
Parameter Synthesis by Parallel Coloured CTL
Model Checking?

Luboš Brim, Milan Češka, Martin Demko, Samuel Pastva and David Šafránek

Systems Biology Laboratory, Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic,

{brim,xceska,xdemko,xpastva,xsafran1}@fi.muni.cz

Abstract. We propose a new distributed-memory parallel algorithm for
parameter synthesis from CTL hypotheses. The algorithm colours the
state space transitions by different parametrisations and extends CTL
model checking to identify the maximal set of parameters that guarantee
the satisfaction of the given CTL property. We experimentally confirm
good scalability of our approach and demonstrate its applicability in the
case study of a genetic switch controlling decisions in the cell cycle.

1 Introduction

Constructing computational models that describe dynamics of biochemical pro-
cesses is a key step towards understanding of existing and even yet undiscovered
behavioural and physiological phenotypes occurring in biology. Model-based pre-
diction and analysis make cornerstones of systems biology. While the structure
of dynamical models of some biochemical processes is already available at the
qualitative level represented by known entities and interactions, most of the
quantitative aspects of the systems dynamics, such as reaction rates or initial
concentration values, cannot be easily determined. Such quantitative attributes
are usually reflected in the model as parameters. In order to obtain reliable mod-
els, parameters need to be specified exactly. For a typical model, a fraction of the
parameter values can be determined from the literature or experimental data,
leaving many parameter values uncertain or completely unknown. The reason is,
that many parameters are hard to measure in vitro/in vivo.

The algorithmic discovery of unknown parameter values (also referred to
as parameter estimation, parameter identification, the inverse problem, or model
calibration) remains thus one of the main challenges in computational systems bi-
ology. Besides the traditional approaches to tackle the inverse problem (e.g., [15–
17, 24]), there have recently appeared alternative techniques grounded in formal
verification [2, 4, 21]. These methods typically focus on identifying reliable sub-
sets of parameter space instead of finding singular parameter values.

Hypotheses mined from biological literature as well as time-series experi-
ments from wet-labs can be considered as dynamical constraints restricting the
admissible set of model parameter values. Apart from a concrete kind of dynam-
ical models, these constraints can be sufficiently captured in terms of temporal

? This work has been supported by the Czech Science Foundation grant 11089S and the
Czech Ministry of Education, Youth, and Sport project No. CZ.1.07/2.3.00/30.0009.

2

logic formulae (for review of approaches see, e.g,. [7]). A common computational
method that decides the question whether for a given parametrisation the model
meets the temporal constraints is model checking. The inverse problem is then
generalised to parameter synthesis [2, 12] – to find the maximal set of parameter
values from the given set, such that they meet the stated dynamical constraints.

The general advantage of temporal specification for parameter synthesis is
its ability to focus on certain qualitative aspects of observed behaviour [23] (e.g.,
temporal ordering of events qualitatively characterising important moments in
the systems dynamics). In particular, temporal properties can be viewed as global
properties independent of particular setting of initial conditions (initial values
of the state variables). The global view provides biologists a tool which, for a
given model and a given property, computes the maximal set of parameter values
and initial conditions for which the model entirely fulfils the property. Such an
approach is complementary to traditional approaches based on monitoring a
numerical simulation [11, 25] or local sensitivity analysis [13].

To capture biologically-relevant temporal hypotheses both branching-time
operators and linear-time operators are needed [6]. In this paper we focus on
branching logic CTL. The reason is that many relevant questions in systems bi-
ology need branching operators to express them properly. For instance, switching
mechanisms and multi-stability are present in genetic regulatory networks and
drive many key biological phenotypes such as, e.g., irreversible decisions in cell
division, cell differentiation or programmed cell death. However, it is difficult
(or often impossible) to express relevant properties in linear temporal logics.
Other reason for usage of CTL is related to the particular procedure for model
checking. This procedure allows to effectively identify all system states where
the given property is satisfied. Thus CTL procedure leads inherently to global
analysis of systems dynamics as opposed to LTL procedure, which requires a
single initial state (or iterates over a given set of initial states).

Contribution of the Paper. Several methods for parameter synthesis based
on model checking have been proposed recently, targeting different kinds of mod-
els and different temporal logics (e.g., [2, 5, 11, 12, 19]). In [2] we proposed a pa-
rameter synthesis method for LTL hypotheses established on our automata-based
colored LTL model checking algorithm.

In this paper we extend that work in several directions. First, we consider
CTL hypotheses. Second, we propose a distributed-memory parallel colored CTL
model checking algorithm, keeping thus both the advantage of having an explicit
representation and the effectiveness of parallel solution in distributed-memory.
Third, we propose a novel heuristics for partitioning the state space that effec-
tively uses specifics of rectangularly abstracted ODE models (the abstraction
is described in [10]). We have experimentally confirmed good scalability of our
approach and demonstrated its applicability in a case study of a genetic switch
employing rectangular abstraction [4, 10] of an already existing ODE model [26].

3

2 Parallel Parameter Synthesis Algorithm

In this paper we propose a formal framework for parameter synthesis of bio-
chemical models from branching time temporal logic formulae. Here, the term
parameter refers to both the initial conditions of the model and to dynamical pa-
rameters. The method presumes a finite state space. For discrete models such as
boolean networks, this can be ensured directly by the definition. For continuous
models, like ODE models, a finite discrete abstraction of the state space is nec-
essary. The existing abstractions typically lead to over- or under-approximation
(or a mixture of both) of the dynamics of the original system [10]. This has gen-
erally some consequences regarding the interpretation of computed results. We
will discuss this issue later. The method also presumes a finite parameter space.
In the case of continuous parameter spaces an appropriate finite abstraction, like
an interval abstraction in the case of ODE models, must be used.

It is important to note that there are two levels of complexity that sig-
nificantly affect the tractability of parameter synthesis for biological models.
First, the procedure requires consideration of all possible settings of parameters
– points in the parameter space. The size of the parameter space grows exponen-
tially with the number of unknown parameters. However, in reality the number
of parameters to be considered should be small. A model with too many param-
eters is hard to falsify - it can fit almost any data. Second, during each model
checking phase – analysis of the model with particular parameter settings – the
dynamics of the model has to be explored. More precisely, the state space of the
model, which grows exponentially with the number of state variables, has to be
traversed in each model checking phase.

