V\U000000edtejte na m\U000000e9 akademick\U000000e9 str\U000000e1nce...
![[foto]](images/PHfoto-17small.png)
Prof. RNDr. Petr Hliněný, Ph.D.
profesor informatiky
@ynenilhfi.muni.cz
Fakulta Informatiky MU Brno
Botanická 68a, 602 00 Brno
Kancel\U000000e1\U00000159 C418
Budova FI, 4. patro
Kalend\U000000e1\U00000159 v\U000000fduky, konzulta\U0000010dn\U000000edch hodin a nep\U00000159\U000000edtomnosti
\U0000010cesky sp\U000000ed\U00000161e jen stru\U0000010dn\U0000011b (a mo\U0000017en\U000000e1 dost neaktu\U000000e1ln\U0000011b), pokud se chcete dozv\U0000011bd\U0000011bt v\U000000edce, zkuste to anglicky.
Jen p\U000000e1r slov k m\U000000e9mu v\U000000fdzkumu \U0000010desky... (my research in English)
V\U000000fduka na FI MU Brno (v\U000000edce)
Kdo \U0000017ee to prohl\U000000e1sil? "Učit se, učit se, učit se!"
A tak cel\U000000e9 nastupuj\U000000edc\U000000ed ro\U0000010dn\U000000edky student\U0000016f FI \U000000fap\U000000ed a trp\U000000ed pod t\U000000edhou v\U000000fduky matematiky... ke kter\U000000e9 tak\U000000e9 na FI p\U00000159isp\U000000edv\U000000e1m. P\U00000159esto se ob\U0000010das jisk\U00000159i\U0000010dka nad\U0000011bje zableskne a po\U00000161t\U0000011bst\U000000ed se mi vid\U0000011bt studenty, kte\U00000159\U000000ed maj\U000000ed matematiku r\U000000e1di - a to za tu n\U000000e1mahu ur\U0000010dit\U0000011b stoj\U000000ed. Pat\U00000159\U000000edte k takov\U000000fdm?
- Podzimn\U000000ed "masová" v\U000000fduka zahrnuje ka\U0000017ed\U000000fd rok (viz v\U000000edce informac\U000000ed)
- FI:IB000 Matematick\U000000e9 z\U000000e1klady informatiky,
* sylabus * povinn\U0000011b sledovan\U000000e9 aktuality.
S t\U000000edmto p\U00000159edm\U0000011btem se hned na za\U0000010d\U000000e1tku studia setkaj\U000000ed prakticky v\U00000161ichni bakal\U000000e1\U00000159\U00000161t\U000000ed studenti fakulty (v po\U0000010dtu kolem 600-700 student\U0000016f ka\U0000017edoro\U0000010dn\U0000011b) a t\U0000011bm \U000000fasp\U0000011b\U00000161n\U000000fdm doufejme pom\U0000016f\U0000017ee v dal\U00000161\U000000edch semestrech objevovat hlubok\U000000e9 kr\U000000e1sy vysoko\U00000161kolsk\U000000e9 informatiky.
