Quantum Computing
Jozef Gruska

Leaflet

Link to product page on McGraw-Hill Web

Amazon
(online ordering)

Overview
Contents
Preface
About chapters
Figures
Corrections
Updatings
Additions
About author
Related links

ISBN: 0-07-709503-0
Published: May 1999
Binding:  Softcover
Pages: 439 - 246x189
Price: £34.99, DM73

McGraw-Hill logo

The following figures are corrected and slightly modified versions of those in the book:
Fig. 2-22 (JPEG preview)
Quantum network for binary addition(.eps)
Fig. 2-23(JPEG preview)
Gates for adders and subtractors (.eps)
Fig. 3-3(JPEG preview)
An implementation of QFT(.eps)
Fig. 4-6(JPEG preview)
Evolution in a partial QCA(.eps)

Images from the book in Encapsulated PostScript:

Fig. 1.1
Fig. 1.1 -- Local probability conditions
Fig. 1.2
Fig. 1.2 -- Configuration trees with probabilities and the probability amplitudes
Fig. 1.3
Fig. 1.3 -- Multiple occurrences of the same configuration
Fig. 1.5
Fig. 1.5 -- Quantum and classical worlds
Fig. 1.6
Fig. 1.6 -- Experiment with bullets
Fig. 1.7
Fig. 1.7 -- Experiments with waves
Fig. 1.8
Fig. 1.8 -- Two slit experiment
Fig. 1.9
Fig. 1.9 -- Two-slit experiment with an observation
Fig. 1.10
Fig. 1.10 -- Delay choice experiment
Fig. 1.11
Fig. 1.11 -- Stern-Gerlach experiment with spin-1/2 particles
Fig. 1.12
Fig. 1.12 -- Several Stern-Gerlach magnets
Fig. 1.13
Fig. 1.13 -- Classical Boolean gates
Fig. 1.14
Fig. 1.14 -- Reversible gates N, CN and CCN (or Toffoli gate)
Fig. 1.15
Fig. 1.15 -- Fredkin and Toffoli universal reversible gates
Fig. 1.16
Fig. 1.16 -- A reversible implementation of a two-bit adder
Fig. 1.17
Fig. 1.17 -- Reversible computation with garbage removal
Fig. 1.18
Fig. 1.18 -- Billiard ball model of reversible computation
Fig. 1.19
Fig. 1.19 -- Switch gate
Fig. 1.20
Fig. 1.20 -- A billiard ball implementation of the switch gate
Fig. 1.21
Fig. 1.21 -- A realization of the Toffoli gate using 4 switches
Fig. 2.1
Fig. 2.1 -- Qubit representations by energy levels of an electron in a hydrogen atom and by a spin-1/2 particle
Fig. 2.2
Fig. 2.2 -- Representation of qubits on Riemann and Bloch spheres
Fig. 2.4
Fig. 2.4 -- Beam splitter
Fig. 2.5
Fig. 2.5 -- Mach--Zehnder interferometer in various situations
Fig. 2.7
Fig. 2.7 -- Generation of an EPR pair of polarized photons and an EPR-channel
Fig. 2.9
Fig. 2.9 -- Elementary networks I
Fig. 2.10
Fig. 2.10 -- Elementary networks II
Fig. 2.11
Fig. 2.11 -- An implementation of the inverse of the XOR gate.
Fig. 2.12
Fig. 2.12 -- Two equivalent circuits
Fig. 2.13
Fig. 2.13 -- Generalized XOR gate notations and a quantum circuit to flip the qubits
Fig. 2.14
Fig. 2.14 -- A circuit to produce Bell states and a circuit to map pairs of Bell states into pairs of Bell states
Fig. 2.15
Fig. 2.15 -- Permutation circuit
Fig. 2.16
Fig. 2.16 -- The Hadamard circuit Hn and its application
Fig. 2.17
Fig. 2.17 -- Measurement gates and their role
Fig. 2.18
Fig. 2.18 -- Power of copying circuits
Fig. 2.19
Fig. 2.19 -- Short notation for gates
Fig. 2.20
Fig. 2.20 -- A circuit for the Toffoli gate
Fig. 2.21
Fig. 2.21 -- An implementation of the gate V
Fig. 2.22