Given the complexity of the problem and the need for comprehensive large-
scale models, there is a natural call for development of techniques prepared to
perform efficiently on high-performance computing platforms [1, 7]. The com-
plexity caused by the state space size can be reduced by either symbolic or
enumerative parallel techniques. The achieved efficiency is again highly depen-
dent on the modelling approach, character of models, and the properties con-
sidered. In the case of biological models, symbolic techniques were successfully
employed for abstract logical (qualitative) models [5, 14] whereas enumerative
parallel techniques have proved to be fruitful for quantitative models [1, 3].

Coloured CTL Model Checking

We start by introducing the notion of a parametrised Kripke structure that
encapsulates a family of Kripke structures built over the same model but with
different valuations of individual parameters.

Let AP be a set of atomic propositions. A parametrised Kripke structure
(over AP) is a tuple K = (P, S, I,→, L), where P denotes the finite set of
parameter values (parametrisations), i.e., all the possible valuations of the pa-
rameters, S the finite set of states, I ⊆ S the set of initial states, L : S → 2AP

is a labelling of states by atomic propositions, →⊆ S × P × S is a transition
relation labelled by parameter valuations (not required to be total). We write

4

s
p→ s′ instead of (s, p, s′) ∈→. Fixing a parametrisation p ∈ P reduces the

parametrised Kripke structure K to the standard (non-parametrised) Kripke

structure K(p) = (S, I,
p→, L).

To express properties (hypotheses) about the dynamics of systems, we con-
sider formulae of CTL defined by the following abstract syntax:

ϕ ::= Q | ¬ϕ | ϕ1 ∧ ϕ2 | AXϕ | EXϕ | A(ϕ1 Uϕ2) | E(ϕ1 Uϕ2)

where Q ranges over atomic propositions taken from a set AP . Let ϕ be a CTL
formula. We denote by cl(ϕ) the set of all subformulae of ϕ and by tcl(ϕ) the
set of all (temporal) subformulae of ϕ of the form EXϕ, E(ϕ1 Uϕ2), AXϕ
or A(ϕ1 Uϕ2). We use the standard abbreviations like EFϕ which stands for
E(trueUϕ) or AGϕ which stands for ¬E F¬ϕ. Examples of some typical CTL
formulae are [14]:

– EF ϕ expresses a reachability of a state where the condition ϕ holds,

– AG ϕ expresses a stabilisation with ϕ being continually true,

– EFAGϕ1 ∧EFAGϕ2 expresses a bistable switch (two different stable situ-
ations ϕ1, ϕ2 can be reached).

Most frequent types of temporal properties investigated for biochemical models
have been collected in [23]. There are two important fragments of CTL relevant
for biological models. A formula is said to be positive if it does not contain any
negations. We say that a formula is existential (or in ECTL) if it is positive and
only contains existential temporal operators. We say that a formula is universal
(or in ACTL) if it is positive and only contains universal temporal operators.

It is important to note, that model abstraction based on over-approximation
preserves truth of universally-quantified CTL properties (ACTL), i.e. if an ACTL
property holds in the abstract model, it is guaranteed to hold in the concrete
one. Dually, under-approximation preserves falsity of ACTL. The situation is re-
versed for existentially-quantified CTL properties (ECTL): over-approximation
preserves falsity while under-approximation preserves truth.

The parameter synthesis problem is defined in the following way. Suppose
we are given a parametrised Kripke structure K and a CTL formula Ψ . For each
state s ∈ S let Ps = {p ∈ P | s |=K(p) Ψ}, where s |=K(p) Ψ denotes that
Ψ is satisfied in the state s of K(p). The parameter synthesis problem requires
to compute the function FKΨ : S → 2P such that FKΨ (s) = Ps. Often we are
especially interested in computing the set ∩s∈IFKΨ (s).

The algorithm for computing FKΨ is a modification of the (explicit) labelling
CTL model checking algorithm [9]. It labels states with “coloured” subformulae
of Ψ that are satisfied in the state of the Kripke structure K(p) for the “colour”
p ∈ P. Typically the structures K(p) have similar transition relations, thus
leading to a significant acceleration of the parameter synthesis.

The algorithm operates recursively on the structure of Ψ starting from atomic
propositions. Its basic idea is described by the Algorithm 1. The recursive com-
putation of the satisfaction sets ColSat(Ψ) = {(p, s) ∈ P × S | s |=K(p) Ψ}
follows the parse tree of the formula Ψ .

5

Algorithm 1 Compute parameters

Require: parametrised KS K and CTL formula Ψ
Ensure: FKΨ

for all i ≤ |Ψ | do . compute the sets ColSat(Φ) = {(p, s) ∈ P × S | s |=K(p) Φ}
for all Φ ∈ cl(Ψ) with |Φ| = i do

compute ColSat(Φ) from ColSat(Φ′) . for maximal genuine Φ′ ∈ cl(Φ)

return {(p, s) ∈ P × S | (p, s) ∈ ColSat(Ψ)}

Kripke Fragments

Our aim is to perform the parameter synthesis algorithm as a distributed-
memory algorithm on a cluster of n nodes (workstations) in order to enlarge
the available memory to accommodate larger models. To this end we use a par-
tition function f : S → {1, . . . , n} to partition the state space among n nodes.
After partitioning, each node owns a part of the original state space. Concrete
techniques for the state space partitioning are discussed in the next subsection.

We adapt the assumption based distributed CTL model checking paradigm [8]
as the basis of our work. We represent the state space owned by one node using a
parametrised Kripke structure with border states (also called a fragment). Intu-
itively, border states, that are added to the states assigned by f , are states that
in fact belong to other station and represent the missing parts of the state space
(placed in the memory of other nodes and not directly accessible). For structure

K, the set of its border states is defined as border(K) = {s ∈ S | ¬∃(p, s′).s p→
s′}. A fragment Ki of K is a substructure of K satisfying the property that every
state in Ki has either no successor in Ki or it has exactly the same successors
as in K. Partitioning the given structure K results in a finite set K1, . . . ,Kn of
fragments each handled by one node. A border state is thus stored several times:
as original one on the node that owns it and as duplicates on nodes they own
its predecessors.