- FI:IB000 Matematick\U000000e9 z\U000000e1klady informatiky,
- V\U000000fdb\U0000011brov\U000000e9 kurzy a semin\U000000e1\U00000159e pak v\U000000e1\U0000017en\U000000fdm z\U000000e1jemc\U0000016fm zejm\U000000e9na na ja\U00000159e nab\U000000edzej\U000000ed (zase v\U000000edce informac\U000000ed)
- tematrickou semin\U000000e1rn\U000000ed skupinu (nyn\U000000ed i na podzim) ve studentsk\U000000e9m v\U000000fdzkumn\U000000e9m semin\U000000e1\U00000159i
FI:IV131 Semin\U000000e1\U00000159 laborato\U00000159e DIMEA - a tak\U000000e9 n\U000000e1sleduj\U000000edc\U000000ed z\U000000e1jmov\U000000fd semin\U000000e1\U00000159 pro mlad\U000000e9 studenty:
- tematrickou semin\U000000e1rn\U000000ed skupinu (nyn\U000000ed i na podzim) ve studentsk\U000000e9m v\U000000fdzkumn\U000000e9m semin\U000000e1\U00000159i
- FI:IV119 Semin\U000000e1\U00000159 z Diskr\U000000e9tn\U000000edch Matematick\U000000fdch Metod
- M\U000000e1te matematiku r\U000000e1di natolik, \U0000017ee v\U000000e1m b\U0000011b\U0000017en\U000000e1 porce a hloubka jej\U000000ed v\U000000fduky na FI nesta\U0000010d\U000000ed? P\U00000159i\U0000010dichli jste n\U0000011bkdy d\U00000159\U000000edve k Matematick\U000000e9 olympi\U000000e1d\U0000011b a zaj\U000000edm\U000000e1 v\U000000e1s, jak pokra\U0000010dovat na podobnou notu na V\U00000160? A cht\U0000011bli byste v\U0000011bd\U0000011bt, jak rychle se m\U0000016f\U0000017eete dostat ke skute\U0000010dn\U000000e9 matematick\U000000e9 v\U0000011bd\U0000011b? Pak p\U00000159ij\U0000010fte do IV119...
- nov\U000000e1 p\U00000159edm\U0000011bt (od 2024) pro studenty maj\U000000edc\U000000ed u\U0000017e velmi dobr\U000000e9 znalosti b\U0000011b\U0000017en\U000000e9 kombinatoriky a graf\U0000016f, kte\U00000159\U000000ed se z\U000000e1rove\U00000148 tou\U0000017e\U000000ed dozv\U0000011bd\U0000011bt je\U00000161t\U0000011b v\U000000edce a neboj\U000000ed se t\U000000e9mat jdouc\U000000edch velmi do hloubky...
- Pro bakal\U000000e1\U00000159sk\U000000e9 studium nab\U000000edz\U000000edm v z\U000000e1sad\U0000011b jedin\U000000e9 v\U00000161eobj\U000000edmaj\U000000edc\U000000ed t\U000000e9ma, pod kter\U000000fdm se lze v\U0000011bnovat spoust\U0000011b r\U0000016fzn\U000000fdch oblast\U000000ed graf\U0000016f a algoritm\U0000016f - podle p\U00000159\U000000e1n\U000000ed student\U0000016f.
- Nab\U000000eddka pro diplomov\U000000e9 pr\U000000e1ce je ji\U0000017e specifi\U0000010dt\U0000011bj\U00000161\U000000ed a zahrnuje v\U0000011bt\U00000161\U000000ed po\U0000010det konkr\U000000e9tn\U000000edch n\U000000e1m\U0000011bt\U0000016f a probl\U000000e9m\U0000016f, kter\U000000e9 lze vyhledat v seznamu podle jmen \U00000161kolitel\U0000016f (mne \U0000010di m\U000000fdch spolupracovn\U000000edk\U0000016f).
- Studenti maj\U000000edc\U000000ed z\U000000e1jem (a tak\U000000e9 p\U00000159edpoklady prok\U000000e1zan\U000000e9 aspo\U00000148 trochou p\U00000159edchoz\U000000edch v\U000000fdsledk\U0000016f) pokra\U0000010dovat ve v\U0000011bdeck\U000000e9 kari\U000000e9\U00000159e v n\U0000011bkter\U000000e9m mi bl\U000000edzk\U000000e9m sm\U0000011bru jsou v\U00000159ele v\U000000edt\U000000e1ni na doktorsk\U000000e9m stupni studia pod m\U000000fdm veden\U000000edm. Sta\U0000010d\U000000ed se pod\U000000edvat na aktu\U000000e1ln\U000000ed t\U000000e9mata a zam\U0000011b\U00000159en\U000000ed na\U00000161eho v\U000000fdzkumu \U0000010di p\U00000159ij\U000000edt s vlastn\U000000edm podn\U0000011btn\U000000fdm n\U000000e1padem na v\U000000fdzkum.
