std::ranges::rotate_copy, std::ranges::rotate_copy_result
From cppreference.com
Defined in header <algorithm>
|
||
Call signature |
||
template< std::forward_iterator I, std::sentinel_for<I> S, std::weakly_incrementable O > requires std::indirectly_copyable<I, O> |
(1) | (since C++20) |
template< ranges::forward_range R, std::weakly_incrementable O > requires std::indirectly_copyable<ranges::iterator_t<R>, O> |
(2) | (since C++20) |
Helper types |
||
template< class I, class O > using rotate_copy_result = in_out_result<I, O>; |
(3) | (since C++20) |
1) Copies the elements from the source range
[first, last)
, to the destination range beginning at result
in such a way, that the element *middle becomes the first element of the destination range and *(middle - 1) becomes the last element. The result is that the destination range contains a left rotated copy of the source range. The behavior is undefined if either
[first, middle)
or [middle, last)
is not a valid range, or the source and destination ranges overlap.2) Same as (1), but uses
r
as the source range, as if using ranges::begin(r) as first
and ranges::end(r) as last
.The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists may not be specified when calling any of them.
- None of them is visible to argument-dependent lookup.
- When one of them is found by normal unqualified lookup for the name to the left of the function-call operator, it inhibits argument-dependent lookup.
In practice, they may be implemented as function objects, or with special compiler extensions.
Parameters
first, last | - | the source range of elements to copy from |
r | - | the source range of elements to copy from |
middle | - | the iterator to the element that should appear at the beginning of the destination range |
result | - | beginning of the destination range |
Return value
{last, result + N}, where N = ranges::distance(first, last).
Complexity
Linear: exactly N assignments.
Notes
If the value type is TriviallyCopyable and the iterator types satisfy contiguous_iterator
, implementations of ranges::rotate_copy
usually avoid multiple assignments by using a "bulk copy" function such as std::memmove.
Possible implementation
See also the implementations in libstdc++ and MSVC STL.
struct rotate_copy_fn { template<std::forward_iterator I, std::sentinel_for<I> S, std::weakly_incrementable O> requires std::indirectly_copyable<I, O> constexpr ranges::rotate_copy_result<I, O> operator() ( I first, I middle, S last, O result ) const { auto c1{ ranges::copy(middle, std::move(last), std::move(result)) }; auto c2{ ranges::copy(std::move(first), std::move(middle), std::move(c1.out)) }; return { std::move(c1.in), std::move(c2.out) }; } template<ranges::forward_range R, std::weakly_incrementable O> requires std::indirectly_copyable<ranges::iterator_t<R>, O> constexpr ranges::rotate_copy_result<ranges::borrowed_iterator_t<R>, O> operator() ( R&& r, ranges::iterator_t<R> middle, O result ) const { return (*this)(ranges::begin(r), std::move(middle), ranges::end(r), std::move(result)); } }; inline constexpr rotate_copy_fn rotate_copy{}; |
Example
Run this code
#include <algorithm> #include <iostream> #include <iterator> #include <vector> int main() { std::vector<int> src {1, 2, 3, 4, 5}; std::vector<int> dest(src.size()); auto pivot = std::ranges::find(src, 3); std::ranges::rotate_copy(src, pivot, dest.begin()); for (int i : dest) { std::cout << i << ' '; } std::cout << '\n'; // copy the rotation result directly to the std::cout pivot = std::ranges::find(dest, 1); std::ranges::rotate_copy(dest, pivot, std::ostream_iterator<int>(std::cout, " ")); std::cout << '\n'; }
Output:
3 4 5 1 2 1 2 3 4 5
See also
(C++20) |
rotates the order of elements in a range (niebloid) |
(C++20)(C++20) |
copies a range of elements to a new location (niebloid) |
copies and rotate a range of elements (function template) |