To define the semantics of CTL formulae over fragments we need to adapt the
standard semantic definition. We define the notion of the truth under assump-
tions associated with border states. An assumption function for a parametrised
Kripke structure K and a CTL formula ψ is defined as a partial function of type
A : P × S × cl(ψ) → Bool. The values A(p, s, ϕ) are called assumptions. We
use the notation A(p, s, ϕ) =⊥ to say that the value of A(p, s, ϕ) is undefined.
By A⊥ we denote the assumption function which is undefined for all inputs.
Intuitively, A(p, s, ϕ) = tt if we can assume that ϕ holds in the state s under
parametrisation p, A(p, s, ϕ) = ff if we can assume that ϕ does not hold in the
state s under parametrisation p, and A(p, s, ϕ) =⊥ if we cannot assume any-

thing. Let us denote by ASψK the set of all assumption functions for a formula ψ
and a parametrised Kripke structure K

We consider a new semantic function CψK : ASψK → ASψK that takes an
input assumption function Ain and returns a new assumption function A. If
s ∈ border(K) and ϕ ∈ |tcl|(ψ) then A(p, s, ϕ) = Ain(p, s, ϕ). If s /∈ border(K)
and ϕ ∈ |tcl|(ψ) then A(p, s, ϕ) is defined recursively. We provide here only the

6

definition for the most complicated case of A(ϕ1 Uϕ2) (the full definition is in
Appendix A). A(p, s,A(ϕ1 Uϕ2)) =

tt if for all p-paths π = s0s1s2 . . . with s = s0 there exists an index
x < |π| such that: either A(p, sx, ϕ2) = tt or [sx ∈ border(K) and
A(p, sx,A(ϕ1 Uϕ2)) = tt)], and ∀y : 0 ≤ y < x : A(p, sy, ϕ1) = tt

ff if there exist a p-path π = s0s1s2 . . . with s = s0 and an index
x < |π| such that: [A(p, sx, ϕ1) = ff and ∀y ≤ x : A(p, sy, ϕ2) = ff]
or ∀x < |π| : [A(p, sx, ϕ2) = ff and (|π| =∞ or (s|π|−1 ∈ border(K)
and A(p, s|π|−1,A(ϕ1 Uϕ2)) = ff))]

⊥ otherwise

Here a p-path π from a state s0 is a sequence π = s0s1 . . . such that ∀i ≥ 0 :

si ∈ S and si
p→ si+1. The truth of a formula is relative to given assumptions

Ain and it is defined as CψK(Ain)(p, s, ψ). The value of an assumption function

Ain(p, s, ϕ) for a state s 6∈ border(K) does not influence the value CψK(Ain).
Hence, for any total parametrised Kripke structure K (i.e. border(K) = ∅),
CTL formula ψ and an arbitrary assumption function A ∈ ASψK, we have that

s |=K(p) ψ ⇔ CψK(A)(p, s, ψ) = tt. In particular, ColSat(ψ) = {(p, s) ∈ P × S |
CψK(A)(p, s, ψ)= tt} and thus we can solve the parameter synthesis problem by
computing the assumption function CK(A⊥).

Distributed Algorithm

We are now ready to describe the algorithm for distributed parameter synthe-
sis. In order to compute CK(A⊥) in a distributed environment, we iteratively
compute assumption functions that are defined on fragments of the system K.

The algorithm starts by partitioning the given state space of K among the
nodes using a partition function f . Each node performs Algorithm 1 modified
in such way, that it is also able to cope with “undefined values”. Moreover, it
computes both the positive and negative results. This means that if a state s has
a successor for which ϕ is true for parametrisation p, it can be concluded both
that s satisfies EXϕ and that s does not satisfy AX¬ϕ under p, even when the
validity of ϕ in other successors of s is undefined (unknown) yet.

The main idea of the entire distributed computation, summarized in Algo-
rithm 2, is the following. Each fragment Ki is managed by a separate process
(node) Pi. These processes are running in parallel (simultaneously on each node).
Each process Pi initializes the assumption function Ai to the undefined assump-
tion function A⊥. After initialization, it computes the semantic function CKi

(Ai)
using the node algorithm (the algorithm is given in Appendix B). If new assump-
tions have been computed for some border states, this result is sent directly to
appropriate processes. Similarly, if such information is received from another
process, the assumption function is modified to reflect these new results. This
procedure is repeated until all running processes are “deadlocked”, i.e. until no
new information (value of an assumption function) can be computed using the
node algorithm or by exchanging assumptions among processes. We say that the

7

Algorithm 2 Main Idea of the Distributed Algorithm

Require: parametrised KS K, CTL formula Ψ , function f
Ensure: FKΨ

Partition K into K1, . . . ,Kn
for all Ki where i ∈ {1, . . . , n} do in parallel

Take the initial assumption function
repeat

Compute the semantic function using the node algorithm;
Exchange relevant information with other nodes;
Modify assumption function;

until all processes reach fixpoint

fixpoint has been reached (“global” stabilization has occurred). In our experi-
mental implementation, the deadlock is detected by additional communication
among processes (the code has been skipped for clarity).

After stabilization (reaching the fixpoint) there may still remain a state s
and a formula ϕ, for which Ai(s, ϕ) =⊥. This can happen in the case of the
U operator. However, if the results for all subformulas of ϕ have already been
computed in all states on all nodes and the fixpoint has been reached then we
can conclude that ϕ does not hold in s.

State Space Partitioning

The key ingredient of distributed model checking algorithms is a suitable state
space partitioning that minimizes the communication overhead and equally dis-
tributes the workload. In particular, the partitioning should provide 1) a regular
load-balancing ensuring that each node is responsible for a proportional part of
the state space and 2) a good locality minimising the number of cross transitions
where the source and target states are assigned to two different nodes.

The computation of the optimal partitioning for the given state space typ-
ically brings a significant overhead and thus various heuristics are considered.
For computer and engineering systems, a hash-based partitioning is usually used,
since it does not require any prior knowledge about the structure of the state
space. It constructs a hash function mapping each state to a node. This approach
usually provides very good load-balancing following from an uniformity of the
hash function. However, these heuristics are not able to control the locality and
thus they introduce a considerable communication overhead.

0 1 2 3 4
0

1

2

3

4

5

6

[B]

[A]

node 1 node 2 node 3
cross transitions

Fig. 1. State space partitioning.

In our approach we utilize the regular struc-
ture of the state space for biochemical mod-
els [20]. We use structural properties of the
rectangular abstraction of the given parametric
piece-wise multi-affine ODE model [4, 10]. The
approximation is formed by an n-dimensional
hyper-rectangular state space defined by m
state variables and by a set of thresholds for
each variable. The partitioning decomposes the
state space into n hyper-rectangular subspaces

8

(n is the number of nodes) such that each sub-
space has similar volume. Figure 1 depicts such partitioning for m = 2 and n = 3
where the volume for each subspace is 3. Our heuristic usually provides a good
load balancing, since the volume reflects the number of states. The construction
of the discretised state space further ensures there are only transitions between
the adjacent states with respect to the hyper-rectangular structure. Therefore,
our partitioning naturally provides almost the minimal number of cross transi-
tions, since only cross transitions between the border states are introduced as
illustrated in Figure 1. Comparing to the hash-based partitioning we significantly
decrease the communication overhead. Note that, the final load balancing can
be negatively affected by the backward connectivity of the state space. However,
our experiments demonstrate the connectivity is significantly increased due to
the fact that we have to consider all parametrisations of the model. Additional
heuristics are used to improve the load balancing by reflecting the atomic propo-
sitions in the CTL formula.

