the worst value. Table 7 shows the relaxed top-
16 dominating players on the NBAmiss dataset. The results
are then compared with the top-70 dominating points on the
original dataset NBA. For instance, the 4th point in NBAmiss

is the 7th point in NBA; the 5th point in NBAmiss is marked
as “—”, meaning that it is outside the top-70 in NBA. It turns
out that, the relaxed query is able to retrieve a decent number
of meaningful results, even though in the presence of many
missing values in NBAmiss. The robustness of the relaxed
query is explained by the fact that the contribution of a score
component is less restrictive in the (relaxed) τr function than
in the (original) τ function.

9 Discussion

In this section, we present the summary of our experimental
results and discuss the scalability of the proposed techniques
for high dimensional data.

Summary of experimental results. Regarding the processing
of top-k dominating queries on aR-tree indexed data, our
performance experiments suggest that CBT has stable per-
formance across different data distributions. Also, it has the
best performance for the case of relaxed top-k dominating
queries. Thus, it is recommended for evaluating top-k domi-
nating queries on indexed data.

In case the data is not indexed, the FNP method outper-
forms its competitors and it has robust performance for dif-
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Table 7 Relaxed top-16 dominating players on the NBAmiss dataset

τr rank Original τ rank NBA Player/Year
on NBAmiss on NBA

1 2 Billy Cunningham/1972

2 – –

3 4 Julius Erving/1974

4 7 Kevin Garnett/2004

5 – –

6 6 Don Adams/1975

7 44 John Havlicek/1970

8 – –

9 9 Julius Erving/1973

10 – –

11 48 Rogera Brown/1969

12 – –

13 12 Larry Bird/1980

14 62 Billy Cunningham/1969

15 – –

16 59 Kevin Garnett/2001

ferent data distributions. In addition, its processing cost is
better than the best index-based approach (CBT), if the latter
includes the cost of bulk-loading the index.

High dimensional data. Recall that, in Eq. 1, the score of
point p is defined by the number of points p′ dominated
by p. When the dimensionality of the problem is high, the
dominance condition becomes too restrictive and even the
top points may have low scores. Consequently, there may
not exist a distinctive top object having much higher scores
than the rest, implying that the top-k dominating query is
not meaningful, due to the dimensionality curse. In order to
produce meaningful results, we consider only low dimension
data (from 2 to 5) in our experiments. In addition, both our
indexed and non-indexed algorithms become inefficient for
high dimensional data.

To extend the applicability of top-k dominating analysis
for high dimensional data, we introduce the relaxed top-k
dominating query, which is able to capture “partial” domi-
nance relationships among the data points. Thus, meaningful
top-k results can be obtained from the relaxed query over high
dimensional data. Still, our techniques proposed in Sect. 7
operate on multi-dimensional indexes or grids, which dege-
nerate at high dimensionality. As part of our future work, we
will focus on the development of efficient solutions for the
relaxed query over high dimensional data.

10 Conclusion

In this paper, we studied the interesting and important
problem of processing top-k dominating queries on

multi-dimensional data. Although the skyline-based algo-
rithm in [24] is applicable to the problem, it suffers from
poor performance, as it unnecessarily examines many sky-
line points. This motivated us to develop carefully-designed
solutions that exploit the intrinsic properties of the problem
for accelerating query evaluation. First, we proposed ITD,
which integrates the algorithm of [24] with our optimiza-
tion techniques (batch counting and Hilbert ordering). Next,
we developed LCG, a top-k dominating algorithm that guides
search by computing upper bound scores for non-leaf entries,
and utilizes a lightweight (i.e., I/O-inexpensive) technique for
computing upper bound scores. Then, we proposed I/O effi-
cient algorithm CBT that accesses each node at most once.
The effectiveness of our optimizations (lightweight counting
technique in LCG and traversal order in CBT) were analyzed
theoretically.

In addition to algorithms that apply on indexed data, we
also propose a methodology for evaluating top-k dominating
queries over non-indexed data that are stored in a sequential
file. Our method can compute the query result within three
passes over the data. In the first pass, a grid-histogram is
computed to capture the distribution of the points. The grid
is used to derive three types of bounds for multi-dimensional
regions, which are helpful to determine a set of candidate top-
k points during the second pass. In the third and final pass,
the dominance scores of the candidates are counted exactly
to derive the final result. We proposed and compared variants
for the second (filter) pass of the algorithm.

The final contribution of the paper is the proposal of a
relaxed version of the top-k dominating query, where the
dominance relationships between points in all dimensional
subspaces are considered. The score of a point is determi-
ned by summing the number of points it dominates from all
subspaces. We exemplified and showed experimentally the
flexibility of this query compared to the strict version of the
problem. In addition, we showed how the proposed algo-
rithms can be adapted to solve this relaxed top-k dominating
query.
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