- V sou\U0000010dasnosti \U00000161kolen\U000000ed studenti: seznam.
- \U00000160ikovn\U000000ed studenti maj\U000000ed mo\U0000017enost z\U000000edskat nadstandardn\U000000ed stipendium 29000CZK (kter\U000000e9 d\U000000e1le m\U000000edrn\U0000011b poroste).
- K doktorsk\U000000e9mu studiu (intern\U000000edmu se stipendiem) na FI MU Brno lze nastupovat v zim\U0000011b i v l\U000000e9t\U0000011b a p\U00000159ij\U000000edmac\U000000ed procedura je po domluv\U0000011b se \U00000161kolitelem pom\U0000011brn\U0000011b neform\U000000e1ln\U000000ed.
Garant doktorsk\U000000e9ho stuijn\U000000edho programu Informatika / Computer Science:
- jedn\U000000e1 se o celkov\U000000fd doktorsk\U000000fd studijn\U000000ed program FI MU zahrnuj\U000000edc\U000000ed v\U00000161echny oblasti informatiky, od \U0000010dist\U000000e9 teorie a\U0000017e po metodologii a pr\U0000016fmyslov\U000000e9 aplikace,
- viz jeho Oborov\U000000e1 rada.
V\U0000011bdeck\U000000fd v\U000000fdzkum v matematice a informatice (v\U000000edce EN)
Aneb zn\U000000e1te tuto? "Vaše odpověď byla naprosto přesná, ale byla úplně k ničemu".
P\U00000159esto \U0000010di pr\U000000e1v\U0000011b proto matematick\U000000fd (a hodn\U0000011b teoretick\U000000fd) v\U000000fdzkum pova\U0000017euji za nejd\U0000016fle\U0000017eit\U0000011bj\U00000161\U000000ed sou\U0000010d\U000000e1st sv\U000000e9 akademick\U000000e9 pr\U000000e1ce. Aktu\U000000e1ln\U000000ed hlavn\U000000ed sm\U0000011bry m\U000000e9ho v\U000000fdzkumu (ve spolupr\U000000e1ci s m\U000000fdmi kolegy a studenty) lze stru\U0000010dn\U0000011b shrnout n\U000000e1sledovn\U0000011b:
- Diskr\U000000e9tn\U000000ed matematika - hlavn\U0000011b teorie graf\U0000016f
- problematika struktur\U000000e1ln\U000000edch dekompozic graf\U0000016f a odvozen\U000000fdch tzv. \U00000161\U000000ed\U00000159kov\U000000fdch parametr\U0000016f, zahrnuj\U000000edc\U000000ed zn\U000000e1m\U000000e9 tree-width, branch-width, rank-width i n\U0000011bkter\U000000e9 nov\U000000e9 parametry (t\U00000159eba twin-width), hry na "četníky a zloděje" vzta\U0000017een\U000000e9 k t\U0000011bmto dekompozic\U000000edm apod.,
- v n\U000000e1vaznosti na p\U00000159edchoz\U000000ed dekompozice graf\U0000016f tak\U000000e9 zkoum\U000000e1n\U000000ed "hloubky" grafu a logick\U000000e9 slo\U0000017eitosti jeho struktury (\U0000010di popisu), pokusy p\U00000159en\U000000e9st u\U0000017eite\U0000010dn\U000000e9 poznatky \U00000159\U000000eddk\U000000fdch graf\U0000016f na hust\U000000e9 grafy, kter\U000000e9 v\U00000161ak st\U000000e1le maj\U000000ed "logicky řídkou" strukturu,
- ot\U000000e1zky v\U0000011bnovan\U000000e9 pr\U0000016fse\U0000010d\U000000edkov\U000000e9mu \U0000010d\U000000edslu graf\U0000016f - tj. nejmen\U00000161\U000000edmu po\U0000010dtu k\U00000159\U000000ed\U0000017een\U000000ed hran v nakreslen\U000000ed toho grafu, specificky studium pr\U0000016fse\U0000010d\U000000edkov\U0000011b kritick\U000000fdch graf\U0000016f a jejich obecn\U000000e9 struktury,
- tak\U000000e9 n\U0000011bkter\U000000e9 ot\U000000e1zky diskr\U000000e9tn\U000000ed geometrie, zejm\U000000e9na o viditelnostn\U000000edch probl\U000000e9mech a hl\U000000edd\U000000e1n\U000000ed, dal\U00000161\U000000ed ot\U000000e1zky geometricky prezentovan\U000000fdch graf\U0000016f, jejich isomorfismus.