Fig. 2.22 -- Quantum network for binary addition
Fig. 2.23
Fig. 2.23 -- Gates for adders and subtractors
Fig. 2.24
Fig. 2.24 -- A quantum network for modular addition
Fig. 2.25
Fig. 2.25 -- Encoder as superoperator and its unitary embedding
Fig. 3.1
Fig. 3.1 -- Circuits for randomized and deterministic solution of Deutsch's problem
Fig. 3.2
Fig. 3.2 -- Circuit for the Deutsch's problem and the ``Hadamard-twice scheme''
Fig. 3.3
Fig. 3.3 -- An implementation of QFT
Fig. 3.4
Fig. 3.4 -- A general scheme of the Shor's factorization algorithm
Fig. 3.5
Fig. 3.5 -- Representation of particular steps of Shor's order-finding algorithm
Fig. 3.8
Fig. 3.8 -- ``Cooking'' the solution with Grover's algorithm
Fig. 3.10
Fig. 3.10 -- A decision tree
Fig. 4.1
Fig. 4.1 -- Models of finite automata
Fig. 4.3
Fig. 4.3 -- QFA recognizing the language {0i1i| i>1}
Fig. 4.4
Fig. 4.4 -- Neighbourhoods for one- and two-dimensional cellular automata
Fig. 4.6
Fig. 4.6 -- Evolution in a partial QCA
Fig. 6.1
Fig. 6.1 -- Polarizations of photons for BB84 and B92 protocols
Fig. 6.6
Fig. 6.6 -- Entanglement-based QKG protocols without entanglement
Fig. 6.7
Fig. 6.7 -- B92 protocol implementation
Fig. 6.8
Fig. 6.8 -- Mach--Zehnder interferometer implementation of BB84 protocol
Fig. 6.10
Fig. 6.10 -- Quantum teleportation
Fig. 6.11
Fig. 6.11 -- Brassard's teleportation circuit
Fig. 6.12
Fig. 6.12 -- A teleportation device
Fig. 6.13
Fig. 6.13 -- Two teleportation circuits of Alice and Bob
Fig. 6.14
Fig. 6.14 -- Superdense coding
Fig. 6.16
Fig. 6.16 -- Superdense coding scheme
Fig. 7.3
Fig. 7.3 -- Encoding circuits for the Steane's and LMPZ's codes
Fig. 7.6
Fig. 7.6 -- A circuit to compute syndromes for the code
Fig. 7.10
Fig. 7.10 -- Three ways of gathering information from data to ancilla
Fig. 7.11
Fig. 7.11 -- Ancilla state verification
Fig. 7.12
Fig. 7.12 -- Concatenated codes
Fig. 7.13
Fig. 7.13 -- Ion trap procesor
Fig. 7.14
Fig. 7.14 -- NMR processor
Fig. 8.2
Fig. 8.2 -- Quantum channels
Fig. 8.4
Fig. 8.4 -- Channel transmission scheme
Fig. 8.5
Fig. 8.5 -- Communication through a quantum channel assisted by one-way and two-way classical communication
Fig. 8.6
Fig. 8.6 -- Basic step of the entanglement purification
Fig. 8.7
Fig. 8.7 -- Entanglement purification with 2-way communication
Fig. 9.1
Fig. 9.1 -- Measurement of the position and of the momentum of particles
Fig. 9.2
Fig. 9.2 -- Electric and magnetic fields of a linearly polarized photon
Fig. 9.3
Fig. 9.3 -- Photon polarizers and measuring devices
Fig. 9.4
Fig. 9.4 -- Maxwell's demon
Fig. 9.5
Fig. 9.5 -- Schr\"odinger's cat
Fig. 9.6
Fig. 9.6 -- Aspect's experiment
Fig. 9.7
Fig. 9.7 -- One-tape Turing machine
Fig. 9.8
Fig. 9.8 -- Multitape Turing machines
Fig. 9.9
Fig. 9.9 -- Oracle Turing machine
Fig. 9.10
Fig. 9.10 -- Tree of configurations of NTM
Fig. 9.11
Fig. 9.11 -- Configuration tree of a PTM
Fig. 9.12
Fig. 9.12 -- A Turing machine with a tape of random bits and a configuration tree of a special NTM
Fig. 9.13
Fig. 9.13 -- Examples of networks
Fig. 9.14
Fig. 9.14 -- Decomposition of networks

Link to product page on McGraw-Hill Web

For further information click here.