3 Experimental Evaluation

We first consider a suitable model that enables us to thoroughly evaluate the
scalability of the proposed distributed algorithm. Afterwards, we apply our ap-
proach to a relevant and interesting model describing the regulation in a cell
cycle transition.

Scalability

The scalability of the algorithm is evaluated on a catalytic reaction model
(Appendix C). The model allows to scale the number of intermediate prod-
ucts/variables (N), discretisation thresholds (T) and unknown parameters. For
each variable we assume a same number of thresholds and thus the total number
of states is (T − 1)N . We employ the state space partitioning that reflects the
model structure and thus it provides a good load-balancing and locality.

We use homogeneous cluster with 12 nodes each equipped with 16 GB of
RAM and a quad-core Intel Xeon 2 GHz processor. In order to provide a fair
evaluation we utilize only a single core on each node (although our implemen-
tation can effectively utilize multi-core nodes). The reported runtime has been
obtained as the arithmetic mean from several experiments.

Fig. 2 illustrates the results for N = 6 and T = 13 (i.e. almost 3 millions
states) and different number of unknown parameters. The figure demonstrates
a significant acceleration of the parameter synthesis when more nodes are used.
Note that the missing columns indicate that the corresponding experiment run
out of memory. The number of unknown parameters changes the structure of
the state space and its partitioning. Therefore, in some cases, a higher number
of parameters can decrease the runtime.

We have further evaluated the scalability of the algorithm with respect to the
increasing number of variables and thresholds. As demonstrated in Appendix C,

9List1

Stránka 1

2 3 4 5 6 7 8 9 10 11 12

0

1000

2000

3000

4000

5000

6000

7000

Scalability
all for 6 dimensions per 13 thresholds

1 param
2 param
3 param
4 param
5 param
6 param

Nodes

tim
e

 (
s

)

Fig. 2. The scalability with respect to the number of unknown parameters.

the higher number of nodes again considerably accelerates the computation and
allows us to synthesize the parameters for larger models. Note that for larger
state spaces the increasing number of nodes leads almost to the linear speedup.

Case study: regulation of G1/S cell cycle transition

To demonstrate applicability of our framework, we investigate a well-known ODE
model [26] representing a two-gene regulatory network describing interaction of
the tumor suppressor protein pRB and the central transcription factor E2F1
(see Fig. 3 (left)). This network represents the crucial mechanism governing the
transition from G1 to S phase in the mammalian cell cycle. In the G1-phase the
cell makes an important decision. In high concentration levels, E2F1 activates
the G1/S transition mechanism. In low concentration of E2F1, committing to
S-phase is refused and that way the cell avoids DNA replication.

E2F1pRB

d[pRB]
dt = k1

[E2F1]
Km1+[E2F1]

J11
J11+[pRB]

− φpRB [pRB]

d[E2F1]
dt = kp + k2

a2+[E2F1]2

K2
m2+[E2F1]2

J12
J12+[pRB]

− φE2F1[E2F1]

a = 0.04, k1 = 1, k2 = 1.6, kp = 0.05, φE2F1 = 0.1
J11 = 0.5, J12 = 5, Km1 = 0.5, Km2 = 4

Fig. 3. G1/S transition regulatory network and its ODE model taken from [26].

The mechanism is an example of a bistable switch, an irreversible decision to
finally reach some of the two different stable states. In particular, we are inter-
ested in the existence of two different stable equilibria on E2F1. Activity of pRB
is rapidly modulated by phosporylation/dephosporylation turn-over controlled
by growth factor signals transferred to cyclin-dependent kinases each acting on
a specific subset of pRB phosporylation sites [22]. This control is captured in
the model by means of the degradation rate parameter φpRB .

In [26] the authors have provided bifucartion analysis investigating E2F1
equilibria depending on φpRB . As shown in Fig. 4(left), by non-trivial elabo-
ration with numerical analysis methods expecting the previous knowledge of
the equilibria they constructed equilibrium point curve for E2F1 in proportion
to φpRB and discovered two saddle-node bifurcation points. For φpRB smaller

10

Fig. 4. (left) Equilibrium point curve taken from [26] (we believe there is a typo in the
scale of φpRB in the original figure, the range of φpRB should read 0.005-0.035). (right)
Model checking results. Red and blue correspond to the high and low stable regions,
respectively. Yellow are the states where the bistable switch formula ϕ holds.

then 0.007 the system converges to a single low-concentration stable equilibrium
whereas for values higher than 0.027 it converges to a single high-concentration
equilibrium. In between the two bifurcation points the system is bistable pro-
vided that there always exists an unstable equilibrium for which there is an ε-ball
that makes a basin of attraction for both stable equilibria.

To employ our framework for this non-linear model, we have first created
the piece-wise multi-affine approximation (PMA) of the ODE model [18]. We
approximate each non-linear function in the right-hand side of ODEs with an
optimal sequence of piece-wise affine ramp functions (in our case we have set the
precision to 70 affine segments per each non-linear function). For the resulting
PMA we have employed rectangular abstraction [4] to obtain a finite (rectangu-
lar) automaton over-approximating the PMA (the intuition is shown in Fig. 1).
Finally, we have run the parallel coloured CTL model checking algorithm for
the formula ϕ ≡ EFAG high ∧ EFAG low and the initial parameter space
φpRB ∈ [0.001, 0.025]. The atomic propositions low and high characterise the
location of expected regions of E2F1 stability. Based on the results reported
in [26] we define the stable regions as high ≡ (E2F1 > 4 ∧ E2F1 < 7.5) and
low ≡ (E2F1 > 0.5 ∧ E2F1 < 2.5) that determine the expected regions of the
two stable attractors including (a subset of) their surrounding attracted points.
Details of individual steps are described in Appendix D.