- Teoretick\U000000e1 informatika - slo\U0000017eitost, parametrizovan\U000000e1 slo\U0000017eitost a kombinatorick\U000000e9 algoritmy
- vyu\U0000017eit\U000000ed v\U000000fd\U00000161e zm\U000000edn\U0000011bn\U000000fdch struktur\U000000e1ln\U000000edch dekompozic graf\U0000016f a \U00000161\U000000ed\U00000159kov\U000000fdch parametr\U0000016f v n\U000000e1vrhu rychlej\U00000161\U000000edch a elegantn\U0000011bj\U00000161\U000000edch parametrizovan\U000000fdch algoritm\U0000016f (ve t\U00000159\U000000edd\U000000e1ch FPT a XP), formalizace takov\U000000fdch algoritm\U0000016f,
- pou\U0000017eit\U000000ed logiky (MSO, FO) pro popis algoritmick\U000000fdch metav\U0000011bt, tj. obecn\U000000fdch algoritm\U0000016f zahrnuj\U000000edc\U000000edch cel\U000000e9 \U00000161irok\U000000e9 t\U00000159\U000000eddy probl\U000000e9m\U0000016f,
- takzvan\U000000e1 kernelizace t\U0000011b\U0000017ek\U000000fdch probl\U000000e9m\U0000016f, neboli "chytré" p\U00000159edzpracov\U000000e1n\U000000ed vstup\U0000016f, kter\U000000e9 v\U000000fdrazn\U0000011b zmen\U00000161\U000000ed velikost probl\U000000e9mu a\U0000017e na jeho j\U000000e1dro,
- dokazov\U000000e1n\U000000ed v\U000000fdpo\U0000010detn\U000000ed t\U0000011b\U0000017ekosti kombinatorick\U000000fdch probl\U000000e9m\U0000016f (p\U00000159ev\U000000e1\U0000017en\U0000011b t\U0000011bch vzta\U0000017een\U000000fdch ke zm\U000000edn\U0000011bn\U000000fdm t\U000000e9mat\U0000016fm), meze algoritmick\U000000e9 pou\U0000017eitelnosti \U00000161\U000000ed\U00000159kov\U000000fdch parametr\U0000016f,
- nov\U000000e9, p\U00000159ev\U000000e1\U0000017en\U0000011b aproxima\U0000010dn\U000000ed algoritmy pro v\U000000fdpo\U0000010det pr\U0000016fse\U0000010d\U000000edkov\U000000e9ho \U0000010d\U000000edsla graf\U0000016f v speci\U000000e1ln\U000000edch p\U00000159\U000000edpadech (grafy nakresliteln\U000000e9 na vy\U00000161\U00000161\U000000ed plochy, grafy bl\U000000edzk\U000000e9 rovinn\U000000fdm, apod).
- V\U000000fdzkumn\U000000e1 skupina -- Laborato\U00000159 DIMEA:
- Veden\U000000e1 od roku 2018 spole\U0000010dn\U0000011b s prof. Danielem Kr\U000000e1\U0000013eem (d\U00000159\U000000edve \U000000fa\U0000010dast v bl\U000000edzk\U000000e9 laborato\U00000159i Formela).
- Laborato\U00000159 diskr\U000000e9tn\U000000edch metod a algoritm\U0000016f (DIMEA) se zab\U000000fdv\U000000e1 oblastmi diskr\U000000e9tn\U000000ed matematiky, kter\U000000e9 jsou v\U000000fdznamn\U000000e9 z hlediska informatiky, a n\U000000e1vrhem diskr\U000000e9tn\U000000edch algoritm\U0000016f. Oblasti v\U000000fdzkumu \U0000010dlen\U0000016f laborato\U00000159e zahrnuj\U000000ed algoritmickou, geometrickou, struktur\U000000e1ln\U000000ed a topologickou teorii graf\U0000016f, extrem\U000000e1ln\U000000ed kombinatoriku a analytick\U000000e9 reprezentace velk\U000000fdch diskr\U000000e9tn\U000000edch objekt\U0000016f.
- P\U00000159ij\U0000010fte se pod\U000000edvat na n\U000000e1\U00000161 spojen\U000000fd teoretick\U000000fd p\U00000159edn\U000000e1\U00000161kov\U000000fd semin\U000000e1\U00000159 na FI...
- \U00000158e\U00000161en\U000000e9 v\U000000fdzkumn\U000000e9 projekty:
- GA\U0000010cR standardn\U000000ed grant 20-04567S Structure of tractable instances of hard algorithmic problems on graphs.
- GA\U0000010cR standardn\U000000ed grant 17-00837S Structural properties, parameterized tractability and hardness in combinatorial problems.
- a \U00000159ada star\U00000161\U000000edch projekt\U0000016f v d\U00000159\U000000edv\U0000011bj\U00000161\U000000edch letech...
- Kr\U000000e1tk\U000000fd p\U00000159ehled nejnov\U0000011bj\U00000161\U000000edch v\U0000011bdeck\U000000fdch publikac\U000000ed
(v\U00000161echny publikace EN):
Petr Hliněný- 2024 (spoluautor A. Straka): Stack and Queue Numbers of Graphs Revisited. European J. Combinatorics ? (2024), 104094. URL: arxiv.org/abs/2303.10116. DOI 10.1016/j.ejc.2024.104094.
- 2024: Twin-width of Planar Graphs; a Short Proof. European J. Combinatorics ? (2024), 104036. URL: arxiv.org/abs/2302.08938. DOI 10.1016/j.ejc.2024.104036.
- 2024 (spoluautoři M. Bekos, G. Da Lozzo, M. Kaufmann): Graph Product Structure for h-Framed Graphs. Electronic J. Combinatorics 31 (2024), #P4.56. URL: arxiv.org/abs/2204.11495. DOI 10.37236/12123.
- 2024 (spoluautor J. Jedelský): H-Clique-Width and a Hereditary Analogue of Product Structure. In: MFCS 2024, LIPiCS Vol. 306, Dagstuhl (2024), 61:1--61:16. URL: arxiv.org/abs/2403.16789. DOI 10.4230/LIPIcs.MFCS.2024.61.
- 2024 (spoluautoři J. Balabán, J. Jedelský): Twin-width and Transductions of Proper k-Mixed-Thin Graphs. Discrete Mathematics 347 (2024), 113876. URL: arxiv.org/abs/2202.12536. DOI 10.1016/j.disc.2024.113876.
- 2024 (spoluautoři O. Cagirici, B. Roy): On Colourability of Polygon Visibility Graphs. European J. Combinatorics 117 (2024), 103820. URL: arxiv.org/abs/1906.01904. DOI 10.1016/j.ejc.2023.103820.
- 2023 (spoluautor T. Masařík): Minimizing an Uncrossed Collection of Drawings. In: Graph Drawing 2023, Proceedings, Lecture Notes in Computer Science 14465, Springer (2023), 110--123. URL: arxiv.org/abs/2306.09550. DOI 10.1007/978-3-031-49272-3_8.