Results of the analysis are depicted in Fig. 4(right) in comparison with the
equilibrium curve, Fig. 4(left), provided in [26]. The blue region is the place where
AG low is satisfied, in particular, it says the E2F1 low concentration is guaran-
teed to stabilise for the corresponding values of φpRB in the PMA. The guarantee
comes from the fact that the abstraction employed is over-approximation [10].
In particular, for each trajectory in the PMA there must exist a correspond-
ing path in the rectangular automaton. For example, the model checking result
says that for a fixed parameter value 0.005 there is no path in the rectangular
automaton that would exit the concentration bounds 0.5 ≤ E2F1 ≤ 2.5 and
hence there is no such trajectory in the PMA. However, although there is no
red region identified at φpRB = 0.005 we are not sure this holds also in the
PMA since it might be the property introduced by the abstraction. For a given

11

ACTL formula, the abstraction thus causes the parameter space synthesised by
model checking to be under-approximated [4]. For example, with φpRB getting
closer to the bistable region the guarantee of low stabilisation becomes limited
to a smaller subset of the low region until it disappears at φpRB > 0.0145. The
analogous explanation fits the red region obtained for AG high, note that in
that case the effect of parameter value under-approximation is negligible when
compared with equilibrium point curve. For φpRB ∈ [0.012, 0.0145], the system
is bistable (there exist two stable regions, i.e., AG low∧AG high is guaranteed).

The yellow region covers points where ϕ holds. Since an EF -formula might be
satisfied within a spurious behaviour introduced by the abstraction, this result
does not provide any guarantees but rather estimates parameter values and
initial conditions under which both stable regions might be reached. The diagram
projects pRB values by means of fill opacity. Grey region reflects the fact there
are values of pRB from which the red or the blue region is not reachable. This
information is again guaranteed (3D visualisation and further interpretation of
results are provided in Appendix D).

4 Conclusions

We have developed a fully automatic method for synthesizing parameters that
guarantee the satisfaction of a given CTL hypothesis. The method uses a novel
distributed-memory parallel algorithm that extends the CTL model-checking
algorithm by colouring the transitions in the underlying state space. We have
demonstrated a very good scalability of the algorithm as well as the usefulness
of the method on a biological problem of bistable switch. This is an example
of a wide range of possible applications. The case study can be compared to
numerical bifurcation analysis methods that require good initial estimate of the
equilibria and do not scale up with the number of unknown parameters. Our
method does not require so detailed initial knowledge about the system and
scales well with the number of unknown parameters and system dimensionality.

References

1. Ballarini, P., Guido, R., Mazza, T., Prandi, D.: Taming the complexity of biological
pathways through parallel computing. Brief. Bioinform 10(3), 278–288 (2009)

2. Barnat, J., Brim, L., Krejci, A., Streck, A., Safranek, D., Vejnar, M., Vejpustek,
T.: On Parameter Synthesis by Parallel Model Checking. IEEE/ACM Transactions
on Computational Biology and Bioinformatics 9(3), 693–705 (2012)

3. Barnat, J., Brim, L., Safránek, D.: High-performance analysis of biological systems
dynamics with the divine model checker. Brief. Bioinform 11(3), 301–312 (2010)

4. Batt, G., Belta, C., Weiss, R.: Model checking liveness properties of genetic regu-
latory networks. In: TACAS. LNCS, vol. 4424, pp. 323–338. Springer (2007)

5. Batt, G., Page, M., Cantone, I., Gössler, G., Monteiro, P., de Jong, H.: Efficient
parameter search for qualitative models of regulatory networks using symbolic
model checking. Bioinformatics 26(18), 603–610 (2010)

6. Batt, G., Ropers, D., Jong, H.D., Geiselmann, J., Mateescu, R., Schneider, D.:
Validation of qualitative models of genetic regulatory networks by model checking:
Analysis of the nutritional stress response in escherichia coli. Bioinformatics 21,
19–28 (2005)

12

7. Brim, L., Češka, M., Šafránek, D.: Model checking of biological system. In: SFM.
LNCS, vol. 7938, pp. 63–112 (2013)

8. Brim, L., Yorav, K., Zidkova, J.: Assumption-based distribution of CTL model
checking. STTT 7(1), 61–73 (2005)

9. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8, 244–263 (1986)

10. Collins, P., Habets, L.C., van Schuppen, J.H., Černá, I., Fabriková, J., Šafránek,
D.: Abstraction of biochemical reaction systems on polytopes. In: IFAC World
Congress. pp. 14869–14875. IFAC (2011)

11. Donaldson, R., Gilbert, D.: A model checking approach to the parameter estima-
tion of biochemical pathways. In: CMSB, LNCS, vol. 5307, pp. 269–287. Springer
(2008)

12. Donzé, A., Clermont, G., Langmead, C.J.: Parameter synthesis in nonlinear dy-
namical systems: Application to systems biology. J. Comput. Biol. 17(3), 325–336
(2010)

13. Donzé, A., Fanchon, E., Gattepaille, L.M., Maler, O., Tracqui, P.: Robustness
analysis and behavior discrimination in enzymatic reaction networks. PLoS ONE
6(9), e24246 (2011)

14. Fages, F., Soliman, S.: Formal cell biology in biocham. In: SFM. LNCS, vol. 5016,
pp. 54–80. Springer (2008)

15. Fröhlich, F., Theis, F., Hasenauer, J.: Uncertainty analysis for non-identifiable
dynamical systems: Profile likelihoods, bootstrapping and more. In: CMBS, LNCS,
vol. 8859, pp. 61–72. Springer (2014)

16. Gábor, A., Banga, J.R.: Improved parameter estimation in kinetic models: Selec-
tion and tuning of regularization methods. In: CMSB, LNCS, vol. 8859, pp. 45–60.
Springer (2014)

17. Gilbert, D., Breitling, R., Heiner, M., Donaldson, R.: An introduction to biomodel
engineering, illustrated for signal transduction pathways. In: Membrane Comput-
ing, LNCS, vol. 5391, pp. 13–28. Springer (2009)

18. Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Guernic, C.L., Smolka, S.A., Bar-
tocci, E.: From cardiac cells to genetic regulatory networks. In: CAV. LNCS, vol.
6806, pp. 396–411 (2011)

19. Jha, S.K., Langmead, C.J.: Synthesis and infeasibility analysis for stochastic mod-
els of biochemical systems using statistical model checking and abstraction refine-
ment. Theoretical Computer Science 412(21), 2162 – 2187 (2011)

20. Jha, S., Shyamasundar, R.: Adapting biochemical kripke structures for distributed
model checking. In: Transactions on Computational Systems Biology (TCSB) VII,
LNBI, vol. 4230, pp. 107–122. Springer (2006)

21. Liu, B., Kong, S., Gao, S., Zuliani, P., Clarke, E.M.: Parameter synthesis for cardiac
cell hybrid models using δ-decisions. In: CMSB, LNCS, vol. 8859, pp. 99–113.
Springer (2014)

22. Mittnacht, S.: Control of prb phosphorylation. Current Opinion in Genetics &
Development 8(1), 21 – 27 (1998)

23. Monteiro, P.T., Ropers, D., Mateescu, R., Freitas, A.T., de Jong, H.: Temporal
Logic Patterns for Querying Qualitative Models of Genetic Regulatory Networks.
In: ECAI. FAIA, vol. 178, pp. 229–233. IOS Press (2008)

24. Raue, A., Karlsson, J., Saccomani, M.P., Jirstrand, M., Timmer, J.: Comparison
of approaches for parameter identifiability analysis of biological systems. Bioinfor-
matics (2014)

13

25. Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for
robustness analysis with applications to synthetic gene networks. Bioinformatics
25(12) (2009)

26. Swat, M., Kel, A., Herzel, H.: Bifurcation analysis of the regulatory modules of the
mammalian G1/S transition. Bioinformatics 20(10), 1506–1511 (2004)

14

Appendix A: Assumption semantics for CTL

A p-path π in a parametrised Kripke structure K from a state s0 is a sequence

π = s0s1 . . . such that ∀i ≥ 0 : si ∈ S and si
p→ si+1. A maximal p-path is a

p-paths that is either infinite or ends in a border state. For a maximal p-path
we denote by |π| the length of the path. In case the p-path is infinite we put
|π| =∞.

Definition 1. Let K = (P, S, I,→, L) be a parametrised Kripke structure where
L : AP → 2S is valuation assigning to each atomic proposition a set of states and
ψ be a CTL formula. We define the function CψK : ASψK → ASψK. For Ain ∈ ASψK
let A = CψK(Ain). Then the assumption function A is defined inductively in the
following way (the definition for A(p, s,A(ϕ1 Uϕ2)) is given in the paper):

If s ∈ border(K) and ϕ ∈ |tcl|(ψ) then A(p, s, ϕ) = Ain(p, s, ϕ)

If s /∈ border(K) and ϕ ∈ |tcl|(ψ) then A(p, s, ϕ) is defined as follows:

• A(p, s,Q) =

{
tt if s ∈ L(Q)
ff otherwise

• A(p, s, ϕ1 ∧ ϕ2) =

tt if A(p, s, ϕ1) = tt and A(p, s, ϕ2) = tt

ff if A(p, s, ϕ1) = ff or A(p, s, ϕ2) = ff

⊥ otherwise

• A(p, s,¬ϕ1) =

tt if A(p, s, ϕ1) = ff

ff if A(p, s, ϕ1) = tt

⊥ otherwise

• A(p, s,AXϕ1) =

tt if ∀s′ ∈ S : s

p→ s′ ⇒ A(p, s′, ϕ1) = tt

ff if ∃s′ ∈ S : s
p→ s′ ∧ A(p, s′, ϕ1) = ff

⊥ otherwise

• A(p, s,EXϕ1) =

tt if ∃s′ ∈ S : s

p→ s′ ∧ A(p, s′, ϕ1) = tt

ff if ∀s′ ∈ S : s
p→ s′ ⇒ A(p, s′, ϕ1) = ff

⊥ otherwise

• A(p, s,E(ϕ1 Uϕ2)) =

tt if there exists a p-path π = s0s1s2 . . . with s = s0 such
that ∃x < |π| such that (either A(p, sx, ϕ2) = tt or
(sx ∈ border(K) and A(p, sx,E(ϕ1 Uϕ2)) = tt)),
and ∀0 ≤ y < x : A(p, sy , ϕ1) = tt

ff if for all p-paths π = s0s1s2 . . . with s = s0 either
∃x < |π| such that (A(p, sx, ϕ1) = ff and
∀y ≤ x : A(p, sy , ϕ2) = ff)or ∀x < |π| : (A(p, sx, ϕ2) = ff

and (|π| =∞ or (s|π|−1 ∈ border(K) and

A(p, s|π|−1,E(ϕ1 Uϕ2))) = ff))

⊥ otherwise

15

Appendix B: Distributed algorithm

The pseudo-code of the explicit state node algorithm is described as Algorithm 3.

Algorithm 3 Basic Node Algorithm
Require: parametrised KS K and CTL formula Ψ

Let cl(ψ) = {ϕ1, . . . , ϕz} such that ϕi ∈ cl(ϕj)⇒ i ≤ j
Ensure: A(Ψ)

for i = 1 to z step 1 do
switch Ψ do

true : forall p ∈ P, s ∈ S do A(p, s, Ψ) := tt end for
a : forall p ∈ P, s ∈ S do

if a ∈ L(s) then A(p, s, Ψ) := tt else A(p, s, Ψ) := ff end for
Φ1 ∧ Φ2 : forall p ∈ P, s ∈ S do

if A(p, s, Φ1) = tt and A(p, s, Φ2) = tt then A(p, s, Ψ) := tt

if A(p, s, Φ1) = ff or A(p, s, Φ2) = ff then A(p, s, Ψ) := ff end for
¬Φ : forall p ∈ P, s ∈ S do

if A(p, s, Φ) 6=⊥ then A(p, s, Ψ) := ¬A(p, s, Φ) end for
EXΦ : forall p ∈ P, s ∈ S \ border(K) do

if ∃s′ ∈ S : s
p→ s′ ∧ A(p, s′, Φ) = tt then A(p, s, Ψ) := tt

if ∀s′ ∈ S : s
p→ s′ ⇒ A(p, s′, Φ) = ff then A(p, s, Ψ) := ff end for

AXΦ : forall p ∈ P, s ∈ S \ border(K) do

if ∃s′ ∈ S : s
p→ s′ ∧ A(p, s′, Φ) = ff then A(p, s, Ψ) := ff

if ∀s′ ∈ S : s
p→ s′ ⇒ A(p, s′, Φ) = tt then A(p, s, Ψ) := tt end for

E(Φ1 UΦ2) : forall p ∈ P, s ∈ S do if A(p, s, Φ2) = tt then A(p, s, Ψ) := tt end for
while ∃p ∈ P : (∃s ∈ S : A(p, s, Ψ) 6= tt ∧ A(p, s, Φ1) = tt∧

(∃s′ ∈ S : s
p→ s′ ∧ A(p, s′, Ψ) = tt)) do A(p, s, Ψ) := tt end while

while ∃p ∈ P : (∃s ∈ S : A(p, s, Ψ) =⊥ ∧(A(p, s, Φ1) = ff∨
(∀s′ ∈ S : s

p→ s′ ∧ A(p, s′, Ψ) = ff))) do A(p, s, Ψ) := ff end while
A(Φ1 UΦ2) : while ∃p ∈ P.(∃s ∈ S : A(p, s, Ψ) 6= tt ∧ A(p, s, Φ1) = tt∧

(∀s′ ∈ S : s
p→ s′ ⇒ (A(p, s′, Ψ) = tt ∨ A(p, s′, Φ2) = tt))) do

A(p, s, Ψ) := tt end while
while ∃p ∈ P : (∃s ∈ S : A(p, s, Ψ) =⊥ ∧(A(p, s, Φ1) = ff∨

(∃s′ ∈ S : s
p→ s′ ∧ A(p, s′, Ψ) = ff))) do A(p, s, Ψ) := ff end while

end switch

16

Appendix C: Scalability

We evaluate the scalability of our approach on a model of reversible catalytic
reaction using various number of intermediate enzyme-substrate complexes. The
model is given by the following scheme. The first line is simplified chemical
equation of the model. The next lines describes differential equations for every
species. The last two lines are parameters we used.