- 2023 (spoluautoři B. Bergougnoux, J. Gajarský, G. Guspiel, F. Pokrývka, M. Sokolowski): Sparse Graphs of Twin-width 2 Have Bounded Tree-width. In: ISAAC 2023, LIPiCS Vol. 283, Dagstuhl (2023), 11:1--11:13. URL: arxiv.org/abs/2307.01732. DOI 10.4230/LIPIcs.ISAAC.2023.11.
- 2023 (spoluautor M. Chimani): Inserting Multiple Edges into a Planar Graph. Journal of Graph Algorithms and Applications 27 (2023), 489--522. URL: arxiv.org/abs/1509.07952. DOI 10.7155/jgaa.00631.
- 2023 (spoluautor J. Jedelský): Twin-width of Planar Graphs is at most 8, and at most 6 when Bipartite Planar. In: ICALP 2023, LIPiCS Vol. 261, Dagstuhl (2023), 75:1--75:18. URL: arxiv.org/abs/2210.08620. DOI 10.4230/LIPIcs.ICALP.2023.75.
- 2023 (spoluautor D. Agaoglu Cagirici): Efficient Isomorphism for Sd-graphs and T-graphs. Algorithmica 85 (2023), 352--383. URL: arxiv.org/abs/1907.01495. DOI 10.1007/s00453-022-01033-8.
- 2023 (spoluautoři O. Cagirici, F. Pokrývka, A. Sankaran): Clique-Width of Point Configurations. J. of Combinatorial Theory ser. B 158 (2023), 43--73. URL: arxiv.org/abs/2004.02282. DOI 10.1016/j.jctb.2021.09.001.
- 2022 (spoluautoři D. Bokal, Z. Dvořák, J. Leanos, B. Mohar, T. Wiedera): Bounded degree conjecture holds precisely for c-crossing-critical graphs with c <= 12. Combinatorica 42 (2022), 701--728. URL: arxiv.org/abs/1903.05363. DOI 10.1007/s00493-021-4285-3.
- 2022 (spoluautor T. Hamm): Parameterised Partially-Predrawn Crossing Number. In: 38th International Symposium on Computational Geometry (SoCG 2022), LIPIcs Vol. 224, Dagstuhl (2022), 46:1--46:15. URL: arxiv.org/abs/2202.13635. DOI 10.4230/LIPIcs.SoCG.2022.46.
- 2021 (spoluautoři J. Bok, J. Fiala, N. Jedličková, J. Kratochvíl): Computational Complexity of Covering Two-vertex Multigraphs with Semi-edges. In: Math Foundations of Computer Science MFCS 2021, LIPiCS Vol. 202, Dagstuhl (2021), 21:1--21:15. URL: arxiv.org/abs/2103.15214. DOI 10.4230/LIPIcs.MFCS.2021.21.
- 2021: A Short Proof of Euler--Poincaré Formula. In: Extended Abstracts EuroComb 2021, Trends in Mathematics, Springer (2021), 92--96. URL: arxiv.org/abs/1612.01271. DOI 10.1007/978-3-030-83823-2_15.
- 2020 (spoluautoři J. Gajarský, D. Lokshtanov, J. Obdržálek, M.S. Ramanujan): A New Perspective on FO Model Checking of Dense Graph Classes. ACM Transactions on Computational Logic 21 (2020), #28. URL: arxiv.org/abs/1805.01823. DOI 10.1145/3383206.
- 2020 (spoluautor D. Agaoglu): Isomorphism Problem for Sd-graphs. In: Math Foundations of Computer Science MFCS 2020, LIPiCS Vol. 170, Dagstuhl (2020), 4:1--4:14. URL: arxiv.org/abs/1907.01495. DOI 10.4230/LIPIcs.MFCS.2020.4.
- 2020 (spoluautoři M. Chimani, G. Salazar): Toroidal Grid Minors and Stretch in Embedded Graphs. J. of Combinatorial Theory ser. B 140 (2020), 323--371. URL: arxiv.org/abs/1403.1273. DOI 10.1016/j.jctb.2019.05.009.