S + E
 ES1
 · · ·
 ESk
 P + E

Ṡ = 0.1 · ES1 − p1 · E · S
Ė = 0.1 · ES1 − p2 · E · S + 0.1 · ESk − p2 · E · P

˙ES1 = 0.01 · E · S − p3 · ES1 + 0.05 · ES2

...
˙ESk = 0.1 · ESk−1 − pk · ESk + 0.01 · E · P
Ṗ = 0.1 · ESk − pk+1 · E · P − 0.1 · P

p1 = 0.01, p2 = 0.01, p3 = 0.2,
pk = 0.15, pk+1 = 0.01

The following tables provide detailed information about the runtime of the
distributed algorithm on various variants of the model and the CTL formula
AG P ≤ 30. The value N/A denotes the algorithm runs out of memory.

of params 1 2 3 4 5 6
of nodes

1 6456 N/A N/A N/A N/A N/A
2 2610 6179 5089 N/A N/A N/A
3 1696 4022 3661 3784 N/A N/A
4 854 1759 2285 2454 N/A N/A
5 683 1371 1365 1580 1736 N/A
6 499 1095 1019 1254 1609 1350
7 435 861 796 1023 1406 1340
8 292 642 650 853 1134 1118
9 258 439 630 752 983 962
10 232 418 557 637 839 822
11 198 347 516 553 784 679
12 177 329 420 562 759 660

Table 1. The runtime in seconds for the model containing 6 variables, 13 thresholds
and different number of unknown parameters. The model has almost 3 millions of states
(exactly 126).

17

of variables 4 5 6 7
(# of states) (104) (105) (106) (107)
of nodes

1 3.3 22 794 N/A
2 3.3 12 489 N/A
3 3.5 9.5 253 N/A
4 3.4 8.2 185 8571
5 2.7 8 112 6608
6 2.4 7.2 101 5291
7 2.7 7.3 77 3024
8 2.3 6.6 64 2630
9 2.3 6.3 55 2366
10 2.5 6.8 52 2081
11 2.7 6.2 47 1999
12 2.2 5.6 41 1828

Table 2. The runtime in seconds for the model with 1 unknown parameter, 11 thresh-
olds per the variable and different number of variables.

of thresholds 10 11 12 13
(# of states) (96) (106) (116) (126)
of nodes

1 274 794 1805 6456
2 196 489 1252 2610
3 84 253 570 1696
4 62 185 408 854
5 51 112 280 683
6 40 101 226 499
7 33 77 192 435
8 29 64 161 292
9 26 55 145 258
10 24 52 108 232
11 23 47 94 198
12 22 41 96 177

Table 3. The runtime in seconds for the model with 1 unknown parameter, 6 variables
and different number of thresholds per variable.

18

Appendix D: Case Study Details

The model of G1/S transition in the mammalian cell cycle has been displayed in
Fig. 4. Before facilitating the finite abstraction and model checking, we first had
to approximate the ODE model by means of a piece-wise multi-affine system.
The approximation is based on replacing every non-linear (Hill kinetics) function
appearing at the right hand side of the equations with a sum of piece-wise linear
functions.

In our implementation, we expect the sigmoidal or Hill kinetics to appear in
a normal form in order to be properly detectable. In the model, all non-linear
kinetic terms (sigmoidal Hill functions) appear in a normal form with the only
exception of one. In particular, the numerator a2 + [E2F1]2 does not fit the
normal form for positive Hill kinetics. Therefore, we first rewrite the equation
for E2F1 in an equivalent way that fits the normal form, while equation for pRB
remains the same. The result after rewriting is the following:

d[pRB]
dt = k1 ·Hill+(E2F1, Km1, 1) ·Hill−(pRB, J11, 1)− φpRB [pRB]

d[E2F1]
dt = kp +

k2·a
2

K2
m2
·Hill+(E2F1, Km2, 2) ·Hill−(pRB, J12, 1)+

+k2 ·Hill+(E2F1, Km2, 2) ·Hill−(pRB, J12, 1)− φE2F1[E2F1]

where

Hill
+
(x,Kx, n) =

[x]n

Kn
x + [x]n

, Hill
−
(x,Kx, n) = 1−Hill+(x,Kx, n).

The approximation technique [18] employes a linear programming algorithm
that optimally transforms a given sigmoidal continuous function into a series
of affine segments. The method optimally approximates all sigmoids depending
on a common shared variable together. In our particular case, we requested
70 segments per each variable which resulted into the points on the respective
variables as listed in Table 4 and Table 5.

σE2F1 = [0, 0.0233489, 0.0700467, 0.116744, 0.163442, 0.21014, 0.256838, 0.303536,
0.350233, 0.396931, 0.443629, 0.490327, 0.560374, 0.63042, 0.700467, 0.770514,
0.84056, 0.933956, 1.02735, 1.12075, 1.23749, 1.35424, 1.47098, 1.61107, 1.75117,
1.91461, 2.07805, 2.26484, 2.47498, 2.68512, 2.91861, 3.17545, 3.45564, 3.75917,
4.08606, 4.41294, 4.76318, 5.11341, 5.48699, 5.88392, 6.3042, 6.72448, 7.16811,
7.63509, 8.12542, 8.63909, 9.17612, 9.73649, 10.3202, 10.9506, 11.6044, 12.2815,
13.0053, 13.7525, 14.5464, 15.3869, 16.2742, 17.2081, 18.1888, 19.2161, 20.2902,
21.4343, 22.6251, 23.8859, 25.2168, 26.6177, 28.1121, 29.6998, 31.3576, 33.1321, 35]

Table 4. Array of points σiE2F1 (i is the index of the ith value) computed by optimal
partitioning of E2F1 variable domain into 70 segments.

Every Hill function from previous equations is replaced by a sum of corre-
sponding affine segments, according to [18]. Resulting equations employ piece-
wise affine functions called ramp functions and have the following form:

19

σpRB = [0, 0.072048, 0.108072, 0.144096, 0.18012, 0.216144, 0.264176, 0.312208,
0.36024, 0.408272, 0.456304, 0.516344, 0.576384, 0.636424, 0.708472, 0.78052,
0.852568, 0.936624, 1.02068, 1.11674, 1.21281, 1.32088, 1.44096, 1.56104, 1.69313,
1.83722, 1.99333, 2.16144, 2.34156, 2.53369, 2.74983, 2.97799, 3.21815, 3.4463, 3.67445,
3.89059, 4.10674, 4.32288, 4.53903, 4.76718, 4.99533, 5.22348, 5.46364, 5.7038, 5.95597,
6.20814, 6.47231, 6.7485, 7.03669, 7.33689, 7.6491, 7.97332, 8.30954, 8.65777, 9.03002,
9.41428, 9.82255, 10.2548, 10.6991, 11.1795, 11.6838, 12.2121, 12.7765, 13.3769,
14.0254, 14.7098, 15.4423, 16.2348, 17.0874, 18]

Table 5. Array of points σipRB (i is the index of the ith value) computed by optimal
partitioning of pRB variable domain into 70 segments.

d[E2F1]
dt = kp + k2·a2

K2
m2
· [
∑|σE2F1|
i=2 R−(E2F1, σi−1E2F1, σ

i
E2F1, Hill

−(σi−1E2F1,Km2, 2), Hill−(σiE2F1,Km2, 2))]·

·[
∑|σpRB |
j=2 R−(pRB, σj−1pRB , σ

j
pRB , Hill

−(σj−1pRB , J12, 1), Hill−(σjpRB , J12, 1))]+

+k2 · [
∑|σE2F1|
i=2 R+(E2F1, σi−1E2F1, σ

i
E2F1, Hill

+(σi−1E2F1,Km2, 2), Hill+(σiE2F1,Km2, 2))]·

·[
∑|σpRB |
j=2 R−(pRB, σj−1pRB , σ

j
pRB , Hill

−(σj−1pRB , J12, 1), Hill−(σjpRB , J12, 1))]− φE2F1[E2F1]

d[pRB]
dt = k1 · [

∑|σE2F1|
i=2 R+(E2F1, σi−1E2F1, σ

i
E2F1, Hill

+(σi−1E2F1,Km1, 1), Hill+(σiE2F1,Km1, 1))]·

·[
∑|σpRB |
j=2 R−(pRB, σj−1pRB , σ

j
pRB , Hill

−(σj−1pRB , J11, 1), Hill−(σjpRB , J11, 1))]− φpRB [pRB]

where |σx| denotes cardinality of the array σx and the positive (R+) and
negative (R−) ramp functions are defined as follows:

R+(x, σi, σj , yi, yj) =

{
yi + x−σi

σj−σi · (yj − yi) if σi ≤ x ≤ σj ,
0 otherwise;

R−(x, σi, σj , yi, yj) =

{
yi + x−σi

σj−σi · (yi − yj) if σi ≤ x ≤ σj ,
0 otherwise.

We have bounded the variable domains by assuming E2F1 < 35, pRB <
18. In the piece-wise multi-affine approximation this ensures that the system
dynamics never exits the rectangle defined by the lower left corner [0, 0] and the
upper right corner [35, 18]. The reason for that is that in each of the boundary
vertices the vector of both variable derivatives points towards the interior of the
rectangle.

As can be seen in Fig. 5, the system dynamics as displayed by the vector
fields of both the original and approximated model agree. The comparison has
been realised for the same sampling resolution of the variable derivatives.

The points introduced by the piece-wise multi-affine approximation make a
rectangular partition of the system phase space provided that on each single
rectangle of the partition the system is multi-affine. This allows us to transform
the system into a finite state transition system according to [4]. In our case the
model contains 702 = 4900 states. The abstraction is guaranteed to be an over-
approximation with respect to the continuous piece-wise multi-affine system (see
[10] for overview of the results).

20

Fig. 5. (left) Vector field sampled on the original non-linear ODE model. (right) Vector
field sampled on the piece-wise multi-affine approximation.

Finally, we check the CTL properties defined in Section 3. We have consid-
ered the deactivation/degradation parameter φpRB in the range [0.001, 0.025]
that is suspected as the hypothesised (slow) time scale of the tumor suppresor
protein deactivation processes. In that range we want to identify the property of
bistable switch that causes the system to take a possibility to select one of two
significantly different asymptotically stable equilibria depending on the initial
concentration of both proteins. Fig. 6 gives a 3D visualisation of the states and
parameter values satisfying the overall formula ϕ ≡ EFAG high ∧ EFAG low

(yellow) and the particular “stable attractor regions” subformulas ϕ1 ≡ AGhigh

(red) and ϕ2 ≡ AG low (blue).
As regards the over-approximation, the strongest interpretation goes with

ACTL formulae ϕ1 and ϕ2. In particular, the displayed portion of parameter
values (Z-axes) corresponding to the high stable state guarantee the presence of
the attractor in that region. The same applies to the low stable state. However,
the exact parameter ranges exemplifying stability may be larger since there can
exist points out of the identified range where the formula is violated only by a
spurious behaviour introduced due to over-approximation.

Interpretation of the results for EFAG formulas is weaker due to presence of
spurious reachability. The yellow region can be interpreted as an approximation
of the decision points from which both stable states might be reached. How-
ever, what is guaranteed is imposibility of reaching both red and blue regions
simultaneously from the states that make the complement of the yellow region.
This gives us a good estimate for parameter values where the bistable switch is
impossible.

21

Fig. 6. Coloured model checking results. Red and blue parts correspond to the high
and low stable regions, respectively. Yellow part displays the states where the overall
bistable switch formula ϕ holds.

Fig. 7. Coloured model checking results projected onto pRB/φpRB plane. Red and blue
parts correspond to the high and low stable regions, respectively. Yellow part displays
the states where the overall bistable switch formula ϕ holds.

22

Fig. 7 shows the projection of the 3D visualisation to the variable pRB and
the parameter value. It supplements the E2F1 projection shown in Fig. 4(right).
In particular, we can see that the low stable state of E2F1 traverses almost
entire domain of pRB which is not the case for the high stable state. This gives
us (guaranteed) information that the low stable state is much more robust with
respect to concentration of pRB and the parameter value than the high stable
state.

